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Abstract: Unsupervised domain adaptation (UDA) aims to reapply the classifier to be ever-trained
on a labeled source domain to a related unlabeled target domain. Recent progress in this line has
evolved with the advance of network architectures from convolutional neural networks (CNNs) to
transformers or both hybrids. However, this advance has to pay the cost of high computational
overheads or complex training processes. In this paper, we propose an efficient alternative hybrid
architecture by marrying transformer to contextual convolution (TransConv) to solve UDA tasks.
Different from previous transformer based UDA architectures, TransConv has two special aspects:
(1) reviving the multilayer perception (MLP) of transformer encoders with Gaussian channel attention
fusion for robustness, and (2) mixing contextual features to highly efficient dynamic convolutions for
cross-domain interaction. As a result, TransConv enables to calibrate interdomain feature semantics
from the global features and the local ones. Experimental results on five benchmarks show that
TransConv attains remarkable results with high efficiency as compared to the existing UDA methods.

Keywords: transformer; convolution; unsupervised domain adaptation; contextual information

1. Introduction

Deep neural networks have achieved impressive success in a wide range of computer
vision applications [1], but their success usually demands massive quantities of labeled
data for better representations. This often follows the assumption that training and testing
sets are from the same data distribution. Nevertheless, this situation does not always
work well in practice. One way out could be resorting to the unsupervised domain
adaptation (UDA), which trains deep neural network models on rich labeled data from a
related source domain. But this supervised learning suffers from the domain shift issue,
resulting in poor generalization performance on other new target domains. To address
this issue, considerable research efforts are devoted to such UDA tasks [2–5] by bridging
the distribution discrepancy, minimizing distance metrics or adversarial learning, etc.
In such arts, most existing approaches advance convolution neural networks (CNNs)-based
frameworks to learn the domain-invariant feature representation. Such features are often
from local receptive fields.

With the success of transformers in various visual tasks, recent UDA methods focus
more on global features by using encoder–decoder frameworks, in contrast to local features
learned by CNN frameworks. The most advanced domain adaptation methods extract
global features of images by using transformer architecture as backbone network. Recent
studies show that the models with transformers are obviously better than those with pure
convolutional neural networks. For example, transferable vision transformers (TVT) [5]
utilize the transferability adaptation module of vision transformers (ViT) [6] for domain
adaptation. Cross-domain transformers (CDTrans) [4] use the robustness of cross-attention
in transformers to propose a three-branch transformer model for UDA tasks. To take full
advantage of both transformer and CNN architectures, a natural idea is combining both of
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them. However, CDTrans uses a two-stage training method, which takes a long time and is
not conducive to the rapid migration of the model. The challenge of hybrid models is how
to maintain the robustness of cross-attention with high efficiency.

On one hand, we introduce a Gaussian attended MLP module to further empower
the robustness of the encoder of transformer by adjusting more attention to major channel
dimensions of features, thus improving the quality of features. As shown in Figure 1,
Gaussian attention can attend to more important visual clues than the baseline. This is
because Gaussian distribution can smooth the distribution of the attention weights, thereby
filtering out the respective noisy values. Moreover, since it only involves the mean value
and deviations, the speed of forming the attention is lightning-fast. The corresponding
extra overhead is negligible. On the other hand, the context information of features is
able to enhance the spatial semantics of the ‘Class Token (CLS-Token)’ features. Inspired
by ConvNeXt [7], which reparameterizes the transformer architecture into the fully CNN
model for efficiency, we design an efficient dynamic convolution module with the context
information by using the Gaussian error linear units (GELU) activation function and the
layer normalization. This module is also lightly weighted.

Figure 1. Attention visualization of bike, bike helmet, and letter tray in the Office-31 dataset.
The hotter the color, the higher the attention.

In summary, the contributions of this paper are summarized as follows:

• We propose a novel hybrid model of both transformers and convolution networks,
termed TransConv. It improves the robustness of cross-attention with a Gaussian
attended MLP module and meanwhile absorbs more semantics via the context-aware
dynamic convolution module.

• TransConv better trades off model performance and efficiency as compared to the
state-of-the-arts with a large margin on five datasets.

The rest of this paper is organized as follows: first of all, we review the related
work in the Section 2. Then, Section 3 introduces the overall architecture of the proposed
TransConv model and each improved module are introduced in detail. Section 4 reports
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the experimental results on five commonly used datasets and ablation experiments. At last,
the conclusion of this paper and the future works are given in Section 5.

2. Related Work

In this section, we will introduce the related work in four aspects: unsupervised
domain adaptation, vision transformers, dynamic convolution, and contextual information.

2.1. Unsupervised Domain Adaptation

From the perspective of using different training methods, there are two main methods
of UDA, namely UDA based on metric learning and UDA based on adversarial learning.
UDA of metric learning [8,9] mainly measures the distribution difference between different
domains by defining a distance metric. UDA can be formulated as a distance minimization
problem. For example, the maximum mean discrepancy (MMD) [10] metric has been widely
used in UDA methods. UDA of adversarial learning [11,12] mainly trains a domain discrim-
inator and a feature learning network through the adversarial method. The feature learning
network learn domain-invariant features and attempt to fool the domain discriminator.
When the domain discriminator cannot distinguish whether the input data come from
the source domain or the target domain, it will assume that the distributions between the
two domains are well aligned. From the perspective of UDA alignment granularity, UDA
methods also can be divided into two main methods: domain-level UDA and category-level
UDA. Domain-level UDA [13,14] mainly alleviates the distribution difference between the
source domain and the target domain by reducing the overall distribution of the source
domain and the target domain. Category-level UDA [15,16] mainly achieves more accurate
fine-grained alignment by reducing the distribution of each category in the source domain
and target domain. The method adopted in this paper is a category-level UDA method
based on metric learning. By exploring a hybrid model of transformers and CNNs, our
method can fully combine the advantages of both architectures to solve the UDA problem.

2.2. Vision Transformer

Transformers [17] were first proposed in the natural language processing (NLP) field
and have shown excellent performance in tasks of the NLP field [18–20]. As transformers
moved from the NLP field to the computer vision field, many studies have shown their
effectiveness in computer vision tasks [21–23]. ViT [6] was the first work to apply transform-
ers from NLP to computer vision, which is a pure transformer model without convolution.
ViT-based variants [24,25] are widely used in image classification and downstream tasks
such as object detection [26–28], image segmentation [29,30], etc. In the unsupervised
domain adaptation task, as compared to the pure convolutional architecture model like
ResNet-50, the transformer-type model is better at capturing global features through atten-
tion mechanisms. In addition, ResNet-50 relies on the inductive bias for specific images,
while transformers have no inductive bias and benefits from large-scale pretraining data.
For hybrid-based network models, several studies [31,32] mix transformers with CNN,
which further improve the quality of features. This paper also explores the advantage of
the hybrid model between ViT and convolutional neural networks from other viewpoints,
such as context information and the robustness.

2.3. Dynamic Convolution

In traditional regular convolution, the convolution kernel learned is invariant, which
leads to performance degradation in the domain shift issue. In contrast, the convolution ker-
nel in dynamic convolution [33–35] can be generated dynamically with the input. To better
adapt to the problem of domain shift across domains, dynamic convolution is used in our
hybrid model instead of regular convolution. Recently, sparse region-based convolutional
neural networks (Sparse R-CNN) [28] have also used dynamic convolution to improve
the performance of the transformer model architecture in target detection tasks. To better
understand the attention mechanism [36], also compared dynamic convolution with regular
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convolution, deformable convolution, and transformer attention. ConvNeXt explores many
strategies from convolutional neural networks to improve performance in the transformer
model architecture. In this paper, the proposed dynamic convolution module also borrows
some schemes from ConvNeXt to improve the convolutional neural network module.

2.4. Contextual Information

Contextual information [37,38] plays a key role in image recognition. Without the
help of contextual information, it is easy to identify objects incorrectly. By integrating
contextual information, the performance improvement of computer vision systems is very
effective. Therefore, compared with the local features of convolutional neural networks,
the advantage of the transformer model architecture in improving performance is the
use of global context features. The ‘CLS-Token’ features learned in ViT as the global
context features are given to the classifier for classification recognition, while the ‘CLS-
Token’ features are neglected in Swin transformers. Swin transformers use the global
average pooling operation to output global context features for classification recognition.
Two ways, in fact, are orthogonal. In this paper, we mix them to form the new dynamic
convolution module.

3. The Proposed Method

In this section, we first introduce the self-attention module in ViT and the improved
Gaussian attended MLP module. After that, we improve the performance of the hybrid
model based on ViT by combining contextual information with the dynamic convolu-
tion module. Lastly, we introduce our method TransConv, which consists of three parts:
a transformer encoder, contextual information combination, and dynamic convolution.
The overall structure of the proposed TransConv is shown in Figure 2. The source domain
image and the target domain image are respectively split into multiple patches and rear-
ranged by patch embedding to output token features. They are fed into the transformer
encoder, where layer normalization serves to normalize, the multi-head attention module
adjusts the attention weight of spatial features, and the Gaussian attended MLP module
adjusts the attention weight of channel features. The attended features are divided into the
‘CLS-Token’ branch and the average pooling branch, which respectively serve for global
class-wise semantics and spatial features. Dynamic convolution makes them adaptive to
domain-agnostic. They are concatenated together and then classified by the classifier. Our
method simultaneously optimizes the classification (cls) loss and the local maximum mean
discrepancy (lmmd) loss. The cls loss and the lmmd loss will be introduced in Section 3.3.

Figure 2. The proposed TransConv framework.

3.1. Transformer Encoder

The model designed in MLP-Mixer [39] uses a pure MLP structure with two types
of MLP layers, which are channel-mixing MLP and token-mixing MLP. Inspired by MLP-
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Mixer, TransConv uses the self-attention module in ViT for token mixing and the Gaussian
channel mlp module for channel mixing.

Self-Attention in Transformer. The basic module of ViT is the self-attention module,
referred to as the SA module. The inputs of SA are Q, K, and V, which represent query, key,
and value, respectively. To obtain the meaning of each token in the whole image, one dots
the product of query with all the transpositions of keys, normalizes the result, and finally
uses the softmax function to obtain the weight of the value. In order to provide more
possibilities for the self-attention module, multiple self-attention modules are concatenated
to form the multi-attention module, referred to as the MSA module.

SA(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where d is the dimension of Q and K.

MSA(Q, K, V) = Concat(head1, . . . , headk)WO

where headi = SA(QWQ
i , KWK

i , VWV
i )

(2)

where QWQ
i , KWK

i , VWV
i are projections of different heads; WO is a mapping function.

Gaussian Attended MLP in Transformer is an improvement of the MLP module
in ViT. Gaussian channel attention is an alternative method to improve feature quality,
which helps improve performance on UDA tasks and does not require complex training.
This is because the Gaussian attended MLP module enhances the denoising ability only
using an end-to-end training. In fact, the scaling operation is performed on the MLP
module. The attention weights are applied to the channel dimensions in TransConv. This
attends important channels and decreases the focus on unimportant ones. Inspired by
channel attention methods such as Gaussian context transformer (GCT) [40], the Gaussian
attended MLP module is added to the scaling operation of MLP module, and the ‘CLS-
Token’ feature is used to calculate weight and adjust the channel dimensions of the input
feature, as shown in Figure 3. Specifically, given a feature map X ∈ RB×HW×C, the global
feature can be represented by the learnable ‘CLS-Token’ feature in feature map X. ‘CLS-
Token’ ∈ RB×1×C, where B is the number of images in a batch, HW is the spatial dimension,
and C is the channel dimension. First, the ‘CLS-Token’ feature is normalized, which can be
expressed as

ˆCLS =
1
σ
(CLS − µ) (3)

where µ denotes the mean of the ‘CLS-Token’ feature and σ denotes the variance of the
‘CLS-Token’ feature. Then, the Gaussian function is used to calculate the attention weights:

G( ˆCLS) = ae−
( ˆCLS−b)2

2c2 (4)

where a denotes the amplitude of the Gaussian function, b denotes the mean of the Gaussian
function, and c denotes the standard deviation of the Gaussian function.

To simplify the operation, set a to constant 1, b to constant 0, and c to a parameter that
can be learned, which can control the channel attention activation. Therefore, the Gaussian
function can be simplified to

G( ˆCLS) = e−
( ˆCLS)2

2c2 (5)

We combine the above operations to form an Gaussian attented MLP, which can be
formulated as

Y = e−
( 1

σ (CLS−µ))2

2c2 X (6)

where X denotes the input features before the Gaussian attended MLP and Y denotes the
output features after the Gaussian attended MLP.
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Figure 3. The Gaussian attended MLP framework. The MLP is a scaling operation implemented
by two FC modules. For the input XMLP of MLP, its dimension is RB×(HW+1)×C. For the output
of MLP, the dimension of X is RB×HW×C and the dimension of CLS is RB×1×C. The normalization
module normalizes the CLS feature to obtain ˆCLS and the Gaussian function calculation module
calculates the attention weight for ˆCLS to obtain g. The g represents the attention activations.⊗

denotes broadcast element-wise product.

Robustness to Noise. The pseudo-labeling in the target domain usually contains
noises. To further analyze whether the Gaussian channel attention has the ability to denoise
the pseudo-labeling, we design an experiment carefully. Specifically, we sample the same
number of the same category images from the source and target domains in the W→A task
of the Office-31 dataset as the training data, i.e., the training images of the source domain
and target domain in each batch belong to the same category. Then, we manually replace
the image pairs of the same category with the image pairs of different categories to increase
noise and observe the changes in performance and the changes in UDA performance by
the ratio of image pairs of different categories, as shown in Figure 4. The x-axis represents
the ratio of image pairs of different categories in the training data, and the y-axis represents
the accuracy of different methods on the UDA task. When the X-axis is a value of 0.0, it
means that all image pairs in a batch have the same category. When the X-axis is a value
of 1.0, it means that the categories of all image pairs in a batch are different. The red curve
represents the results by using the Gaussian attended MLP module, while the blue curve is
the results without the Gaussian Attended MLP module. It can be seen that the red curve
before the 80 percent ratio of images in different categories achieves better performance
than the blue curve, which implies the robustness of the Gaussian attended MLP module
to noise.

Figure 4. The model with Gaussian Attended MLP modules vs. without Gaussian Attended MLP mod-
ules. The red/blue curves represent the model with and without the Gaussian Attended MLP modules.
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3.2. Dynamic Convolution

Compared with regular convolution, dynamic convolution is more suitable for un-
supervised domain adaptation. Because the kernels of dynamic convolution adapt to the
input image, dynamic convolution requires an additional convolution kernel generation
module. The output features Y ∈ RB×(HW+1)×C of the transformer encoder consist of two
parts: the features ‘CLS-Token’ ∈ RB×1×C and the features X ∈ RB×HW×C.

Convolution kernel generation. First, X needs the global average pooling to obtain
a global spatial feature, while the ‘CLS-Token’ features is already a global spatial feature,
so there is no need to perform additional global average pooling. Then, the global spatial
feature is mapped to K dimensions through two fully connected (FC) layers, using GELU
activation function between two FC layers, and finally, the softmax function is used to
complete the normalization. K attention weights obtained in this way can be assigned to K
kernels of this layer. Here, different from the Gaussian attended MLP module, dynamic
convolution takes kernels as attention objects.

Dynamic convolution: K 1 × 1 kernels are convolved with the global spatial feature,
and the result of dynamic convolution is obtained by layer normalization (LN), as shown
in Figure 5. Finally, to obtain the contextual information, the results of the ‘CLS-Token’
features and features X obtained by dynamic convolution are concatenated together and
delivered to the classifier for classification. The implementation of dynamic convolution is
similar to a dynamic perceptron and can be summarized by the following formula:

y = W̃T(x)x + b̃(x)

W̃(x) =
K

∑
k=1

πk(x)W̃k, b̃(x) =
K

∑
k=1

πk(x)b̃k

0 ≤ πk(x) ≤ 1,
K

∑
k=1

πk(x) = 1

(7)

where πk denotes the attention weight of the kth linear function W̃T
k x + b̃k, which is generated

by the convolution kernel generation module and is different for different input x.

Figure 5. Improved dynamic convolution module framework. The red represents the improved part
based on the original dynamic convolution.

3.3. TransConv: Transformer Meets Convolution

The framework of the proposed TransConv in this paper is shown in Figure 2. It
consists of two weight-sharing hybrid models. The hybrid model includes a transformer
encoder and dynamic convolution. The source domain images and target domain images
in the input are sent to the source domain branch and target domain branch, respectively.
In these two branches, the hybrid model participates in learning the representation of a
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specific domain. In the training phase, the classification result of the source domain is
supervised by the labels of the source domain dataset. In the image classification task
of UDA, a labeled source domain Ds{(xs

i , ys
i )}

ns
i=1 with ns examples and an unlabeled

target domain Dt{xt
j}

nt
j=1 with nt examples are provided. The supervised classification loss

function Lcls for the source domain can be expressed as

Lcls =
1
ns

ns

∑
i=1

J( f (xs
i ), ys

i ) (8)

where J (·,·) is the cross-entropy loss function and f is the TransConv hybrid network model.
However, the target domain has no label, and the classification result of the target domain,
namely the pseudo-label, reduces the distribution difference between the source and target
domains by minimizing the metric learning loss between the source domain features and
target domain features. The domain adaptation metric learning loss selected in this paper is
Llmmd [41], which is a loss function for subdomain adaptation. Subdomain adaptation can
adjust the subdomain distribution of the source domain and target domain more accurately
than global adaptation.

Llmmd = ∑
l∈L

1
C

C

∑
c=1

[ ns

∑
i=1

ns

∑
j=1

wsc
i wsc

j k(zsl
i , zsl

j )

+
nt

∑
i=1

nt

∑
j=1

wtc
i wtc

j k(ztl
i , ztl

j )

− 2
ns

∑
i=1

nt

∑
j=1

wsc
i wtc

j k(zsl
i , ztl

j )

]
(9)

where k (·,·) is a kernel function [42,43], zl is the lth(l ∈ L = 1, 2, . . . , |L|) layer activation,
wsc

i and wtc
j denote the weight of zsl

i and ztl
j belonging to class c, respectively.

To summarize, the objective function of TransConv is

Lcls + α · Llmmd (10)

where α is a hyperparameter. The main steps of our method are reported in Algorithm 1.

Algorithm 1 TransConv
Input: Source and target domain data Xs and Xt; labels for source domain data ys.
Parameter: parameter α = 0.1.
Output: Predicted labels yt for target domain unlabeled data.
begin

while not converge and epoch < max_epoch do
1. Randomly sample nb labeled source domain instances and nb unlabeled target
domain instances.
2. Using the transformer encoder to extract features for images. The multi-head attention
module and the Gaussian attended MLP module serve to adjust the attention weight of
spatial features Equation (2) and of channel features Equation (6), respectively.
3. Use dynamic convolution to learn two features of the transformer encoder output
separately by Equation (7).
4. Combine the features of the two branches of the dynamic convolution output.
5. Train the classifier and obtain the pseudo-labels of Xt.
6. Calculate the learning loss in Equation (10).
7. Update the networks by minibatch SGD.

end while
end
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4. Experiments

To verify the effectiveness of our model, we evaluate our proposed method on four
widely used datasets including Office-31, Office-Home, ImageCLEF-DA, and VisDA-2017
for object recognition. MNIST, USPS, and SVHN are used for digit classification. And we
compare them with the state-of-the-art UDA methods.

Digit classification is an UDA benchmark, consisting of MNIST [44], USPS and Street
View House Number (SVHN) [45]. We use the same settings as previous work to train our
model, i.e., training phase uses training sets for each pair of source and target domains,
and the testing phase uses the test set for target domain to perform evaluations.

The Office-31 dataset [46] contains 4652 images in 31 categories and consists
of three domains: Amazon (A), DSLR (D), and Webcam (W). Amazon (A) contains
2817 images, which were downloaded from www.amazon.com; 498 images in DSLR
(D) and 795 images in Webcam (W) were captured in an office environment by web and
digital SLR cameras, respectively.

The Office-Home dataset [47] consists of 15,588 images in 65 object categories. It
contains images from four different domains: artistic images (A), clip art (C), product
images (P), and real-world images (R). Images in each domain are collected in office and
home environments. There are 2427 images in (A), 4365 images in (C), 4439 images in (P),
and 4357 images in (R), respectively.

The ImageCLEF-DA dataset contains 1800 images in 12 categories. It consists of three
domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). There are
600 images in each domains and 50 images in each category.

The VisDA-2017 dataset [48] contains about 280k images in 12 categories. It includes
three domains: training, validation, and test domains. It is a dataset from simulation to
a real environment. The training set has 152,397 images, which were generated by the
same object under different circumstances, the 55,388 images in the validation set and the
72,372 images in the test set are real-world images.

Baseline Methods For Digital dataset, we compare TransConv with DANN [49],
ADDA [12], SHOT [50], DSAN [41], CDAN [11], MCD [51] and TVT [5]. For Office-
31 dataset, we compare TransConv with ResNet-50 [1], DANN, CDAN+E [11], SHOT,
ALDA [52], DSAN, ALSDA [53], PICSCS [54], TVT and CDTrans [4]. For Office-Home
dataset, we compare TransConv with ResNet-50, SHOT, ALDA, CDAN+E, DSAN, ALSDA,
PICSCS, TVT and CDTrans. For ImageCLEF-DA dataset, we compare TransConv with
ResNet-50, DANN, CDAN+E, DSAN, PICSCS, DALN [55] and MCC+NWD [55]. For VisDA-
2017 dataset, we compare TransConv with ResNet-50, DANN, CDAN+E, SHOT, DSAN,
ALDA, ALSDA, TVT, and CDTrans. The results of most baselines are extracted from [5,41].
For the rest, we refer to the results in their original articles.

Implementation Details The ViT-B/16 model pretrained on ImageNet 21k is used as
a backbone network to extract image features. The input image size in our experiments
is 256 × 256, and the size of each patch is 16 × 16. The transformer encoder of ViT-B/16
consists of 12 transformer encoder layers. We train the model using a minibatch stochastic
gradient descent (SGD) optimizer with a momentum of 0.9, and we initialize the learning
rate as 0. We linearly increase its learning rate to 3 ×10−2 after 500 training steps, and then
decrease it by the cosine decay strategy. Experiments are conducted on a single card 2080 Ti
with 11 G memory. The batch size is set to 16.

Results of Digit Recognition The classification results of the three tasks in digital
recognition are shown in Table 1. Since current compared methods only evaluate three cases
(i.e., SVHN→MNIST, USPS→MNIST and MNIST→USPS), and there is no comparisons for
the remaining three cases, we also use the same settings as the previous studies. TransConv
achieves the same best accuracy as TVT on MNIST→USPS task, and 0.2% lower than
the best average classification accuracy. The above-mentioned results demonstrate the
effectiveness of the TransConv model and well alleviate the domain shift problem.

www.amazon.com
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Table 1. Performance comparison on digits dataset. The best performance is marked as bold.

Method S→M U→M M→U Avg

DANN 73.9 73.0 77.1 74.7
ADDA 76.0 90.1 89.4 85.2

SHOT-IM 89.6 96.8 91.9 92.8
DSAN 90.1 95.3 96.9 94.1
CDAN 89.2 98.0 95.6 94.3
MCD 96.2 94.1 94.2 94.8
TVT 99.0 99.4 98.2 98.9

TransConv 98.7 99.2 98.2 98.7

Results of Object Recognition. We evaluate four datasets for object recognition tasks,
including Office-31, ImageCLEF-DA, Office-Home, and VisDA-2017. The results of object
recognition are shown in Tables 2–5. In Table 3, TransConv achieves the best average
classification accuracy on ImageCLEF-DA, and achieves the significant improvement over
the best prior UDA method (92.3% vs. 91.3%). But TransConv is lower than the best prior
UDA method on Office-31, Office-Home and VisDA-2017. In Tables 2 and 4, TransConv
is lower than TVT on Office-31 (92.8% vs. 93.9%) and Office-Home (82.9% vs. 83.6%).
In Table 5, TransConv is lower than CDTrans on VisDA-2017 (80.9% vs. 88.4%). In Table 2,
it can be seen from the difference in the number of samples and the results obtained in the
three domains (Amazon, DSLR, and Webcan) of the Office-31 dataset that the larger the
source domain dataset, the higher the corresponding performance. Moreover, as shown in
Table 6, TransConv surpasses the Baseline (92.8% vs. 91.7%). This is also evidenced by the
t-SNE visualization of learned features as shown in Figure 6. We visualize the network
activations of baseline and TransConv for task A→W of Office-31 dataset. Red points are
source samples and blue are target samples. Figure 6a shows the result for baseline, we
can find that the source and target domains are not aligned very well and some points are
hard to classify. In contrast, Figure 6b shows the our TransConv. It is observed that the
source and target domains are aligned very well. The experimental results show that the
hybrid model using the Gaussian attended MLP module with denoising capability and
highly efficient dynamic convolution module can improve the domain adaptation problem
to some extent. TransConv is an effective attempt to the hybrid model of transformers and
convolutional neural networks.

Table 2. Performance comparison on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANN 82.0 96.9 99.1 79.7 68.2 67.4 82.2

CDAN+E 94.1 98.6 100.0 92.9 71.0 69.3 87.7
SHOT 90.1 98.4 99.9 94.0 74.7 74.3 88.6
ALDA 95.6 97.7 100.0 94.0 72.2 72.5 88.7
DSAN 93.6 98.3 100.0 90.2 73.5 74.8 88.4

PICSCS 93.2 99.1 100.0 93.6 77.1 78.0 90.2
ALSDA 95.2 99.2 100.0 95.8 78.1 77.5 91.0

TVT 96.4 99.4 100.0 96.4 84.9 86.1 93.9
CDTrans 96.7 99.0 100.0 97.0 81.1 81.9 92.6

TransConv 94.8 99.1 99.8 93.2 84.5 85.2 92.8

Ablation Study. In order to learn the individual contribution of Gaussian attended
MLP, dynamic convolution and context information in improving the knowledge trans-
ferability of ViT, we conduct the ablation study, as shown in Table 6. Compared to the
TransConv model, the Gaussian attended MLP, dynamic convolution, and context infor-
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mation are subtracted, respectively. Without the Gaussian attended MLP, the average
classification accuracy is reduced by 0.2%; without dynamic convolution, the average
classification accuracy is reduced by 0.5%; and without the context information, the average
classification accuracy is reduced by 0.6%. Baseline is the result of simultaneously being
without the Gaussian attended MLP, dynamic convolution, and contextual information,
which reduces the average classification accuracy by 1.1%, indicating the significance of
the three improvement methods in the model performance. To understand the effect of
each improvement in dynamic convolution, we conduct the ablation study, as shown in
Table 7; compared to the TransConv model, without LN, the average classification accuracy
is reduced by 0.4%, and without GELU, the average classification accuracy is reduced by
0.1%. Baseline is the result of without LN and without GELU at the same time, which
reduces the average classification accuracy by 0.2%, indicating that the two improvements
play a role in the model performance.

Table 3. Performance comparison on ImageCLEF-DA dataset.

Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN 75.0 86.0 96.2 87.0 74.3 91.5 85.0

CDAN+E 77.7 90.7 97.7 91.3 74.2 94.3 87.7
DSAN 80.2 93.3 97.2 93.8 80.8 95.9 90.2
DALN 80.5 93.8 97.5 92.8 78.3 95.0 89.7

MCC+NWD 79.8 94.5 98.0 94.2 80.0 97.5 90.7
PICSCS 81.9 94.8 96.8 95.8 81.7 96.5 91.3

TransConv 83.2 96.7 97.7 97.7 80.5 97.7 92.3

Table 4. Performance comparison on Office-Home dataset. * indicates the results of using the
ensemble learning strategy.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
ALDA 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6

CDAN+E 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
DSAN 54.4 70.8 75.4 60.4 67.8 68.0 62.6 55.9 78.5 73.8 60.6 83.1 67.6

PICSCS 56.0 79.0 81.0 67.6 81.3 79.9 68.4 55.0 82.4 72.3 58.5 85.0 72.2
ALSDA 60.4 78.9 81.9 67.8 77.4 77.5 68.6 57.9 83.0 80.1 62.8 85.0 73.4

TVT 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
CDTrans 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

TransConv 68.2 86.7 88.4 82.4 87.4 88.2 81.8 69.7 89.6 84.0 73.1 91.1 82.6
TransConv * 69.9 87.1 88.6 82.6 87.5 88.4 82.1 70.2 89.8 84.6 73.1 91.1 82.9

Table 5. Performance comparison on VisDA-2017 dataset.

Method Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Avg

ResNet-50 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

CDAN+E 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SHOT 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
DSAN 90.9 66.9 75.7 62.4 88.9 77.0 93.7 75.1 92.8 67.6 89.1 39.4 75.1
ALDA 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8

ALSDA 93.8 72.8 81.0 49.0 82.9 90.5 89.3 80.8 88.5 86.6 87.3 43.9 78.9
TVT 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

CDTrans 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

TransConv 97.8 88.4 85.1 78.1 96.7 98.9 92.1 0.0 96.1 96.6 96.6 38.8 80.4
TransConv * 97.6 87.2 88.9 72.6 96.8 98.7 93.3 0.1 96.1 96.9 96.3 46.4 80.9
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Table 6. Ablation study of TransConv on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg

ViT(baseline) 93.5 99.2 99.3 91.8 84.1 82.2 91.7
TransConv without Gaussian 94.1 99.2 100.0 93.2 84.6 84.4 92.6
TransConv without Dynamic 94.1 99.0 99.8 93.0 84.0 83.7 92.3
TransConv without Context 95.2 99.1 99.8 92.6 83.5 83.0 92.2

TransConv 94.8 99.1 99.8 93.2 84.5 85.2 92.8

Parameter Sensitivity and Robustness. In our model, the hyperparameter α controls
the Llmmd. To better understand the effects of α, we report the sensitivities of α in Figure 7a.
It can be seen that our TransConv achieves the best results when α = 0.1. Therefore,
this article fixes α = 0.1. We also observe the robustness of our model by changing the
distribution of the source domain and target domain. In Figure 7b, the d represents the
interdomain distance, ‘-’ represents reducing the interdomain distance, and ‘+’ represents
increasing the interdomain distance. It can be seen that when the increasing/decreasing
distance is less than d, the model performance decreases. When increasing the distance
greater than d, the larger the distance, the more the model performance decreases.

1 
 

 
yuan tao pros8g5 
 

 Figure 6. Feature visualization of (a) the baseline and (b) TransConv using t-SNE on the task A→D of
Office-31 dataset, where red and blue points indicate the source and the target domain, respectively.

Figure 7. Model analysis on evaluation W→A. (a) Parameter sensitivity of α. (b) The changes of
performance by the interdomain distance for source domain and target domain.
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Table 7. Ablation study of dynamic convolution on Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A Avg

Dynamic(baseline) 95.2 99.2 99.8 92.4 84.4 84.5 92.6
TransConv without LN 94.7 99.2 99.8 92.0 84.1 84.7 92.4

TransConv without GELU 94.8 99.1 99.8 93.6 84.2 84.8 92.7

TransConv 94.8 99.1 99.8 93.2 84.5 85.2 92.8

5. Discussion

To see the efficiency of TransConv, we especially compare it with TVT and CDTrans,
as shown in Table 8. First, we compare TransConv with TVT. TVT uses a pure transformer
architecture with adversarial training, while TransConv uses a hybrid architecture that is
easy to implement without adversarial training. This also saves some overheads. In ad-
dition, TVT has multiple loss functions, while TransConv only uses two loss functions.
Moreover, TransConv has only one hyperparameter, while TVT has three hyperparameters.
TransConv has fewer loss functions and hyperparameters, thereby avoiding hyperparame-
ter tuning. Second, we compare TransConv with CDTrans. CDTrans uses a three-branch
pure transformer architecture, which requires a large amount of cross-attention compu-
tations and two different training phases. Our hybrid architecture does not require a
large number of cross-attention calculations and only needs to be trained in an end-to-end
single-phase way. TransConv balances model improvement and computation overheads.
Overall, these results verify the advantages of TransConv.

Table 8. Performance comparison of TransConv, TVT, and CDTrans on the Office-31 dataset. The run-
ning time is the convergence time and is measured on a single 2080Ti GPU.

Method Hyper-Params Loss Adversarial FLOPs Running Time Params Accuracy

TVT 3 4 Yes 22.0 G 2442 s 86.5 M 93.9
CDTrans 1 2 No 33.0 G 714 s 173.2 M 92.6

TransConv 1 2 No 22.0 G 1372 s 88.8 M 92.8

6. Conclusions

In this paper, we tackle the problem of unsupervised domain adaptation by improving
transformer encoders and using context information in a novel hybrid way. This induces
a new hybrid network structure, TransConv. Specifically, TransConv can improve the
robustness of the features through a Gaussian attended MLP module and can improve
semantics of local features by context-aware dynamic convolution. Experimental results on
widely used benchmarks demonstrate the effectiveness of the TransConv model. Future
work will further investigate other strategies to efficiently achieve the state-of-the-arts
(SOTA) performance on UDA tasks. TransConv is restricted to inadequate transferability of
global class-wise semantics and global spatial representations because feature confusion
needs more fine-grained feature interaction.
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Abbreviations
The following abbreviations are used in this manuscript:

UDA Unsupervised Domain Adaptation
CNNs Convolution Neural Networks
MLP Multilayer Perception
FC Fully Connected
MMD Maximum Mean Discrepancy
LMMD Local Maximum Mean Discrepancy
LN Layer Normalization
NLP Natural Language Processing
ViT Vision Transformer
CDAN Conditional Adversarial Domain Adaptation Networks
TVT Transferable Vision Transformer
DANN Domain-Adversarial Training of Neural Networks
ADDA Adversarial Discriminative Domain Adaptation
DSAN Deep Subdomain Adaption Network
CDTrans Cross-domain Transformer
R-CNN Region-based Convolutional Neural Network
GELU Gaussian Error Linear Units
CLS-Token Class Token
GCT Gaussian Context Transformer
SGD Stochastic Gradient Descent
SOTA State Of The Art
SHOT Source HypOthesis Transfer
MCD Maximum Classifier Discrepancy
ResNet Residual Network
ALDA Adversarial-Learned loss for Domain Adaptation
ALSDA Automatic Loss function Search for adversarial Domain Adaptation
PICSCS Pseudo-labeling Integrating Centers and Samples with Consistent Selection mechanism
DALN Discriminator-free Adversarial Learning Network
MCC Minimum class confusion
NWD Nuclear-norm 1-Wasserstein Discrepancy
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