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Abstract: This paper introduces a novel loss function, the boundary Gaussian distance loss, designed
to enhance character segmentation in high-resolution scans of old metal-type printed documents.
Despite various printing defects caused by low-quality printing technology in the 14th and 15th
centuries, the proposed loss function allows the segmentation network to accurately extract character
strokes that can be attributed to the typeface of the movable metal type used for printing. Our method
calculates deviation between the boundary of predicted character strokes and the counterpart of the
ground-truth strokes. Diverging from traditional Euclidean distance metrics, our approach deter-
mines the deviation indirectly utilizing boundary pixel-value difference over a Gaussian-smoothed
version of the stroke boundary. This approach helps extract characters with smooth boundaries
efficiently. Through experiments, it is confirmed that the proposed method not only smoothens stroke
boundaries in character extraction, but also effectively eliminates noise and outliers, significantly
improving the clarity and accuracy of the segmentation process.

Keywords: loss function; boundary distance; denoising; character segmentation; historical documents

1. Introduction

Old printed documents play a crucial role in understanding historical perspectives
through textual analysis, serving as windows to historical events. They provide insights
into the social and cultural facets of history, as well as ancient civilizations [1]. Recently, re-
searchers have increasingly focused on knowledge extraction by analyzing ancient printed
documents. The archaeological knowledge extraction includes not only analysis of text
content, but also evaluation of metal-type production technology through face estimation
and comparison of metal type, as well as printing technology assessment through printing
quality inspection.

However, due to their age, these printed documents often suffer from information
loss [2]. Their poor preservation, coupled with their antiquity, has adversely affected the
contained information [3], presenting a significant challenge for researchers attempting to
extract accurate information. To address this, technological advances in machine learning
and computer vision algorithms are being employed, particularly in character enhancement
and segmentation techniques [4].

Despite the inception of image processing for manuscript retrieval several decades
ago, a fully reliable system for accurate knowledge extraction from these documents is
still elusive [5]. For successful knowledge extraction, accurate character segmentation is
essential. It is notable that character recognition generally follows character segmentation,
and, thus, character recognition accuracy is an important measure rather than the accuracy
of the character shape itself [2]. In this case, because it is enough to be able to read character
shape, the quality of the segmented characters is not necessarily high, and, thus, the scan
resolution is not very high.
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Jeong et al. developed a system for analyzing old metal-type printed documents for
reconstructing 3D movable metal types that were used in printed materials, but it has been
lost [1]. Unlike conventional methods, character segmentation herein, according to the
purpose of the system, aims to determine the exact character shape in order to accurately
estimate the typeface of metal type from high-resolution scans of old metal-type printed
documents. Various challenges need to be addressed in this scenario.

Figure 1 shows two high-resolution scanned pages of a historic 15th-century metal-type
printed book “Geun-sa-rok vol. 6”. By folding a larger printed piece of paper, the two pages
end up on the reverse side of each other. The images exhibit not only the content but also
unique features, such as the ‘outer line’, ‘separating line’, ‘central part of the typesetting
board’, and ‘collection seal’ [6]. The separating lines are the imprints of long bamboo strips
inserted between horizontally adjacent metal types to secure the types. The central part of
the board indicates the book title and page number. These components, extraneous to the
primary content, should be removed through the character segmentation process.

(a) (b)

Figure 1. Examples of scanned pages in Korea’s 15th-century book “Geun-sa-rok vol. 6”, printed
using movable metal types. (a) The second page of the book. (b) Its first page, which is the reverse side
of (a). The content of the two pages is actually printed on a single large piece of paper. After printing,
the paper is folded in half into two pages. The printed page contains not only the text but also several
components including (1) the outer line of the typesetting board, (2) (column) separating lines, (3) the
central part of the board, and (4) a collection seal. For textual analysis, character segmentation should
extract only the text, excluding other components.

Another challenge in extracting characters from the documents involves dealing with
inconsistency in print quality, as depicted in Figure 2a. The unique Korean printing method,
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differing from Gutenberg’s European pressing technique, involved hand-pressing the paper
with wood sticks or cotton lumps, often resulting in unclear lettering.

(a) (b) (c)

Figure 2. Example of a low-quality printed document image. (a) Scanned image. (b) Character
extraction result obtained using a conventional segmentation network. (c) Ground-truth image.

Uneven ink coverage on the face of metal types results in noisy ‘dots’ and ‘holes’, as
shown in Figure 2a. The upper enlarged red box shows unlinked holes within a character
stroke. Inconsistent hand pressure causes insufficient inking or slight movement of types,
leading to blurred prints. Ink bleed can occur along long-fiber pulps of the paper as in the
lower box. In that case, character segmentation networks trained with a conventional loss
function easily produce unsatisfactory results of rough strokes, noisy dots, and holes, as
illustrated in Figure 2b.

In addition, the aforementioned low print quality risks inconsistent interpretation in
producing reliable GT labels. When building a new dataset, it is widely used to modify the
results obtained using pretrained models, due to the high cost of labeling high-resolution
images. That is, the images are initially masked using a pretrained segmentation model like
Figure 2b, and then the masks are corrected by trained workers. Although large errors in the
initial masks will be corrected, minor details may not be handled properly. In particular, the
ambiguity of the stroke boundaries leads to rough and bumpy boundaries in the pretrained
model predictions, which persist even after correction, as shown in Figure 2c.

This paper proposes a novel loss function, the boundary Gaussian distance (BGD) loss,
designed to enhance character extraction accuracy tailored for ancient Korean movable
metal-type printed documents. Specifically, our aim is to estimate the face shape of movable
metal type used to print each character in documents.

The BGD loss estimates deviation between the boundary of predicted character strokes
and the counterpart of GT. The proposed loss function determines the deviation by in-
directly exploiting boundary pixel-value difference over a Gaussian-smoothed version
of the GT boundary for computational efficiency, instead of the time-consuming method
of searching for corresponding pixels between two boundaries and calculating distance
of the correspondences. As mentioned earlier, when producing GT for high-resolution
document images, the stroke boundaries in the GT can be rough and bumpy. The usage
of the smoothed version of the GT also alleviates the roughness of stroke boundaries and,
thus, helps the segmentation model produce strokes with smooth boundaries. This study
underscores the effectiveness of the Gaussian distance loss technique in denoising, thereby
facilitating more efficient information retrieval from ancient texts [7].

The rest of this paper is presented as follows. In Section 2, we delve into related
work to review character segmentation methods and various loss functions. In Section 3,
the proposed loss function is described in detail and the importance of this technique
is emphasized, highlighting the significance of the BGD loss approach. In Section 4, the
effectiveness of the proposed method is demonstrated through various experiments. Finally,
we conclude this paper.
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2. Related Work
2.1. Character Segmentation

The analysis of the scholarly articles showed that character segmentation supports the
evaluation of ancient documents especially those that have lost a major part of information.
The research includes three main stages in the character segmentation that are needed to
obtain the desired outcome: text-line segmentation, word segmentation, and character
segmentation [8]. For handwritten scripts, letter sizes can vary greatly and multiple letters
are connected together. Therefore, line segmentation and word segmentation are important
because precise line and word splitting helps with accurate character segmentation and
the following character recognition. The majority of the scholarly articles discussed the
significance of character segmentation by using the Arabic, Thai, Chinese, and Japanese
scripts, but only a few of them worked on the Korean language. Ancient Korean documents
are rarely investigated, in comparison with those in the modern Korean language, because
of the complexity of character formation and difficulty in segmentation [9]. Kim et al.
studied Chinese character segmentation by focusing mainly on the recognition-based
method for character segmentation of handwritten text [10]. For the sake of reducing
recognition errors, the researchers focused on using the characters’ geometric features and
context information. It is noteworthy that most character segmentation in this application
aims to determine a bounding box for each character.

However, for documents printed using movable metal type, such text-line division,
and even character segmentation, become easy tasks because the size of the movable metal
type used is similar and each letter becomes disconnected distinctly. Jeong et al. developed
a system for analyzing old metal-type printed documents for reconstructing 3D models of
movable metal types that were used in printed materials, but their model has been lost [1].
By precisely comparing shapes of characters that have been segmented, researchers can
estimate how many individual metal types were used to print a book, which allows them
to evaluate the level of metal-type printing technology at the time.

Recent researches on character segmentation involves natural-scene text segmenta-
tion, including text-region extraction, character recognition, and features of characters
font [2,11–19]. Tang et al. proposed a three-stage CNN-based model, in which candi-
date text regions were detected, refined, and filtered in those stages correspondingly [20].
SMANet, by adopting the encoder–decoder structure of PSPNet [21], created a new mul-
tiscale attention module for accurate text segmentation [22]. A segmentation network,
TexRNet, was jointly proposed with a dataset for natural-scene text segmentation [23].
Trimap and glyph discriminator losses tackled diverse texture and arbitrary scales/shapes,
leading to improvement. Scene text segmentation focuses on word recognition in a manner
that is robust to geometric distortions and character variations in size, color, and font,
whilst our pixel-wise character segmentation focuses on accurately extracting the shape of
character strokes in order to compare the typefaces of the metal type used.

2.2. Loss Functions

In the field of image segmentation, various loss functions have been developed to
measure how different the segmentation result Ŷ is from the GT label Y. Cross-entropy (CE)
is derived from Kullback–Leibler divergence, which is a measure of dissimilarity between
two distributions [24]. The CE loss uses this metric as a loss function and is predominantly
utilized in classification tasks, functioning to categorize the type of objects. It compares the
probability distributions of the network’s prediction Ŷ with Y. Equation (1) formulates the
CE loss, where n represents the total number of pixels in the image and P(Ŷ) denotes the
probability of Ŷ:

LCE(Ŷ, Y) = − 1
n ∑ Y log P(Ŷ). (1)

The Dice loss, which is widely employed, yields lower values as the overlap between
the regions of Y and Ŷ increases [25]. Equation (2) represents the Dice score (DSC), a region
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similarity measure, that utilizes the extent of overlap between areas Ŷ and Y. The DSC
escalates as the intersection of Ŷ and Y enlarges. Equation (3) represents the loss function
based on the DSC.

SD

(
Ŷ, Y

)
=

2
∣∣∣Ŷ ∩ Y

∣∣∣
|Ŷ|+ |Y|

. (2)

LD(Ŷ, Y) = 1 − SD(Ŷ, Y) = 1 − 2|Ŷ ∩ Y|
|Ŷ|+ |Y|

. (3)

Mathieu et al. worked on pixel-spaced video prediction by adopting an unsupervised
machine learning method and defining an image gradient-difference loss function [26].
Different from total variation loss [27], the gradient-difference (GD) loss considers the
difference between the gradient magnitude of the prediction image Ŷ and GT image Y for
denoising [26].

The GD loss is defined as

LGD(Ŷ, Y) = ∑
i,j

||Ŷi,j − Ŷi+1,j| − |Yi,j − Yi+1,j||α + ||Ŷi,j − Ŷi,j+1| − |Yi,j − Yi,j+1||α, (4)

where α is a hyperparameter value that is greater than 1 and (i, j) represents the pixel
position in the image.

The boundary gradient-consistency (BGC) loss is designed to ensure the consistency of
character boundary gradient vectors [28]. The BGC loss function was developed specifically
for smoothing the boundary lines of characters printed using the Korean movable metal
type. To do this, the BGC loss penalizes rapid changes in the gradients along character
stroke boundaries by comparing the gradient direction of an anchor (center) pixel with the
maximum gradient magnitude among its neighboring pixels. The BGC loss is defined as

LBGC(Ŷ) =
1
|V̂ | ∑

(i,j)∈V̂

(
| ▽ Ŷi,j −▽Ŷi∗ ,j∗ |

)
, (5)

where V̂ is the set of boundary pixel positions in the prediction Ŷ. (i∗, j∗) indicates the
position of the locally maximum gradient magnitude, which is defined as

(i∗, j∗) = arg max
(k,l)∈N (i,j)

| ▽ Ŷk,l |, (6)

where N (i, j) is a set of neighboring pixels around anchor pixel (i, j) and | ▽ Ŷk,l | is the
gradient magnitude at (k, l).

The Hausdorff distance measures the extent to which each point of a set lies near some
point of the other set and vice versa [29]. Therefore, this distance can be used to determine
the degree of resemblance between two objects. The Hausdorff loss uses the Hausdorff
distance itself as a loss function, and is defined as

LH(Y, Ŷ) = max
(

δ̃H(Y, Ŷ), δ̃H(Ŷ, Y)
)

, (7)

where the set of minimal distances is defined as

δ̃H(Y, Ŷ) = max
y∈Y

min
ŷ∈Ŷ

∥y − ŷ∥. (8)

This method involves, for every boundary pixel in the GT, finding the closest predicted
boundary pixel and then identifying the maximum value within the set of these shortest
distances. The process is then repeated with the predicted boundary as the reference.
Finally, the larger of the two maximum values is used as the final loss value. If the set of
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minimal distances contains outliers, it may skew the Hausdorff distance, as it does not
accommodate any other distance due to the outlier, potentially failing to accurately measure
the distance between the two images. The average Hausdorff distance is proposed as a
solution to mitigate the influence of outliers on the results when computing the Hausdorff
distance. However, this approach requires a substantial computational cost because it
determines the distances between pixels using Euclidean distance in a brute-force manner.

To summarize the loss functions mentioned earlier, the Dice and the CE loss functions
are regarded as region-based loss in that all the pixels of image are utilized for calculation.
In contrast, the GD, the BGC, and the Hausdorff loss functions are boundary-based losses
because they only focus on boundary pixels and measure deviation between the boundaries,
as shown in Figure 3.

(a) (b)

Figure 3. Boundary-based distance between GT and prediction. (a) A GT Y and a prediction Ŷ.
(b) Overlay of Y and Ŷ. Although the GT and prediction are actually binary images, for easy
understanding, Y and Ŷ are represented in orange and green, respectively. Boundary-based distance
focuses on how far apart the pixels of two boundaries are.

When the GD loss is used for natural images, all the pixels can be be used, as gradient
values would be non-zero. However, using binary images, as shown in Figure 2, actually
results in only non-zero gradients along object boundaries. Therefore, the GD loss is
regarded as boundary-based loss in this paper.

3. Proposed Boundary Gaussian Distance Loss

The BGD loss is proposed to segment characters in old metal-type printed documents.
In particular, the proposed loss helps the segmentation network generate character strokes
with smooth boundaries in the presence of inaccurate GT labels. Considering rough and
bumpy boundaries of GT labels, the loss associated with accurately measuring geometric
distance between the boundaries of GT and prediction may cause the network to segment
characters with bumpy boundaries. In order to alleviate this problem, difference between
the boundaries of GT and prediction is measured after smoothing in the proposed boundary
distance-based loss.

Figure 4 shows the process performed in the proposed loss function. Initially, for two
image segments Y and Ŷ to be compared, their boundary images B and B̂ are obtained
using simple morphological operations as follows:

B = Y − E(Y), (9)

B̂ = Ŷ − E(Ŷ), (10)

where E(·) is the morphological erosion operation.
Although Y and Ŷ are actually binary images, they are colorized for easy understand-

ing. For notational clarity, we denote boundary pixel positions by V = {(x, y)|B(x, y) > 0}.
For B and B̂, smoothed fields G and Ĝ are respectively yielded by performing Gaussian

smoothing
G = B ∗Gσ, (11)
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where ∗ is the convolution operation and Gσ represents the Gaussian function, given as

Gσ(x, y) = exp
(
− x2 + y2

2σ2

)
. (12)

Figure 4. The process of the proposed boundary Gaussian distance loss function. For easy under-
standing, two input binary images are colorized.

In the proposed method, the distance between two boundaries is approximately
estimated based on the smoothed field. Figure 5 illustrates how the distance is calculated
using the field. Figures 5a,b show two boundaries to be compared, V and V̂ , and G,
respectively. As G is the smoothed version of B, the value of G would be locally highest
at the pixel location on V . The farther a pixel location is from V , the more its value on G
decreases. Figure 5c plots G values along the red dashed horizontal line and boundary-pixel
positions corresponding to the line to demonstrate this phenomenon. In the parts of ‘A’
and ‘B’ in Figure 5d, corresponding pixels are distant, and, thus, the difference in pixel
values become large, while the correspondences within ‘C’ and ‘D’ are close to each other,
leading to small pixel-value difference. Based on this observation, in the proposed method,
the amount of pixel-value difference along the boundaries of two shapes is utilized as a
measure of subtle shape difference.

Defining an average of the pixel values of G along the boundary V as

M(G,V) = 1
|V| ∑

(i,j)∈V
G(i, j), (13)

an average pixel-value difference between V and V̂ can be obtained by M(G,V)−M
(

G, V̂
)

.
Here, | · | represents the cardinal of a set.

The proposed BGD loss function consists of double calculation of the average pixel-value
difference. Specifically, one is obtained over G and the other is calculated over Ĝ as

LBGD =
[
M(G,V)−M

(
G, V̂

)]
+

[
M
(

Ĝ, V̂
)
−M

(
Ĝ,V

)]
, (14)

where M(G,V) ≥ M
(

G, V̂
)

and M
(

Ĝ, V̂
)
≥ M

(
Ĝ,V

)
.
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(a)

(b)
(c)

(d)

Figure 5. Boundary distance approximation using smoothed boundary field G. (a) Two boundaries
to be compared, V and V̂ . (b) Smoothed field G. (c) V and V̂ overlaid over G. (d) Boundary-pixel
positions over G in a horizontal line. The distance between the two boundary pixels is approximated
by the difference of G values at the pixels. When two boundary pixels are far apart, as in ‘A’ and ‘B’,
the difference of G values increases. When two boundaries are close to each other, as in ‘C’ and ‘D’,
the difference becomes negligible.

Although both the average pixel-value differences indicate boundary distance as
well, each contributes differently within the loss function. Figure 6 shows various wrong
prediction cases. In Figure 6a, where the prediction is estimated to be slightly thinner or
thicker than GT, the lengths of the two boundaries are almost the same (|V| ≈ |V̂ |), but pixel-
value difference occurs and, thus, M

(
G, V̂

)
and M

(
Ĝ,V

)
become smaller than M(G,V)

and M
(

Ĝ, V̂
)

, respectively. Consequently, both the average pixel-value differences in the
loss function increase similarly. If a hole occurs falsely inside a stroke, as shown in Figure 6b,
the second average pixel-value difference is almost zero (because M

(
Ĝ, V̂

)
≈ M

(
Ĝ,V

)
).

Since, however, the hole increases the number of boundary pixels whose values are zero
on G, M

(
G, V̂

)
shrinks, and the consequential increment in the first average pixel-value

difference leads to an increase in the loss value. If a dotted noise is falsely detected, the first
average pixel-value difference increases. Contrarily, if a stroke is totally missed, as shown
in Figure 6d, the second average pixel-value difference increases, while the first becomes
almost zero.

(a) (b) (c) (d)

Figure 6. Wrong prediction cases. GT and prediction strokes are indicated by yellow and green
dashed lines, respectively. (a) Prediction is slightly thinner or thicker than GT. (b) A hole appears
inside a predicted stroke. (c) A noisy stroke of a green circle is falsely detected. (d) A circular stroke
is falsely missed.

It is notable that M(·, ·) is bounded well because of the normalization with |V| in
Equation (13). Without the normalization, pixel values accumulate significantly as the
number of boundary pixels increases. Such boundedness of M(·, ·) allows the proposed loss
function to be utilized with other loss functions. The proposed approach is computationally
efficient in that it does not require the determination of the nearest location to measure
distance.

In the proposed boundary distance approximation, the smoothed boundary field is
obtained using the Gaussian filter. The benefits of the Gaussian filtering are twofold: (1) As
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mentioned earlier, the roughness of stroke boundaries in the GT is alleviated by smoothing,
and, thus, it leads the segmentation network to produce smooth stroke boundaries; (2) Due
to the properties of Gaussian functions, the proposed loss function is effective for the type
of segmentation errors encountered in our application. Figure 7 plots the first order partial
derivative of the 2-D Gaussian filter:

∂Gσ(x, y)
∂x

= − x
σ2Gσ(x, y) (15)

and its intersection at y = 0. Assume that the boundary pixel of the GT stroke is located at
x = 0. Considering that the derivative represents the amount of change in the function,
when the predicted boundary pixel is located near zero, the increment in the proposed loss
function is small. However, the loss significantly increases near x = σ since the derivatives
of the Gaussian function have the extreme values at x = σ. That is, small deviations of the
predicted boundary from GT are minimally penalized, while deviations of σ are severely
penalized by the proposed loss function. This shows that the proposed loss is well suited to
the types of segmentation errors that occur when extracting characters from old metal-type
printed documents.

Figure 7. The 1st-order derivative of the 2-D Gaussian filter of σ = 6 and its intersection at y = 0.

4. Experimental Results
4.1. Dataset

We scanned the metal-type printed documents that are summarized in Table 1. To
minimize scanning distortion, a flatbed scanner was used. Figure 1 depicts an example of
a scanned image whose size is about 6000 × 8000 pixels. For building a high-resolution
image dataset of characters printed with old movable metal types, we selected 10 scanned
page images from each of the last three books in Table 1 and performed the segmentation
labeling. As mentioned earlier, the scanned page images were initially masked using a
pretrained segmentation model, and then the masks were corrected by trained workers.

Table 1. Books scanned for building a high-resolution image dataset.

Book Title Movable Metal
Type Used Sheets Published Year Resolution

Jikji Heung-deok-sa-ja 39 1377 600 dpi
Seokbo-sangjeol vol. 6 Kab-in-ja 47 1447 600 dpi

Worin-cheongang-jigok Kab-in-ja 71 1447 600 dpi
Suneung-eomgyeong (eonhae) vol. 4 Eul-hae-ja 115 1462 600 dpi

We then randomly cropped the page image and mask label with random rotation
and scale augmentation to generate 13,500 pairs of image patches and their corresponding
labels, with a size of 1024 × 1024 pixels. The pairs were separated into a training set
of 12,150 pairs and a test set of 1350 pairs. For better generalization, random crop was
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performed once again when loading the pairs. Specifically, the actual size to be fed into the
network is 512 × 512 within 1024 × 1024.

Typically, two sizes of metal type have been used for printing. Because the books were
written vertically, one large type or two small types had been placed in one column. The
average thickness of character strokes is about 30 pixels for large letter types and 10 pixels
for small types.

4.2. Analytic Study

For all experiments, the Trans-UNet architecture was utilized for character segmen-
tation. Each model was trained with a batch size of 38 for 40 epochs using two A6000
GPUs. α for LGD was set to 1 in our experiments. As explained in the next subsection,
the proposed BGD loss function was utilized by combining the Dice loss for the following
experiments.

For the Gaussian smoothing in the proposed BGD loss function, σ should be deter-
mined. Table 2 summarizes the impact of σ on the segmentation performance in terms
of Dice score, SD, in Equation (2) and the standard deviation of SD. A lower standard
deviation indicates more consistent quality results. The performance change in DSC is very
small, but the best results are obtained with σ of 6, which is related to the stroke thickness
in the dataset. In σSD , the performance is insensitive to σ, but the minimum is obtained
when σ is either 6 or 14.

Table 2. Comparison of segmentation performance depending on σ for Gaussian smoothing. The
best values are indicated in bold.

σ DSC SD ↑ Standard Deviation σSD ↓
2 0.9722 0.0158
6 0.9744 0.0144
8 0.9720 0.0146
10 0.9717 0.0145
14 0.9718 0.0144

The proposed loss function consists of two average pixel-value differences. As de-
scribed earlier, since the two deal with different problem cases, employing a single average
pixel-value difference degrades performance. Table 3 shows the performance of the seg-
mentation models trained using a single average pixel-value difference in terms of the
average DSC and σSD .

Specifically, LBGD(G) uses only the former
[
M(G,V)−M

(
G, V̂

)]
in Equation (14),

whilst LBGD(Ĝ) uses only the latter average pixel-value difference by using Ĝ, that is,
LBGD = LBGD(G) + LBGD(Ĝ). As expected, exploiting both average pixel-value differences
successfully improves the segmentation performance in DSC and σSD . It is notable that σSD
of LD + LBGD is 57% smaller than that of the single usage.

Table 3. Performance comparison of results obtained using different combinations of both the average
pixel-value differences within the proposed BGD loss function. The best values are indicated in bold.

Loss Function DSC SD ↑ Standard Deviation σSD ↓
LD + LBGD(G) 0.9679 0.0242
LD + LBGD(Ĝ) 0.9677 0.0268

LD + LBGD 0.9744 0.0144

Figure 8 shows the segmentation results when a single average pixel-value difference
is used. Both produced holes of different sizes inside the character strokes and the outer
line of the typesetting board was not severely removed, leaving a large false-positive region.
However, when both were utilized together, as in the proposed function, these problems
were successfully overcome.



Electronics 2024, 13, 1957 11 of 18

Figure 8. Subjective comparison of results obtained using different combinations of both the average
pixel-value differences within the BGD loss function. (a) Scanned images. (b) GT. (c) Result of
LD + LBGD(G). (d) Result of LD + LBGD(Ĝ). (e) Result of LD + LBGD.

4.3. Objective Comparison

Table 4 summarizes the performance of the segmentation models trained with various
combinations of loss functions in terms of the average DSC and σSD .

First, we show region-based loss functions that use all the pixels for the loss calculation.
The single usage of the Dice loss function showed a high SD. This is because performance
was also evaluated using the same metric. L10

D represents the result of the Dice loss after 10
epochs, which was utilized for training with the boundary-based loss functions. Training
for 30 additional epochs improved the performance in SD and σSD . The CE loss exhibited a
DSC value similar to LD, but σSD was reduced significantly.

The initial random state of the network leads to randomly noisy initial results. Because
the boundary-based loss function focuses around the stroke boundaries of the GT, it is
difficult to properly optimize the network with a single use of the boundary-based loss
function. To solve this problem, we trained the network using a region-based loss function
for the first 10 epochs and then trained the network using the boundary-based loss function
of interest for an additional 30 epochs. Such a training strategy for the boundary-based loss
functions allowed the network to be trained, but with a slight decrease in DSC compared to
L10

D . Similar to the total variation loss widely used for denoising [27], LBGC in Equation (5)
only uses prediction and, therefore, cannot be employed alone for loss calculation. Although
LGD utilizes GT as well as prediction, when LGD is used for binarized GT and prediction,
the optimization fails, unlike when used for image enhancement with natural images, as
in [30].

Typically, combinations of loss functions resulted in better performance than their
single usage. However, this seems not applicable for this character stroke segmentation.
The combination of region-based functions, LD + LCE, even degraded performance a little
compared to LD and LCE.

In the single usage, region-based loss functions achieved higher scores than boundary-
based loss functions. However, this tendency was reversed when combining losses. The
combination of region-based loss and boundary-based loss optimizes the network jointly
in two aspects. When combined with LD, all boundary-based loss functions significantly
improved segmentation performance. Nonetheless, except for LD + LBGD, there still was
very slight performance degradation compared to the single usage of region-based func-
tions. In particular, LD + LH showed the largest σSD , except for the failure cases of LH and
LBGD. However, the proposed loss function achieved excellent performance in both SD and
σSD when combined with LD. This is the only case where performance improved when
combining losses.
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Compared to the performance increase by combining LH with LD, the performance
improvement of LD + LBGD is 57% higher, achieving the highest score in DSC. The combi-
nation of the proposed function outperforms the others in σSD , yielding the smallest value,
which is 82% smaller than the second smallest value of LCE. This means that the model
using the proposed function produces consistently successful results for most data.

Table 4. Performance comparison of various loss functions. The best values are indicated in bold.

Characteristics Loss Function DSC SD ↑ Standard
Deviation σSD ↓

Single, Regional
L10

D 0.9596 0.0312
LD 0.9700 0.0248
LCE 0.9699 0.0176

Single, Boundary

LH 0.1473 0.0386
LBGD 0.1473 0.0386

L10
D → LH 0.9584 0.0319

L10
D → LBGD 0.9576 0.0303

Combination, Regional LD + LCE 0.9642 0.0303

Combination, Boundary

LD + LH 0.9691 0.0353
LD + LGD 0.9699 0.0262
LD + LBGC 0.9693 0.0219
LD + LBGD 0.9744 0.0144

4.4. Qualitative Comparison

Figure 9 illustrates the segmentation results when different loss functions are used
alone for various low-quality prints. Figure 9a shows examples of an identical resolution,
while Figures 9b,c enlarge problematic parts and their corresponding GT labels. Overall,
the results when using a single loss function are unsatisfactory.

As mentioned earlier, many of the GT’s stroke boundaries are not smooth. The first-
row image shows rough character boundaries and dots caused by ink splatters. In GT,
the ink splatters are removed, but the boundaries are still bumpy. Using a single loss
function cannot handle the roughness of the boundary properly. The region-based loss
functions detect ink splatters and generate false-positive dots, while the boundary-based
loss functions can remove the splatters effectively. In rows 2 and 3, ink bleeding occurs
along the fiber-pulp of the paper. The comparative loss functions cannot deal with the ink
bleeding properly, but the boundary-based loss functions erase ink bleeds to some extent
in row 3.

Rows 4 and 5 show inconsistent hand pressure during printing, causing faded print.
All loss functions demonstrate the difficulty in accurately determining stroke boundaries for
faint print. The boundary-based loss functions tend to produce thicker strokes. The region-
based loss functions produce many false positive dots. Because the Hausdorff distance
calculates a distance ofor the extreme case, the boundary distance is effectively represented
for convex shapes but not for complex shapes. Therefore, the result of L10

D → LH is very
noisy within complex stroke arrangements.

Rows 6 and 7 show uneven ink coverage cases, including a streak and large holes. The
region-based loss functions tend to generate holes. Row 8 contains the outer line of the
typesetting board that needs to be removed. The boundary-based loss functions remove the
line much better than the region-based loss functions. However, all the functions cannot
completely remove the outer line since it is similar to a normal stroke. Row 9 demonstrates
a case where GT was made incorrectly. The stroke in the enlarged part is misprinted. That is,
the corresponding Korean character does not actually have the stroke. The worker labeling
GT data did not completely remove the region generated by a pretrained segmentation
model. All the models detect stroke-like large regions.
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Figure 9. Example of character extraction with various loss functions. (a) Input image. (b) Part of the
input image. (c) GT. (d) LD. (e) LCE. (f) L10

D → LH . (g) L10
D → LBGD.
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Figure 10 demonstrates the segmentation results of various combinations of loss
functions. As in Figure 9, Figures 9a–c show input images, enlarged problematic parts,
and the corresponding GT labels, respectively. In general, combinations of loss functions
become worse than using a single loss function in the objective performance (shown in
Table 4), but visualization of the results indicates that the combined usages of loss functions
improve segmentation quality and give more satisfactory results.

Figure 10. Example of character extraction with various loss functions. (a) Input image. (b) Part of
the input image. (c) GT. (d) LD + LCE. (e) LD + LH . (f) LD + LGD. (g) LD + LBGC. (h) LD + LBGD.
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In row 1, LD + LCE still produces small dots, while the others remove them completely.
It is worth noting that the proposed loss combination LD + LBGD generates strokes with
very smooth boundaries. Only the proposed one eliminates most of the ink bleeding in row
2. Unlike when using a single loss, the stroke thickness is maintained when using losses
together in rows 4 and 5. The proposed loss combination produced significantly clean and
smooth boundary strokes.

When the ink coverage was uneven, only the proposed loss combination filled the
large holes within strokes and eliminated ink splatter noise in row 7. In contrast to Figure 9
,where the two upper vertical strokes are connected through a stripe, the stripe was clearly
removed due to the Dice loss.

In row 8, only the proposed one filled the large hole within the stroke and almost
removed the outer line. The misprint in row 9 completely disappeared only when using
the proposed loss combination. In summary, the proposed loss combination provides very
satisfactory results by reducing noise, smoothing stroke outlines, and filling holes inside
strokes.

In order to compare the generalization performance, we tested images from “Jikji”,
the first book in Table 1, that were not used to build the dataset. “Jikji” is the oldest existing
book printed with movable metal type in the world (A.D. 1377) and is currently held at
the Bibliothèque Nationale de France. It predates Gutenberg’s Bible by 78 years and other
books in Table 1 by over 70 years.

Figure 11 shows one page of “Jikji” and the segmentation results of the models
trained with various combinational loss functions. Since there is no GT label for “Jikji”, we
compared the results qualitatively. Due to the different compositions of the paper materials,
the paper color of “Jikji” is much more red compared to the paper colors in the training
dataset. In addition, there are many annotations—in particular, the brown strokes below
some characters sometimes overlap with the lower strokes of the characters. Despite the
different paper color, the models extracted most characters to some degree.

Figure 11. Generalization performance comparison of various loss functions. (a) One page of
“Jikji”. Unlike the dataset for training the models, the paper in the scanned image looks more
red. (b) Cropped character images of some printing problems, including (1) inconsistently printed,
(2) double-printed character, (3) right black annotation and lower brown stroke, (4) long fiber-pulp.
(c) LD + LCE. (d) LD + LH . (e) LD + LGD. (f) LD + LBGC. (g) LD + LBGD.

The image of character 1 was printed inconsistently and the left vertical strokes look
faint. The results for LD + LCE, LD + LGD, and LD + LBGC show holes within the left
vertical stroke and rough stroke boundaries, while those for LD + LH and LD + LBGD
depict smooth boundaries without holes. In addition, the end of the stroke marked with
circles becomes too thin in the results for LD + LCE, LD + LH , and LD + LBGC.

Character 2 appears to be double printed. Similar to character 1, the results for
LD + LCE, LD + LGD, and LD + LBGC have holes within the stroke. The boundaries of the
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two strokes within the red circle in (c) are too bumpy and the two strokes become wrongly
connected in LD + LCE, LD + LH , and LD + LBGC.

The character in image 3 contains a black annotation in the right side and a brown
stroke that were probably drawn later than the book’s production. The proposed loss
function removed the brown stroke successfully and the black annotation sufficiently, while
others struggled to remove the black annotation. LD + LCE and LD + LGD produced rough
and noisy strokes. In the character in image 4, a long fiber-pulp is noticeable. The proposed
loss function perfectly eliminated it, while the fiber traces remained in all other results.

The segmentation models generalize well to the books from other eras with different
characteristics; particularly, the model using the proposed loss achieves excellent segmen-
tation results against various printing problems.

5. Conclusions

In this paper, we have proposed the boundary Gaussian distance loss function, a sig-
nificant advancement for enhancing character segmentation in high-resolution scans of old
Korean printed documents. Our loss function diverges from traditional metrics by incorporat-
ing Gaussian blur, which effectively smoothens character boundaries and reduces noise and
outliers, markedly improving segmentation clarity and accuracy. Our experimental results
demonstrate the superiority of our proposed loss function, especially in comparison with
existing methods. The application of the boundary Gaussian distance loss yielded higher Dice
scores for low-quality input images, signifying a notable improvement in character segmen-
tation accuracy. The boundary Gaussian distance loss function is a valuable contribution to
digital image processing, especially for historical document analysis.

By estimating and the typeface of each movable metal type with the proposed method,
we can restore 3-D models of movable metal types. This will contribute to the study of the
movable metal-type printing techniques of the time. For example, the amount of movable
metal type produced at the time can be estimated by comparing the typeface of each metal
type. Furthermore, its potential applicability to other languages and scripts opens new
avenues for research in document digitization and preservation, making it a versatile tool
for historical and linguistic studies.
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