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Abstract: We consider, in this paper, the problem of state estimation for a class of dynamical systems
governed via continuous-time McKean–Vlasov stochastic differential equations. The estimation
problem is stated and solved under an H2 norm setting. We adopt a Riccati-based approach in order
to solve the optimal estimation problem.
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1. Introduction

McKean–Vlasov stochastic differential equations (SDEs) are a powerful tool used
to reflect some kind of mean-field-type interaction phenomena in large-scale dynamical
systems. For some pioneering works on theoretical, as well as practical, aspects of such
kinds of SDEs, one can refer to [1,2]. As the present article is a control-oriented one, we
restricted our bibliographical efforts accordingly. Several contributions have been made
over these last few years in different control theoretical fields related to the class of McKean–
Vlasov SDEs [3–8]. More recently, LQ control problems, as well as LQ games, have gained a
lot of interest among the control community; one can refer, for example, to [9–15]. In these
works, the authors studied a class of McKean–Vlasov SDEs that are similar to the one we
consider in the present article.

We consider, in this paper, the problem of state estimation for a class of continuous-
time, time-varying McKean–Vlasov SDEs. The metric used as an optimality measure of the
proposed estimation scheme belongs to the H2-type norm setting. More specifically, we
introduce a performance criterion expressed in terms of the mean square of the deviation
of the estimated signal from the value of the signal that must be estimated. To the best of
the authors’ knowledge, it seems that the problem of state estimation for McKean–Vlasov
SDEs has not yet been addressed in the literature, or at least it has been addressed only
very marginally when compared to the control counterpart. The main objective of the
present work is to initiate a filtering research axis for this class of systems. We adopted
a Riccati-based approach in order to solve the optimal estimation problem. The present
work could be viewed as a generalization of our previous work on H2 filtering for Itô-type
SDEs [16] in the case where the dynamic equations describing the evolution of the state
variable incorporate its mathematical expectation (see Equation (1)).

This paper is organized as follows: Section 2 presents the mathematical model of
the considered class of systems and describes the problem setting. Section 3 provides
some auxiliary results that will be used in Section 4 in order to obtain the formulae for the
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computation of the performance value. The main results are presented in Section 5. Some
numerical experiments are included in Section 6.

2. Problem Formulation

We consider the dynamical system (G) with the state space representation described
as follows:

dx(t) = (A0(t)x(t) + Ā0(t)E[x(t)])dt +
r

∑
k=1

(Ak(t)x(t) + Āk(t)E[x(t)])dwk(t) + B(t)dv(t)

dy(t) = (C0(t)x(t) + C̄0(t)E[x(t)])dt +
r

∑
k=1

(Ck(t)x(t) + C̄k(t)E[x(t)])dwk(t) + D(t)dv(t)

z(t) = Cz(t)x(t) + C̄z(t)E[x(t)] (1)

t ∈ R+ = [0, ∞), where x(t) ∈ Rn is the system-state vector, and y(t) ∈ Rny are the
measurements, while z(t) ∈ Rnz is the remote signal that must be estimated.

In (1), the sequences {w(t)}t⩾0

(
w(t) = (w1(t), · · · , wr(t))

⊤
)

, {v(t)}t⩾0, are stochas-
tic processes defined on a given probability space, (Ω,F ,P), satisfying the following
assumptions:

Assumption 1. (i) {w(t)}t⩾0 is a r-dimensional, standard Wiener process with a zero mean,
and
E
[
(w(t)− w(s))(w(t)− w(s))⊤

]
= Ir(t − s), ∀ t ⩾ s ⩾ 0, Ir is the identity matrix of

size r × r;
(ii) {v(t)}t⩾0 is a mv-dimensional Wiener process with a zero mean and

E
[
(v(t)− v(s))(v(t)− v(s))⊤

]
= V(t − s), ∀ t ⩾ s ⩾ 0, where V ⩾ 0 is a known matrix;

(iii) {w(t)}t⩾0 and {v(t)}t⩾0 are independent stochastic processes.

Throughout the paper, E[·] stands for the mathematical expectation, and the super-
script ⊤ denotes the transposition of a vector or a matrix.

Regarding the coefficients of the system (1), we make the following assumption:

Assumption 2. (i) (Ak(·), Āk(·)) : R+ → Rn×n ×Rn×n, (Ck(·), C̄k(·)) : R+ → Rny×n ×
Rny×n, 0 ⩽ k ⩽ r, B(·) : R+ → Rn×mv , D(·) : R+ → Rny×mv and Cz : R → Rnz×n are
continuous matrix-valued functions that are periodic with period θ > 0;

(ii) The mean field stochastic linear differential equation (MF-SLDE),

dx(t) = (A0(t)x(t) + Ā0(t)E[x(t)])dt +
r

∑
k=1

(Ak(t)x(t) + Āk(t)E[x(t)])dwk(t), t ∈ R+ (2)

is exponentially stable in the mean square sense (ESMS).

Our aim is to design a dynamic linear system (GF) named filter that, fed with the
measurements y(s) and 0 ⩽ s ⩽ t generates at its output a signal, z f (t), which must be the
best estimation of the remote signal z(t) generated via the dynamical system (G).
In our approach, the family of admissible filters consists of all dynamical systems GF that
have the state space representation of the following form:

GF :

{
dxF(t) = AF(t)xF(t)dt + BF(t)dy(t)
zF(t) = CF(t)xF(t)

(3)

where xF(t) ∈ RnF are the state parameters of the filter GF. In (3), AF(·) : R+ → RnF×nF ,
BF(·) : R+ → RnF×ny , CF(·) : R+ → Rnz×nF are arbitrary continuous and θ-periodic
matrix-valued functions.
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It is worth mentioning that the dimension nF of the state space of an admissible
filter (3) is not prefixed.

In what follows, Fs denotes the family of all dynamic systems (GF) of the form (3) of
arbitrary dimension nF ⩾ 1 that satisfy the following additional condition:

• The ordinary linear differential equation (OLDE):

d
dt

xF(t) = AF(t)xF(t), t ∈ R+ (4)

is exponentially stable (ES).

In order to measure the quality of the estimation achieved via a filter (GF) ∈ Fs, we
introduce the following performance criterion:

J (GF) = lim
T→∞

1
T

∫ t0+T

t0

E
[
|z(t)− zF(t)|2

]
dt (5)

In Section 4, we derive an explicit formula for the computation of the value of J (GF).
We show that this value does not depend either upon the initial time, t0, or the initial
states of the system (1) and the filter (3). In Section 5, we provide a set of conditions that
guarantee the existence of a filter, G̃F, minimizing the cost (5) over the set Fs. We also
provide a state-space representation of the optimal filter.

3. Some Preliminary Issues

If Assumption 2 (ii) holds, then there exist β ⩾ 1 and α > 0, with the property that the
solutions x(t) of the MF-SLDE (2) satisfy the following:

E
[
|x(t)|2

]
⩽ βe−α(t−t0)E

[
|x(t0)|2

]
(6)

for all t ⩾ t0 ⩾ 0. From the relation (E[|x(t)|])2 ⩽ E
[
|x(t)|2

]
, we deduce via (6) that

lim
t→∞

(E[|x(t)|]) = 0 (7)

for any solution, x(t), of (2).
On the other hand, from (2), one obtains confirmation that t → E[|x(t)|] solves the

OLDE in Rn:
ξ̇(t) = (A0(t) + Ā0(t))ξ(t), t ∈ R+ (8)

Since (8) in an OLDE with periodic coefficients, we deduce via (7) that there exist β1 ⩾ 1
and α1 > 0 such that

|E[x(t)]| ⩽ β1e−α1(t−t0)|E[x(t0)]|, ∀t ⩾ t0 ⩾ 0 (9)

If x(t), t ⩾ t0 ⩾ 0, is an arbitrary solution to (2), we set the following:

x1(t) ≜ x(t)−E[x(t)] (10a)

x2(t) ≜ E[x(t)] (10b)

We have confirmation that x(t) = x1(t) + x2(t) and E
[

x1(t)
(
x2(t)

)⊤]
= 0 for all t ⩾

t0 ⩾ 0. Employing the properties of the stochastic Itô-type integrals, we deduce that

t →
((

x1(t)
)⊤,

(
x2(t)

)⊤)⊤ solves the following:

d
(

x1(t)
x2(t)

)
= A0(t)

(
x1(t)
x2(t)

)
dt +

r

∑
k=1

Ak(t)
(

x1(t)
x2(t)

)
dwk(t) (11)
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where

A0(t) =
(

A0(t) 0
0 Ã0(t)

)
(12a)

Ak(t) =
(

Ak(t) Ãk(t)
0 0

)
(12b)

Ãl(t) = Al(t) + Āl(t), 0 ⩽ l ⩽ r (12c)

1 ⩽ k ⩽ r. From (6), (9), and (10), we may infer that the SLDE (11) is ESMS if the MF-
SLDE (2) is ESMS. In other words, if (2) is ESMS, then there exist α̃ > 0 and β̃ ⩾ 1 such that
the following applies:

E
[
|x1(t)|2

]
+E

[
|x2(t)|2

]
⩽ β̃e−α̃(t−t0)

(
E
[
|x1(t0)|2

]
+E

[
|x2(t0)|2

])
(13)

for all t ⩾ t0 ⩾ 0. Let X ≜ Sn × Sn. We recall that, if p ⩾ 2 is a natural number, then
Sp ⊂ Rp×p denotes the vector space of symmetric matrices of size p × p. The elements X of
the vector space X are pairs of symmetric matrices. In X, we consider the following inner
product:

⟨X, Y⟩ ≜ Tr[X1Y1] + Tr[X2Y2] (14)

for all X = (X1, X2) and Y = (Y1, Y2) from X. Equipped with the inner product (14),
X becomes a finite-dimensional, real Hilbert space. Moreover, X is an ordered Hilbert
space with the ordering relation ”⩾” induced via the convex cone X+ ≜ S+

n × S+
n , where

S+
n ⊂ Sn is the convex cone of positive semidefinite matrices.

We consider the linear operator X → L[X] : X → X defined as follows: L[X] =
(L1[X],L2[X]), where

L1[X] = A0(t)X1 + X1 A⊤
0 (t) +

r

∑
k=1

(
Ak(t)X1 A⊤

k (t) + Ãk(t)X2 Ã⊤
k (t)

)
(15a)

L2[X] = Ã0(t)X2 + X2 Ã⊤
0 (t) (15b)

for all X = (X1, X2) ∈ X. Based on the adjoint operator definition, we obtain that the adjoint
operator L∗[·] (with respect to the inner product (14)) of the operator L[·] introduced via (15)
is given via L∗[X] =

(
L∗

1 [X],L∗
2 [X]

)
, where:

L∗
1 [X] = A⊤

0 (t)X1 + X1 A0(t) +
r

∑
k=1

A⊤
k (t)X1 Ak(t) (16a)

L∗
2 [X] = Ã⊤

0 (t)X2 + X2 Ã0(t) +
r

∑
k=1

Ã⊤
k (t)X1 Ãk(t) (16b)

for all X = (X1, X2) ∈ X.

Let
(

x1(t)
x2(t)

)
be an arbitrary solution to the SLDE (11). We set Z(t) :=

E
[(

x1(t)
x2(t)

)(
x1(t)
x2(t)

)⊤]
. One sees the following:

Z(t) =
(

Z1(t) 0
0 Z2(t)

)
(17)

where

Zj(t) ≜ E
[

xj(t)
(

xj(t)
)⊤]

, j = 1, 2 (18)
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On the other hand, the Itô formula applied in the case of the solutions of (11) allows us to
deduce that Z(·) solves the OLDE in the space S2n:

Ż(t) = A0(t)Z(t) + Z(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)Z(t)A⊤
k (t) (19)

Employing (12), (17), and (18), we obtain confirmation that (19) is equivalent to the following
linear differential equation on the Hilbert space X:

Ż(t) = L[Z(t)] (20)

where Z(t) = (Z1(t), Z2(t)) ∈ X.
Based on (13), (18), and (20), together with the equality x(t) = x1(t) + x2(t), we obtain

the following:

Lemma 1. Under Assumptions 1 and 2, the following are equivalent:

(i) The MF-SLDE (2) is ESMS;
(ii) The SLDE (11) is ESMS;
(iii) The linear differential Equation (20) is exponentially stable.

The next result is used in the development of the next sections.

Proposition 1. Under Assumptions 1 and 2, the following are equivalent:

(i) The MF-SLDE (2) is ESMS;
(ii) The SLDE

dx(t) = A0(t)x(t)dt +
r

∑
k=1

Ak(t)x(t)dwk(t) (21)

is ESMS, and the OLDE
ẋ2(t) = Ã0(t)x2(t) (22)

is exponentially stable.

Proof. According to the equivalence (i) ⇔ (iii) from Lemma 1, we may infer that the
MF-SLDE (2) is ESMS if and only if the linear differential Equation (20) is exponentially
stable. On the other hand, from (15), we deduce via Theorem 2.6.1 from [17] that (20) is a
linear differential equation that generates a positive evolution in the ordered space (X,X+),
i.e., if X(t0) ∈ X+, ∀t0 ⩾ 0, then X(t) ∈ X+, ∀t ⩾ t0, where X(·) is a solution to (20).

Invoking the equivalence (i) ⇔ (vi) from Theorem 2.4.2 of [17], we obtain that (20) is
exponentially stable if and only if the non-homogeneous linear differential equation in X,

Ẏ(t) + L∗[Y(t)] + I = 0 (23)

has a unique bounded solution, t → Ỹ(t) : R+ → X+, with the property that there exist
positive constants, ν1, ν2, such that

0 ≼ ν1I ≼ Ỹ(t) ≼ ν2I (24)

for all t ∈ R+, where I = (In, In) ∈ X+.
Bearing in mind (16), we obtain the following partition of (23) and (24):

˙̃Y1(t) + A⊤
0 (t)Ỹ1(t) + Ỹ1(t)A0(t) +

r

∑
k=1

A⊤
k (t)Ỹ1(t)Ak(t) + In = 0 (25a)

0 ≼ ν1 In ≼ Ỹ1(t) ≼ ν2 In (25b)
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t ∈ R+, and

˙̃Y2(t) + Ã⊤
0 (t)Ỹ2(t) + Ỹ2(t)Ã0(t) + H̃(t) = 0 (26a)

0 ≼ ν1 In ≼ Ỹ2(t) ≼ ν2 In (26b)

t ∈ R+, where H̃(t) := In + ∑r
k=1 Ã⊤

k (t)Ỹ1(t)Ãk(t).
Finally, we take into account that (25) is equivalent to the exponential stability in the

mean square sense of the SLDE (21), while (26) is equivalent to the exponential stability of
the OLDE (22). Thus, the proof is complete.

4. Computation of the Performance Value

Let x(t) be a solution to (1). Using (10), written for this solution, we obtain the
following equivalent form of the state-space representation of the dynamical system (1):

d
(

x1(t)
x2(t)

)
= A0(t)

(
x1(t)
x2(t)

)
+

r

∑
k=1

Ak(t)
(

x1(t)
x2(t)

)
dwk(t) +B(t)dv(t) (27a)

dy(t) = C0(t)
(

x1(t)
x2(t)

)
dt +

r

∑
k=1

Ck(t)
(

x1(t)
x2(t)

)
dwk(t) +D(t)dv(t) (27b)

z(t) = Cz(t)
(

x1(t)
x2(t)

)
(27c)

t ∈ R+, where Ak(t) and 0 ⩽ k ⩽ r are described in (12) and

B(t) =
(

B(t)
0

)
(28a)

Ck(t) =
(

Ck(t) C̃k(t)
)

(28b)

C̃k(t) = Ck(t) + C̄k(t), 0 ⩽ k ⩽ r (28c)

Cz(t) =
(

Cz(t) C̃z(t)
)

(28d)

C̃z(t) = Cz(t) + C̄z(t) (28e)

Applying a filter, GF, from Fs to the dynamical system G described by (27), one obtains the
following closed-loop system:

dxcl(t) = A0cl(t)xcl(t)dt +
r

∑
k=1

Akcl(t)xcl(t)dwk(t) + Bcl(t)dv(t) (29a)

zcl(t) = Ccl(t)xcl(t) (29b)

t ∈ R+, where xcl(t) =
( (

x1(t)
)⊤ (

x2(t)
)⊤ x⊤F (t)

)⊤
∈ R2n+nF and:

A0cl(t) =
(

A0(t) 0
BF(t)C0(t) AF(t)

)
(30a)

Akcl(t) =
(

Ak(t) 0
BF(t)Ck(t) 0

)
(30b)

Bcl(t) =
(

B(t)
BF(t)D(t)

)
(30c)

Ccl(t) =
(
Cz(t) −CF(t)

)
(30d)

t ∈ R+. Let t0 ⩾ 0 and xcl0 =
(

0⊤ x⊤0 x⊤F 0

)⊤ ∈ Rn ×Rn ×Rn f be arbitrary but fixed.
Let xcl(t) = xcl(t; t0, xcl0) be the solution to (29a) with the initial value xcl(t0) = xcl0. With
these notations, we obtain confirmation that:
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E
[
|z(t)− zF(t)|2

]
= E

[
|zcl(t)|2

]
= Tr

[
Ccl(t)E

[
xcl(t)x⊤cl (t)

]
C⊤

cl (t)
]
= Tr

[
Ccl(t)Ycl(t)C⊤

cl (t)
]

where
Ycl(t) ≜ E

[
xcl(t)x⊤cl (t)

]
(31)

for all t ⩾ t0. Thus, (5) becomes

J (GF) = lim
T→∞

1
T

∫ t0+T

t0

Tr
[
Ccl(t)Ycl(t)C⊤

cl (t)
]
dt (32)

Using the Itô formula [18] in the case of the stochastic process xcl(t), one obtains confirma-
tion that t → Ycl(t) defined according to (31) is the solution to the following problem with
a given initial value in the space Sn̂ (n̂ := 2n + nF):

Ẏcl(t) = Lcl(t)[Ycl(t)] + Bcl(t)VB⊤
cl (t), t ⩾ t0 (33a)

Ycl(t0) = xcl0xcl
⊤
0 (33b)

where Lcl(t) : Sn̂ → Sn̂ is described as follows:

Lcl(t)[Y] = A0cl(t)Y + YA0
⊤
cl (t) +

r

∑
k,l=1

Akcl(t)YAl
⊤
cl (t) (34)

for all Y ∈ Sn̂.

Remark 1. Even if the closed-loop system (29) works for t ∈ R+, it follows from (30) that, under
the assumption H2) ii) and the definition of an admissible filter (3), the coefficients of the closed-loop
system are θ-periodic functions. Hence, the coefficients of (29), (33a) and (34) can be extended via
periodicity to the whole real axis. Particularly, we have Lcl(t + θ) = Lcl(t) for all t ∈ R.

Regarding the system of SLDE,

dxcl(t) = A0cl(t)xcl(t)dt +
r

∑
k=1

Akcl(t)xcl(t)dwcl(t), t ∈ R+ (35)

obtained from (29a) when Bcl(t) = 0, t ∈ R+, we have the following:

Proposition 2. Under the Assumptions 1 and 2, for any filter, (GF), from Fs, the corresponding
SLDE (35) is ESMS.

Proof. According to (30a), (30b), we obtain the following partition of (35):

d
(

x1(t)
x2(t)

)
= A0(t)

(
x1(t)
x2(t)

)
+

r

∑
k=1

Ak(t)
(

x1(t)
x2(t)

)
dwk(t) (36a)

dxF(t) = (AF(t)xF(t) + f0(t))dt +
r

∑
k=1

fk(t)dwk(t) (36b)

t ⩾ t0, where we denote the following:

fk(t) ≜ BF(t)Ck(t)
(

x1(t)
x2(t)

)
, 0 ⩽ k ⩽ r (37)

Since (36a) is just (11), it follows that its solutions satisfy (13). Thus, fk(t) defined according
to (37) satisfies the assumptions of Theorem 3.6.1 from [17]. Bearing in mind the exponential



Entropy 2024, 26, 483 8 of 19

stability of (4), one concludes via Theorem 3.6.1 from [17] applied to the affine SLDE (36b)
that

lim
t→∞

E[|xF(t)|2] = 0 (38)

Combining (13) and (38), we may infer that the solutions xcl(t) of (35) satisfy the following:

lim
t→∞

E[|xcl(t)|2] = 0

Finally, using the fact that (35) has periodic coefficients, we conclude via Theorem 3.2.5
from [17] that the closed-loop SLDE (35) is ESMS. Thus, the proof is complete.

The operator-valued function t → Lcl(t)[·] introduced in (34) defines the following
linear differential equation in the Hilbert space Sn̂:

Ẏ(t) = Lcl(t)[Y(t)]. (39)

Let T(t, t0) be the linear evolution operator in Sn̂ generated via the linear differential
Equation (39). We recall that, if Y(t; t0, Y0) is the solution to (39) with the initial value
Y(t0; t0, Y0) = Y0, then T(t, t0)[Y0] = Y(t; t0, Y0), for all t, t0 ∈ R and Y0 ∈ Sn̂.

As a consequence of Proposition 2, we obtain the following:

Corollary 1. Under the Assumptions 1 and 2, for any filter, (GF), from Fs, the corresponding
linear differential Equation (39) is exponentially stable, that is, the following applies:

∥T(t; t0)∥ ⩽ βe−α(t−t0), ∀t ⩾ t0, t, t0 ∈ R (40)

where β ⩾ 1 and α > 0 do not depend upon t and t0.

Proof. Let Φcl(t, t0) be the fundamental matrix solution to the SLDE (35). It satisfies the
following:

dΦcl(t, t0) = A0cl(t)Φcl(t, t0)dt +
r

∑
k=1

Akcl(t)Φcl(t, t0)dwcl(t), t ⩾ t0

Φcl(t0, t0) = In̂

Applying Theorem 3.1.1 from [17] in the special case d = 1, we obtain that T∗(t, t0)[In̂] =
E
[
Φ⊤

cl (t, t0)Φcl(t, t0)
]
, T∗(t, t0) being the adjoint operator of T(t, t0) with respect to the

inner product of Sn̂:
⟨Y1, Y2⟩ = Tr[Y1Y2] (41)

for any Y1, Y2 ∈ Sn̂. If x̂0 ∈ Rn̂ is an arbitrary vector with |x̂0| = 1, we obtain via
Proposition 2 that

x̂⊤0 (T∗(t, t0)[In̂])x̂0 = E
[
|Φcl(t, t0)x̂0|2

]
⩽ βe−α(t−t0)

for all t ⩾ t0, t, t0 ∈ R, where α > 0 and β ⩾ 1 do not depend upon t, t0, x̂0. This
leads to ∥T∗(t, t0)[In̂]∥ ⩽ βe−α(t−t0), for all t ⩾ t0, t, t0 ∈ R, and ∥ · ∥ being the Euclidian
norm of a matrix. Further, we obtain via Corollary 2.1.7 (i) and Theorem 2.1.10 from [17],
applied in the case of the linear evolution operator T∗(t, t0), that ∥T∗(t, t0)∥ ⩽ βe−α(t−t0),
∀t ⩾ t0, t, t0 ∈ R.

From the equivalence between the norms of the finite-dimensional Hilbert space Sn̂,
we deduce that ∥T∗(t, t0)∥2 ⩽ βe−α(t−t0), ∀t ⩾ t0, t, t0 ∈ R, ∥ · ∥2 being the operator norm
induced via the norm generated through the inner product (41).

Finally, from the equality ∥T(t, t0)∥2 = ∥T∗(t, t0)∥2, we obtain confirmation that (40)
holds. This ends the proof.
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Proposition 3. Under the Assumptions 1 and 2, for each admissible filter, (GF) ∈ Fs, the
corresponding non-homogeneous linear differential Equation (33a) has a unique solution t →
Ỹcl(t) : R → Sn̂ that is bounded. This solution has the following representation formula:

Ỹcl(t) =
∫ t

−∞
Tcl(t, s)

[
Bcl(s)VB⊤

cl (s)
]
ds (42)

for all t ∈ R. Additionally, this solution is a θ-periodic function, and it satisfies Ỹcl(t) ⩾ 0 ∀t ∈ R.

Proof. First, let us show that the integral from the right-hand side of Equation (42) is
convergent. To this end, we use Equation (42) in order to obtain the following:

∥
∫ t

−∞
T(t, s)

[
Bcl(s)VB⊤

cl (s)
]
ds∥ ⩽

∫ t

−∞
∥T(t, s)∥ · ∥Bcl(s)VB⊤

cl (s)∥ds

⩽ βγ
∫ t

−∞
e−α(t−s)ds =

βγ

α
< ∞

∀t ∈ R, where γ := sup
s∈R

∥ · ∥Bcl(s)VB⊤
cl (s)∥ < ∞. Hence, Ỹcl(t) is well defined according

to (42). The fact that Ỹcl(·) is a solution to (33a) can be directly deduced using the rule of
differentiation of an integral. In order to prove the unicity of the solution defined according
to (42), let us assume that Ŷcl(·) : R → Sn̂ is another bounded solution to (33a). By using
the constant-variation formula for any t > t0, we obtain the following:

Ŷcl(t) = T(t, t0)[Ŷcl(t0)] +
∫ t

t0

T(t, s)
[

Bcl(s)VB⊤
cl (s)

]
ds (43)

Employing (40) again, we obtain the following:

∥T(t, t0)[Ŷcl(t0)]∥ ⩽ βγ̂e−α(t−t0), ∀t > t0, t, t0 ∈ R (44)

where γ̂ := sup
t0∈R

∥Ŷcl(t0)∥. Letting t0 → −∞ in Equation (43), we obtain via Equation (44)

that Ŷcl(t) =
∫ t
−∞ T(t, s)

[
Bcl(s)VB⊤

cl (s)
]
= Ỹcl(t),∀t ∈ R. Hence, any bounded solution

to (33a) coincides with Ỹcl(·) defined according to (42).
In order to check the periodicity property of Ỹcl(·), we write the following:

Ỹcl(t + θ) =
∫ t+θ

−∞
T(t + θ, s)

[
Bcl(s)VB⊤

cl (s)
]
ds

=
∫ t

−∞
T(t + θ, s + θ)

[
Bcl(s + θ)VB⊤

cl (s + θ)
]
ds

=
∫ t

−∞
T(t, s)

[
Bcl(s)VB⊤

cl (s)
]
ds = Ỹcl(t), ∀t ∈ R

Thus, the periodicity property of the bounded solution Ỹcl(·) is confirmed.
Finally, Theorem 2.6.1 from [17], applied in the case of the Lyapunov-type linear

differential Equation (33a), allows us to infer that T(t, s)
[
Bcl(s)VB⊤

cl (s)
]
∈ X+, ∀t ⩾ s ∈ R.

This leads to
∫ t
−∞ T(t, s)

[
Bcl(s)VB⊤

cl (s)
]
∈ X+, ∀t ∈ R because X+ is a closed convex cone.

Thus, the proof is complete.

The main result of this section is given in the following theorem:

Theorem 1. Under the Assumptions 1 and 2, the value of the performance measure (5) achieved
using a filter, (GF), from Fs is given as follows:

J (GF) =
1
θ

∫ θ

0
Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds (45)
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with Ỹcl(·) being the unique θ-periodic solution to the non-homogeneous linear differential Equa-
tion (33a).

Proof. Using the version of (5) given in (32), we may write the following:

J (GF) = lim
T→∞

1
T

∫ t0+T

t0

Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds + (46)

+ lim
T→∞

1
T

∫ t0+T

t0

Tr
[
Ccl(s)

(
Ycl(s, t0)− Ỹcl(s)

)
C⊤

cl (s)
]
ds.

Since t → Ycl(t)− Ỹcl(t), t ⩾ t0, is a solution to the linear differential Equation (39), it has
the following representation formula:

Ycl(t)− Ỹcl(t) = Tcl(t, t0)
[
Ycl(t0, t0)− Ỹcl(t0)

]
, ∀t ⩾ t0, t, t0 ∈ R.

Employing (33b) and (40), we obtain the following:

∥Ycl(t)− Ỹcl(t)∥ ⩽ βe−α(t−t0)
(
|xcl0|2 + c̃

)
(47)

where c̃ = sup
t∈R

∥Ỹcl(t)∥. Further, (47) allows us to deduce that

lim
T→∞

1
T
∫ t0+T

t0
Tr
[
Ccl(s)

(
Ycl(s, t0)− Ỹcl(s)

)
C⊤

cl (s)
]
ds = 0. Substituting this last equality in (46),

we get

J (GF) = lim
T→∞

1
T

∫ t0+T

t0

Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds. (48)

On the other hand, the boundedness of the function s → Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]

allows us
to obtain the equality

lim
T→∞

1
T

∫ t0+T

t0

Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds = lim

T→∞

1
T

∫ T

0
Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds (49)

Plugging (49) in (48), we get

J (GF) = lim
T→∞

1
T

∫ T

0
Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds =

1
θ

∫ θ

0
Tr
[
Ccl(s)Ỹcl(s)C⊤

cl (s)
]
ds

which is just the right-hand side of (45). For the last equality, we have taken into account
that the integration is a θ-periodic function. Thus, the proof is complete.

Remark 2. From (45), one sees that the value of the performance J (GF) achieved using a filter,
(GF), from Fs does not depend on either the initial time instance, t0, or the initial states, x0 and
xF0, of the dynamical system (G) and the filter (GF), respectively.

5. The Optimal Filter

We consider the linear differential equation in S2n:

Π̇(t) = A0(t)Π(t) + Π(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)Π(t)A⊤
k (t) +B(t)VB⊤(t), t ∈ R (50)

or, equivalently,
Π̇(t) = L(t)[Π(t)] +B(t)VB⊤(t) (51)

where L(t)[·] : S2n → S2n is defined in (15).
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Proposition 4. Under the Assumptions 1 and 2, the linear differential Equation (50) admits a
unique bounded solution, t → Π̃(t) : R → S2n. Additionally, it is a θ-periodic function, and it has
the following structure:

Π̃(t) =
(

Πc(t) 0
0 0

)
, t ∈ R (52)

where Πc(·) is the unique bound of the R solution to the linear differential equation in Sn:

Π̇c(t) = A0(t)Πc(t) + Πc(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)Πc(t)A⊤
k (t) + B(t)VB⊤(t), t ∈ R (53)

Proof. We look for a solution, Π̃(·), to the Equation (50), which is bounded on R and has
the following structure:

Π̃(t) =
(

Π11(t) Π12(t)
Π⊤

12(t) Π22(t)

)
, t ∈ R

with Πij(t) ∈ Sn. Employing (12), together with (28a), we obtain the following partition of
the Equation (50) written for the solution Π̃(·):

Π̇11(t) = A0(t)Π11(t) + Π11(t)A⊤
0 (t) +

r

∑
k=1

(
Ak(t)Π11(t)A⊤

k (t) + Ãk(t)Π22(t)Ã⊤
k (t)

)
(54a)

+ B(t)VB⊤(t) (54b)

Π̇12(t) = A0(t)Π12(t) + Π12(t)Ã⊤
0 (t) (54c)

Π̇22(t) = Ã0(t)Π22(t) + Π22(t)Ã⊤
0 (t) (54d)

t ∈ R. If the MF-SLDE (2) is ESMS, then according to (i) → (ii) from Proposition 1,
we obtain confirmation that the OLDE (22) is ES. In this case, the linear differential Equa-
tion (54d) has a unique bound in the R solution, and this solution is Π22(t) = 0, t ∈ R.

Hence, (54a) reduces to

Π̇11(t) = A0(t)Π11(t) + Π11(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)Π11(t)A⊤
k (t) + B(t)VB⊤(t) (55)

Invoking again the implication (i) → (ii) from Proposition 1, we deduce that the SLDE (21)
is ESMS. In this case, the linear differential equation of the Lyapunov type associated
with (21),

Ẋ(t) = A0(t)X(t) + X(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)X(t)A⊤
k (t) (56)

defines a positive evolution, and it is exponentially stable in Sn. Hence, the non-homogeneous
Equation (55) has a unique bound in the R solution, and this solution is a θ-periodic function
that satisfies Π11(t) ⩾ 0, ∀t ∈ R.

Since (55) coincides with (53), it follows that Π11(t) = Πc(t) and ∀t ∈ R, which is the
unique bound in the R solution to Equation (53). The need to search for the bound in the R
solutions of (54c) remains. First, let us remark that, if the SLDE (21) is ESMS, then the OLDE

ẋ(t) = A0(t)x(t) (57)

is exponentially stable. Let ΨA0(θ) be the monodromy matrix of the differential Equa-
tion (57). That is, ΨA0(θ) = ΦA0(θ, 0), where ΦA0(·, 0) is the matrix solution to (57), which
satisfies ΦA0(0, 0) = In. The eigenvalues of the monodromy matrix ΨA0(θ) are located in
the disk |λ| < 1 because (57) is ES. Similarly, the eigenvalues of the monodromy matrix
ΨÃ0

(θ) of the differential Equation (22) are located in the disk |λ| < 1. If Ψ(θ) is the
monodromy operator of the Equation (54c), it is obtained via Ψ(θ)Y = ΨA0(θ)YΨ⊤

Ã0
(θ).
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The eigenvalues of Ψ(θ) are, then, of the form λ = µν̄, where µ is an eigenvalue
of ΨA0(θ), and ν is an eigenvalue of ΨÃ0

(θ). Hence, |λ| = |µν̄| < 1. We conclude that
Equation (54c) may have only one bound in the R solution (see, for example, Theorem 2.3.7
from [17]). This means that Π12(t) = 0, t ∈ R is the unique bound in the R solution to (54c).
This ends the proof.

Let

R̃(t) ≜ D(t)VD⊤(t) +
r

∑
k=1

Ck(t)Π̃(t)C⊤
k (t), t ∈ R (58)

Using (28b) and (30), we obtain confirmation that (58) becomes

R̃(t) ≜ D(t)VD⊤(t) +
r

∑
k=1

Ck(t)Πc(t)C⊤
k (t), t ∈ R (59)

Now, we introduce the following forward Riccati differential equation (F-RDE):

Ẏ(t) = A0(t)Y(t) + Y(t)A⊤
0 (t)−

(
Y(t)C⊤

0 (t) + L̃(t)
)

R̃−1(t)
(
C0(t)Y(t) + L̃⊤(t)

)
+ M̃(t), t ∈ R (60)

where

L̃(t) = B(t)VD⊤(t) +
r

∑
k=1

Ak(t)Π̃(t)C⊤
k (t) (61a)

M̃(t) = B(t)VB⊤(t) +
r

∑
k=1

Ak(t)Π̃(t)A⊤
k (t) (61b)

Employing (12), (28a)–(28c), and (52), we obtain confirmation that:

L̃(t) =
(

L̃1(t)
0

)
, M̃(t) =

(
M̃1(t) 0

0 0

)
with

L̃1(t) = B(t)VD⊤(t) +
r

∑
k=1

Ak(t)Πc(t)C⊤
k (t) (62a)

M̃1(t) = B(t)VB⊤(t) +
r

∑
k=1

Ak(t)Πc(t)A⊤
k (t) (62b)

We recall now the following definition:

Definition 1. A globally defined solution, Y(·) : R → S2n, of the F-RDE (60) is named a
stabilizing solution if the OLDE on R2n,

ẋ(t) = (A0(t) + Ks(t)C0(t))x(t) (63)

is exponentially stable, where

Ks(t) := −
(

Ys(t)C⊤
0 (t) + L̃(t)

)
R̃−1(t), t ∈ R (64)

Remark 3. (a) From (58) and (61), one obtains confirmation that(
M̃(t) L̃(t)
L̃⊤(t) R̃(t)

)
⩾ 0, ∀t ∈ R (65)
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(b) Via a direct calculation, one obtains confirmation that the F-RDE (60), verified via its stabilizing
solution, Ys(·), can be written in the following form:

Ẏs(t) = (A0(t) + Ks(t)C0(t))Ys(t) + Ys(t)(A0(t) + Ks(t)C0(t))⊤ + Q(t), t ∈ R (66)

where Q(t) =
(

I2n Ks(t)
)( M̃(t) L̃(t)

L̃⊤(t) R̃(t)

)(
I2n

K⊤
s (t)

)
, t ∈ R. In this case, (66)

may have only one θ-periodic solution, and such a solution is a positive semidefinite because
the OLDE (63) is exponentially stable, and (65) holds. Hence, the stabilizing and bounded
solution to (60), if any, satisfies the following condition:

Ys(t) ⩾ 0, t ∈ R (67)

(c) If the SLDE (21) is ESMS, then the OLDE on Rn, ẋ(t) = A0(t)x(t), is ES. Thus, if the
Assumptions 1 and 2 hold, we may infer, via the implication (i) → (ii) from Proposition 1
and Formula (12a), that the OLDE on R2n,

ẋ(t) = A0(t)x(t), t ∈ R (68)

is ES.
(d) Substracting (60) (written for Y(t) and replaced with Ys(t)) from (50) (written for Π(t) and

replaced with Π̃(t)), we obtain confirmation that ∆(·) := Π̃(·)− Ys(·) is a bound in the R
solution to the following linear differential equation:

∆̇s(t) = A0(t)∆(t) + ∆(t)A⊤
0 (t) + Ks(t)R̃(t)K⊤

s (t) (69)

Bearing in mind that the OLDE (68) is ES and R̃(t) > 0 for all t ∈ R, we conclude that (69)
has a unique bound in the R solution, and additionally, this solution is positive and semidefinite.
Under the Assumptions 1 and 2, the stabilizing and bounded solution to the F-RDE, if any,
necessarily satisfies the following constraint:

0 ⩽ Ys(t) ⩽ Π̃(t) (70)

for all t ∈ R.

(e) Let
(

Y1
s (t) Y2

s (t)
(Y2

s )
⊤(t) Y3

s (t)

)
be the partition of the matrix Ys(t), such that Y1

s (t) ∈ Sn,

Y3
s (t) ∈ Sn. Employing (52) and (70), we conclude that we necessarily have Y3

s (t) = 0 and
Y2

s (t) = 0, t ∈ R. Thus, under the Assumptions 1 and 2, the bounded and stabilizing solution
Ys(·) of the F-RDE (60), if any, has the following structure:

Ys(t) =
(

Y1
s (t) 0
0 0

)
(71)

where Y1
s (·) solves the F-RDE of the lower dimension,

Ẏ1(t) = A0(t)Y1(t) + Y1(t)A⊤
0 (t)−

(
Y1(t)C⊤

0 (t) + L̃1(t)
)

R̃−1(t) ⋆+M̃1(t), t ∈ R (72)

where M̃1(t) and L̃1(t) are defined in (62).

By adapting Definition 1 to the case of the F-RDE (72), we say that a solution, Y1
s (·),

of (72) is a stabilizing solution if the following OLDE on Rn,

ẋ(t) = (A0(t) + K1
s (t)C0(t))x(t) (73)

is ES, where
K1

s (t) := −
(

Y1
s (t)C

⊤
0 (t) + L̃1(t)

)
R̃−1(t), t ∈ R (74)
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The following result establishes a relationship between the θ-periodic and stabilizing
solution to the F-RDE (72) and the θ-periodic and stabilizing solution to the F-RDE (60).

Lemma 2. Assume that the Assumptions 1 and 2 are fulfilled. If Y1
s (·) is the unique θ-periodic and

stabilizing solution to the F-RDE (72), then Ys(·), constructed as in (71), is the unique θ-periodic
and stabilizing solution to the F-RDE (60). In this case, (64) becomes

Ks(t) =
(

K1
s (t)
0

)
(75)

where K1
s (t) is introduced via (74).

Proof. Bearing in mind (12a), (28b), (28c), and (75), we obtain confirmation that A0(t) +

Ks(t)C0(t) =
(

A0(t) + K1
s (t)C0(t) K1

s (t)C̃0(t)
0 Ã0(t)

)
. This shows that (63) is exponentially

stable because both (22) and (73) are exponentially stable. Hence, the proof is complete.

Remark 4. Under the Assumptions 1 and 2, in order to test the existence of the stabilizing solution
to the F-RDE (60), it is sufficient to test the existence of the stabilizing solution to the F-RDE of
lower dimension (72). To this end, one can use the set of necessary and sufficient existence conditions
proposed in [16].

The main result of this work is given below:

Theorem 2. Assume the following:

(a) The Assumptions 1 and 2 are fulfilled.
(b) R̃(t) > 0, ∀t ∈ R and the F-RDE (72) have a stabilizing solution, Y1

s (·), which is θ-periodic.

Let K1
s (·) be the feedback gain associated with the stabilizing solution Y1

s (·) via (74). Let Ys(t) ∈ S2n
and Ks(t) ∈ R2n×ny , t ∈ R, be defined as in (71) and (75), respectively. Consider the filter G̃F with
dimension nF = 2n and the following state space representation:

dxF(t) = (A0(t) + Ks(t)C0(t))xF(t)dt − Ks(t)dy(t) (76a)

zF(t) = Cz(t)xF(t) (76b)

t ∈ R+. Under the considered assumptions, the filter G̃F lies in Fs and minimizes the cost
functional (5) over Fs. The minimal value achieved via the performance index (5) is as follows:

J (G̃F) =
1
θ

∫ θ

0
Tr
[
Cz(t)Y1

s (t)C
⊤
z (t)

]
dt (77)

Proof. The fact that the filter (76) lies in Fs is obvious because, in this case, the correspond-
ing system (4) coincides with (63), and therefore, it is ES. In order to check that the filter (76)
provides the minimal value of the cost (5), let us consider an arbitrary but fixed filter,

GF ∈ Fs. Let
(

Y11(t) Y12(t)
Y⊤

12(t) Y22(t)

)
, t ∈ R, be the partition of the θ-periodic solution Ỹcl of

the corresponding linear differential equation of type (33a), such that Y11(t) ∈ S2n and
Y22(t) ∈ SnF . Based on (30a)–(30c), we obtain the following partition of the Equation (33a)
written for its θ-periodic solution:
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Ẏ11(t) = A0(t)Y11(t) + Y11(t)A⊤
0 (t) +

r

∑
k=1

Ak(t)Y11(t)A⊤
k (t) +B(t)VB⊤(t) (78a)

Ẏ12(t) = A0(t)Y12(t) + Y11(t)C⊤
0 (t)B⊤

F (t) + Y12(t)A⊤
F (t) +

r

∑
k=1

Ak(t)Y11(t)C⊤
k (t)B⊤

F (t)

+B(t)VD⊤(t)B⊤
F (t) (78b)

Ẏ22(t) = BF(t)C0(t)Y12(t) + AF(t)Y22(t) + Y⊤
12(t)C⊤

0 (t)B⊤
F (t) + Y22(t)A⊤

F (t)

+
r

∑
k=1

BF(t)Ck(t)Y11(t)C⊤
k (t)B⊤

F (t) + BF(t)D(t)VD⊤(t)B⊤
F (t). (78c)

One sees that the Equation (78a) coincides with (50). From the uniqueness of the θ-periodic
solution to the non-homogeneous, Lyapunov-type linear differential equation associated
with a mean square, exponentially stable, stochastic linear differential equation, we deduce
that Y11(t) = Π̃(t), ∀t ∈ R.

Let U (t) ≜
(

Π̃(t)− Ys(t) Y12(t)
Y⊤

12(t) Y22(t)

)
, t ∈ R. Via a direct calculation involving (60),

together with (78) (for which Y11(·) is replaced with Π̃(·)), we obtain confirmation that
U (·) is a θ-periodic solution to the following Lyapunov-type differential equation:

U̇ (t) = A0cl(t)U (t) + U (t)A0
⊤
cl (t) + B̌cl(t)R̃(t)B̌⊤

cl (t) (79)

where B̌cl(t) ≜
(

Ks(t)
−BF(t)

)
, and R̃(t) was introduced in (58). Since the differential

Equation (39) defines a positive evolution on the ordered Hilbert space
(
Sn̂,S+

n̂
)
, and (40)

holds, we deduce via the equivalence (i) ⇔ (vi) in Theorem 2.4.2 from [17], applied in the
case of the linear differential Equation (39), that there exists a C1-matrix-valued function
t → S(t) : R → Sn̂ satisfying

Ṡ(t) + A0
⊤
cl (t)S(t) + S(t)A0cl(t) ⩽ −In̂

and
0 < ν1 In̂ ⩽ S(t) ⩽ ν < ν2 In̂, ∀t ∈ R.

This means that the OLDE on Rn̂,

ẋcl(t) = A0cl(t)xcl(t), t ∈ R

is ES. This allows us to conclude that (79) has a unique θ-periodic and positive semidefinite
solution. This leads to the following:

U (t) ⩾ 0, t ∈ R. (80)

Further, we rewrite (45) as follows:

J (GF) =
1
θ

∫ θ

0
Tr
[
Cz(t)Ys(t)C⊤

z (t)
]
dt +

1
θ

∫ θ

0
Tr
[
Ccl(t)U (t)C⊤

cl (t)
]
dt (81)

Combining (80) and (81), we deduce that

J (GF) ⩾
1
θ

∫ θ

0
Tr
[
Cz(t)Ys(t)C⊤

z (t)
]
dt (82)

for all GF ∈ Fs. It remains to show that, in the special case of the filter G̃F introduced
via (76), the inequality (82) becomes equal. To this end, let us remark that, in the case of the
filter (76), we have the following:
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Ccl(t)U (t)C⊤
cl (t) = Cz(t)

(
I2n −I2n

)
U (t)

(
I2n −I2n

)⊤C⊤
z (t) = Cz(t)Û11(t)C⊤

z (t) (83)

with Û11(t) being the 11-block of the matrix Û (t) = WU (t)W⊤, W =

(
I2n −I2n
0 I2n

)
. Via

a direct calculation involving the differential Equation (79), we obtain confirmation that
t → Û11(t) is the θ-periodic solution to the linear differential equation

d
dt
Û11(t) = (A0(t) + Ks(t)C0(t))Û11(t) + Û11(t)(A0(t) + Ks(t)C0(t))

⊤. (84)

Since the differential Equation (63) is ES, we conclude that the differential Equation (84)
has a unique θ-periodic solution, namely Û11(t) = 0, t ∈ R.

Plugging this equality into (83), we deduce that, in the case of the filter (76), the
equality (81) is reduced to (77). Thus, the proof is complete.

6. Numerical Experiments

It appears from Theorem 2 that the synthesis of the optimal H2-filter for system (1)
relies on the resolution to the periodic F-RDE (72) whose coefficients depend on the unique θ-
periodic solution to the non-homogeneous, Lyapunov-type linear differential Equation (50).
Hence, in order to synthesize the optimal filter of type (76), one has first to solve the
equations (50) and (72), respectively.

In what follows, we generate an artificial θ-periodic linear system of the McKean–
Vlasov type. To this end, we generalize the procedure proposed in [19]. First, we generate
a stochastic linear time-invariant (LTI) system of the McKean–Vlasov type:

dx(t) = (A0x(t) + Ā0E[x(t)])dt + (A1x(t) + Ā1E[x(t)])dwk(t) + Bdv(t)
dy(t) = (C0x(t) + C̄0E[x(t)])dt + (C1x(t) + C̄1E[x(t)])dwk(t) + Ddv(t)
z(t) = Czx(t) + C̄zE[x(t)]

(85)

Next, the LTI system (85) is transformed into a stochastic-periodic linear system via the
change in the system coordinate x̄(t) = G(t)x(t), where

G(t) = diag
(

Ĝ(t) · · · Ĝ(t)
)

, Ĝ(t) =
[

cos(wt) sin(wt)
− sin(wt) cos(wt)

]
for a given w > 0. This results in the following stochastic θ-periodic McKean–Vlasov-type
system:

dx̄(t) = (A0(t)x̄(t) + Ā0(t)E[x̄(t)])dt + (A1(t)x̄(t) + Ā1(t)E[x̄(t)])dwk(t) + B(t)dv(t)
dy(t) = (C0(t)x̄(t) + C̄0(t)E[x̄(t)])dt + (C1(t)x̄(t) + C̄1(t)E[x̄(t)])dwk(t) + Ddv(t)
z(t) = Cz(t)x̄(t) + C̄z(t)E[x̄(t)]

(86)
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where 

A0(t) =
dG(t)

dt G−1(t) + G(t)A0G−1(t)
Ā0(t) = G(t)Ā0G−1(t)
A1(t) = G(t)A1G−1(t)
Ā1(t) = G(t)Ā1G−1(t)
B(t) = G(t)B
C0(t) = C0G−1(t)
C̄0(t) = C̄0G−1(t)
C1(t) = C1G−1(t)
C̄1(t) = C̄1G−1(t)
Cz(t) = CzG−1(t)
C̄z(t) = C̄zG−1(t)

and θ = 2π
w . For the numerical application, we take the following:

A0 =


−0.841 2 −0.019 −1

0 −1.752 −0.041 1
0 0 −2.1 1.9
0 0 0 −1.2

, Ā0 =


0.06 −0.028 0.028 0.02

0.088 0.023 0.102 −0.102
−0.167 0.127 −0.026 −0.193
0.051 0.026 0.011 0.005

,

A1 =


0.05 −0.1 0 −0.05
0.1 0.5 −0.2 0.5
0 0.25 0.5 0.05

−0.25 0 0 −0.5

, Ā1 =


−0.095 0.182 −0.036 −0.075
0.157 −0.042 0.022 0.067
0.218 0.074 0.18 −0.021
−0.077 0.126 0.154 0.128

,

B =


−0.06 0.03
0.09 0.12
−0.06 −0.09
0.06 0.03

, C0 =

[
1 0 1 0
0 −1 0 0

]
,

C̄0 =

[
−0.087 0.015 0.151 −0.114
−0.009 −0.034 −0.143 −0.02

]
,

C1 =

[
0.2 0.3 0 −0.1
0 0 0.5 −0.2

]
, C̄1 =

[
−0.729 0.661 0.212 −0.495
−0.156 0.495 −0.113 −0.104

]
,

D =

[
0.1 0
0 0.1

]
, Cz =

[
1 0 0 1
−1 −1 0 1

]
, C̄z =

[
−1.096 0.545 −0.697 −0.101
−1.317 0.95 −0.182 −1.794

]
and w = 2.

6.1. Solution to the Lyapunov-Type Linear Differential Equation (50)

First, we solve the following Lyapunov-like algebraic equation:

A0P + PAT
0 + A1PAT

1 + BVBT = 0 (87)

This is done by rewriting (87) as follows:

[(I⊗ A0) + (A0 ⊗ I) + q11(A1 ⊗ A1)]vec(P) = −vec(BVBT) (88)

where ⊗ is the Kronecker product, and for a (n × p) matrix, M =
[

M1 · · · Mp ]
, one

has vec(M) =

 M1

...
Mp

. Hence, we get vec(P) = −[(I⊗ A0) + (A0 ⊗ I) + q11(A1 ⊗ A1)]
−1

vec(BVBT).
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The exact unique θ-periodic solution to the Equation (50) is then given via Πc(t) =
G(t)PGT(t).

6.2. Solution to the F-RDE (72)

Here, we follow a similar procedure as in the previous subsection. First, we compute
the unique stabilizing solution to the following algebraic Riccati equation (ARE):

A0Y + YAT
0 −

[
YCT

0 + L̃
]

R̃−1
[
C0Y + L̃T

]
+ M̃ = 0 (89)

where 
L̃ = BVDT + A1PCT

1

M̃ = BVBT + A1PAT
1

R̃ = DVDT + C1PCT
1

with P being the unique solution to (87), using existing stable solvers such as ICARE in
MATLAB. The θ-periodic stabilizing solution to the F-RDE (72) is then given via Y1

s (t) =
G(t)YGT(t), with Y being the stabilizing solution to the ARE (89).

Figure 1 shows the evolution of the estimation error e(t) = z(t) − zF(t) for one
realization of the stochastic processes.

0 10 20 30 40 50 60

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 1. Estimation error: e(t) = z(t)− zF(t).

7. Conclusions

In this paper, we have considered the problem of optimal H2 state estimation for a class
of continuous-time, time-varying McKean–Vlasov SDEs. The solution to the considered
optimization problem has been expressed in terms of the stabilizing solution to a suitably
defined, generalized Riccati differential equation. Some numerical experiments have been
provided to show the effectiveness of the proposed method.
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