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Abstract: Given the rapid advancement of artificial intelligence, understanding the foundations
of intelligent behaviour is increasingly important. Active inference, regarded as a general theory
of behaviour, offers a principled approach to probing the basis of sophistication in planning and
decision-making. This paper examines two decision-making schemes in active inference based on
“planning” and “learning from experience”. Furthermore, we also introduce a mixed model that
navigates the data complexity trade-off between these strategies, leveraging the strengths of both to
facilitate balanced decision-making. We evaluate our proposed model in a challenging grid-world
scenario that requires adaptability from the agent. Additionally, our model provides the opportunity
to analyse the evolution of various parameters, offering valuable insights and contributing to an
explainable framework for intelligent decision-making.

Keywords: active inference; decision making; data complexity trade-off; hybrid models

1. Introduction

Defining and thereby separating the intelligent “agent” from its embodied “environ-
ment”, which then provides feedback to the agent, is crucial to model intelligent behaviour.
Popular approaches, like reinforcement learning (RL), heavily employ such models contain-
ing agent–environment loops, which boils down the problem to agent(s) trying to maximise
reward in the given uncertain environment [1].

Active inference has emerged in neuroscience as a biologically plausible framework [2],
which adopts a different approach to modelling intelligent behaviour compared to other
contemporary methods like RL. In the active inference framework, an agent accumulates
and maximises the model evidence during its lifetime to perceive, learn, and make deci-
sions [3–5]. However, maximising the model evidence becomes challenging when the agent
encounters a highly “entropic” observation (i.e., an unexpected observation) concerning the
agent’s generative (world) model [3–5]. This seemingly intractable objective of maximising
model evidence (or minimising the entropy of encountered observations) is achievable
by minimising an upper bound on the entropy of observations, called variational free
energy [3,4]. Given this general foundation, active inference [6] offers excellent flexibility
in defining the generative model structure for a given problem, and it has attracted much
attention in various domains [7,8].

In this work, we develop an efficient decision-making scheme based on active inference
by combining “planning” and “learning from experience”. After a general introduction
to generative world models in the next section, we take a closer look at the decision-
making aspect of active inference. Then, we summarise two dominant approaches in active
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inference literature: the first based on planning (Section 2.3.1) and the second based on
counterfactual learning (cf. Section 2.3.2). We compare the computational complexity and
data efficiency (cf. Section 3.2) of these two existing active inference schemes and propose
a mixed or hybrid model that balances these two complementary schemes (Section 3.3).
Our proposed hybrid model not only performs well in an environment that demands
adaptability (in Section 3.5), but also provides insights regarding the explainability of
decision-making using model parameters (in Section 3.6).

2. Methods
2.1. Agent–Environment Loop in Active Inference

Generative models are central to establishing the agent–environment loop in an active
inference model. The agent is assumed to hold a scaled-down model of the external world
that enables the agent to predict the external dynamics and future observations. The agent
can then use its available actions to pursue future outcomes, ensuring survival. We stick
to a partially observed Markov decision process (POMDP)-based generative model [9] in
this paper. POMDPs are a general case of Markov decision processes (MDPs) [10], which
are controllable Markov chains apt for modelling stochastic systems in a discrete state
space [11]. In the following section, we provide the specific details of a POMDP-based
generative model.

2.2. POMDP-Based Generative Models

In active inference, agents teach the generative model about external states and op-
timise their decisions by minimising variational free energy. The POMDP is a universal
framework to model discrete state-space environments, where the likelihood and state
transition are expressed as tractable categorical distributions [12]. Thus, we adopt the
POMDP as our agent’s generative model. The POMDP-based generative model is formally
defined as a tuple of finite sets (S, O, T, U,B,A,D,E) such that

◦ st ∈ S states and s1 is a given initial state.
◦ ot ∈ O, where ot = st in the fully observable setting and ot = f (st) in a partially

observable setting.
◦ T ∈ N+ is a finite time horizon available per episode.
◦ ut ∈ U are actions, e.g., U = {Left, Right, Up, Down}.
◦ B encodes one-step transition dynamics such that P(st|st−1, ut−1,B) is the probability

that action ut−1 taken at state st−1 at time t− 1 results in st at time t.
◦ A encodes the likelihood distribution P(ot|st,A) for the partially observable setting.
◦ D is the prior about the state (s) at the starting time point used for the Bayesian

inference of state (s) at time t = 1.
◦ E is the prior about action selection used to take action in the simulations at time t = 1.

In the POMDP, hidden states (s) generate observation (o) through the likelihood
mapping (A) in the form of a categorical distribution, P(ot|st,A) = Cat(A). States s are
determined by transition matrix (B) given the agent’s action (u), P(st|st−1, ut−1,B) =
Cat(B(st−1 ⊗ ut−1)). Thus, the generative model in question is given as

P(o1:t, s1:t, u1:t) = P(A)P(B)P(D)P(E)
t

∏
τ=1

P(oτ |sτ ,A)
t

∏
τ=2

P(sτ |sτ−1, uτ−1,B). (1)

Under the mean-field approximation, an approximate posterior distribution (concern-
ing hidden states s) is given as

Q(st+1)︸ ︷︷ ︸
Posterior

= σ

logP(st+1)︸ ︷︷ ︸
Prior

+ log(ot+1 ·Ast+1)︸ ︷︷ ︸
Likelihood

, (2)
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where the posterior beliefs about states and parameters are expressed as categorical dis-
tribution, Q(st) = Cat(st), and the Dirichlet distribution, Q(A) = Dir(a), respectively.
Hence, under this POMDP setup, variational free energy is given as

F = ∑
s1:t

Q(s1:t)[ logQ(s1:t)− logP(o1:t|s1:t)− logP(s1:t) ]

+ ∑
u1:t

Q(u1:t)[ logQ(u1:t)− logP(u1:t|s1:t) ] + DKL [Q(θ)||P(θ)]. (3)

Variations of F offer appropriate posterior expectations about states and parameters.
Some optional parameters, depending on the specific decision-making scheme used, are

◦ C : Prior preferences over outcomes, P(o|C). Here, C is the preference for the pre-
defined goal state. This parameter is generally used in the planning-based active
inference models [4,13].

◦ Γ(t): A time-specific risk parameter that the agent maintains to update the state-action
mapping CL in the CL scheme as in [14].

◦ β(s, t): A state-dependent bias parameter used in the mixed model proposed in
this paper.

These are used to parameterise the distribution of actions u, and actions are opti-
mised through variational free energy minimisation. Further details are explained in the
subsequent sections.

2.3. Decision-Making Schemes in Active Inference

Decision-making under active inference is formulated as minimising the (expected)
variational free energy of future time steps [15–17]. This enables an agent to deploy a
planning-based decision-making scheme where an agent predicts possible outcomes and
makes decisions to attain states and observations that minimise expected free energy (EFE).
Classically, active inference optimises policies—i.e., sequences of actions in time—instead
of a state-action mapping in methods like Q-Learning [1] in RL to choose the policy that
minimises EFE [4]. However, such formulations limit agents to solve environments only
with low-dimensional state-space [4,13].

Several improvements to the framework follow, including the recent sophisticated
inference scheme [18] that uses a recursive form of free energy to ease the computational
complexity of policy search. The sophisticated inference method uses a forward tree search
in time to evaluate EFE; however, it restricts the planning depth of agents [18] due to
computational complexity. More innovative algorithms like dynamic programming can be
used to linearise the planning [3,19]. The proposed linearised planning method is called
Dynamic programming in expected free energy (DPEFE) in [19]. This DPEFE algorithm
performs on par with benchmark reinforcement learning methods like Dyna-Q [20] in
environments similar to grid world tasks [13] (see Section 2.3.1 for technical details of
the DPEFE method). A generalisation of the DPEFE algorithm was recently proposed as
“inductive-inference” to model “intentional behaviour” in agents [21].

Another recent work deviates from this classical approach of predictive planning and
employs “learning from experience” to determine optimal decisions [14]. This scheme is
mathematically equivalent to a particular class of neural networks accompanied by some
neuromodulations of synaptic plasticity [14,22]. It uses counterfactual learning (the CL
method in this paper) to accumulate a measure of “risk” over time based on environmental
feedback. Subsequent work that validates this scheme experimentally using in vitro neural
networks has also appeared recently [23].

The following summarises the critical algorithmic details of both schemes: DPEFE
in Section 2.3.1 and the CL scheme in Section 2.3.2. Both schemes are proposed based on
conventional POMDPs.
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2.3.1. DPEFE Scheme and Action Precision

The DPEFE scheme in this paper is based on the work in [13]. This scheme is gen-
eralised to a POMDP setting in paper [19]. The model parameters used are as given in
Section 2.2. The action–perception loop in the DPEFE scheme comprises perception (i.e.,
identifying states that cause observations), planning, action selection, and learning model
parameters. In this paper, all environments are fully observable since our focus is on
decision-making rather than perception, hence O = S.

The action selection in the DPEFE scheme is implemented as follows: After evaluating
the expected free energy (EFE, G) of future observations using dynamic programming
(cf. [19]), the agent evaluates the probability distribution for selecting an action u as

PDPEFE(u|s) = σ(−α G(u|s)). (4)

Here, σ is the classical softmax function, rendering actions with smaller EFE being
selected with larger probabilities. The action precision parameter (α) may be tuned to
increase/decrease the agent’s action selection confidence. For a detailed description of the
evaluation of the EFE (G) and the DPEFE algorithm, we refer to [19] (Section 5).

2.3.2. CL Method and Risk Parameter

Instead of attempting to minimise the EFE directly, in the counterfactual learning (CL)
method, the agent learns a state-action mapping CL. This state-action mapping is learned
through an update equation mediated by a “risk” term Γt as defined in [14]:

CL← CL+ t ⟨ (1− 2 Γt)⟨ut ⊗ st−1⟩ ⟩. (5)

Here, ⟨·⟩ refers to the average over time, and ⊗ is the Kronecker product operator.
Given the state-action mapping CL, the agent samples actions from the distribution,

P(u|s)CL = σ(ln CL · st−1). (6)

In the simulations, Γt with the following functional form is used. When the agent is
at the start position—or when the agent’s action causes a “high risk”—the value of 0.9 is
substituted, i.e., Γt ← 0.9. Otherwise, Γt decreases continuously following equation

Γt ← Γt −
1

Tgoal − t
. (7)

Here, Tgoal is when the agent receives a positive environmental reward. So, the sooner
the agent comes to the desirable state, the quicker the Γt (i.e., risk) converges to zero (for
the exact form of the generative model and free energy, we refer to [22]).

All the update rules defined in the paper can be derived from the postulate that the
agent tries to minimise the (variational) free energy (Equation (3)) with respect to the
generative model [14,19]. In the rest of the paper, we investigate the performance of the two
schemes—i.e., the DPEFE and the CL method—and consider a scheme combining them.
The following section explores how these two schemes perform in a given environment.

3. Results

We now test the performance of two decision-making schemes (DPEFE and CL) in
benchmark environments such as the Cart Pole—v1 (Figure 1) from OpenAIGym [24]. All
simulations are performed for 100 or more trials with different random seeds to ensure the
reproducibility of results.
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Modality Range Episode
termination

Cart Position −4.8 to 4.8 ±2.4

Cart Velocity −inf to inf NA

Pole Angle −24°to 24° ±12°

Pole Angular 
Velocity

−inf to inf NA

A B

Figure 1. (A): A snapshot from the Cart Pole—v1 environment (from OpenAI Gym), (B): Environment
summary: The objective is to balance the pole (brown) upright as long as possible without meeting
the episode termination criteria, i.e., without the pole and cart crossing pole angle and cart position
thresholds, respectively.

3.1. Cart Pole—v1 (OpenAI Gym Task)

In Cart Pole—v1 environment [25], an agent is rewarded for balancing the pole up-
right (within an acceptable range) by moving the cart sideways (Figure 1A). An episode
terminates when the pole or cart crosses the acceptable range (±12 degrees for the pole
and ±2.4 unit frame sizes for the cart; Figure 1B). This problem is inherently spontaneous,
without the need for planning from the controller, where the agent must react to the current
situation of the cart and the pole.

We then test the active inference in a mutating setup, where the environment mutates
to a more challenging version with half the acceptable range for both the pole and cart
position (±6 degrees for the pole and ±1.2 unit frame sizes for the cart). The performance
of the active inference agents with different planning is summarised in Figure 2A.

A B

Figure 2. (A): Performance of active inference agents with different decision-making schemes in
the mutating Cart Pole—v1 (with a mutation at Episode 100). After Episode 100, the environment
mutates to a harder version which the agents must adapt to. (B): Evolution of the risk parameter (Γt)
of the CL method agent when embodied in the Mutating Cart Pole problem. We can observe the spike
at Episode 100 consistent with mutation and the reduced risk resulting in improved performance in
the second half of the trial.
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As expected, the CL method agent outperforms other active inference schemes (as the
problem demands spontaneous control favouring a state-action mapping over planning).
The agents quickly learn the necessary state-action mapping and balance the pole more
effectively than other planning-based schemes. We also observe this after the mutation in
the environment at Episode 100. The improved performance of the CL method agent after
mutation warrants additional investigation; however, it can be attributed to the increased
feedback frequency due to the increased failure rate after mutation. It should be noted
that we do not make any claims in this paper regarding better performance than different
reinforcement learning agents. We use the Dyna-Q agent for qualitative comparison with
the active inference agents of focus in a mutating task.

In Figure 2B, we see the evolution of the risk term (Γ). Risk Γ settles to a value of
less than 0.5 as the agent learns more about the environment. It is interesting to note the
increase in Γ when faced with a mutation in the environment in Figure 2B as expected.
In Figure 2B, we observe that the risk term (Γ) in the CL method reduces till Episode
100. It is worth noting the improvement in the performance of the CL method agent in
Figure 2A in the same fashion as the reduction in risk. In Episode 100, we introduce a
mutation in the environment, resulting in the performance crash of all the agents. We
observe that the performance recovers with time, and so does the risk term in the CL
method agent (Figure 2B). We also observe that the risk term reaches an even lower range
in the second half, correlating with improved performance. These observations highlight
the explainability of parameters in the CL method agent.

Next, we test the agents in a fundamentally different environment—a maze task—
which warrants the need for planning for the future.

3.2. Complex Maze Task and Data Complexity Trade-Off

To compare the performance of the two agents in a strategic task, we simulate the
performance in a standard grid world task [26] as shown in Figure 3A. The optimal solution
to this grid problem is demonstrated in Figure 3B. This is a complex grid world, which
is non-trivial compared to grid world tasks used in the past literature to solve [4], as it
takes around nine thousand steps for an agent to reach the goal state if actions are taken
randomly against the optimal route with length 47.

A B

Figure 3. (A): A snapshot of the 900-state grid world (maze) environment. (B): The optimal solution
for the maze is shown in (A). This is a complex maze, as when actions are taken randomly, it takes
around 9000 steps to navigate the grid against the optimal route with 47 steps.

The performance is evaluated regarding how soon the agent can finish an episode (i.e.,
the length of an episode (the lower the better) for reaching the goal state). The simulation
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results showing the performance of DPEFE and CL agents are plotted in Figure 4A. These
results show that the predictive planning-based DPEFE agent can learn quickly (i.e., within
ten episodes) to navigate this grid. It may appear from Figure 4A that the DPEFE agent’s
performance saturates around the episode length of one thousand, and it never learns
the optimal route. However, in the simulations, the action precision used by the DPEFE
agent is α = 1 substituted in Equation (4). The agent tends to navigate in even lower time
steps for a higher action precision (σ), always sticking to optimal actions. Additionally,
we observe that the CL method agent takes longer to learn the optimal path. This result
(Figure 4A) shows that the CL agent needs more experience in the environment (i.e., more
data) to solve it.

A B

Figure 4. (A): Performance comparison of DPEFE and CL agents in the 900-state grid scheme with
300 episodes. The DPEFE agent learns to navigate the grid faster (with a shorter episode length) than
the CL method agent. (B): Comparison of computational complexity between state-of-the-art active
inference algorithms [4,18], the DPEFE method [13], and the CL method [14]. Please note that the
y-axis is in the log scale. The computational complexity is calculated for the algorithms to implement
planning in a standard grid like in Figure 3.

In Figure 4B, we compare major active inference algorithms’ computational complexity
associated with planning for decision-making. The DPEFE algorithm is computationally
efficient compared to other popular active inference schemes [4,18]. Please note that this
figure also emphasises how the CL method has no computational complexity associated
with planning. So, it is clear that the CL method agent is computationally cheaper than
the DPEFE agent as there is no planning component. The computational complexity of
the DPEFE agent is associated with the planning depth (time horizon of planning, T),
as seen in Figure 4B. It should be noted that the y-axis in Figure 4B is in log-scale. The
computational complexity of the DPEFE is only linearly dependent on the planning time
horizon, and the CL agent has no planning complexity, both of which are computationally
more efficient than other active inference algorithms. Additionally, the observations made
above demonstrate a data complexity trade-off between the DPEFE and CL schemes.
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This realisation motivates us towards a mixed model, where we propose to develop
an agent that can balance the two schemes according to the resources available to the
agent. This makes much sense from the neuro-biological perspective, as biological agents
continually try to balance resources to learn and plan for the future versus the experience
they already have. This idea also relates to the classic exploration–exploitation dilemma in
reinforcement learning [27].

3.3. Integrating the Two Decision-Making Approaches

To enable the agent to balance its ability to predict future outcomes and use prior
experience, we introduce a state-dependent bias parameter that evolves with experience
(β(s, t) ∈ [0, 1]) to the model. This addition is motivated by the hypothesis that an agent
maintains a sense of bias, quantifying its confidence in the experience of deciding (in the
past) in that particular state.

When exposed to a new environment, an agent starts with an equal bias for DEEFE
(predictive planning) and CL schemes, represented by a prior bias parameter βprior = 0.5.

Over the episodes, the agent has the probability distributions for decision-making
from both models. These distributions enable decision-making given the present state (s).
In a fully observable environment (MDP), s is known to the agent (i.e., O = S, or A = I, the
identity mapping). In the partially observable case (POMDP), the agent infers the (hidden)
state (s) from observation (o) by minimising variational free energy [3,4].

Given the state estimation, P(u|s)DPEFE and P(u|s)CL are the distributions used for
sampling decision-making corresponding to the DPEFE scheme and the CL method, re-
spectively (see Sections 2.3.1 and 2.3.2 for details).

Given these distributions, the agent can now evaluate how “useful” they are using
their Shannon entropy (H(X)). This measure is beneficial as it represents how “sure” that
particular distribution is regarding a decision in that (those) state(s). Namely, if the agent
has confidence in a specific action, the action distribution tends to be a one-hot vector
favouring the confident action; hence, the entropy of the distribution tends to zero, in
contrast to the uniform distribution (not favouring any action) with maximum entropy.
Thus, comparing this quantity enables the selection of the most confident strategy from the
pool of different schemes.

Based on this observation, over time, the agent can use this entropy measure to update
the value of β(s, t) as follows:

β(st)← β(st) + α(H(PCL(u|st))−H(PDPEFE(u|st))). (8)

Here, α is a normalisation parameter stabilising the updated value, and we make sure
that β ∈ [0, 1] by re-calibrating β < 0 as β = 0 and β > 1 as β = 1. From a Bayesian
inference perspective, one may view the updated belief β in Equation (8) as a posterior
belief representing how likely the DPEFE model is selected, similar to the Bayesian model
selection schemes.

Using this measure of bias β(st), the agent can now evaluate a new distribution for
decision-making, PMM, where MM stands for the mixed model as

P(u|st)MM = P(u|st)
1−β(st)
CL · P(u|st)

β(st)
DPEFE. (9)

The flow diagram describing the proposed mixed model’s POMDP-based “agent-
environment” loop is given in Figure 5 (for a detailed description of various parameters in
the hybrid model, refer to Sections 2.2, 2.3.1 and 2.3.2).
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Figure 5. Flow diagram of the agent–environment loop in the proposed mixed model combining
planning and counterfactual learning. There is a key distinction between the generative process
and the generative model in the active inference framework. In a POMDP, we assume that the
observations are generated by the generative process (“Real world”) by “hidden-states” (st) through
a state observation mapping (A), both being inaccessible to the agent. In the generative model, the
agent uses ot to maintain an optimal belief about the hidden state st (“Perception”). Subsequently,
the agent uses the planning method (DPEFE) and the counterfactual (CL) method to combine the
action distributions using the model bias parameter β for decision-making. The decision at time t
influences the hidden state of the “Real world” at the next step, completing the loop. The generative
process can be thought of as the environment the agent tries to survive in, whereas the generative
model is completely part of the agent and can be interpreted as the “imaginary” world the agent
assumes it survives.

3.4. Deriving Update Equations for the Mixed Model from Variational Free Energy

Equations (8) and (9) can be derived from variational free energy minimisation under
a POMDP generative model. The variational free energy for the mixed model is defined as

F =
t

∑
τ=1

sτ · {ln sτ − lnA · oτ − lnB sτ−1}

+
t

∑
τ=1

uτ · {ln uτ +βff ·Gτ − (1−β)(1− 2Γt) lnCL sτ−1}

+DKL [Q(β)||P(β)] + DKL [Q(θ)||P(θ)] (10)

When Γt = 0 and βprior = 0.5, the derivative of F with respect to β = E[β] gives the
posterior expectation as follows:

β = sig

(
−

t

∑
τ=1

uτ · ff ·Gτ −
t

∑
τ=1

uτ · lnCLsτ−1

)
. (11)

Interestingly, this posterior expectation can be rewritten using the entropies of DPEFE
and CL. The above F becomes variational free energy (Equation (3)) for DPEFE or CL when
β = 1 or 0, respectively.

Thus, minimising F with respect to uτ yields

uτ = σ(−ff ·Gτ) (12)

for DPEFE and
uτ = σ(lnCLsτ−1) (13)
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for CL (note that Γt = 0 is usually supposed to be in CL when generating actions).
Thus, from the definition of the Shannon entropy, we obtain

HDPEFE = −
t

∑
τ=1

uτ · ln uτ =
t

∑
τ=1

uτ · ff ·Gτ , (14)

and

HCL = −
t

∑
τ=1

uτ · ln uτ = −
t

∑
τ=1

uτ · lnCLsτ−1. (15)

Hence, β can be rewritten as

β = sig(−HDPEPE +HCL). (16)

When |HCL −HDPEPE| << 1, Equation (8) approximates Equation (16). Minimisation
of F further yields Equation (9) as it is an expression using the probability distribution and
equivalent to the posterior expectation:

uτ = σ(−βff ·Gτ + (1−β) lnCLsτ−1). (17)

Therefore, the update rules for the mixed model (Equations (8) and (9)) can be formally
derived from variational free energy minimisation.

3.5. Performance of the Mixed Model in a Mutating Maze Environment

We now examine the proposed mixed scheme with agents of different planning power
values (i.e., different planning depths, N (we refer to the planning horizon of the mixed
model as N and the DPEFE method as T to avoid confusion)) in a similar environment.
The computational complexity of the DPEFE scheme is linearly dependent on the planning
time horizon (planning depth), i.e., T, and holds for the mixed-model agent as well (see
Figure 4). Thus, an agent with planning depth N = 50 takes up twice the computational
resources while planning compared to an agent with N = 25.

We use a mutating grid environment to test the performance of the mixed model-based
agent. This mutating grid scheme is illustrated in Figure 6. The agent starts in a more
accessible grid version with an optimal path of four steps (Figure 6A). After 300 episodes,
the environment mutates to the complex version of the grid shown in the previous section
(see Figure 6B). This setup also enables us to study how adaptable the agent is to new
environmental changes.

A B

Figure 6. The mutating grid scheme used for studying agent’s adaptability. The agent learns to
navigate the easy grid (A) in the first half (300 episodes) and faces environment mutation and should
learn to solve the hard grid (B).
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The performance is summarised in Figure 7. We observe that all three mixed model
agents (with varying levels of planning ability) learn to navigate the easy grid within the
first ten episodes (Figure 7A). However, when the environment mutates to the complex grid
in Episode 300, the agents learn similar to the performance we observe when navigating
that grid in isolation; Figure 7B, (i.e., complex grid with 900 states). A direct comparison
of Figures 4A and 7B helps us to observe that the mixed model agents are neither as fast
nor as slow as the DPEFE agent and the CL agent, respectively. The mixed model agents
successfully balance that data complexity trade-off.

A B

Figure 7. (A): Performance of mixed model agents with different planning depths in the mutating
grid scheme. (B): Performance of mixed model agents with different planning depths in the complex
maze simulated separately.

We also observe that the agent with higher planning ability learns to navigate the
grid faster and more confidently than the other two. Since the mixed-model agent also
incorporates the CL method, a higher planning horizon does not always demonstrate
performance improvement. In fact, the comparable performance with lower planning
horizons is an added merit of the proposed mixed model, useful in situations where
extensive planning is not always necessary. This result demonstrates that the proposed
mixed model enables agents to balance the two decision-making approaches in the active
inference framework.

3.6. Explainability of the Active Inference Models

An additional advantage of the mixed model proposed (and the POMDP-based gen-
erative models) is that we can probe the model parameters to understand the basis of
intelligent behaviour demonstrated by agents through the lens of active inference [28–30].
Models that rely on artificial neural networks (ANNs) to scale up the models [31] have
limited explainability regarding how agents make decisions, especially when faced with
uncertainty.

In Figure 8A, we can probe to see the evolution of the risk (Γt) in the model (associated
with the CL method as defined in [14]). We can observe that the model’s risk quickly tends
to zero when the easy grid is presented and solved; however, it shoots up when faced with
the environment mutation.
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A B

Figure 8. (A): Evolution of the Risk parameter (Γ) of the mixed model agent when embodied in the
mutating grid scheme. (B): Evolution of the model mixing parameter (β) of the mixed model agent
when embodied in the mutating grid scheme.

Similarly, the evolution of the bias parameter (that balances the DPEFE and the CL
method in the mixed model) is shown in Figure 8B. Here, we also observe how the agent
consistently maintains a higher bias to the DPEFE model when it has a higher planning
ability (i.e., the agent with a planning depth of N = 50 compared to bias in agents with
N = 25 and N = 5).

We should note that the value of the bias parameter never reaches more than 0.5,
even when the DPEFE agent is planning at T = 50. In the simulations, we start with bias
β = 0.5 and update β according to (8). This shows how the agent eventually learns to
rely on the mixed model’s CL scheme (i.e., experience). Still, the DPEFE component (i.e.,
planning) accelerates learning and performance to aid decision-making. Such insights into
the explainability of the agent’s behaviour via model parameters help study the basis of
natural/synthetic intelligence.

4. Discussion

This paper thoroughly compared and contrasted two distinct decision-making schemes
within the active inference framework. By evaluating the advantages and disadvantages
of each approach, we tested their effectiveness on tasks requiring spontaneous decision-
making, exemplified by the Cart Pole task, and strategic decision-making, demonstrated
by the Navigation Maze task. This allowed us assessment of a hybrid approach that
integrates elements of both decision-making schemes. It is hypothesized that the brains
of biological organisms utilize similar mechanisms to switch between multiple strategies
depending on the context [32]. Our model holds significant promise for uncovering the
underlying mechanisms of efficient decision-making in the brain, identifying their neuronal
substrates, and developing computationally efficient bio-mimetic agents. The insights
gained from this work are expected to enhance the algorithms used for control tasks,
especially given the growing interest in leveraging active inference schemes in robotics and
artificial intelligence [33].

Future work will naturally involve a detailed analysis of how behavioural performance
depends on various parameters within the model and robustness [34,35]. Expanding
the model to function effectively in more demanding and complex environments will
be a crucial next step. A systematic comparison with models incorporating artificial
neural networks, as highlighted by the findings in [31,36], represents a promising avenue
for further research. Such comparisons will help elucidate the relative strengths and
weaknesses of different modelling approaches and potentially lead to the development of
more robust and versatile decision-making systems.
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5. Software Note

The grid environment and agents (DPEFE, CL, and mixed model schemes) were
custom-written in Python. All scripts are available at the following link: https://github.
com/aswinpaul/aimmppcl_2023 (Accessed on 27 May 2024).
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