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Abstract: The use of deep convolutional neural networks has significantly improved the performance
of super-resolution. Employing deeper networks to enhance the non-linear mapping capability from
low-resolution (LR) to high-resolution (HR) images has inadvertently weakened the information
flow and disrupted long-term memory. Moreover, overly deep networks are challenging to train,
thus failing to exhibit the expressive capability commensurate with their depth. High-frequency and
low-frequency features in images play different roles in image super-resolution. Networks based on
CNNs, which should focus more on high-frequency features, treat these two types of features equally.
This results in redundant computations when processing low-frequency features and causes complex
and detailed parts of the reconstructed images to appear as smooth as the background. To maintain
long-term memory and focus more on the restoration of image details in networks with strong
representational capabilities, we propose the Frequency-Separated Attention Network (FSANet),
where dense connections ensure the full utilization of multi-level features. In the Feature Extraction
Module (FEM), the use of the Res ASPP Module expands the network’s receptive field without
increasing its depth. To differentiate between high-frequency and low-frequency features within
the network, we introduce the Feature-Separated Attention Block (FSAB). Furthermore, to enhance
the quality of the restored images using heuristic features, we incorporate attention mechanisms
into the Low-Frequency Attention Block (LFAB) and the High-Frequency Attention Block (HFAB)
for processing low-frequency and high-frequency features, respectively. The proposed network
outperforms the current state-of-the-art methods in tests on benchmark datasets.

Keywords: densely connected structure; frequency-separated; channel-wise and spatial attention;
image super-resolution

1. Introduction

Image super-resolution is an ill-posed problem that transforms a given coarse, low-
resolution (LR) image into a high-resolution (HR) image with refined details. Traditional
super-resolution methods include interpolation, sparse coding [1], and neighbor embed-
ding [2]. However, these methods do not effectively map LR images to HR images.

Recently, convolutional neural networks (CNNs) have demonstrated superior expres-
sive capabilities compared to traditional methods, achieving outstanding performance and
efficiency in various high-level imaging tasks. SRCNN [3] first upscales an LR image to the
size of an HR image using bicubic interpolation and then applies a convolutional neural
network to replace the traditional manual mapping from LR to HR images, surpassing most
traditional methods. CSCN [4] and SCN [5] enhance network expressiveness by integrating
the traditional super-resolution (SR) method and a sparse prior with key components
of neural convolutional networks. The deeper the network, the stronger its non-linear
mapping capability; however, this depth can also result in weakened information flow
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and training difficulties. VDSR [6] focuses on residual learning of the differences between
HR and LR images, further increasing the network depth. Additionally, the introduction
of recursive modules [7,8] and memory modules [7] also enhances depth. FSRCNN [9]
increases network depth by reducing the size of filters. FSRCNN [9] and ESPCN [10]
introduced deconvolution and sub-pixel convolution layers, respectively, a structure later
adopted by most networks. Tai et al. [11] and Lim et al. [12] further increased network
depth using residual blocks, while Tong et al. [13] and Zhang et al. [14,15] introduced
data particle geometrical divide algorithms to the field of super-resolution. The authors
of [16] added numerous skip connections to mitigate information flow attenuation in overly
deep networks. To enhance the network’s ability to process high-frequency information,
Zhao et al. [17] employed deep convolutional networks and ResNet for high-frequency in-
formation in images, while Zhou et al. [18] identified high-frequency features and increased
their learning rates to improve the recovery of complex details in images.

Due to the optimal loss function for super-resolution problems being L1, resulting in
minimal loss values, the combination of small loss values and excessive layers in deep net-
works can lead to gradient vanishing. Consequently, it becomes challenging to effectively
translate the potential expressive capabilities gained from increased network depth into
the model’s ability to learn the non-linear mapping from LR to HR images. Images contain
high-frequency information representing texture details and low-frequency information
describing object edges; similarly, features extracted by the network from LR images also
consist of low- and high-frequency features. The use of numerous skip connections for
dense connectivity allows for the full, adaptive integration of features across layers, and the
use of memory modules achieves persistent memory, mitigating the effects of information
flow attenuation caused by network depth. High-frequency features require more complex
processing for detailed restoration compared to low-frequency features. However, the ab-
sence of an effective network structure to distinguish between high- and low-frequency
information in images results in outputs where parts with complex textures appear smooth.
Zhao et al. [17] and Zhou et al. [18] processed high- and low-frequency features separately,
but in deep convolutional networks, some informative features may be overlooked.

To address these issues, we propose a Frequency-Separated Attention Network, termed
FSANet, for image super-resolution. FSANet employs dense connections to fully integrate
multi-level features for sustained memory, separately processes high- and low-frequency
features to meet the demands of high-frequency feature processing, and utilizes channel
and spatial attention to leverage informative features in both high- and low-frequency
domains. In FSANet, we design an FEM for feature extraction and a Non-Linear Mapping
Module (NMM) for the non-linear mapping of features from LR to HR. The FEM contains a
convolutional layer and two Res ASPP Modules, expanding images into a high-dimensional
feature space and increasing the receptive field, respectively. In the NMM, three FSABs
are stacked, and the results of these FSABs are adaptively fused to fully leverage global
multi-level features. Each FSAB employs an LF path for low-frequency features and an
HF path for high-frequency features, with the LF path containing three densely connected
Low-Frequency Attention Modules (LFAMs) and the HF path containing three densely
connected High-Frequency Attention Modules (HFAMs). Within the HFAM, an HFAB and
a Fusion Block are integrated, with the HFAB incorporating a projection error mechanism
for processing high-frequency features. Similarly, the LFAM includes an LFAB and a Fusion
Block for processing low-frequency features. To fully utilize informative features and
enhance the details in image restoration, we introduce attention mechanisms in both the
LFAB and HFAB.

In summary, the main contributions of the proposed image SR method are as follows:

• We introduce the novel deep convolutional neural network FSANet for image super-
resolution tasks, utilizing a densely connected structure to leverage the powerful
representational capability of deep CNNs and employing a parallel branching struc-
ture to separately process high- and low-frequency features.
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• To further enhance the quality of the network’s output images, we incorporate atten-
tion mechanisms in the LFAB and HFAB to fully exploit informative features across
both channel and spatial dimensions.

• Experimental results demonstrate that our proposed method achieves higher perfor-
mance compared to state-of-the-art super-resolution methods.

2. Related Work

There is a huge amount of work on image super-resolution, and thus, a comprehensive
survey on SR methods is beyond the scope of this paper. This section provides a brief
overview of some related works that are based on deep learning methods, frequency-
separated networks, and attention networks.

2.1. Image Super-Resolution Based on Deep Learning

Compared to traditional mathematical methods, neural networks possess superior
non-linear matching capabilities. SR methods based on deep learning include different
usage scenarios, such as those based on classic blind image SR [3], non-blind image SR [19],
real image SR [20], text-focused scene image SR [21], lightweight image SR [22], hyper-
spectral image SR [23], video SR [24], attenuation correction SR [25,26], etc. Dong et al.
first introduced SRCNN [3], which contains three convolutional layers, to address super-
resolution issues. To regularize the solution, CSCN [4] and SCN [5] integrate traditional
sparse coding with deep learning, demonstrating the value of conventional methods in
deep neural networks. Unlike networks that upscale LR images to an HR size before input,
ESPCN [10] and FSRCNN [9] directly learn the mapping from LR to HR, effectively increas-
ing the network’s responsiveness. At the end of the network, the sub-pixel convolution and
deconvolution layers are used to obtain SR images. This network structure significantly
influenced the design of subsequent SR networks.

Vgg-net [27] indicates that deeper networks can perform more complex non-linear
mappings, thereby enhancing the restoration of details in SR images. Since normalization in
super-resolution networks can lead to artifacts and slow and unstable training, SR networks
employ alternative methods to address the vanishing gradient problem, facilitating easier
network training. Since LR and HR images share most fundamental features, VDSR [6]
employs the residual learning of the differences between LR and HR images, not only
increasing the network layers to 20 but also enhancing the network’s convergence speed.
MemNet [7] uses memory blocks containing recursive and gate units to address the issue of
weakened information flow due to increased network depth. Unlike increasing the number
of convolutional layers to deepen the network, DRCN [8] employs a very deep recursive
layer to enhance the network’s feature abstraction and parameter sharing, while recursive
supervision and skip connections are used to mitigate the effects of network depth. Residual
blocks [28] are used in networks [11,12] to address the vanishing gradient problem, further
increasing network depth and representational capacity. To further increase network
depth, Tong et al. [13] and Zhang et al. [16] directly connected the current layer with
all subsequent layers using dense skip connections. This forms a contiguous memory
mechanism, adaptively integrating information from multiple levels. Deep learning-based
methods have shown exceptional performance in super-resolution tasks. The proposed
method is based on deep learning.

2.2. Frequency-Separated Networks

To enhance training speed and performance, Zhao et al. [17] utilized deep convolu-
tional networks and ResNet for high-frequency information storage and expanded the
network’s receptive field, increasing the accuracy of detail restoration in images. SRDN [18]
employs a densely connected convolutional neural network for high-frequency informa-
tion enhancement, increasing the learning rate for high-frequency areas to focus more on
reconstructing high-frequency regions in images. SRFBN [29] consists of feedback blocks
using a feedback mechanism, providing high-level information through a series of up-
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and downsampling layers. FSN [30] divides image features into high and low frequencies
for respective processing, employing Octave Convolution to maintain a good interaction
between low- and high-frequency information. DBPN [31] introduces iterative upsam-
pling and downsampling layers, where the Up-Projection Unit generates high-frequency
features, and the Down-Projection Unit produces low-frequency features. Yang et al. [32]
proposed a deep recursive low-frequency fusion network and designed a variance-based
channel attention mechanism to make the information distribution of each feature map
under different variances more reasonable. Refs. [17,18] only processed high-frequency
features in images, overlooking the significance and importance of low-frequency features.
In contrast, our method extracts both low- and high-frequency information. While we
also focus on processing high-frequency features similar to [17,18], we do not neglect the
processing of low-frequency features. This approach ultimately enhances the performance
of the network.

2.3. Attention Networks

The attention mechanism offers a new perspective for task resolution, learning crucial
information from inputs and demonstrating superiority in various computer vision tasks,
such as object detection, image segmentation, and action recognition. The authors who
proposed SCA-CNN [33] argued that previous spatial attention models only considered
information within the CNN’s spatial and multilayer contexts; hence, they introduced
channel attention to discern which channels are most important for generating image
captions. DANet [34] enhances context capture by adding positional and channel self-
attention modules to model semantic relations in both the spatial and channel dimensions,
resulting in finer scene segmentation outcomes. Zhang et al. [35] employed an attention
mechanism for the selective integration of multi-level features, reducing background
interference and enhancing object detection performance.

Liu et al. [36] used an attention mechanism to distinguish and enhance high-frequency
information, improving detail restoration. LR images contain both low- and high-frequency
information treated equally, thus diminishing detail restoration. Hence, RCAN [37] com-
bines channel attention with residuals, allocating more computation to high-frequency
information as network depth increases. Lu et al. [38] employed recursive units with
channel attention to extract significant features from channels, using multi-level feature
fusion techniques for feature enhancement. In CSFM [39], spatial and channel attention
mechanisms, along with dense connections, are used to distinguish critical features across
dimensions and mitigate the weakening of information flow in deep networks. The afore-
mentioned works utilized attention mechanisms in super-resolution tasks but did not
consider feature separation to alleviate the learning difficulty of attention mechanisms.
By separating high- and low-frequency features in images and processing them differ-
ently, our approach enables attention mechanisms to focus on learning distinct features
for backgrounds (low-frequency features) and complex texture features (high-frequency
features) separately. This reduces the network’s learning burden while enhancing its ability
to distinguish between these two types of features.

3. Method

In order to use a densely connected structure to leverage the powerful representational
capability of deep CNNs and separate process high- and low-frequency features, in this
paper, we propose a Frequency-Separated Attention Network for image super-resolution,
termed FSANet. First, we introduce the overall network architecture in Section 3.1. Second,
we present the frequency-separated attention block in Section 3.2. Third, we describe the
High-Frequency Attention Module in Section 3.3. And last, we present the Low-Frequency
Attention Module in Section 3.4.
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3.1. Network Architecture

As shown in Figure 1, our proposed FSANet consists of the Feature Extraction Module
(FEM), Non-Linear Mapping Module (NMM), and Reconstruction Module (RM). We use
ILR, ISR, and IHR to denote the input, output, and high-resolution image of FSANet, respec-
tively. In the FEM, ILR is first passed through a convolution layer for feature extraction.
The output gconv is then processed by two Res ASPP Modules, each of which contains three
parallel deep CNNs to expand the receptive field and obtain multi-scale features.

gK2 = fFEM(ILR)
= fK2( fK1( fconv(ILR))+ fconv(ILR))
= fK2(gK1 + gconv).

(1)

Here, fFEM(⋅) denotes the FEM, and fconv(⋅) represents the 3 × 3 convolution producing
gconv. fK1(⋅) and fK2(⋅) denote two Res ASPP Modules with the outputs gK1 and gK2 ,
respectively.

Figure 1. The architecture of the proposed FSANet. The basic modules of deep CNNs are used in the
Res ASPP Module and NMM.

In the NMM, three FSABs are linearly stacked. Assuming that the input of the m-th
FSAB is Fm−1 and its output is Fm, then the input for the first FSAB is F0 (i.e., gK2), and the
output of the last FSAB is FM. The m-th FSAB is as follows:

Fm = f m
FSAB( f m−1

FSAB(. . . f 1
FSAB(F0))). (2)

Here, f m
FSAB(⋅) represents the m-th FSAB. Each FSAB outputs distinct features. To fully

utilize these hierarchical features, we adopt an adaptive fusion of long-term multi-level fea-
tures, concatenating the outputs of the three FSABs before feeding them into a convolution
layer. Thus, the NMM is as follows:

gNMM = fNMM(F0)
= φconv([F1, F2,⋯, FM]).

(3)

Here, fNMM(⋅) denotes the NMM, φconv(⋅) represents the 3 × 3 convolution yielding gNMM,
and [⋅] signifies the feature concatenation operation.

In the RM, we employ convolution and sub-pixel convolution layers [10] for upsam-
pling to obtain ISR. Additionally, we utilize a global skip connection through bicubic
upsampling to maintain long-term memory.

ISR = fRM(gNMM)+ Bicubic(ILR)
= fRM( fNMM( fFEM(ILR)))+ Bicubic(ILR),

(4)

where fRM(⋅) denotes the RM, and Bicubic(⋅) represents the bicubic upsampling operation.
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According to [16], the Peak Signal-to-Noise Ratio (PSNR) is highly correlated with
the pixel-wise differences between ISR and IHR. Given that the L2 loss function tends to
emphasize larger differences and weaken smaller ones, and considering that its convergence
is inferior to that of the L1 loss function, we use the L1 loss function to optimize FSANet.
Given a set of training patch pairs {Ii

LR, Ii
HR}I

i=1, the loss function of FSANet is as follows:

L(θ) = 1
I

I
∑
i=1
∣∣FFSANet(Ii

LR)− Ii
HR∣∣1, (5)

where FFSANet(⋅) denotes FSANet, and θ represents the parameters within FSANet.

3.2. Frequency-Separated Attention Block

The extracted high-frequency features, compared to low-frequency features, contain
more information and thus require more processing, for which we propose the FSAB.
As shown in Figure 2, the m-th FSAB consists of two branches: a high-frequency path (HF
path) formed by three HFAMs to process high-frequency features and a low-frequency path
(LF path) formed by a linear stack of LFAMs to process low-frequency features.

Figure 2. The architecture of the m-th FSAB.

Hinn represents the input to the n-th HFAB, while Houtn represents the output. There
are a total of N HFABs. The equation is given by

Houtn = f n
HFAB(Hinn). (6)

Here, f n
HFAB(⋅) represents the n-th HFAB, which is detailed in Section 3.3. The expression

for the n-th High-Frequency Fusion Block (HFFB) is as follows:

Fn
HFFB = f n

HFFB([Hout1 ,⋯, Houtn]), (7)

where f n
HFFB(⋅) denotes the convolution in the n-th HFFB, with its output being Fn

HFFB.
In the LF path, let Linn be the input and Loutn be the output of the n-th LFAB:

Loutn = f n
LFAB(Linn). (8)

f n
LFAB(⋅) represents the n-th LFAB, which is emphasized in Section 3.4. To achieve relatively

high performance, we use Low-Frequency Fusion Blocks (LFFBs) for multi-level dense
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local feature fusion by directly connecting the output of the current and previous LFABs to
the LFFB. Consequently, the expression for the n-th LFFB is as follows:

Fn
LFFB = f n

LFFB([Lout1 ,⋯, Loutn]). (9)

f n
LFFB(⋅) represents the n-th LFFB, with its output denoted by Fn

LFFB.
Finally, the outputs of both branches are added to merge high-frequency and low-

frequency information. The output of the FSAB is generated through a deep CNN to com-
plement the advantages of high- and low-frequency features. The m-th FSAB is as follows:

Fm = f m
FSAB(Fm−1 )

= ReLU(ϕ(FN
LFFB + FN

HFFB))
= ReLU(ϕ( f N

LFFB([Lout1 ,⋯, LoutN ])+ f N
HFFB([Hout1 ,⋯, HoutN ]))),

(10)

Here, ϕ(⋅) represents the convolution, and ReLU(⋅) indicates the ReLU layer.

3.3. High-Frequency Attention Module

In this section, we introduce two parts (the architectures of the HFAB and the High-
Frequency Block) of the High-Frequency Attention Module in detail.

3.3.1. The Architecture of the HFAB

As illustrated in Figure 3, the HFAB primarily comprises three components: a linear
stack of High-Frequency Blocks (HFBs), a Frequency Fusion Block, and a CSA Module.
Let the input of the t-th HFB be Ft−1

HFB and the output be Ft
HFB. Thus, the t-th HFB can be

defined as follows:
Ft

HFB = f t
HFB( f t−1

HFB(. . . f 1
HFB(F0

HFB))), (11)

where f t
HFB(⋅) represents the t-th HFB. In the experiment, t ∈ {1, 2, 3}.

Figure 3. The architecture of the n-th HFAB.

As the network deepens, the features within each HFB layer differ. To fully utilize this
information, we employ a Frequency Fusion Block for multi-level local feature fusion. The
Frequency Fusion Block selectively fuses the outputs from the preceding HFB by utilizing
a Concat layer and processing them through a deep CNN. The result FFreF serves as the
input for the CSA Module and is defined as follows:

FFreF = fFreF([F1
HFB,⋯, FT

HFB])
= ReLU(ψ([F1

HFB,⋯, FT
HFB])),

(12)

where fFreF(⋅) denotes the Frequency Fusion Block, and ψ(⋅) represents the convolution in
the Frequency Fusion Block.

Distinct features play varied roles in image reconstruction. To enhance the network’s
sensitivity to crucial features, we utilize a CSA Module [39] incorporating channel attention
and spatial attention to selectively strengthen features in both the channel and spatial
dimensions. Spatial attention, in particular, aids in distinguishing between smooth areas
and texture features. Within the CSA Module, features modified by attention mechanisms
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are adaptively fused and then skip-connected with the original features, thus selectively
enhancing features without losing information from the original ones. The n-th HFAB can
be defined as follows:

Houtn = f n
HFAB(Hinn)

≐ fCSAM(FFreF)
= fAttF([ fSA(FFreF)⊗ FFreF, fCA(FFreF)⊗ FFreF])+ FFreF,

(13)

where fCSAM(⋅) denotes the CSA Module, fSA(⋅) [39] and fCA(⋅) [39] represent spatial
attention and channel attention, respectively, and fAttF(⋅) is the convolution function
within the Attention Fusion Block.

3.3.2. The Architecture of the HFB

In D-DBPN [31], an iterative error-correcting feedback mechanism was introduced,
and Timoft et al. [40] demonstrated that high-frequency information can be progressively
refined by continuously subtracting the results of upsampling and downsampling from
the original input. To better process high-frequency features, a deep CNN is applied in the
middle of down- and upsampling. To reduce the degradation of the original information
after one iteration of refinement, a residual block is added. Ft−1

HFB and Ft
HFB are defined as

the input and output of the t-th HFB, respectively, with down- and upsampling specified
as follows:

Fproject = fproject(Ft−1
HFB)

= ReLU( fdown(ReLU( fconv(RELU( fup(Ft−1
HFB)))))).

(14)

Fproject and fproject(⋅) represent the output and function of down- and upsampling [31],
respectively. Here, fup(⋅) is the function for deconvolution operations, and both fconv(⋅)
and fdown(⋅) represent convolution operations. The HFB can be defined as follows:

Ft
HFB = fHFB(Ft−1

HFB)
= fresblock( fproject(Ft−1

HFB)− Ft−1
HFB).

(15)

Here, fresblock(⋅) is the function for the residual block [28], as illustrated in Figure 4.

Figure 4. The architecture of the t-th HFB.

3.4. Low-Frequency Attention Module

We utilize the Low-Frequency Attention Block (LFAB) to process low-frequency fea-
tures, employing a tri-branch structure for handling the low-frequency features Linn , as
illustrated in Figure 5. One branch retains the original input information, corresponding to
the middle branch in Figure 5. Another branch utilizes a deep CNN and a convolutional
layer with a kernel size of 3× 3, depicted as the top branch in Figure 5. The final branch
comprises a deep CNN and a convolutional layer with a kernel size of 5× 5 to expand the
field of view, shown as the bottom branch in Figure 5. To mitigate the impact of increased
network depth on feature attenuation and selective enhancement across different chan-
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nels, we perform an additive operation on the three branches before passing the result
through a residual block and a channel attention mechanism to obtain the output Loutn of
the t-th LFAB,

Loutn = f n
LFAB(Linn)

= fbranchres(Linn)⊗ fCA( fbranchres(Linn))
= Fbranchres ⊗ fCA(Fbranchres),

(16)

where fbranchres(⋅) denotes the tri-branch and a Res Block in Figure 5, and fCA(⋅) [39]
represents channel attention.

Figure 5. The architecture of the n-th LFAB.

4. Experiments

In this section, we first conduct an ablation study to validate the effectiveness of the
proposed FSANet network architecture. Then, we compare FSANet with several other
networks on benchmark datasets in terms of the PSNR and SSIM. We follow the approach
of previous work [39] to train and test our model. We use the DIV2K [40] dataset, which
contains 800 high-quality images, for training.

4.1. Settings

In this section, we present the datasets, metrics, and implementation details.

4.1.1. Datasets and Metrics

We train and test our network following methods in prior work [16]. LR images in
DIV2K are obtained by bicubic downsampling of HR images by factors of ×2, ×3, and ×4. We
evaluate our model on widely used benchmark datasets: Set5 [41], Set14 [42], BSD100 [43],
Urban100 [44], and Manga109 [45], which contain 5, 14, 100, 100, and 109 images, respec-
tively, covering common scenes from daily life. The model evaluation metrics include the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [46],
with results computed on the Y channel (i.e., luminance) of the YCbCR space. Higher PSNR
and SSIM values closer to 1 indicate better quality of the reconstructed SR images.

4.1.2. Implementation Details

During training, data augmentation is performed through random vertical and horizontal
flips and 90° rotations around the image center, with a mini-batch size of 16 and the random
cropping of 64 × 64 patches from LR images for input. Following the method in [39], the input
to the model is normalized by subtracting the mean RGB values of DIV2K to highlight
individual feature differences, and the mean RGB values of DIV2K are added back before the
network output. We use the ADAM optimizer with an initial learning rate of 10−4 to train the
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network, halving the learning rate after 1.5×105 and 2×105 iterations. We implement FSANet
using PyTorch and conduct training and testing on an NVIDIA RTX 3090 GPU.

The Res ASPP Block [47] includes three dilated convolutions with dilation rates of 1, 4,
and 8. In RM, the first convolutional layer has filters of 256, 576, and 1024 for magnification
factors of ×2, ×3, and ×4, respectively. The second layer has 3 filters. And all other layers
have 64 filters each. The values of N and M are both set to 3. The reduction ratio in channel
attention is 16, and the increase ratio in spatial attention is 2.

4.2. Ablation Study

In this section, we show the effectiveness of Res ASPP feature extraction, frequency-
separated structures, and attention mechanisms.

4.2.1. The Effectiveness of Res ASPP Feature Extraction

We utilized the Res ASPP Module to enhance the field of view for improved feature
extraction. To verify the effectiveness of the Res ASPP Module, we conducted the following
experiments: (1) removing the Res ASPP Module from the FEM; (2) retaining the Res ASPP
Module within the FEM. As shown in Figure 6, we visualized the average feature maps
after feature extraction from both experiments. The outputs of feature extraction were as
follows: for experiment (1), the result of the first convolution gconv in the Feature Extraction
Module, and for experiment (2), the results of the first convolution gconv and the output of
Res ASPP Module-2 gK2 . From the feature maps, it is evident that the contours of the feature
maps without the Res ASPP Module are discontinuous and blurred. This could be due to
misinterpreting adjacent similar features as dissimilar or vice versa within a limited field of
view. Based on the test results on the benchmark dataset outlined in Table 1, the outcomes
without the Res ASPP Module consistently underperform compared to those with it, thereby
validating the effectiveness of the Res ASPP Module. Moreover, as evident from Figure 7a,
the utilization of the Res ASPP Module accelerates the convergence of the network during
training by enhancing feature extraction.

(a) gconv (b) gconv (c) gK2

Figure 6. To explore the impact of the Res ASPP Module, it was removed from the FEM, followed by
retraining. A comparison was made between the feature extraction results of the network with and
without the Res ASPP Module. (a) illustrates the feature map of the output gconv (in Equation (1))
without utilizing the Res ASPP Module. (b) and (c) depict the feature maps of gconv (in Equations (1))
and gK2 (in Equation (1)), respectively, with the utilization of the Res ASPP Module within FEM. The
features regarding the wings and head are slightly blurrier in (a) compared to (b) and (c).

Table 1. Test results on the standard dataset without and with the use of the Res ASPP Module.

Dataset Deactivate Res ASPP Module Activate Res ASPP Module
PSNR/SSIM PSNR/SSIM

Set5 38.19/0.9610 38.20/0.9612
Set14 33.79/0.9190 33.88/0.9200

BSD100 32.29/0.9009 32.33/0.9016
Urban100 32.69/0.9337 32.83/0.9351
Manga109 39.03/0.9778 39.11/0.9781
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(a) (b)

Figure 7. (a,b) showcase the PSNR test results on the benchmark dataset Set5. (a) represents the
results with and without utilizing the Res ASPP Module, while (b) illustrates the outcomes when
employing both LF path and HF path simultaneously, only LF path, and only HF path.

4.2.2. The Effectiveness of Frequency-Separated Structures

The FSAB consists of an LF path (for low-frequency information) and an HF path (for
high-frequency information).

In Figures 8 and 9, we visualize the average feature maps of low- and high-frequency
information from the first three FSABs. The low-frequency information feature maps depict
the general contours, while the high-frequency information feature maps describe the
edges and textures. To verify the effectiveness of separating high- and low-frequency
structures, we conducted the following experiments: (1) the FSAB containing only the LF
path, (2) the FSAB containing only the HF path, (3) the FSAB containing both the LF path
and HF path. To roughly maintain equal parameters, the first two experiments used 13 and
4 FSABs, respectively.

LFAB-1 LFAB-2 LFAB-3
Figure 8. LFAB-1, LFAB-2, and LFAB-3 are the feature maps corresponding to the first, second, and
third FSAB outputs in the LF path.

HFAB-1 HFAB-2 HFAB-3
Figure 9. HFAB-1, HFAB-2, and HFAB-3 are the feature maps corresponding to the first, second, and
third FSAB outputs in the HF path.
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Figure 7b displays the PSNR results of the three experiments tested on the Set5 dataset
during the training process, and Table 2 shows the test results of the three experiments
on standard datasets. We found that using both the LF path and HF path for image
reconstruction yielded better results and faster convergence than using either path alone.

Table 2. The test results of three experiments on the standard dataset.

Dataset LF Path HF Path LF Path and HF Path
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5 38.09/0.9608 38.15/0.9609 38.20/0.9612
Set14 33.78/0.9192 33.73/0.9186 33.88/0.9200

BSD100 32.24/0.9004 32.26/0.9005 32.33/0.9016
Urban100 32.46/0.9315 32.57/0.9324 32.83/0.9351
Manga109 38.91/0.9776 38.98/0.9777 39.11/0.9781

4.2.3. The Effectiveness of Attention Mechanisms

To verify the effectiveness of attention mechanisms, we removed all attention modules
from the LF path and HF path in the original model and retrained it. As shown in Figure 10,
we extracted the average feature maps from the LF path and HF path both with and
without attention modules. The figures reveal that in the LF path, contours (low-frequency
information) are highlighted in the feature maps. However, the use of attention causes
the LF path to focus more on low-frequency information, making the texture areas (high-
frequency information) with attention dimmer than those without. In the HF path, textures
(high-frequency information) are highlighted, and the use of attention ensures that similar
textures (high-frequency information) are processed similarly. As indicated in Table 3, we
also conducted tests on standard datasets and found that the results with attention modules
are better than those without.

Table 3. Test results on the benchmark dataset for models without and with the attention module.

Dataset Deactivate Attention Activate Attention
PSNR/SSIM PSNR/SSIM

Set5 38.16/0.9609 38.20/0.9612
Set14 33.78/0.9190 33.88/0.9200

BSD100 32.28/0.9009 32.33/0.9016
Urban100 32.68/0.933 32.83/0.9351
Manga109 39.02/0.9779 39.11/0.9781

(a) (b) (c) (d)

Figure 10. Visualizations of feature maps for the LF path and the HF path are presented. (a) displays
the feature map without attention in the LF path, while (b) exhibits the feature map with attention in
the LF path. (c) showcases the feature map without attention in the HF path, and (d) illustrates the
feature map with attention in the HF path.

4.3. Comparison with State-of-the-Art Methods

In this section, we show the visualization of PSNR and SSIM results and the analysis
results of model comparisons.
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4.3.1. Comparison and Visualization of PSNR and SSIM Results

In this section, we compare our FSANet with state-of-the-art methods, including
SRCNN [3], FSRCNN [9], VDSR [6], HDRN [48], CARN [49], MemNet [7], IMDN [50],
LAPAR-A [51], SRMD [52], A2F-L [53], and FENet [54].

Table 4 presents the values of the PSNR and SSIM metrics for different networks at
magnification factors of ×2, ×3, and ×4 on five benchmark datasets commonly used in
super-resolution. Figure 11 displays a visual quality comparison of image reconstructions
at a magnification factor of 4×. The images reconstructed by FSANet exhibit more vivid
details compared to those from other networks, as shown in the figures.

HR Bicubic SRCNN FSRCNN

CARN VDSR IMDB Ours

HR Bicubic SRCNN FSRCNN

CARN VDSR IMDB Ours

HR Bicubic SRCNN FSRCNN

CARN VDSR IMDB Ours

Figure 11. A qualitative comparison of classic state-of-the-art SR models for the ×4 upscaling task.
Ours (FSANet) can restore more accurate and sharper details than the other models. We crop the
SR image according to the position of the red box to clearly show the details. On the far left is the
ground-truth image, while the images labeled “HR” on the right represent cropped portions of the
ground-truth image.
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Table 4. Quantitative evaluations of the proposed FSANet against state-of-the-art methods on
commonly used benchmark datasets. The best results are marked in bold. “–/–” indicates that the
corresponding method does not provide results.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.68/0.9304 30.24/0.8691 29.56/0.8453 26.88/0.8405 30.80/0.9399
SelfExSR ×2 36.50/0.9537 32.23/0.9036 31.18/0.8855 29.38/0.9032 –/–
Laplacian ×2 25.91/0.8200 24.31/0.7825 24.19/0.7653 22.10/0.7643 24.19/0.8422
SRCNN ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.51/0.8946 35.60/0.9663

FSRCNN ×2 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.51/0.8946 35.67/0.9710
VDSR ×2 37.53/0.9587 33.05/0.9127 31.90/0.8904 30.77/0.9141 37.22/0.9750
HDRN ×2 37.75/0.9590 33.49/0.9150 32.03/0.8980 31.87/0.9250 38.07/0.9770
CARN ×2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9764

MemNet ×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
SRMD ×2 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761
IMDN ×2 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

LAPAR-A ×2 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
A2F-L ×2 38.09/0.9607 33.78/0.9192 32.23/0.9002 32.46/0.9313 38.95/0.9772
FENet ×2 38.08/0.9608 33.70/0.9184 32.20/0.9001 32.18/0.9287 38.89/0.9775
Ours ×2 38.20/0.9612 33.88/0.9200 32.33/0.9016 32.83/0.9351 39.11/0.9781

Bicubic ×3 30.40/0.8686 27.54/0.7741 27.21/0.7389 24.46/0.7349 26.95/0.8556
SelfExSR ×3 32.62/0.9094 29.16/0.8197 28.30/0.7843 –/– –/–
Laplacian ×3 25.29/0.7246 24.03/0.6718 24.02/0.6496 21.77/0.6485 23.77/0.7616
SRCNN ×3 32.75/0.9090 29.29/0.8215 28.41/0.7863 26.24/0.7991 30.48/0.9117

FSRCNN ×3 33.16/0.9140 29.42/0.8242 28.52/0.7893 26.41/0.8064 31.10/0.9210
VDSR ×3 33.66/0.9213 29.78/0.8318 28.83/0.7976 27.14/0.8279 32.01/0.9340
HDRN ×3 34.24/0.9240 30.23/0.8400 28.96/0.8040 27.93/0.8490 33.17/0.9420
CARN ×3 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.49/0.9440

MemNet ×3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
SRMD ×3 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
IMDN ×3 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

LAPAR-A ×3 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
A2F-L ×3 34.54/0.9283 30.41/0.8436 29.14/0.8062 28.40/0.8574 33.83/0.9463
FENet ×3 34.40/0.9273 30.36/0.8422 29.12/0.8060 28.17/0.8524 33.52/0.9444
Ours ×3 34.64/0.9299 30.51/0.8456 29.21/0.8078 28.70/0.8633 34.04/0.9474

Bicubic ×4 28.43/0.8109 26.00/0.7023 25.96/0.6678 23.14/0.6574 24.89/0.7866
SelfExSR ×4 30.33/0.8623 27.40/0.7518 26.85/0.7108 24.82/0.7386 –/–
Laplacian ×4 27.22/0.7544 25.41/0.6772 25.46/0.6492 22.71/0.6358 24.44/0.7567
SRCNN ×4 30.48/0.8628 27.50/0.7513 26.90/0.7103 24.52/0.7226 27.58/0.8555

FSRCNN ×4 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 27.90/0.8610
VDSR ×4 31.25/0.8838 28.02/0.7678 27.29/0.7252 25.18/0.7525 28.83/0.8870
HDRN ×4 32.23/0.8960 28.58/0.7810 27.53/0.7370 26.09/0.7870 30.43/0.9080
CARN ×4 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.40/0.9082

MemNet ×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
SRMD ×4 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
IMDN ×4 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

LAPAR-A ×4 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
A2F-L ×4 32.32/0.8964 28.67/0.7839 27.62/0.7379 26.32/0.7931 30.72/0.9115
FENet ×4 32.24/0.8961 28.61/0.7818 27.63/0.7371 26.20/0.7890 30.46/0.9083
Ours ×4 32.37/0.8969 28.72/0.7842 27.66/0.7385 26.49/0.7977 30.80/0.9118

4.3.2. Analysis of Model Comparisons

As illustrated in Figure 12a, we compared the super-resolution performance and
parameter count of our FSANet at a magnification factor of ×2 with existing models,
namely, VDSR [6], HDRN [48], CARN [49], IMDN [50], RDN [16], and EDSR [12]. Our
network performs comparably to EDSR [12] and RDN [16], yet it requires significantly
fewer parameters than EDSR [12] and slightly fewer than RDN [16]. Equally important
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is the computational complexity. Our proposed FSANet for a scale factor of 2 has a
computational burden of 150G Flops. We compared this computational burden with that
of other methods and plot the results in Figure 12b. On the x-axis of Figure 12b, we
represent the computational burden, while on the y-axis, we depict the performance on the
benchmark dataset BSD100. As shown in Figure 12b, although our performance is slightly
weaker than that of RDN [16], our computational complexity is significantly lower than
that of RDN [16].

(a) (b)

Figure 12. The graph in (a) illustrates the comparison between image restoration quality and network
parameter count, while that in (b) depicts the comparison between image restoration quality and
network computational burden.

4.3.3. Comparison with Other Methods on Real-World Images

Our model is designed specifically for the restoration of low-resolution images that
have been downsampled using bicubic interpolation. In real-world scenarios, images may
exhibit noise, sensor damage, compression artifacts, and other imperfections. As shown in
Figure 13, the processed images still retain some level of blurriness and may not exhibit
significant visual differences compared to other methods. However, we conducted tests
on the RealSR [55] and DrealSR [56] real-world datasets, evaluating the PSNR and SSIM
metrics for a magnification factor of 4. As demonstrated in Table 5, our network performs
slightly better than other methods.

Table 5. The test results on benchmark datasets for real-world super-resolution at a magnification
factor of ×4.

Dataset DRealSR RealSR
PSNR/SSIM PSNR/SSIM

Bicubic 30.78/0.8468 27.30/0.7557
SRCNN 30.88/0.8490 27.65/0.7711

FSRCNN 30.79/0.8473 27.65/0.7692
CRAN 30.82/0.8474 27.66/0.7700
VDSR 30.82/0.8458 27.52/0.7554
IMDN 30.80/0.8489 27.66/0.7717
Ours 31.47/0.8580 27.77/0.7739
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LR Bicubic SRCNN FSRCNN

CARN VDSR IMDN Ours

LR Bicubic SRCNN FSRCNN

CARN VDSR IMDN Ours

LR Bicubic SRCNN FSRCNN

CARN VDSR IMDN Ours

Figure 13. Visualization results on a real-world super-resolution benchmark dataset.

5. Conclusions

This work introduces a novel attention-integrated module, the FSAB, for separating
low-frequency and high-frequency features. This module employs a parallel dual-branch
structure for processing high-frequency and low-frequency features, focusing the network
on high-frequency features to enhance detail restoration in images. It also uses local dense
connections and channel and spatial mechanisms to fully exploit heuristic features. The test
results on several benchmark datasets demonstrate the effectiveness of our proposed
network structure. Our experiments also show that the ASPP structure used in the super-
resolution field can effectively extract features, and our work confirms the effectiveness of
attention networks with frequency-separated structures for super-resolution problems. We
hope our work offers the computer vision community a new perspective on addressing
super-resolution tasks.

There are still some limitations of the proposed network, which has a large number
of parameters and is difficult to run on constrained edge devices. Mobile phone users
have a desire for image super-resolution processing, but there is not much research in
this area, so lightweight super-resolution on mobile phones is a very promising direction.
At the same time, the proposed method is only suitable for bicubic downsampling, but real-
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world images contain more complex noise, so super-resolution in real-world scenes is
another challenge.
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