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Abstract: Recent theoretical investigations have revealed unconventional transport mechanisms
within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels
we call superwires, gently guided without brute force confinement. Such dynamical confinement is
caused by weak superlattice deflections, markedly different from the static or energetic confinement
observed in traditional wave guides or one-dimensional electron wires. The quantum properties of
superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding clas-
sical phase space, and enabling the emergence of several parallel channels. This paper provides the
underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic
lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively concep-
tualized through the lens of a paraxial approximation. Our results further reveal that superwires
predominantly exist within flat bands, emerging from eigenstates that represent linear combinations
of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice
configurations and demonstrate that tunneling can be suppressed in a controlled fashion, illustrating
potential implications in future nanodevices.

Keywords: dynamical tunneling; superwires; flat bands; non-integrable systems; chaos-assisted
tunneling

1. Introduction

Two-dimensional (2D) materials and electronic systems have become a focal point
in solid-state physics research, offering numerous potential applications in the realm of
electronics [1]. Motivated by the discovery of twisted bilayer graphene and advancements
in artificial superlattices (see, e.g., Refs. [2–6]), various versions of soft Lorentz gases,
i.e., arrays of fixed scatterers, have been explored, including trigonometric functions [7],
Lennard–Jones potentials [8], and hard-wall disks with reduced potentials [9]. In fact, a
recent study has unveiled a complex interaction between trapped and ballistic periodic
orbits, leading to both normal and anomalous diffusion in a soft Lorentz gas model that
replaces the disks with a Fermi-type potential profile [10]. Moreover, recent work by some
of the present authors revealed branched flow [11] in a soft Lorentz gas, thus not restricted
to disordered media wherein a traveling quantum wave scattered by random smooth
obstacles generates a tree-like “branched flow” pattern [12].

In addition to the branched flow, indefinitely stable branches were also seen to form in
the channels of a periodic lattice of smooth bumps or dips [12]. Within these stable branches,
propagating waves are dynamically confined to quasi one-dimensional channels called
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superwires. In contrast to conventional wires relying on deep potential barriers, the traveling
waves in these superwires have enough energy to surmount the channel potential and
thus would not be restricted into the channel. The formation of the superwires is governed
by the underlying dynamics of the system, a mechanism of confinement that diverges
fundamentally from the likes of Luttinger liquids or from states induced by static disorder,
such as those seen in Anderson localization. This introduces a distinctive framework,
marking a clear departure from traditional paradigms of wave confinement.

In this work, we show that for identical parallel wires, tunneling between them
inevitably occurs, and flux slowly flows to neighboring channels. The slow tunneling
rate gives rise to nearly flat bands in the direction perpendicular to the wire propagation.
Since the classical motion is a stable flow down the channel with no insurmountable
potential barrier, and chaos lurks in parts of the phase space, we will attribute this leakage
to side channels as “chaos-assisted dynamical tunneling” [13–15]. In this work, we explore
the mechanisms behind dynamical tunneling in superwires and quantify tunneling rates
across different lattice configurations. We can understand much of the physics through
a simple model based on the paraxial approximation. We can selectively suppress or
enhance tunneling between channels in a controlled manner, offering a pathway to leverage
superwires in advanced nanodevices of the future, as in next-generation high-precision
measurement and sensing instruments.

We begin Section 2 with examples of superwire flow over many lattice cells. Section 2.1
discusses parameters necessary for highly stable superwires. Section 2.2 describes the flat
bands associated with superwires and discusses the construction of superwire states using
degenerate Bloch waves. Section 2.3 shows the generation of superwire eigenstates through
quantum wavepacket dynamics simulations. Section 2.4 aims to simplify the concept of
dynamical tunneling, presenting it through the lens of a paraxial approximation to make
the quantum mechanical principles more accessible. Section 3 focuses on comparing the
quantum and classical aspects of superwires. Here, we justify the dynamical nature of
tunneling, using classical simulations and Poincaré surfaces of section (PSS) as evidence. In
Section 4, we investigate how slight alterations in the geometry of superlattice features can
influence dynamical tunneling. Our analysis, which quantifies tunneling rates in different
lattice channels, reveals that even minor changes can significantly suppress dynamical
tunneling. Section 5 concludes the paper by summarizing our key results and proposing
directions for future investigation.

2. Quantum Superwires, Dynamical Tunneling, and Flat Bands

In a nutshell, superwires give rise to electron transport in solids confined to narrow
channels, almost one-dimensional paths. This behavior emerges as a consequence of quasi-
periodic deflections from the static, non-integrable superlattice structure accommodating
multiple electron wavelengths between its features, corresponding to higher Brillouin
zones. The energy of the electron wave significantly exceeds the peak and trough values of
the superlattice potential, enabling them to surmount potential barriers while still being
confined to channels. Either the Moiré patterns of twisted atomic layers or direct fabrication
can achieve this regime. As discussed above, we probe the dynamics of superwires within
a two-dimensional soft Lorentz gas, which were recently reported in Ref. [12].

More specifically, we aim to understand the quantum nature of superwires within
superlattices and investigate the fundamental mechanisms behind their robust dynamical
properties, particularly in relation to chaos-assisted dynamical tunneling. Figure 1 col-
lects our main results: a superwire eigenstate illustrating the dynamics of an electronic
wavepacket propagating along a single channel but eventually leaking into adjacent chan-
nels, a feature which can be understood in terms of a simple paraxial approximation. The
remainder of the paper explores and analyzes these results.
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Figure 1. Chaos-assisted dynamical tunneling in superwires. (A) The probability density P(x, y) of a
superwire eigenstate extracted from quantum dynamics simulation. (B) Real part of the wavefunction
ℜ(ψ(y, t)) magnified in the regions (i–iii) indicated by grey boxes. (C) Cross-section ℜ(ψ(x, y)) (red
dotted line) and |ψ(x, y)| (black line) at x = 90.8 nm, x = 295.7 nm, and x = 598.5 nm (indicated
by grey lines for (i–iii) in (B). The y-axis indicates the value of ℜ(ψ(x, y)) and |ψ(x, y)| whereas the
x-axis corresponds to the y-coordinate in real space, measured in nm from the center of the initial
channel. The oscillator eigenstates at the bottom schematically explain the contributions of the ground
state (GS) in blue and first excited state components (1ES) in red in each channel. Large oscillator
symbols indicate major contribution, small symbols a minor contribution, and missing symbols a
negligible contribution to the wavefunction. (D) P(x, y) of a superwire in time extracted from a quasi
one-dimensional model via paraxial approximation.

2.1. Setup of Superwire Systems

It was previously demonstrated that superwires appear across a diverse range of
superlattice geometries, with numerical evidence for both square and trigonal lattices
formed by concave (dips) or convex (bumps) potential features [12]. In the same spirit, we
study a simple example model, characterized by smooth potential bumps at equidistant
lattice points in a square lattice, with five to six electron wavelengths per unit cell. The
potential is specified by Fermi-type functions centered at each lattice point [10,12].

More specifically, we consider the following Hamiltonian H(r, k)

H(r, k) =
h̄2|k|2

2m
+ ∑

ri∈S

V0

1 + exp[(|r − ri| − r0)/α]
, (1)
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which yields a mixed system containing features of both non-integrable (chaotic) and
integrable (regular) dynamics in classical and quantum considerations. In the Hamiltonian,
r and k are the location and momentum of an electron with mass m, respectively. The
potential is composed of individual bumps, each characterized by their amplitude V0 and
(effective) radius r0. These bumps are centered at positions ri which belong to a (finite) set of
lattice points S. The smoothness of the Fermi-potential bumps is controlled by α. We want
to emphasize that this potential model is feasible for artificial superlattice experiments [2–6].
Without losing generality, we set r0 to be 0.67 nm and α to be 0.05 nm, with a lattice spacing
of ca 6.67 nm. Remarkably, the potential features do not need to be strong for superwires to
form. The height of the potential is scaled to approximately 0.45 eV at the top and 0 eV at
the bottom. The resulting superlattice structure is illustrated in Figure 2.

ro = 0.67 nm6.67 nm

x (nm)

V (eV)

0
0

α = 0.03
α = 0.05
α = 0.10

(eV)

0.4

0.3

0.2

0.1

Figure 2. Superlattice structure. The potential is depicted through grayscale dots generated by Fermi
functions. The inset presents a cross-sectional view through the center of the bump, highlighting
the smoothness and relative height of the bumps for three different α values. The pink dashed
line represents the (effective) radius, and the dark green line denotes the lattice constant chosen for
the simulations.

2.2. Band Structure

Analyzing the band structure of the system offers additional insights with experimen-
tal significance for the study of quantum transport superlattices. High index bands are
crucial for comprehending superwire physics. We focus on the superlattice potential, rather
than the atomic lattice, simplifying the investigation of the band structure in high Brillouin
zones of a 2D square lattice. The procedure is explained in Appendix A.1.

Figure 3A presents the projected band structure, B(kx, ky, E), of the 10th band, which is
identified as one of the bands exhibiting superwire states within the superlattices discussed
in this study.

One of the bands we have found has a geometry close to a four-sided pyramid with a
peak at the center. There is a gap between the peak of the pyramid and the band above.
The contour map in panel B reveals the existence of nearly flat bands along the sides of the
pyramidal structure. The flat bands shown are uniform along one momentum component;
at the corners they turn between flat in kx to flat in ky. Flat bands are of considerable interest
in the study of engineered superlattice structures [16–21] and superconductivity [22–25].
Flat bands play an important role in twisted bilayer graphene superconductivity [26–30]
and their presence is vital for the dynamics of superwires.

Energy eigenstates can be described by Bloch waves which have a given pseudo-
momentum and energy. Our superwire eigenstates, shown in Figure 1A, for example,
are analogous to a focused laser beam in free space; the focused laser beam has a single
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frequency (fixed energy), but many plane waves of different wave vectors (different momen-
tum) are required to make it focus. Here we have similarly sacrificed pseudomomentum
yet have maintained fixed energy. The beams are made of linear combination of Bloch
waves with momentum along a flat band contour, as highlighted by the red line. Using
the method of generating functions, as detailed in Ref. [31], we determine the overlaps
between the superwire state and all states along the contour marked in red. The probability
distribution P(x, y) of the eigenstate is seen in panel C, producing a superwire eigenstate.
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Figure 3. Superlattice bands. (A) The band structure B(kx, ky, E) of the 10th band where superwire
states are found. The band shows features of a four-sided pyramid with nearly flat bands along the
side. (B) Contour map of the 10th band B(kx, ky, E) emphasizing the flat bands. The red line indicates
the flat band with quasi-degenerate Bloch states that are used to generate the eigenstate shown on the
right. (C) Probability density of Superwire eigenstate that has maximal overlap with the degenerate
Bloch states on the red flat band contour.

2.3. Wavepacket Dynamics and Eigenstates

Our investigation of dynamical tunneling starts with a squeezed Gaussian that is a com-
mon tool in multiple fields, such as quantum optics [32,33] and quantum scarring [31,34,35],
launched along the superwire with high fidelity. The initial wavepacket is elongated along
the center channel in x and chosen to have a large overlap with superwire eigenstates:

ψ(0) = exp

(
−
(
(x−x0) cos(θ)−(y−y0) sin(θ)√

σx

)2

−
(
(x−x0) sin(θ)+(y−y0) cos(θ)√

σy

)2
+ i(kxx + kyy)

)
.

(2)

In order to study the tunneling into neighboring channels, we isolate the initial flow into one
channel with high fidelity >99%, explained in Section 2.3. Therefore, we choose standard
deviations of σx = 10 nm and σy = 2 nm in the x- and y-directions, respectively, and the
momentum kx ≫ ky. The rotation angle of the wavepacket θ is set parallel to the x-axis,
which is defined as zero. As a consequence, the wavepacket predominantly moves in the
+x-direction. The local electron wavelength, λe = 1.31 nm, corresponds to roughly 5λe per
unit cell along the propagation direction. Furthermore, we initialized the wavepacket with
momentum directed towards the right, targeting the center channel.

We employ the third-order split-operator method Appendix A.1 to propagate the
wavepacket according to the time-dependent Schrödinger equation

Ĥ|ψ(x, y, t)⟩ = ih̄
∂

∂t
|ψ(x, y, t)⟩ (3)

where the Hamiltonian is given by Equation (1). Throughout the simulation, we find that
the probability density propagates from left to right while remaining almost exclusively
confined to the central channel. As the wavefunction evolves, it reaches the rightmost
boundary of the position grid, spanning several unit cells of the superlattice potential. To



Entropy 2024, 26, 492 6 of 16

enable the computation of a large grid where tunneling can be studied, we used a matrix
extension technique, with further details provided in Appendix A.2.

As supplement to the analysis of the wavepacket evolution, we construct an eigenstate
of the Hamiltonian from the given wavepacket as

|ψn(x, y)⟩ ≈ lim
T→∞

1
2T

∫ T

−T
exp

(
−Ent

h̄

)
|ψ(x, y, t)⟩dt, (4)

which gives the wanted eigenstate after an convenient renormalization to the simulation
box size. The studied energy En of the eigenstate is selected as the highest weight in the
power spectrum

S(E) =
1

2πh̄

∣∣∣∣∫ T

−T
eiEt/h̄⟨ψ(0)|ψ(t)⟩ dt

∣∣∣∣, (5)

which is the Fourier transform of the autocorrelation function c(t) = ⟨ψ(0)|ψ(t)⟩.
Figure 1 illustrates the superwire confinement and tunneling mechanism via a constructed
eigenstate at an energy of 0.9 eV, double the maximum of V0, whose corresponding proba-
bility distribution P(x, y) is shown in Figure 1A. The probability density peaks in the central
channel near the left launch point. As the wavepacket propagates to the right, it expands
into adjacent channels through dynamical tunneling. Subsequently, a significant portion of
density P(x, y) tunnels into neighboring channels after a critical time threshold, defying
classical phase space boundaries set by the stability islands. This behavior, elucidated in
Section 3 and numerically validated in the first figure in Section 3 , results in probability
growth in adjacent channels at the expense of the middle channel. In Figure 1B, the real
part of the wavefunction ℜ(ψ), is visualized with red representing positive amplitude
and blue indicating negative amplitude against a grayscale background delineating lattice
potential bumps in white and uniform potential in black. Additionally, Figure 1C presents
a cross-sectional view of the real part ℜ(ψ) in red and its magnitude in black across the
y-direction, averaged over the examined section, with grey dashed lines demarcating lattice
points to facilitate channel separation.

2.4. Understanding Tunneling through the Lens of a Paraxial Approximation

The paraxial approximation significantly simplifies the analysis of superwire dynamics,
particularly in understanding the mechanism of dynamical tunneling. By applying this
approximation under the condition kx ≫ ky and acknowledging the superwire states’
x-direction propagation, we focus on the y-component of the wavefunction. We substitute
the x-direction (distance of the superwire) with a temporal dimension x −→ t. We then
solve the time-dependent Schrödinger equation for a quasi-one-dimensional system for a
potential that varies periodically in time. The motion in the x-direction, or equivalently, the
group velocity, is represented by the rate of change in the potential in time, allowing us to
fine-tune the simulation to match the physical scenario closely.

In this system, the paraxial motion through the propagating channel periodically
alters the transverse potential harmonic force constant in the manner of a parametrically
driven oscillator. Thus, the Mathieu equation and its attendant stability approximately
applies [12]. The actual phase space diagram for the chosen energy resembles that of a
kicked rotor. In the first figure in Section 3, we see the stable island, but at other energies, the
kicking frequency changes and can become resonant with the transverse mode frequency,
destabilizing the motion down the channel.

The results in Figure 1D demonstrate that the superwire dynamics, including the
tunneling seen in panel A, are successfully (and nearly indistinguishably) captured within
the paraxial approximation. This justifies the use of a quasi-one-dimensional interpretation
when we discuss tunneling in the two-dimensional potential of Figure 1A as follows:

In Figure 1(Bi), ℜ(ψ) displays the consequence of the wavepacket being launched
slightly off-center in the channel. This offset creates a combination of the ground and first
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excited transverse modes, causing a gentle oscillation between the upper and lower bumps
as it travels down the channel.

In this non-integrable superlattice potential, the pseudomomentum components kx
and ky can exchange energy in principle, leading to the electron scattering more widely into
the 2D lattice. Such high-angle scattering is nonetheless absent here: the stable dynamics
maintain superwire flow over long distances without significant dispersion, apart from a dy-
namical tunneling populating the adjacent channels, as shown in Figure 1(Bii,Biii). Figure 4
provides a close-up of a wave in the middle channel tunneling into adjacent channels.

Figure 4. Zoomed-in view depicting quantum dynamics featuring dynamical tunneling. Red indicates
negative and blue indicates positive amplitude in ℜ(ψ). The image illustrates the interface between
the primary superwire channel and its adjacent channels. Transparent features, depicted in grayscale,
represent the superlattice bumps. Notably, the wave propagates without decay across the top of
these bumps, indicating that they are classically surmountable. Examination of ℜ(ψ) reveals an
approximate phase shift of π/2 between each channel.

The tunneled components continue to propagate in the original direction and the
confinement within the next channel is maintained. Remarkably, the oscillatory rocking
motion within the first adjacent channels is more pronounced, occurring synchronously on
both sides. We do not observe backscattering but we see a phase shift of approximately
π/2 between ℜ(ψ) in the center channel and those in adjacent channels. Figure 4 illustrates
that the wave also overrides the potential bumps. The potential barriers are comparable
in size to λe. The relatively low potential strength substantially reduces the probability of
notable diffracting phenomena.

Applying the insight from the paraxial approximation in Figure 1(Ci) helps to under-
stand the underlying tunneling mechanism. The y-component of the superwire eigenstate
inside a channel is closely resembling the 1D eigenstates of a single harmonic quantum well . The
real part of the wave function, ℜ(ψ(y, t)), demonstrates that the center channel is made
of linear combinations of ground state-like (abbreviated GS; Gaussian without a node)
and first excited state-like (abbreviated 1ES; Gaussian with one node) components. The
composition of the states in each "well" is schematically depicted at the bottom of the figure:
large oscillator symbols indicate a major contribution, small symbols a minor contribution,
and missing symbols a negligible contribution to the wavefunction.

In panel Figure 1(Ci), the absolute value reflects this as a slightly deformed Gaussian.
The tunneled components in the adjacent channels are still relatively small but close
inspection shows that they carry a node in the middle. Our interpretation is that the
adjacent channels at this distance contain a quantum state that is still a mix of GS and 1ES,
but the fraction of the component resembling 1ES is already larger here. Hence, ℜ(ψ) and
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the absolute value show a node. This is expected because, despite the different mechanisms
between the barrier and dynamical tunneling, modes with higher energy typically tunnel
faster. This behavior will become more pronounced in the following zoomed-in sections
Figure 1(Cii,Ciii) and supports the claim that dynamical tunneling in superwires could be
used to separate the different transverse energy components of the channel eigenstates.

There are several indications in Figure 1 of more facile tunneling of the first excited
transverse mode of the central channel: damping of the central channel oscillations with
progress to the right, and a higher population of 1ES over GS in the side channels compared
to the parent channel as further shown in the later sections of the superwire.

3. Insights from Classical Superwires

Tunneling is a quantum mechanical phenomenon that allows particles to transition
between states or regions that are not directly connected or accessible according to classical
mechanics but they do not have to involve a potential barrier, as is the case here. Dynamical
tunneling occurs between classically disjointed regions in phase space. We will also see
that here the classically distinct regions are separated by a chaotic sea, so the tunneling falls
into another class: the chaos-assisted tunneling of Tomsovic and Ullmo [15].

Classical particles are initialized with defined velocity v (corresponding to the expec-
tation value in Section 2) and positioned at the bottom of the center channel. By adjusting
their initial angles, we explore a range of trajectories shown in Figure 5A. Utilizing a
Verlet integration scheme, we calculate the particle motion over time, enabling us to map
their trajectories and analyze the associated phase space. To simplify the analysis of the
four-dimensional phase space, we employ Poincaré surfaces of section (PSS), focusing on
slices along the vy and y dimensions, as depicted in Figure 5B. The position of each particle,
recorded at intervals equal to integer multiples of the lattice constant from the starting
point, is projected onto this PSS, facilitating a comprehensive phase space examination
projected on the unit cell of the square lattice.

v y 
(m

/s
)

5x105

-5x105

-6.7 6.7

y (nm)

Figure 5. Classical dynamics of superwires in periodic lattices. (A) Trajectories of classical particles in
coordinate space of x and y. All particles were launched with fixed initial momentum and varying
launch angle. Light blue trajectories are translated by a lattice constant to form stable superwire
in adjacent horizontal channels. Purple trajectories are not stable inside the horizontal superwire.
(B) Poincaré surface of section (PSS) for a unit cell with colors corresponding to the trajectories on the
left. Stable superwires are indicated by quasi-periodic orbits. The light blue disjoint orbits correspond
to disconnected superwires in neighboring channels. Purple dots form the chaotic sea.

Figure 5 demonstrates clearly that most trajectories in this parameter regime (pink,
blue, red, green, yellow, orange, and red) form stable wires inside the center channel,
maintaining their confinement over extended distances. This stability is primarily due to
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what is termed the “rocking-chair” motion: trajectories oscillate in a manner that is slightly
off resonance with the lattice’s periodic potential, preventing escape. This off-resonant
oscillation underpinning the dynamical self-confinement of these superwire trajectories is
corroborated by the emergence of stable Kolmogorov–Arnold–Moser (KAM) islands in the
PSS shown in Figure 5B, where quasi-periodic elliptical orbits manifest.

Each colored elliptical region matches the trajectory color in the panel to the left.
Remarkably, despite interaction with a non-integrable potential, these trajectories exhibit
almost periodic motion in the PSS. In contrast, classical particles wandering through a
periodic lattice but not confined by channels are typically chaotic and have been shown to
exhibit features, such as branched flow [11] and Lévy flights [10].

The light-blue trajectories correspond to the same initial conditions but launched in the
neighboring channel. Upon examining the light-blue orbits in the PSS, it is evident that they
occupy separate elliptical orbits, completely disjointed in phase space. This observation
implies that, from a classical perspective, a superwire trajectory remains dynamically con-
fined, preventing it from migrating into adjacent channels, whereas quantum mechanically
we find probability density to tunnel across the disjoint regions in phase space indicated by
the formation of the parallel wires in neighboring channels.

We also plot (purple) unstable classical trajectories that do not remain confined within
the horizontal superwire. Figure 5A demonstrates that trajectories tending towards insta-
bility are typically associated with larger launch angles. Some of these trajectories find
channels at different angles, occasionally forming less populated wires. A few paths ini-
tially follow the horizontal channel but fail to meet the established criteria for stability,
diverging at greater distances. In this regime, certain particles are deflected, leading to
early signs of branched flow. Crucially, these diverging trajectories cross the potential
peaks, showing that they are not restricted by any potential energy confinement. These
unstable trajectories contribute to the scattered data points in the PSS, together creating the
“chaotic sea”—a region in phase space where dynamics become chaotic. The stable quasi-
periodic orbits within and adjacent to the central channel are distinctly separated by the
chaotic sea. Therefore, particle dynamics within the periodic lattice preclude transitioning
between superwire channels without encountering this chaotic region. Thus, the shift from
one superwire to another is classically forbidden, indicating that observed transitions in
quantum superwires are indeed the result of dynamical tunneling and more specifically
chaos-assisted tunneling.

4. Controlling Dynamical Tunneling in Engineered Superlattice Structures

Although superwire stability is generally resilient to minor parameter changes, the
tunneling rate into adjacent channels is highly sensitive to these variations. Given the
vast array of possible lattice configurations, a comprehensive study of each is impractical.
Nonetheless, we demonstrate that the tunneling rate can be effectively controlled through
minor modifications in the superlattice fabrication process.

The tunneling is influenced by the parameter α in the Fermi function of the superlattice,
which affects both the sharpness of convex features on lattice sites and their maximum
height. Figure 2 provides a detailed view of the superlattice, displaying bump heights in
grayscale. The inset details the variation in bump height with distance from lattice points
for three distinct α values.

We conducted wavepacket dynamics simulations consistent with those described in
Section 2. Figure 6 displays snapshots of ℜ(ψ) at a specific timestep for three superlattice
configurations in the left column: Figure 6(Ai) for α = 0.03, Figure 6(Bi) for α = 0.05, and
Figure 6(Ci) for α = 0.10. The snapshots reveal that smoother potential features, despite a
slight reduction in potential height, result in better confinement of ℜ(ψ). The images also
support that most of ℜ(ψ) are contained within 4/5 of the simulation box and the matrix
extension technique can be applied.

The probability distribution, P(x, y), of the eigenfunctions for the entire run is pre-
sented in the middle column of Figure 6 and directly corresponds to the ℜ(ψ) images on
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their left. With increasing α, P(x, y) demonstrates improved confinement over longer
distances with smoother potential features. For sharp potential features, α = 0.03 in
Figure 6(Aii) , P(x, y) is rapidly distributed over adjacent channels, with a notable re-
duction in intensity within the central channel, indicating a high tunneling rate. Again, we
can recognize that at the end of the simulation, the GS and 1ES components (indicated by
nodes or rocking motion in 2D) of the eigenstate are filtered successively with tunneling into
each parallel channel. At the end of the simulation, the outermost channel always contains
the highest 1ES component. For α = 0.05, Figure 6(Bii) , the majority of P(x, y) is confined
within the center and first adjacent channels on either side. With α = 0.10, Figure 6(Cii),
the distribution primarily stays within the center channels and small contributions in the
first adjacent channels, demonstrating the effect of α on confinement over experimentally
relevant distances.

To quantify the tunneling rates in more detail, we present the distribution of probability
density, P(x, y) across different channels: the center (P0, black line), the first adjacent (P1,
red line), and the second adjacent (P2, blue line) in the right column of Figure 6. For
a minimal α value of 0.03, depicted in Figure 6(Aiii) , P0 starts at value one, indicating
complete initial confinement within the center channel. The probability P0 exhibits a nearly
linear decline. Concurrently, P1 and P2 increase linearly, albeit at a reduced rate, with P2
lagging slightly until sufficient probability density has transitioned into the first adjacent
channels. Remarkably, by the conclusion of the simulation over a span of 700 nm, P0 and P1
converge towards comparable values, i.e., the combined probability in the first two adjacent
channels is comparable to that of the center channel. In this regime, the tunneling process
can be viewed as an interaction of an infinite sequence of potential wells. Over time, P(x, y)
disperses uniformly across all channels, akin to behavior in an open system, leading P0 to
approach zero, followed by a similar depletion in the first and second adjacent channels.
We call this regime “tunneling escape”.

The slight increase in α to 0.05 impacts the tunneling dynamics quantitatively as
demonstrated in Figure 6B. The probability P0 still decreases linearly, albeit at a reduced
rate, whereas P1 exhibits a further delayed linear increase, and P2 stays near zero, displaying
minimal fluctuation throughout the simulation.

For the highest α value of 0.10, Figure 6C shows the tunneling dynamics change quali-
tatively. Initially, P0 decreases linearly but reaches a temporary plateau, coinciding with
the peak and subsequent oscillation of P1. The probability P2 remains minimal throughout
the simulation but mimics P1’s oscillations with a phase difference. This behavior suggests
a distinct tunneling regime closer to a three-well problem, characterized by suppressed
tunneling rates. Such suppression allows for bidirectional tunneling, contributing to the
observed oscillations in tunneling rates. We anticipate that, over extended periods, the
superwire would still undergo tunneling escape, but at significantly prolonged timescales,
thereby delaying thermalization. The tunneling rate from the center channel was notably
lowest for an α value of 0.10, despite a marginal decrease in potential maximum relative to
other α values. This α-dependent behavior underscores that confinement is primarily due
to quasi-periodic scattering/deflections of the wavefunction across the potential landscape.
Thus, the tunneling mechanism relies not solely on barrier height but is significantly af-
fected by the potential’s smooth contours. Furthermore, tunneling can be nearly eliminated
by disrupting the overlap between neighboring states, for instance, by creating channels
with varying bottom heights or employing nonuniform bump heights in fabrication. These
strategies highlight the potential for precise control over dynamical tunneling through
tailored potential landscapes.

We want to point out that the level of (classical) chaos does not change monotonically
when the smoothness of the bumps varies from the fully chaotic case of the paradigmatic
Lorentz gas composed of hard-wall disk to regular dynamics of the high-softness limit
resembling an integrable cosine potential. Instead, there is a rich structure of normal and
anomalous diffusion depending on the smoothness (and separation) of the bumps, as
reported in Ref. [10] for a similar soft Lorentz gas. An interesting avenue of future research
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is to investigate how this diversity in classical dynamics affects chaos-assisted dynamical
tunneling between channels, alongside the more general studies on the robustness of
superwires, e.g., against various defects and impurities within the lattice.

-0.003 0 0.003 0 0.2 0.4 0.6

40 nm40 nm

(i)

(i)

(i) (ii)

(ii)

(ii) (iii)

(iii)

(iii)

A

B

C

Figure 6. Study of tunneling rates with varying lattice features. (A–C) show the results for the
different α values at 0.03, 0.05, and 0.10, respectively. For each case (i) corresponds to a real part of
the wavefunction ψ(x, y, t) at t = 0.66 ps. (ii) correspond to the probability densities P(x, t) of the
eigenstates in each scenario. (iii) show the probability densities in the center channel (P0, black line),
the first adjacent channels combined (P1, red line) and the second adjacent channels combined (P2,
blue line) for all α used here. Note that the wave oscillations in the channel diminish from left to right.
As the first transverse excited state preferentially escapes the center channel, it leaves it at a higher
percentage of ground state amplitude heading from left to right. In (Aii) especially, it can be seen that
channels furthest from the initially populated center channel become increasingly pure in the first
excited transverse mode.

5. Conclusions and Future Directions

The conduction problem in superlattices thrusts us into the unfamiliar territory of
high Brilloun zones and robust efficacy of semiclassical correspondence since electron
wavelengths can become short compared to smooth features of the potential. Here, we used
classical motion to define the existence of tunneling between channels that are otherwise
stable quantum mechanically.

This is the first study of dynamical tunneling in flatband superwires. Our model
system has revealed that even when superlattice features are relatively weak compared to
the kinetic energy of the electron, the dynamical confinement within superwires remains
robust. This may make it relatively easier to fabricate superwires.

Flat bands and channeling superwires go hand in hand. The channel eigenstates are
linear combinations of conventional degenerate Bloch states. This realization opens up new
avenues for leveraging superwires in advanced nanodevices, promising novel approaches
to electron confinement and transport.
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Through the use of both quantum mechanical and classical methods, we have shown
that dynamical tunneling is distinct from traditional barrier tunneling, offering a nuanced
understanding of superwire stability and the conditions necessary for their formation and
stability. Because of the chaotic zones intervening between channels, tunneling between
them should be further understood as chaos-assisted [15].

By use of a paraxial approximation, we have been able to understand dynamical
tunneling as a quasi-one-dimensional process in a time-dependent potential. This model
allows us to approximate the superwires by ground and first excited states in series of
periodically driven harmonic quantum wells.

Analyzing the effects of superlattice parameter variations, particularly the α parameter,
on electron tunneling and confinement, we found pathways for potential control schemes of
electron transport in nanoscale devices. For example, we showed how the channel tunneling
rate depends on the transverse mode of the channel, thus filtering energy across multiple
parallel channels. This may have implications as a mechanism for energy component
filtration and quantum state purification.

The findings suggest exciting prospects for the design and fabrication of quantum de-
vices, where electrons can be guided in quasi one-dimensional channels under consideration
of varying superlattice parameters. Current investigations are focused on understanding
how multiple electrons interact both within individual channels and across neighboring
ones, and on the question of limited pathways for electron–vibration interactions in the
channels. The inherent decrease in phonon–electron interactions within these quasi-one-
dimensional wires could be an important step to realizing near zero-resistivity transport of
electrons in superlattices.

Exploring the stability of superwires in real-world materials presents a fascinating
challenge, especially when considering small lattice displacements or within dynamically
disordered potential landscapes; for a classical perspective on this issue, see Ref. [36]. Our
formalism accommodates various approaches to exploring both frozen and dynamical
deformation potentials in crystal lattices described in Ref. [37,38].

We hope that future research will explore experimental validation (e.g., through STM
studies of twisted multi-layered materials) to further harness superwires and their inherent
tunneling for device applications. It is important to note that the principles of superwires
and dynamical tunneling extend to photons and quantum-optical systems, suggesting
potential experimental investigations in optical setups, including photorefractive crystals
and various photonic structures.

The ability to manipulate tunneling dynamics through tailored potential landscapes
offers a pathway to nearly eliminate tunneling, presenting strategies for enhanced electron
localization and stability. On the other hand, controlled tunneling can be used to couple
initially isolated quantum channels.
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Appendix A

Appendix A.1. Calculation of Band Structure

Tight-binding models typically assume electrons are localized at atomic sites with a
finite probability of hopping to adjacent sites. However, this framework proves inadequate
for electrons in superlattices, where their presence extends between potential peaks. Conse-
quently, we adopt a continuous model approach to accurately capture the electronic band
structure in superlattices, grounded in the time-independent Schrödinger equation[

− h̄2

2m
∇2 + V (⃗r)

]
ϕ(⃗r) = Eϕ(⃗r). (A1)

According to the Bloch theorem, we have ϕ(⃗r) = ei⃗k·⃗ruk (⃗r), satisfying the following equation.[
− h̄2

2m
∇2 + V (⃗r)

]
ei⃗k·⃗ruk (⃗r) = E(⃗k)ei⃗k·⃗ruk (⃗r). (A2)

In order to reduce our calculation, we only focus on the periodic potential in a unit cell. By
multiplying e−i⃗k·⃗r on both sides, the equation reduces to

e−i⃗k·⃗r
[
− h̄2

2m
∇2 + V (⃗r)

]
ei⃗k·⃗ruk (⃗r) = e−i⃗k·⃗rE(⃗k)ei⃗k·⃗ruk (⃗r). (A3)

Since e−i⃗k·⃗r and ei⃗k·⃗r cancel each other on the right-hand side, we obtain the following
equation,

Hkuk (⃗r) =

[
h̄2

2m
(−i∇+ k⃗)2 + V (⃗r)

]
uk (⃗r) = Euk (⃗r) (A4)

where E(⃗k) is the eigenvalue and uk (⃗r) is the Bloch state. For a two-dimensional superlattice,
we obtain

Hk =

[
h̄2

2m
(−i∇+ k⃗)2 + V (⃗r)

]
=

[
h̄2

2m

(
− d2

dx2 − d2

dy2 − ikx
d

dx
− iky

d
dy

+ k2
)
+ V(x)

]
. (A5)

Given the exact form of potential in a unit cell, the diagonalization process of Hamil-
tonian can be executed by constructing the numerical form of the operator. Thus, we can
obtain the full 2D electronic band structure.

Appendix A.2. Wavepacket Dynamics with Matrix Extension

We are employing the well-known split-operator method (with Strang splitting) to
propagate the wavefunction in time with the kinetic energy operator T and the potential
energy operator V. Each iteration is using the following steps:

1. Apply the potential term in real space for one half-time step:

ψ(x, t + ∆t/2) = e−iV(x)∆t/2ψ(x, t) (A6)
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2. Fourier transform to momentum space:

ψ̃(k, t + ∆t/2) = F{ψ(x, t + ∆t/2)} (A7)

3. Apply the kinetic term in momentum space:

ψ̃(k, t + ∆t) = e−iT(k)∆tψ̃(k, t + ∆t/2), (A8)

where T(k) = h̄2k2

2m is the kinetic energy operator in momentum space, with k being the
wavevector, h̄ the reduced Planck’s constant, and m the mass of the particle.

4. Inverse Fourier transform to return to real space:

ψ(x, t + ∆t) = F−1{ψ̃(k, t + ∆t)} (A9)

5. Apply the potential term again in real space for another half-time step:

ψ(x, t + ∆t) = e−iV(x)∆t/2ψ(x, t + ∆t) (A10)

Together, the full step from t to t + ∆t can be written as:

ψ(x, t + ∆t) = e−iV(x)∆t/2F−1{e−iT(k)∆tF{e−iV(x)∆t/2ψ(x, t)}} (A11)

With this algorithm applied to superwires, the wavefunction predominantly propa-
gates confined within a channel in +x direction (almost no backscattering). This special case
of a quasi 1D localization allows us to follow the wavefunction over multiple simulation
boxes without changing the size of the grid at any given time step. Instead, we move the
frame as follows:

When some small probability, defined by an adjustable threshold value, is found in
the right-most column of the position grid, we shift our frame to the right, following the
main part of the wavefunction. This is specifically achieved by leveraging the potential’s
symmetry, wherein we augment the simulation grid by appending a potential matrix one-
fifth (equivalent to three unit cells) the width of the position grid. This extension provides
additional space, allowing the wavefunction to continue its propagation towards the right.
To preserve the original grid dimensions, we remove the initial one-fifth of the simulation
box, a section that, upon careful examination, contains less than 1% of the probability
density. In our simulations, we ensure that forward scattering predominates, preventing
the wavepacket from backscattering and self-interference. As a result, the eigenstates
are extractable from the wavepacket after a single traverse through the simulation box.
Subsequent to each matrix extension step, the ensuing segment of the eigenstate is spatially
appended to the preceding frame, resulting in a composite eigenstate seamlessly spanning
the entire distance it has traversed. It is important to note that the matrix extension tech-
nique can potentially lead to amplitude truncation if the wavepacket extends excessively
into the matrix section slated for removal during the extension process. To mitigate this,
we calibrated the simulation parameters to ensure that, within the simulation duration,
over 99% of the wavepacket’s probability density remains outside the excised region. The
eliminated components are primarily minor amplitude constituents that propagate slower
or are directionally shed from the initial trajectory at launch, which may be regarded as
initial impurities within the simulation. Minimal leakage towards the top and bottom of
the frame is effectively mitigated by implementing a smooth absorption boundary.
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