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Abstract: Fluctuations are omnipresent; they exist in any matter, due either to its quantum nature
or to its nonzero temperature. In the current review, we briefly cover the quantum electrodynamic
Casimir (QED) force as well as the critical Casimir (CC) and Helmholtz (HF) forces. In the QED case,
the medium is usually a vacuum and the massless excitations are photons, while in the CC and HF
cases the medium is usually a critical or correlated fluid and the fluctuations of the order parameter
are the cause of the force between the macroscopic or mesoscopic bodies immersed in it. We discuss
the importance of the presented results for nanotechnology, especially for devising and assembling
micro- or nano-scale systems. Several important problems for nanotechnology following from the
currently available experimental findings are spelled out, and possible strategies for overcoming them
are sketched. Regarding the example of HF, we explicitly demonstrate that when a given integral
quantity characterizing the fluid is conserved, it has an essential influence on the behavior of the
corresponding fluctuation-induced force.

Keywords: Casimir force; Helmholtz force; low-dimensional systems; phase transitions; critical
phenomena; fluctuation-induced forces; finite-size scaling

1. Introduction

Let us consider two flat half-spaces A and B separated by a gap with thickness L
filled with a medium C which fluctuates with the characteristic energy E of the pertinent
fluctuations. If the fluctuations decay with the distance slowly enough, say, algebraically
(which takes place if the corresponding excitations are massless), then changes in the
fluctuations due to A will be felt by B (and vice versa), leading to a force between A and B.
Such a force bears the natural name of fluctuation-induced force (FIF) F∥, where ∥ simply
reminds us about the geometry we are discussing. The L-dependence of F∥ can be easily
determined on dimensional grounds; as for any force, we have F∥ ∝ Energy/Length ∝ E/L.
In the considered geometry, it is natural to consider the normalized force per unit area
A ∼ L2, then obtain it for the corresponding pressure p∥ ∼ E/L3. Taking into account
that in quantum systems E ∼ hν0 ∼ hc/L, where ν0 is some characteristic frequency of the
quantum system, while in classical systems E ∼ kBT, we obtain

p∥quantum ∼ hc/L4, p∥classical ∼ kBT/L3. (1)

Naturally, the classical result also holds if, in a given quantum system, kBT ≫ hν0; in
Equation (1), h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant, and
T is the temperature of the system. Equation (1) reflects essential parts of the QED Casimir,
critical Casimir (CCE), and (as we will see) Helmholtz force effects. Of course, the precise
behavior of p∥quantum and p∥classical, e.g., the corresponding pre-factors cannot be obtained in
such a simple way, and the efforts of many scientists have been dedicated to figuring out
the corresponding details. Below, we briefly comment on this topic.
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The current most prominent example of a fluctuation-induced force involves the force
due to quantum or thermal fluctuations of the electromagnetic field, leading to the so-called
QED Casimir effect, named after the Dutch physicist H.B. Casimir. Casimir first realized
that in the case of two perfectly-conducting, uncharged, and smooth plates parallel to
each other in vacuum, at T = 0 (see Figure 1) these fluctuations lead to an attractive force
between them [1]. In other words, Casimir demonstrated that the boundary conditions
imposed by two plates (denoted in the following by ∥) on the spectrum of the quantum
mechanical zero-point fluctuations of the electromagnetic field lead to the above remarkable
mechanical effect involving the appearance of a long-range attractive force between the
plates. More precisely, for the corresponding pressure he obtained

F∥
Cas(L) = − π2

240
h̄c
L4 = −1.3 × 10−3 1

(L/µm)4
N
m2 . (2)

Intuitively, this pressure can be viewed as the difference in radiation pressure of virtual
photons outside and inside the pore formed by the two plates, which results in an attractive
force F∥

Cas between them [2]. The accepted terminology terms the negative force as the
attractive one. In order to derive Equation (2), Casimir calculated the derivative with
respect to L of the energy difference δE[1]: (i) when A and B are at infinite distance, and (ii)
when they are at a distance L from each other (see below for more details).

L L

ideal conductor

ideal conductor

vacuum

Figure 1. The setup of the system considered by Casimir in his original article [1].

There is a vast amount of literature concerning research on the quantum Casimir
effect. Here, we only mention the review articles in [3–38], involving recent studies of the
dynamical Casimir effect (in which actual photons can be created if a single mechanical
mirror undergoes accelerated motion in vacuum) [39–46] and studies of the effects which
emerge in systems out of thermodynamic equilibrium (in which the material bodies are
characterized by different temperatures) [47–53]. Currently, the QED Casimir effect is a
popular subject of research. The Casimir and Casimir-like effects are objects of studies
in quantum electrodynamics, quantum chromodynamics, cosmology, condensed matter
physics, and biology, with some elements of it present in nanotechnology as well. Inves-
tigations devoted to the topic are currently being performed on many fronts, including
research ranging from attempts to unify the four fundamental forces of nature [6,11,12]
to rather more practical issues such as the design and the performance of micro- and
nanoscale machines [16,22,23,54,55]. Readers interested in these topics can consult the
existing reviews cited above.

Looking at the problem from the historical perspective, in 1978, thirty years after
Casimir, Fisher and De Gennes [56] showed that a very similar effect exists in fluids. As
the main setup for discussing the CCE, we can envisage two material bodies, (1) and (2),
immersed in a fluid (see Figure 2). They exert an effective force F(1,2) on each other, which
is mediated by the fluid; this includes, inter alia, the direct interaction between material
bodies (1) and (2). If the thermodynamic state of the fluid is far away from a bulk phase
transition at T = Tc, this force varies slowly and smoothly as function of the temperature
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T. Upon approaching Tc of a continuous phase transition, F(1,2) acquires a contribution
F(1,2)

Cas due to the critical fluctuations of the confined fluid. This singular contribution
encompasses both the distortion of the local (eventually) nonzero order parameter (due to
the finite distance between (1) and (2)) and the fluctuations of the order parameter. The
singular contribution F(1,2)

Cas follows by subtracting the smooth background contribution
(after extrapolating it to the neighborhood of Tc) from F(1,2). Upon the above construction,
in the disordered phase, F(1,2) and F(1,2)

Cas vanish in the limit of increasing separation between
the bodies (1) and (2). Taking into account that in the d-dimensional space the surface
A ∝ Ld−1 and that the energy of the fluctuations E ∝ kBT, it can be concluded that
F∥

Cas ∝ kBT/Ld for the thermodynamic Casimir effect near the critical point of the system.
For a (d = 3)-dimensional system, we can write the force at the critical point T = Tc in the
following form:

F∥(τ)
Cas (T = Tc, L) ≃ 8.1 × 10−3 ∆(τ)(d = 3)

(L/µm)3
Tc

Troon

N
m2 (3)

where Troom = 20 ◦C (293.15 K). The above equation is in a full agreement with Equation (1).
In order to calculate F∥(τ)

Cas , it is normally necessary to determine the finite size-dependent
part of the properly normalized difference between the energy of the infinite and finite
systems, similar to the QED case (see below). Here, ∆(τ) is the so-called Casimir amplitude,
which depends on the bulk and surface universality classes (see below) of the system and the
applied boundary conditions τ. For most systems and boundary conditions, ∆(τ)(d) = O(1);
thus, when Tc ≃ Troom, both forces (quantum and thermodynamic) can be of the same
order of magnitude, i.e., they can both be essential, measurable, and obviously significant
at or below the micrometer length scale. We stress here that ∆(τ)(d) can be both positive and
negative, i.e., F∥(τ)

Cas (T, L) can be both attractive and repulsive. Recently, a review of the exact
results available for the CCE has been published [57]; overviews of different aspects of this
effect can be found in [57–61].

Figure 2. The basic setup for discussing the thermodynamic Casimir effect [56].

The above arguments for two semi-spaces A and B separated by a fluid C can be
easily extended for bodies A and B of general shape immersed in a fluid, say, two spheres,
a sphere and a semi-space (plane surface), etc. In the general case, it is the confinement
of a fluctuating field by the surfaces of the material bodies which causes FIF acting on
the confining surfaces of these bodies. In the current review, we do not consider such
geometries, and simply refer interested readers to the existing reviews on QED and the
critical Casimir effects for further details.

When considering the FIF between A and B immersed in a fluctuating medium C,
it is always supposed that the constituents of C can enter and leave the region between
objects A and B. There are, however, two important subcases. In the first, C is in contact
with a reservoir, i.e., its constituents can enter and leave the part of the space occupied by
A and B. In this case, we can speaks of the bona fide Casimir force. In the second case,



Entropy 2024, 26, 499 4 of 28

the system itself is bounded such that some integral quantity characterizing the amount
of material in C is conserved, say, the total mass or the integral over the volume of the
system or the order parameter. In this case, we can speak about the recently introduced
(see [62]) and not yet well studied Helmholtz force. Currently, there are only a few articles
devoted to these forces [62–65]. Note that in HF case we are again near a critical point
of the medium C. As it turns out, however, the HF has a behavior distinctly different
from that of the Casimir force. Because the study of Helmholtz forces is a relatively new
field of research, in the current review we devote special attention to it and its behavior,
both as a function of the temperature and of an external ordering field characterizing
the medium C. We show this via exact results for the one-dimensional Ising model in a
fixed-order parameter M ensemble. We stress that in customarily considered applications
involving, say, the equilibrium Ising model with respect to binary alloys or binary liquids,
if one insists on full rigor, the case with a fixed order parameter must be addressed. It is
interesting to note that the HF in the case of periodic boundary conditions shows behavior
similar to that appearing in certain versions of the big bang theory, e.g., strong repulsion
at high temperatures transitioning to moderate attraction for intermediate values of the
temperature and then back to repulsion, albeit much more weakly than during the initial
period of highest temperature.

We stress that the definition and existence of Helmholtz force (see Section 4) is by no
means limited to the Ising chain, and can be addressed in principle in any model of interest.

In addition, we note that the issue of the ensemble dependence of fluctuation-induced
forces pertinent to the ensemble has yet to be studied.

The remainder of this review is structured as follows. First, in Section 2 we briefly
consider the QED Casimir effect. Section 3 introduces details of the critical and thermo-
dynamic Casimir effects, while Section 4 presents the definition of the Helmholtz force.
Results for this force using the example of Ising chains with periodic, antiperiodic, and
Dirichlet boundary conditions as well as with a defect bond are summarized in Section
5. Finally, concluding remarks about the FIF, including their role in nanotechnology, are
presented in Section 6.

2. The QED Casimir Effect

As already alluded to in the introduction, the confinement of a fluctuating field
generates effective forces on the confining surfaces, which nowadays are termed FIF.

The relationship in Equation (2) can be derived by considering the change of the
structure of the electromagnetic modes between the two plates as compared with those in
free space after assigning the zero-point energy 1

2 h̄ω to each electromagnetic mode, i.e.,
photon of frequency ω. We emphasize that, in the absence of charges on the plates, the
mean value of the electric field E and the magnetic field B vanishes, i.e.,

⟨E⟩ = 0 and ⟨B⟩ = 0, (4)

while
⟨E2⟩ ̸= 0 and ⟨B2⟩ ̸= 0, (5)

meaning that the expectation value of the energy due to the electromagnetic field, i.e., ⟨H⟩ with

H =
∫ [1

2
ε0E2(r) +

1
2µ0

B2(r)
]

d3r, (6)

is nonzero. In fact, according to quantum field theory, the energy of the electromagnetic
field in the vacuum state in free space is infinitely large, and all physically relevant energies
are measured relative to the energy of the vacuum. When the two (in the above sense ideal)
parallel smooth metal plates are placed against each other in free space, the tangential
component of the electric field and the normal component of the magnetic induction must
vanish at the plate surfaces. As a result, not all zero-point oscillations occur. Subtracting
the energy of the vacuum energy in free space from that of the allowed modes, after taking
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the derivative with respect to L, we obtain the result reported in Equation (2). In more
detail, focusing on a single component of the electric field, which vanishes at the surface
of the metal (this discussion can be easily extended to include all vector components), the
simultaneous presence of two parallel walls restricts the allowed wave vector k⊥ of the
field in the direction normal to the plates, meaning that the field itself vanishes at both
walls (Dirichlet boundary conditions). If we instead impose no restriction on the wave
vector k∥ parallel to the plates, which are assumed to have a large lateral extension with
a transverse area A and to be separated by a distance L, then we have k⊥ = πn/L with
n = 0, 1, 2, · · · , and the energy E contained within the confined space takes the form

E = ∑
k

1
2

h̄ω(k), (7)

where the sum runs over all allowed values of k = (k∥, k⊥) and where ω(k) ≡ ωk =

c|k| = c
√

k2
∥ + k2

⊥ (with |k| = k) is the frequency of the mode with wave vector k. As it

stands, the sum in Equation (7) diverges due to the fact that |ωk| grows as k increases and
because the sum lacks any ultraviolet cutoff, i.e., k is allowed to grow unboundedly. In this
context, we are actually interested in the energy of the modes which can be “contained” by
the metallic cavity, as they are the only ones affected by the presence of the cavity itself.
At sufficiently high frequencies, the cavity becomes transparent to the electromagnetic
field. Note that within the assumptions made when deriving Equations (2), no materials-
dependent properties enter the picture; thus, the force depends only on the Planck constant
h̄ and the speed of light in vacuum c as well as on the geometry of the pore (characterized
here by L). In addition, the force does not depend on the electric charge e, implying that,
for the present conditions of the phenomenon, the coupling between the electromagnetic
field and the matter is unimportant, as is any other interaction.

In the aftermath of [1], there has been an intense theoretical effort to describe the force
beyond the case of ideal plates by considering the actual dielectric properties of the two
plates and the medium in between [17,66–76]. Specifically, the groundbreaking results
of Lifshitz et al. [66,77], who developed a unified theory of the van der Waals and the
Casimir forces, must be mentioned. It should be noted that, when discussing the quantum
Casimir effect, the retarded van der Waals interactions are often called Casimir interactions;
however, we retain the notion of retarded van der Waals interactions when discussing the
thermodynamic Casimir effect in order to avoid confusion of these forces with the critical
Casimir force, which we discuss later.

Lifshitz et al. studied the case of two materials acting as walls, described by frequency-
dependent dielectric permittivities ε(n)(ω), n = 1, 2, separated by a third material char-
acterized by ε(0)(ω). It turns out that in the limit of small separations (still large com-
pared with molecular scales), the Casimir force approaches the more familiar van der
Waals force [17,78]. This more realistic description provides specific predictions which are
amenable to high-precision measurements. The corresponding expressions for the force are
also quite instructive in that they allows for prediction of how the material properties of
the substances involved have to be tuned in order to modify the strength (and even the
sign) of the force. According to Lifshitz, in order to calculate the Casimir pressure for a set
of three dielectric materials, it is necessary to know their permittivities along the imaginary
frequency axis. As experimental data for the complex permittivity

ε(ω) = ε′(ω) + iε′′(ω), (8)

where ε′, ε′′ ∈ R, exist only for real frequencies, the permittivity along the imaginary
frequency axis has to be determined from the Kramers–Kronig relation (see, e.g., [79]):

ε(iξ) = 1 +
2
π

∫ ∞

0

xε′′(x)
x2 + ξ2 dx. (9)
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From the Lifshitz theory, it can be inferred [78] that it is possible to observe Casimir
repulsion in the film geometry if the two half-spaces (1) and (2) forming the plates and
confining the film (0) exhibit permittivities which fulfill the relationship

ε(2)(iξ) < ε(0)(iξ) < ε(1)(iξ). (10)

Experimentally, repulsion occurs if the inequality in Equation (10) holds over a sufficiently
wide frequency range. Actually, this is a widespread phenomenon shared by all substrate–
fluid systems which show complete wetting, such as in the old experiment by Sabisky and
Anderson [80]. Accordingly, Casimir repulsion is a common feature [81]. In fact, it has been
already observed; see, e.g., [82].

A standard approximation for obtaining the force between two bodies of nontrivial
shape is the so-called Derjaguin approximation (DA) [83]. The DA term is used in colloidal
science (see, e.g., [84] and p. 34 in [85]), while it is known as proximity force approximation
in studies of the QED Casimir effect (see, e.g., p. 97 in [17]). The main idea behind the DA
is that it is possible to relate the knowledge of the interaction force/potential between two
parallel plates with that between two gently curved colloidal particles when the separation
between them is much smaller than the geometrical characteristics of the particles in
question. More specifically, the DA states that in d = 3, the interaction force FR1,R2(L)
between two spherical particles with radii R1 and R2 placed at a distance L ≪ R1, R2 is
provided by

FR1,R2
DA (L) = 2πReff

∫ ∞

L
f ∥A(z)dz, (11)

where R−1
eff = R−1

1 + R−1
2 is an effective radius and f ∥A is the force per unit area between

parallel plates. When a sphere with radius R1 ≡ R interacts with a plate, we have R2 = ∞.
in which case (11) is still valid with Reff = R.

An improvement and generalization of the DA called the “surface integration ap-
proach” (SIA) has been proposed in [86]. It has been used there to study van der Waals
interactions between objects of arbitrary shape and a plate of arbitrary thickness. It delivers
exact results if the interactions involved can be described by pair potentials. The main
advantage of this approach over the DA is that one is no longer bound by the restriction
that the interacting objects must be much closer to each other than their characteristic
sizes. The main result is that for the force acting between a 3d object (say a colloid particle)
B ≡ {(x, y, z), (x, y, z) ∈ B} of general shape S(x, y) = z and a flat surface bounded by the
(x, y)−plane of a Cartesian coordinate system, we have

FB,|
SIA(L) =

∫
Ato

S

∫
f ∥A[S(x, y)]dxdy −

∫
Aaway

S

∫
f ∥A[S(x, y)]dxdy, (12)

where AS is the projection of the surface S of the particle over the (x, y)− plane, with
AS = Ato

S
⋃

Aaway
S . Equation (12) has a very simple and intuitive meaning: in order to

determine the force acting on the particle, it is necessary to subtract from the contributions
stemming from surface regions Ato

S that “face towards” the projection plane those from
regions Aaway

S that “face away” from it, where Ato
S and Aaway

S are the projections of the
corresponding parts of the surface of the body on the (x, y)−plane. It is clear that when
taking into account only the contributions over Ato

S , we obtain expression very similar to
those of DA. In this case, the two expressions differ only in the fact that (12) takes into
account that the force on a given point of the S is along the normal to the surface at that
point, while the standard DA does not take this into account. Recall that (12) provides exact
results for the interaction under the assumption that the constituents of the body interact
via pair potentials. This is, strictly speaking, not the case of the force in QED Casimir,
i.e., Equation (12) is still an approximation. It is, however, clear that under mechanical
equilibrium of the colloid in the fluid, the force is indeed along the normal to the surface
at the point of the surface where it acts. Thus, it is possible to obtain a reasonably good
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approximation of the effect of this force by keeping only the integration over parts of the
surface of the body that faces the plane. It should be noted that the importance of the SIA
approach has been already recognized and used; see, e.g., [87–92]. For the QED Casimir
force, such a generalization has been derived on the solid basis of quantum field theory in
the framework of scattering approaches (see, e.g., [93,94]). This approach is widely used
in making comparisons between theory and measurements of the QED Casimir force in
sphere–plate geometries (see, e.g., [95]).

3. The Critical and Thermodynamic Casimir Effects

As explained above, the spatial restriction on the fluctuations of the order parameter
describing a continuous phase transition of a many-body system leads to the so-called
critical Casimir effect [56]. Then, the interactions in the system are mediated not by photons,
as in the case of the electromagnetic field, but by different types of massless excitations. In
the case that the critical point has a quantum origin, and instead of temperature certain
quantum parameters govern the fluctuations in the system, we speak of the quantum critical
Casimir effect [59,96]. In addition, systems such as liquid 4He and liquid crystals, i.e.,
so-called correlated fluids, exhibit gapless excitations called Goldstone modes [8,97–99].
These fluctuations also lead to long-ranged forces between the boundaries of the systems,
although such systems are thermodynamically positioned below their respective critical
points. For these cases, we speak of the noncritical Casimir effect, or more generally the
thermodynamic Casimir effect. We shall use the latter notion as a general one that encompasses
all cases in which the Casimir effect is due to the fluctuations of a certain order parameter.

The critical Casimir effect depends on the parameters describing the thermodynamic
state of the critical medium, such as the temperature and an externally applied field (e.g.,
pressure, excess chemical potential, magnetic field), as well as on the distance L between
(1) and (2); that is, the observed phenomenon is a finite size effect. Therefore, if L increases
the effect, the magnitude of the associated force decreases and eventually vanishes.

Any thermodynamic system which is of finite extent in at least one spatial direction is
called a finite-size system. The corresponding modification of its phase behavior compared
with that of the bulk is described by finite-size scaling theory [59,100,101]. Because of the
deep interconnection between the theory of the thermodynamic Casimir effect and finite-
size scaling theory, we recall some basic facts concerning finite-size scaling theory which
are relevant for studying the thermodynamic Casimir effect. We start by recollecting
some basic properties of critical phenomena in bulk systems. In the vicinity of the bulk
critical point (Tc, h = 0) governed by the temperature T and some external field h, the
bulk correlation length of the order parameter ξ becomes large and theoretically diverges:
ξ+t ≡ ξ(T → T+

c , h = 0) ≃ ξ+0 t−ν, t = (T − Tc)/Tc and ξh ≡ ξ(T = Tc, h → 0) ≃
ξ0,h|h/(kBTc)|−ν/∆, where ν and ∆ are the usual critical exponents and ξ+0 and ξ0,h are the
corresponding nonuniversal amplitudes of the correlation length along the t and h axes. If,
in a finite system, ξ becomes comparable to L, the thermodynamic functions describing its
behavior depend on the ratio L/ξ and take scaling forms provided by finite-size scaling
theory. Further information of the phase transitions and related physical and mathematical
problems can be found in [59,100,101] and in the set of articles on the topic cited therein.

Crucial by its implications for systems with continuous phase transitions is the so-
calleduniversality hypothesis. It was initially formulated by Kadanoff [102]. According to
this hypothesis, “all (continuous) phase transition problems can be divided into a small
number of different classes depending upon the dimensionality of the system and the
symmetries of the ordered state. Within each class, all phase transitions have identical
behavior in the critical region; only the names of thermodynamic variables are changed.”
All such systems are then part of the same universality class. For example, we have the
Ising universality class characterized by breaking of the Z2 symmetry of the original
effective Hamiltonian for the scalar order parameter, the XY universality class with a
two-component order parameter and a disordered phase with O(2) symmetry, and the
Heisenberg universality class characterized by a vectorial order parameter with an O(3)
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symmetry. Any of these bulk universality classes is accompanied by a set of surface
universality classes which depend on the behavior of the order parameter near and at
a surface(s) of the semi-infinite or finite system. For a film geometry, the accumulated
experimental and theoretical evidence supports the statement that the Casimir force is
attractive when the boundary conditions on either plate are the same or similar and is
repulsive when they essentially differ from each other. For the case of a one-component
fluid, the latter means that one of the surfaces adsorbs the liquid phase of the fluid while
the other prefers the vapor phase. This rule, which connects the type of boundary condition
with the type of the force, seems to be violated if competing interactions are present in the
system. Recently, it has been established that, under periodic boundary conditions, an Ising
chain with a defect bound can have a Casimir force which changes sign as a function of
T provided that an antiferromagnetic bond is present within the otherwise ferromagnetic
bonds of the chain [65].

In the remainder of the current section, we discuss the thermodynamic Casimir effect
in a system with a ∞d−1 × L film geometry. We envisage a system exposed to a temperature
T and an external ordering field h that couples to its order parameter, i.e., density, concen-
tration difference, magnetization M, etc. We imagine as examples a simple fluid system
at its liquid–vapor critical point, a magnet at the phase transition from paramagnetic to
ferromagnetic state, and a binary liquid mixture or binary alloy with phases A and B near
its consolute temperature point. Letting (T = Tc, h = 0) be this bulk critical point in the
(T, h) plane, we consider only the case of an one-dimensional order parameter ϕ ∈ R. The
thermodynamic Casimir force FCas(T, h, L) in such a system is the excess pressure over the
bulk pressure, and acts on the boundaries of the finite system due to the finite size of the
system, i.e.,

FCas(T, h, L) = PL(T, h)− Pb(T, h), (13)

where PL is the pressure in the finite system while Pb is that in the infinite system. Note that
the above definition is actually equivalent to another commonly used definition [58,59,103]:

FCas(T, h, L) ≡ −∂ωex(T, h, L)
∂L

= −∂ωL(T, h, L)
∂L

− Pb (14)

where ωex = ωL − L ωb is the excess grand potential per unit area, ωL is the grand canonical
potential of the finite system, again per unit area, and ωb is the density of the grand potential
for the infinite system. The equivalence between the definitions in Equations (13) and (14)
comes from the observation that ωb = −Pb and that for a finite system with surface area A
and thickness L it is the case that ωL = limA→∞ ΩL/A with −∂ωL(T, h, L)/∂L = PL. When
FCas(τ, h, L) < 0, the excess pressure of the system will be inward; this corresponds to an
attraction of the surfaces of the system towards each other, and conversely to a repulsion if
FCas(τ, h, L) > 0. Then, for a system positioned near its critical point, the finite-size scaling
theory [58,59,100,101,104–106] predicts for the CF that

FCas(t, h, L) = L−dXCas(xt, xh), (15)

where xt = attL1/ν, xh = ahhL∆/ν. In Equation (15), d is the dimension of the system, while
at and ah are nonuniversal metric factors that can be fixed for a given system by taking
them to be, e.g., at = 1/

[
ξ+0
]1/ν and ah = 1/[ξ0,h]

∆/ν, respectively.

4. Casimir Force versus Helmholtz Force

When the degrees of freedom can freely enter and leave the medium C, then we speak
of the Casimir force. Within the realm of statistical mechanics, such a force is described
within the grand canonical ensemble (GCE). In a recent Letter [62] (and see [63–65]), we
have introduced the term of a Helmholtz FIF. This is a force in which an integral quantity
characterizing the medium C is fixed. When this conserved quantity is the total order pa-
rameter value, the system and the corresponding forces are described within the canonical
ensemble (CE). In the current section, we show that the Casimir force and the Helmholtz
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force have substantially different behaviors for one and the same system and for the same
boundary conditions. We stress that the issue of ensemble dependence of critical fluctuation-
induced forces is not yet well explored, and only few articles devoted to it are available in
the literature.

4.1. Casimir Force and Grand Canonical Ensemble

We consider a finite lattice L ∈ Zd with each site r on the d-dimensional lattice
embedded with a spin variable sr ∈ Rn. The spins interact via exchange interactions J(r, r′).
The corresponding Hamiltonian is

H({si}) = − ∑
r,r′∈L

J(r, r′) sr · sr′ . (16)

In the simplest possible case, the spins interact through a nearest neighbor exchange
interaction J. Then, the sum runs over the nearest neighbor pairs ⟨r, r′⟩ on the lattice. For
the simplicity of the notations, in the remainder we concentrate on only such interactions
unless explicitly stated otherwise. For n = 1, we can speak of Ising-type models, for n = 2
of XY-type models, and for n = 3 of Heisenberg-type models. In the simplest Ising-type
model, the spins can only take values of +1 and −1.

In statistical mechanics, the systems are described within so-called Gibbs ensembles of
dependent random variables. More specifically, in the grand canonical ensemble, i.e., in the
presence of an external bulk field h, the Hamiltonian of an Ising type model is

HGCE({sr}, h) = H({sr})− h ∑
r

sr. (17)

Then, the partition function of the grand canonical ensemble of a system with N particles is

ZGCE(N, β, h) = ∑
{sr}

exp [−βHGCE({sr}, h)], where β = 1/(kBT). (18)

Obviously, for the total average magnetization M, we have

M ≡
〈

∑
r

sr

〉
=

∂

∂(βh)
ln[ZGCE(N, β, h)]. (19)

Within the grand canonical ensemble, the corresponding fluctuation-induced force is called
the thermodynamic Casimir force; its definition follows below.

4.2. Definition of the Thermodynamic Casimir Force

When the partition function in Equation (18) is known, it is possible to determine the
total Gibbs free energy Ftot via

βFtot(N, β, h) = − ln[ZGCE(N, β, h)] (20)

and the Casimir force [57]

βF(ζ)
Cas(T, h, L) ≡ − ∂

∂L
f (ζ)ex (T, h, L), (21)

where
f (ζ)ex (T, h, L) ≡ f (ζ)(T, h, L)− L fb(T, h) (22)

is the so-called excess over the density contribution of the bulk free energy L fb(T, h)
normalized per area and per kBT. Here, a system is envisaged in a film geometry ∞d−1 × L,
L ≡ L⊥, with boundary conditions ζ imposed along the spatial direction of finite extent L
and with total free energy Ftot, while f (ζ)(T, h, L) ≡ limA→∞ Ftot/A is the free energy per
area A of the system.



Entropy 2024, 26, 499 10 of 28

4.3. Helmholtz Force and Canonical Ensemble

Within the canonical Gibbs ensemble, the Hamiltonian of the model is

HCE({sr}) = H({sr}) with the constraint ∑
r

sr = M, (23)

i.e., only configurations with a given fixed value of M are allowed. The statistical sum
within this ensemble is then

ZCE(N, β, M) = ∑
{sr},∑N

i=1 sr=M

exp [−βHCE({sr})], β = 1/(kBT). (24)

Within the canonical ensemble, the corresponding fluctuation-induced force is called
the Helmholtz force [62–65]. Its definition follows below.

4.4. On the Definition of the Helmholtz Force

From ZCE(N, β, M), according to the principles of the statistical mechanics, it is possi-
ble to determine the total Helmholtz free energy

βAtot = − ln ZCE(N, β, M), (25)

which allows for the determination of a fluctuation-induced force FH(T, M, L) in the fixed
M-ensemble, i.e., in the T − M ensemble, which we call the Helmholtz force. This can be
achieved in a manner similar to the definition of the Casimir force for critical systems in
the grand canonical T–h ensemble. Along these, lines we define

βF(ζ)
H (T, M, L) ≡ − ∂

∂L
a(ζ)ex (T, M, L) (26)

where
a(ζ)ex (T, M, L) ≡ La(ζ)H (T, M, L)− L aH(T, m), (27)

with m = [limA→∞(M/A)]/L; here, aH(T, M, L) ≡ [limA→∞ Atot/A]/L is the Helmholtz
free energy density of the finite system and aH(T, m) is that of the infinite system.

In [62–65], it was shown that the Helmholtz fluctuation-induced force defined in this
way shows behavior that is very different from that of the Casimir force. More specifically,
in [62] it was demonstrated that for an Ising chain with fixed M under periodic boundary

conditions, F(per)
H (T, M, L) can be attractive or repulsive depending on the temperature

T, while F(per)
Cas (T, h, L) can only be attractive. As stated above, the issue of the ensemble

dependence of fluctuation-induced forces pertinent to the ensemble has not, to the best of
our knowledge, been studied yet in a thorough way. We stress that this issue is by no means
limited to Ising chains, and can in principle be addressed in any model of interest. This
issue can also be viewed as a useful addition to approaches to FIF in the fixed-M ensemble
based on Ginzburg–Landau–Wilson Hamiltonians [107–109], in which context the usual
Casimir force would be studied.

5. Some Results for the Helmholtz Force versus the Casimir Force

Following [62–65], we report below some exact results for the Helmholtz and Casimir
forces for a one-dimensional Ising model with periodic, antiperiodic, and Dirichlet bound-
ary conditions as well as for the more general case of a a chain with a defect bond. More
precisely, we consider a one-dimensional Ising chain of N spins (Si ± 1, i = 1, . . . , N) with
interaction J between them of a ferromagnetic type, i.e., J > 0. The Hamiltonian of the
model is provided by

H(ζ) = −J
N−1

∑
i=1

SiSi+1 − JBCS1SN + h
N

∑
i=1

Si. (28)
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When JBC = −J, J, 0, Ja, our boundary conditions are periodic (PBCs, ζ ≡ per), antiperiodic
(ABCs, ζ ≡ anti), or Dirichlet–Dirichlet (DBCs, ζ ≡ D, also termed free or missing neigh-
bors); when JBC = Ja, where Ja can have both positive or negative values, we term the case
a model with a defect bond. In this last case we use the notation ζ = db. Let K = βJ, Ka = βJa
and β ≡ 1/(kBT); examples of possible configurations with N = 20 and M = 4 are shown
in Figure 3 for the case of periodic boundary conditions and in Figure 4 for antiperiodic
ones.

J

Figure 3. One-dimensional Ising model chain in a ring form. This is equivalent to a system with
periodic boundary conditions. In the considered example, M = 4, i.e., the number of “blue” atoms
(molecules) is with 4 more than the number of “red” ones. It is also possible to consider that, say,
the blue dots represent spins “up”, i.e., si = +1, while the red ones represents spins “down”, i.e.,
si = −1.

-J

J

Figure 4. One-dimensional Ising model chain in a ring form and one opposite (or defect) bond. This
is equivalent to a system with antiperiodic boundary conditions. In the considered example, M = 4,
i.e., the number of “blue” atoms (molecules) is 4 more than the number of “red” ones. As in the
periodic case, it is possible to consider the blue dots as depicting spins “up”, i.e., si = +1, and red
ones as representing spins “down”, i.e., si = −1.

The results for both the partition function and the force depend on the ensemble and
the boundary conditions. For the corresponding partition functions, we have the following:

(i) For periodic boundary conditions:

Z(per)(N, K, M) = NeK(N−4)
2F1

(
1
2
(−M − N + 2),

1
2
(M − N + 2); 2; e−4K

)
,

where 2F1(α, β; γ; z) is the generalized hypergeometric function [110].
(ii) For the Dirichlet (missing neighbors at both ends of the chain) boundary conditions:
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Z(D)(N, K, M) = eK(N−1)

[
2e−2K

2F1

(
1
2
(−M − N + 2),

1
2
(M − N + 2); 1; e−4K

)
(29)

−1
2

e−4K(M − N + 2) 2F1

(
1
2
(−M − N + 2),

1
2
(M − N + 4); 2; e−4K

)
+

1
2

e−4K(M + N − 2) 2F1

(
1
2
(−M − N + 4),

1
2
(M − N + 2); 2; e−4K

)]
.

(iii) For the antiperiodic boundary conditions:

Z(anti)(N, K, M) = eK(N−6)
[

2
(

e4K − 1
)

2F1

(
1
2
(−M − N + 2),

1
2
(M − N + 2); 1; e−4K

)
+N 2F1

(
1
2
(−M − N + 2),

1
2
(M − N + 2); 2; e−4K

)]
. (30)

(iv) For the model with a defect bond :

Z(db)
C (N, K, Ka, M) =

[√
2 sinh(2K)

]N{[
eKa−K − sinh(Ka + K)

sinh(2K)

]
D
(

N, M; e−4K
)

+
1
2

eK−Ka

[
e2Ka − e−2K

sinh(2K)

]
I(N, M, e−4K)

}
, (31)

where

I(N, M, z) :=
4
π

∫ π/2

0
cos(Mx) TN

(
cos(x)√

1 − z

)
dx (32)

and

D(N, M; z) =
4
π

∫ π/2

0
cos(Mx)

cos(x)√
1 − z

UN−1

(
cos(x)√

1 − z

)
dx (33)

are defined in terms of the Chebyshev polynomials of the first TN(y) and second UN(y)
kinds, respectively. As shown in [63,65], the above integrals can be expressed in terms of
the Gauss hypergeometric functions. The results are

I(N, M, z) = Nz(1 − z)−N/2
2F1

(
1
2
(M − N + 2),

1
2
(−M − N + 2); 2, z

)
(34)

and

D(N, M, z) = (1 − z)−N/2z
{

N 2F1

(
1
2
(M − N + 2),

1
2
(−M − N + 2); 2, z

)
+

2(z−1 − 1) 2F1

(
1
2
(M − N + 2),

1
2
(−M − N + 2); 1, z

)}
. (35)

From Equation (26), if we write M = mN and focus on the case where N ≫ 1, we

obtain the fluctuation-induced Helmholtz force F(per)
H (K, m, N). Multiplying the result for

F(ζ)
H (K, m, N) by N provides us with the function X(ζ)

H (K, m|N),

X(ζ)
H (K, m|N) = NF(ζ)

H (K, m, N). (36)

For the scaling behavior of X(ζ)
H (K, m|N) close to T = 0 in terms of xt = 2Ne−2K, i.e., of the

scaling combination N/ξt, with ξt as the correlation length [111] in the vicinity of the zero
temperature critical point, we have the following:
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(i) In the case of periodic boundary conditions:

X(per)
H (xt, m) = −1

2

√
1 − m2xt +

xt I0

(
1
2 xt

√
1 − m2

)
2
√

1 − m2 I1

(
1
2 xt

√
1 − m2

) − 1 + m2

1 − m2 (37)

where I0 and I1 are the modified Bessel functions.
The behavior is shown in Figure 5 for m = 0.1 and for N = 100, 200, 300, 400, and

N = 500. Focusing on the scaling regime (i.e., K and N are both large compared to 1). we
end up with the N-independent scaling function X(per)(xt, m). Figure 6 shows the behavior
of this quantity as a function of xt for m = 0.1.

Figure 5. Behavior of the function X(per)
H (K, m|N) (see Equation (36)) with N = 100, 200, 300, 400, and

N = 500. It can be observed that the function is positive for large and sufficiently small values of K,
while being negative for relatively moderate values of K irrespective of the value of N. The larger the
value of N, the stronger the repulsion for a small enough K; in the latter regime, the force is strongly
repulsive irrespective of the value of N.

Figure 6. Behavior of the scaling function X(per)
H (xt, m) for m = 0.1. Inspection of the results obtained

numerically from Equation (29) with N = 100, 200, 300, 400, and N = 500 along with those from
Equation (37) demonstrate perfect scaling and agreement. It can be observed that the function is
positive for large values of xt, negative for relatively moderate values of xt, and again strongly repulsive
for small values of xt.
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We can compare the above results with those for the Casimir force under the same
boundary condition (see Figures 7 and 8). For the Casimir force, with xh = N/ξh = 2Nh
we have

βF(per)
Cas (N, K, h) =

1
N

X(per)
Cas (xt, xh), where X(per)

Cas (xt, xh) = −
√

x2
h + x2

t

exp
[
−
√

x2
h + x2

t

]
1 + exp

[
−
√

x2
h + x2

t

] . (38)

As can be seen, contrary to the Helmholtz force, the Casimir force preserves its negative
sign under periodic boundary conditions for all values of xt and xh.

-0.25
-0.20
-0.15
-0.10
-0.05
0

Figure 7. Relief plot of the scaling function X(per)
Cas (xt, xh) < 0 for PBC (see Equation (38)). The

function is always negative, corresponding to an attractive force symmetric about h = 0.

0

0.5

1.0

1.5

Figure 8. The figure shows the behavior of the function X(per)
H (xt, m) for PBC; see Equation (37).

(ii) In the case of antiperiodic boundary conditions:
For the Helmholtz force, the corresponding result is

X(anti)
H (xt, m) =

1
2

xt I1

(√
1 − m2xt

)
√

1 − m2 I0

(√
1 − m2xt

) − 1
2

√
1 − m2xt, (39)

while for the Casimir force we have

βF(anti)
Cas (N, K, h) =

1
N

X(anti)
Cas (xt, xh), where X(anti)

Cas (xt, xh) =
√

x2
h + x2

t

exp
[
−
√

x2
h + x2

t

]
1 − exp

[√
x2

h + x2
t

] > 0. (40)

Again, contrary to the Helmholtz force, the Casimir force preserves its positive sign
under antiperiodic boundary conditions for all values of xt and xh. A detailed comparison
is shown in Figures 9 and 10.
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0
0.2
0.4
0.6
0.8
1.0

Figure 9. Relief plot of the scaling function X(anti)
Cas (xt, m) > 0 for ABC (see Equation (40)). Contrary

to the periodic case, the force, is always repulsive.

-0.5
0
0.5
1.0
1.5
2.0

Figure 10. The figure shows the behavior of X(anti)
H (xt, m) for ABC; see Equation (39).

(iii) In the case of Dirichlet–Dirichlet boundary conditions:
For the Helmholtz force, the result is

X(D)
H (xt, m) = (41)[(
1 − m2)(1 −

√
1 − m2

)
xt − 2

(
m2 + 1

)]
I1

(
1
2

√
1 − m2xt

)
+ xt

(
1 −

(
1 − m2)3/2

)√
1 − m2 I0

(
1
2

√
1 − m2xt

)
2(1 − m2)

[
I1

(
1
2

√
1 − m2xt

)
+
√

1 − m2 I0

(
1
2

√
1 − m2xt

)] ,

while for the Casimir force we derive

X(D)
Cas (xt, xh) = −

√
x2

h + x2
t

r(xt, xh) exp
(√

x2
h + x2

t

)
+ 1

, where r(xt, xh) =

√
x2

h + x2
t + xt√

x2
h + x2

t − xt

. (42)

The comparison between the corresponding scaling functions is shown in Figures 11 and 12.
We conclude that the Helmholtz force under Dirichlet–Dirichlet boundary conditions shows
behavior remarkably different from that of the Casimir force, which is always attractive for
the same boundary conditions.

-0.25

-0.20

-0.15

-0.10

-0.05

0.

Figure 11. Behavior of the scaling function X(D)
Cas (xt, xh) of the Casimir force as a function of the

scaling variables xt and xh. It can be observed that the function is negative for all values of xt and xh.
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0

2

4

6

8

Figure 12. Behavior of the function X(D)
H (xt, m). One observes that the force can be both attractive

and repulsive depending on the values of xt and m.

(iv) Ising chain with a defect bond:
For the Helmholtz force, the corresponding result is somewhat cumbersome:

X(db)
H (xt, m) = −1

2

√
1 − m2 xt+ (43)

xt

1
4 eKa

[
I0

(
1
2

√
1 − m2xt

)
+ I2

(
1
2

√
1 − m2xt

)]
+ 1

2 e−Ka
√

1 − m2 I1

(
1
2

√
1 − m2xt

)
e−Ka I0

(
1
2

√
1 − m2xt

)
+ eKa I1

(
1
2

√
1 − m2xt

)
/
√

1 − m2

+ m2
2
[(

m2 − 1
)

xt + 2
]
I1

(
1
2

√
1 − m2xt

)
−
√

1 − m2xt I2

(
1
2

√
1 − m2xt

)
−
√

1 − m2xt I0

(
1
2

√
1 − m2xt

)
4(m2 − 1)

[
I1

(
1
2

√
1 − m2xt

)
+
√

1 − m2 I0

(
1
2

√
1 − m2xt

)] .

For the scaling function of the Casimir force XCas(xt, xa, xh), in this case we have

βF(db)
Cas (N, K, h) =

1
N

X(db)
Cas (xt, Ka, xh) with X(db)

Cas (xt, Ka, xh) = −

√
x2

h + x2
t

r(xt, Ka, xh) exp
(√

x2
h + x2

t

)
+ 1

, (44)

where

r(xt, Ka, xh) =

√
x2

h + x2
t + xt exp(−2Ka)√

x2
h + x2

t − xt exp(−2Ka)
. (45)

Obviously, if r(xt, Ka, xh) > 0, then we have XCas(xt, Ka, xh) < 0; furthermore, XCas(xt, Ka, xh)
decays exponentially when x2

h + x2
t ≫ 1.

A comparison of the behavior of the Helmholtz and Casimir forces for this particular
case is shown in Figures 13 and 14. It can be observed that in this case the Casimir force
can also change sign; this happens for negative values of Ka, i.e., in the case where there are
competing interactions within the chain.

0.2

0.4

0.6

0.8

1.0

Figure 13. Behavior of the scaling function X(db)
Cas (xt, xh) of the Casimir force as a function of the

scaling variables xt and xh. It can be observed that the function changes sign for a negative Ka = −3
depending on the values of xt and xh.



Entropy 2024, 26, 499 17 of 28

0

2

4

6

8

Figure 14. Behavior of the scaling function X(db)
H (xt, m) of the Helmholtz force. It can be observed

that the force can be both attractive and repulsive depending on the values of xt and m.

On the Connection between the Canonical and Grand Canonical Partition Functions

In the section, we briefly demonstrate that in the canonical ensemble the system
possesses much more profound finite-size corrections with respect to the bulk behavior. For
this, we use the the simplest case involving periodic boundary conditions as our example.

In the canonical ensemble, the partition function ZCE(N, β, M) can be written in the
following form:

ZCE(N, β, M) = ∑
{sr}

exp [−βH({sr})]δ
(

∑
r

sr − M

)
. (46)

Starting from Equation (46) and using the identity

δ(s) =
1

2π

∫ ∞

−∞
exp[i s x]dx, (47)

we consequently obtain

ZCE(N, β, M) =
1

2π

∫ ∞

−∞
dx ∑

{sr}
exp

[
−βH({sr}) + ix

(
∑

r
sr − M

)]

=
1

2π

∫ ∞

−∞
dx exp[−i M x] ∑

{sr}
exp

[
−βH({sr}) + ix ∑

r
sr

]

=
1

2π

∫ ∞

−∞
dx exp[−i M x] ZGCE(N, β, i x). (48)

Thus,

ZCE(N, β, M) =
1

2π

∫ ∞

−∞
dx exp[−i M x] ZGCE(N, β, i x). (49)

Using the definitions of the Gibbs free energy density f (β, h, N)

ZGCE(N, β, h) ≡ exp[−Nβ f (N, β, h)] (50)

and Helmholtz free energy

ZCE(N, β, M) ≡ exp[−Nβa(N, β, h)], (51)

and introducing the magnetization per particle m = M/N, we can rewrite Equation (49) in
the following form:

exp[−βa(N, β, m)] =
1

2π

∫ ∞

−∞
dx exp{−N[β f (N, β, ix) + i m x]}. (52)
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For N ≫ 1, integrals of this kind can be estimated using the saddle point method (see [112,
113]), which in this case reads

∫
R

dx exp[−Ng(x)] ≃ exp[−Ng(x0)]

√
2π

Ng′′(x0)

(
1 +O(N−2)

)
; g′(x0) = 0. (53)

With the interpretation ix0 ≡ h, we obtain

exp[−Nβa(N, β, m)] ≃ exp[−N(β f (N, β, h) + mh)]

√
2π

Nβχ(N, β, h)

(
1 +O(N−2)

)
, (54)

where the extreme condition

∂

∂x
[β f (N, β, i x) + i mx] = i [m +

∂

∂h
[β f (N, β, h)] = 0 (55)

leads to the standard statistical–mechanical relation m = −∂[β f (N, β, h)]/∂h and χ(N, β, h) ≡
−∂2 f /∂h2 is the susceptibility of the finite system in the grand canonical ensemble. Obvi-
ously, Equation (54) can be rewritten as

βa(N, β, m) = β f (N, β, h) + mh − 1
2N

ln
2π

Nβχ(N, β, h)
. (56)

Equation (56) implies that the leading finite-size corrections in the Helmholtz free
energy are on the order of ln N/N. These are much stronger than for the Gibbs free energy,
for which they are well known to be exponentially small in N away from the critical
temperature [57,59].

Taking the limits limN→∞ f (N, β, h) = fb(β, h) and limN→∞ a(N, β, m) = ab(β, m) on
the right-hand side of Equation (56), we arrive at the Legendre transformation between the
two ensembles, as known from standard thermodynamics:

ab(β, m) = fb(β, h) + hm. (57)

Note that the relation provided by Equation (49) can be inverted, which leads to

ZGCE(N, β, iy) =
∫ ∞

−∞
dM exp[i M y] ZCE(N, β, M), (58)

or with h = iy, to the self-explained relation

ZGCE(N, β, h) =
∫ ∞

−∞
dM exp[h M] ZCE(N, β, M) =

∫ N

−N
dM exp[h M] ZCE(N, β, M), (59)

where we have taken into account that |M| ≤ N. As Equation (59) implies, the partition
functions ZGCE(N, β, h) and ZCE(N, β, M) are mutually related through an integral trans-
formation; however, their finite-size behavior is different. Because of this, it is reasonable
to expect (as turns out to be the case for the Ising model) that, for a given ensemble, the FIF
are strongly ensemble-dependent.

6. Concluding Comments and Discussion

The interest in fluctuation-induced phenomena has blossomed in recent years due
to their importance in the rapidly developing field of nanotechnology, where the van
der Waals force (vdWF) and QED CF play a dominant role between neutral nonmagnetic
objects below a micrometer distances. The implies that these forces play a key role in
micro- and nanoelectromechanical systems (MEMS/NEMS) [114–116] operating at such
distances. In vacuum or gas medium, they lead to irreversible and usually undesirable
phenomena such as stiction (i.e., irreversible adhesion) and pull-in due to mechanical
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instabilities [117–119]. Indeed, being negligible at macroscopic distances, the Casimir force
can become impressively strong at the micro- and nanoscales. According to Equation (2), if
two perfectly conducting parallel metal plates are facing each other at a distance on the
order of 10 nm in vacuum and at zero temperature, the attractive Casimir force per area,
i.e., the Casimir pressure, can be as large as one atmosphere! Such a large force strongly
influences the performance of micro- and nanomachines by causing stiction, in which their
moving parts stick together (de facto irreversibly) and stop working. Naturally, this affects
the design and functioning of devices at these scales. This can be considered as the first
fundamental problem of nanotechnology.

Closely related to the above is another troubling effect: when a particle’s characteristic
size is scaled down below a micrometer (say, a colloid particle), then the role of its weight
becomes negligible. As a result, when one tries to release such a neutral particle from,
say, the surface of whatever handling device used in air or vacuum, the particle will
not fall under the force of gravity, instead sticking to the surface due to the effect of the
omnipresent vdWF. If one charges the particle in an attempt to release the particle, then this
causes vibration on the part of the surface in question, meaning that the released particle
might move in an uncontrollable way, potentially even leaving the observation field of the
apparatus controlling the performance of the operation. This is the main reason why the
handling, feeding, trapping, and fixing of micro- and/or nanoparticles remains the main
bottleneck in micromanufacturing, and is far from being solved in a satisfactory fashion
[120]. This issue can be considered as the second fundamental problem of nanotechnology. It
should be noted that when the “particle” is further scaled down to the point of atomic,
molecular, or nanoparticle-scale interaction with a macrobody, one encounters the so-called
fluctuation-induced Casimir–Polder forces, where the interaction is proportional to the
polarizability of the particle [121].

Thus, formalizing the above, one of the main problems in micro- and nanoassembly is
the precise and reliable manipulation of a micro- or nanoparticles. This includes moving
the particle from some starting point where it is to be taken from to some end point where
it is to be placed. In this respect, it would seem ideal to modify the net force between the
manipulated particle and the operating device (sometimes called the gripper) in such a way
as to make it repulsive at short distances between the handling surfaces and the particle
and attractive at larger ones. It is clear that the ability to modify the Casimir interaction can
strongly influence the development of MEMS/NEMS. However, several theorems seriously
limit the possible search for repulsive QED CF [122–124]. Currently, apart from some
suggestions for achieving QED Casimir repulsion in systems that are out of equilibrium,
the only way to obtain such a repulsive force that has been well verified experimentally is
to characterize the interaction between two different materials by dielectric permittivities
ε(1) and ε(2), separated by a fluid with permittivity ε(0) [66,77,125] such that Equation (10) is
fulfilled in a sufficiently broad frequency range. In [82,126–130], QED Casimir repulsion has
already been observed experimentally for a sphere–plate geometry. In order to minimize
the potential negative effects of all possible circuitry at such small distances, along with
complications involving isolation and possible problems involving chemical reactions, it
seems that one promising strategy for overcoming the obstacles mentioned above is to
choose a fluid as a medium that possesses no free changes dissolved in it, that is inert,
and that does not interact chemically with the materials. This leads to the choice of a fluid
such as a nonpolar liquefied noble gas that has critical parameters as close as possible to
the normal ones. Such a strategy for overcoming the difficulties described above has been
suggested in [131,132].

Currently, several issues related to the QED Casimir effect remain to be resolved:

• Additional interest in the QED Casimir effect is being driven by certain theoretical pre-
dictions stemming from attempts to construct unified field theories of the fundamental
forces. According to these predictions, Newton’s gravitational law might be modified
at sub-millimeter distances. By measuring the Casimir force and comparing these
data with the predictions of theory, it could be possible to obtain, inter alia, constraints
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for the parameters characterizing Yukawa-type deviations from Newtonian gravity,
which could help to test the validity of such ideas [133–135].

• There has been speculation about possible relations of the Casimir effect to topics such
as dark matter and cosmology [28,136–139]. These relations are linked to discussions
about the physical meaning of the zero-point energy of quantum fields, the cosmo-
logical constant problem, and the physical interpretation of the Casimir effect. There
is a considerable body of literature dealing with the physical source of the Casimir
force. An extensive discussion of this issue can be found in [7,13], and more recently
in [28,28,137,138,140].

• It has been suggested [141,142] that hypothetical chameleon interactions, which might
explain the mechanisms behind dark energy, might be detected through high-precision
force measurements. In [142,143], the authors proposed the design, fabrication, and
characterization of such a force sensor for chameleon and Casimir force experiments
using a parallel-plate configuration. The idea is to measure the total force between two
parallel plates as a function of the density of a neutral gas allowed into the cavity. As
the density of the gas increases, the mass of the chameleon field in the cavity increases,
giving rise to a screening effect of the chameleon interaction.

• Regarding the description of the dielectric properties, especially for the thermal contri-
bution to the Casimir effect, there has been discussion of this topic over the course of
more than two decades [144]. We would just mention that the disagreement between
theoretical predictions and precise experimental results has placed the focus on the
proper account of dissipation in the description of the material optical response; in sev-
eral experiments on the QED effect between metallic objects, a simple non-dissipative
model has provided the best description. The same experiments appear to exclude the
account of dissipation provided by the commonly used Drude model [95,145,146]. An
additional issue involves the description of the role of free electrons in semiconduc-
tors [147], where attempts to date have not reached a unanimous consensus.

As far as the thermodynamic Casimir effect has been investigated within the frame-
work of statistical mechanics, most results belong to classical systems in the grand canonical
ensemble. It is expected that in the future there will be attempts to extend these results to
dynamical systems, quantum systems (including systems with different types of quenches),
systems described by other (say) canonical or micro-canonical ensembles, and systems
exhibiting disorder and topological phase transitions as well as their combination. With
regard to the example of the Ising model, we have outlined the grand canonical ensemble
in Section 4.1. We have also pointed out that it is possible to consider ensemble-dependent
fluctuation-induced forces; for example, we have outlined the canonical ensemble in
Section 4.3 and the definition of the corresponding fluctuation-induced force in Section 4.4.
There, following [62–65], we have shown that these forces have behaviors that are quite
different from that of the Casimir force under the same boundary conditions and under
the same geometry (see Figures 5, 6, 8, 10, 12, and 14). We would note that all of the
issues studied for the Casimir forces are objects of investigation in, say, canonical or micro
canonical ensembles as well.

In order to avoid providing the incorrect impression that the FIFs considered in this
short review are the only ones, we briefly mention a few other FIFs which, due to space
limitations, we were not able to provide further details on:

(i) For fluctuation-induced forces related to charge fluctuations, see [148–155].
(ii) For fluctuation-induced forces between objects on a fluctuating membrane or on

fluid interfaces, see [156–162].
(iii) For the phonon Casimir effect due to phonon-mediated interaction between

defects in condensed matter systems, see [163,164].
(iv) There is also a so-called non-equilibrium thermodynamic (hydrodynamic) Casimir-

like effect, where correlations in fluids in nonequilibrium or nonequilibrium steady states
are of importance; for this, see [165–172].

(v) Fluctuation-induced Casimir forces in granular fluids have been reported in [173].
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(vi) In nematic liquid crystals, the fluctuations of the nematic director are responsible
for the long-range nature of the corresponding Casimir force [98,174–180].

(vii) Studies of the Casimir effect in active matter systems include [172,181–185].
(viii) When the boundary conditions are time-dependent, the change in the vacuum

energy leads to the so-called dynamical Casimir effect; see [39,39–46].
It it worth mentioning that the bodies A and B discussed above can also be in motion

with respect to the medium C or to each other; these options generate a plethora of possible
FIFs. In addition, because FIFs depend on the geometry of the system, there is abundance
of geometry-dependent phenomena.

We close this list of references by pointing to the earliest consideration of FIF that we
are aware of, that of Einstein [186]; as early as 1907, he considered voltage fluctuations in
capacitor systems due to a nonzero temperature T. Similar effects are known to occur in
wires [187,188]. For example, the famous Johnson–Nyquist formula describes the depen-
dence of the mean square noise current ⟨I2⟩ on the resistivity R and temperature T of a
resistor according to ⟨I2⟩ = 4kB T∆ f /R, where ∆ f is the measurement bandwidth. Such
fluctuations lead to forces which are of serious interest in the operation of electromechanical
devices [189] downscaled to the micro- or nanoscale level.

Finally, we finish this short review by noting that FIFs are not only a topic of interest
for academic investigations; for both the QED Casimir effect (for which the first practical
applications are currently under discussion; see, e.g., [34,37,54,55,190–195] and references
therein) and the CCE (see, e.g., refs. [196–206]), a number of applications have already
been considered. We specifically mention [207], which describes how to use the CCF to
manipulate the position and orientation of nanoparticles.
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FIF Fluctuation-Induced Force
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