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Abstract: Many semiparametric spatial autoregressive (SSAR) models have been used to analyze
spatial data in a variety of applications; however, it is a common phenomenon that heteroscedasticity
often occurs in spatial data analysis. Therefore, when considering SSAR models in this paper, it is
allowed that the variance parameters of the models can depend on the explanatory variable, and
these are called heterogeneous semiparametric spatial autoregressive models. In order to estimate the
model parameters, a Bayesian estimation method is proposed for heterogeneous SSAR models based
on B-spline approximations of the nonparametric function. Then, we develop an efficient Markov
chain Monte Carlo sampling algorithm on the basis of the Gibbs sampler and Metropolis–Hastings
algorithm that can be used to generate posterior samples from posterior distributions and perform
posterior inference. Finally, some simulation studies and real data analysis of Boston housing data
have demonstrated the excellent performance of the proposed Bayesian method.

Keywords: heterogeneous semiparametric spatial autoregressive models; Bayesian estimate; Gibbs
sampler; Metropolis–Hastings algorithm; B-spline

1. Introduction

In recent decades, spatial data analysis based on spatial autoregressive (SAR) models
has become a very important and popular research direction in the academic research of
econometricians and statisticians. Among them, in-depth research has been conducted on
inference theories and methods based on linear SAR models and their extensions, including
estimation, variable selection, hypothesis testing, etc., and a large amount of literature has
also been produced, such as [1–3]. Specifically, there are many in-depth research achieve-
ments on linear SAR models, such as [4–7]. However, in spatial data analysis, there is often
a nonlinear relationship between response variables and covariates. Therefore, in order to
explore this complex phenomenon, some semiparametric SAR models have been proposed
in recent years and have been thoroughly studied. For example, based on partially linear
spatial autoregressive models, Su and Jin [8] proposed a profile quasi-maximum likelihood
estimation method and established asymptotic theoretical properties of the obtained esti-
mators. By using the spline approximations and instrumental variables estimation method,
Du et al. [9] developed an estimation method for partially linear additive spatial autoregres-
sive models, and derived asymptotic theoretical properties of the obtained estimators. For
partially linear single-index spatial autoregressive models, Cheng and Chen [10] developed
an estimation method and established consistency and asymptotic normality of the estima-
tors under some mild assumptions. Other related research results on semiparametric SAR
models can also be found in [11] [12]. Previous research on various spatial autoregressive
models was mainly based on the assumption of homoscedasticity, which assumes that the
variance of model errors is constant. As is well known, heteroscedasticity is a common
phenomenon in spatial data analysis. Therefore, using statistical inference methods un-
der the assumption of homogeneity may lead to erroneous inference, as seen in Lin and
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Lee [13]. Therefore, it is necessary to study heterogeneous spatial autoregressive models.
Especially in recent years, many researchers have conducted in-depth research on spatial
autoregressive models where the error variance is heteroscedasticity. For example, SAR
models with heteroscedasticity was studied by Dai et al. [14] for Bayesian local influence
analysis. However, existing literature on heterogeneous spatial autoregressive models
assume that the variance term is fixed and does not perform regression modeling analysis
like the mean. In addition, in many application fields, such as econometrics, the assumption
of equal variance may not be suitable for modeling data that exhibit heteroscedasticity.
Therefore, we propose a new model, called a heterogeneous semiparametric spatial au-
toregressive model, in which the variance parameters are allowed to be modeled by using
some covariates.

In addition, many estimation methods have recently been developed for SAR models
from both frequentist and Bayesian perspectives. Specifically, due to the rapid development
of advanced computing technology in the era of big data, Bayesian statistical analysis of
SAR models and various other statistical models has received increasing attention, and
large quantities of related research achievements have emerged in recent years. For ex-
ample, within the framework of longitudinal data and for the generalized partial linear
mixed models, Tang and Duan [15] studied an effective semiparametric Bayesian method.
By using spline approximation, Xu and Zhang [16] introduced a Bayesian method for the
partially linear model with heteroscedasticity based on the variance modelling technique.
Based on the assumption that the response variables and random effects follow multivariate
skew-normal distributions, a new spatial dynamic panel data model was proposed by
Ju et al. [17] and a Bayesian local influence analysis method was developed to simul-
taneously evaluate the impact of small perturbations on the data, priors, and sampling
distributions. Pfarrhofer and Piribauer [18] studied Bayesian variable selection for high-
dimensional spatial autoregressive models based on two shrinkage priors. Wang and
Tang [19] made Bayesian statistical inference based on a quantile regression model with
nonignorable missing covariates. To capture the linear and nonlinear relationships between
explanatory variables and their responses to spatially relevant data, Chen and Chen [20]
developed a Bayesian sampling-based method based on the partially linear single-index
spatial autoregressive models, in which it includes an efficient MCMC approach and ex-
plores the joint posterior distributions by using a Gibbs sampler. Within the framework
of longitudinal data, Zhang et al. [21] proposed semiparametric mixed-effects double
regression models for analysis based on spline approximation technology, in which they
jointly modeled the mean and variance of the mixed-effects as a function of covariates. To
our knowledge, there is not much work on semiparametric Bayesian methods for hetero-
geneous spatial autoregressive models due to their complex spatial correlation structures.
Therefore, based on a hybrid effective algorithm that combines a Gibbs sampler and the
Metropolis–Hastings algorithm and has the advantages of both algorithms, this paper de-
velops a Bayesian method for heterogeneous semiparametric spatial autoregressive models
based on variance modeling.

The outline of the paper is as follows. A new heterogeneous SSAR model is introduced
in Section 2. In Section 3, we derive the full conditional distributions for implementing the
sampling-based method, and develop a Bayesian method to obtain estimates by using a
Gibbs sampler and the Metropolis–Hastings algorithm. Section 4 presents some simulation
studies to illustrate the proposed methodology. As an application example, Section 5
analyzes the Boston house price data by using the proposed method. A brief conclusion
and discussion is given in Section 6.

2. Heterogeneous Semiparametric Spatial Autoregressive Models

As is well known, the form of classical semiparametric spatial autoregressive models
is as follows:

Y = ρWY + Xβ + g(U) + ε, (1)
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where Y = (y1, y2, · · · , yn)T is an n-dimensional response variable, |ρ| < 1 is an unknown
spatial lag parameter that reflects spatial autocorrelation between neighbors, and W is
a known spatial weight matrix with zero diagonal elements. In the mean model, X =
(x1, x2, · · · , xn)T is an n × p explanatory variable matrix where the ith row is
xT

i = (xi1, · · · , xip) and β = (β1, · · · , βp)T is a p-dimensional unknown regression co-
efficient to be estimated; moreover, g(·) is an arbitrary unknown smooth function in the
mean model, which needs to be estimated; U = (u1, u2, · · · , un)T is an n-dimensional vec-
tor whose ith row ui is an univariate observed covariate; ε is an n-dimensional vector that
represents the regression errors of an independent and identically distributed regression
disturbances with zero mean and finite variance σ2.

In addition, according to Xu and Zhang [16], this paper considers the heterogene-
ity of the variance in the model and assumes that the variance parameters are related
to other explanatory variables; thus, we establish a regression model for the variance
parameters, namely

σ2
i = h(zT

i γ), (2)

where zT
i = (zi1, · · · , ziq) is an explanatory variable vector related to the variance of εi

and γ = (γ1, · · · , γq)T is a q-dimensional unknown regression coefficient to be estimated
in the variance model. Some elements in zi may coincide with some elements in xi. In
addition, for the identifiability of the models and considering that the variance is positive,
h(·) is a known monotonic positive function. For example, exponential functions are often
used to model the variance. So, heterogeneous SSAR models are considered in this paper
as follows: 

Y = ρWY + Xβ + g(U) + ε,
ε ∼ N(0, Σ),
Σ = diag(σ2

1 , σ2
2 , · · · , σ2

n)
σ2

i = exp(zT
i γ),

i = 1, 2, · · · , n.

(3)

3. Bayesian Inference
3.1. B-Splines for the Nonparametric Function

From model (3), we obtain the log-likelihood function

ℓn(ρ, β, γ|Y, X, Z, U) = −n
2

ln(2π)− 1
2

n

∑
i=1

zT
i γ + ln|A| − 1

2
eTΣ−1e, (4)

where e = AY − Xβ − g(U), A = In − ρW, and In is an (n × n) identity matrix.
There are now a large number of nonparametric techniques for handling nonpara-

metric functions g(·) in (3), such as the smoothing splines and the kernel methods. This
paper considers B-spline approximation to transform g(·) into a linear function com-
posed of a set of basis functions. It can be summarized as follows: {si}, i = 1, · · · , n
performs a partition on the interval [0, 1], which is called as the internal knots and satisfies
0 = s0 < s1 < · · · < skn < skn+1 = 1. This results in K = Kn + l normalized B-spline basis
functions of order l, which form the basis of a linear spline space. The main reason for using
B-splines here is because they have advantages such as bounded support and numerical
stability. As well as we know, selection of knots is usually an important aspect that cannot
be ignored in the implementation process of B-splines. In this paper, our main focus is infer-
ence on the parameters in the mean model and the variance model. Therefore, by following
the idea of Zhang et al. [21], the number of internal knots is selected as the integer part of
n1/5. Thus, πT(u)α is used to approximate g(u), in which π(u) = (B1(u), ..., BK(u))T is a
basis function vector and α ∈ RK. In this way, we can linearize the nonparametric function
g(·) in (3) as follows:

g(ui) ≈ πT(ui)α. (5)

Thus, based on (5), we can rewritten the likelihood function (4) as follows:



Entropy 2024, 26, 498 4 of 17

ℓn(ρ, β, γ|Y, X, Z, U) = −n
2

ln(2π)− 1
2

n

∑
i=1

zT
i γ + ln|A| − 1

2
(AY − Xβ − Bα)TΣ−1(AY − Xβ − Bα), (6)

where B = (π(u1), π(u2), · · · , π(un))T .

3.2. Prior Selection of Parameters

This paper will use a Bayesian approach to estimate unknown parameters ρ, β, α
and γ. Thus, to obtain Bayesian estimation, the prior distributions of unknown param-
eters to be estimated in the model should be given first. For the convenience of algo-
rithm implementation, normal prior distributions are often chosen as β ∼ N(β0, bβ),
α ∼ N(α0, τ2 IK),γ ∼ N(γ0, Bγ), and ρ ∼ U(−1, 1), in which β0, α0, γ0 and bβ, Bγ are
known hyperparameter vectors or matrices. Moreover, the prior distribution of τ2 is the
IG(aτ , bτ), and its density function is

p(τ2|aτ , bτ) ∝ (τ2)−aτ−1 exp
(
−bτ/τ2

)
,

in which aτ and bτ are assumed to be positive constants and known. In this paper, we
mainly focus on the case where the prior distribution of model parameters is a normal
distribution. However, the proposed computational algorithm is also applicable to other
specific prior distributions.

3.3. Posterior Inference

Let θ = (β, α, γ, ρ) and then we aim to estimate the unknown parameters of θ. Based
on the proposed model (3) and Gibbs sampling, the specific sampling process is car-
ried out according to the following steps by sampling from joint posterior distribution
p(θ|Y, X, Z, U).

Step 1. The initial values of parameters are set as θ(0) = (β(0), α(0), γ(0), ρ(0)).
Step 2. Compute Σ(l) = diag{exp(zT

i γ(l))} and A(l) = In − ρ(l)W on the basis of
θ(l) = (β(l), α(l), γ(l), ρ(l)).

Step 3. Based on θ(l) = (β(l), α(l), γ(l), ρ(l)), sample θ(l+1) = (β(l+l), α(l+1), γ(l+l), ρ(l+l))
as follows:

• Sampling τ2(l+1) from the conditional distribution below:

p(τ2|α(l)) ∝ (τ2)−
K
2 −aτ−1 exp

{
− (α(l) − α0)

T(α(l) − α0) + 2bτ

2τ2

}
. (7)

• Sampling α(l+1) from the conditional distribution below:

p(α|Y, X, Z, U, γ(l), ρ(l)) ∼ N(µ̃α, Σ̃α), (8)

where µ̃α = Σ̃α(τ−2(l+1) IKα0 + BTΣ(l)−1
(A(l)Y − Xβ(l))) and Σ̃α = (τ−2(l+1) IK +

BTΣ(l)−1
B)−1.

• Sampling β(l+1) from the conditional distribution below:

p(β|Y, X, Z, U, α(l+1), γ(l), ρ(l)) ∼ N(µ̃β, Σ̃β), (9)

where µ̃β = Σ̃β(b−1
β β0 + XTΣ(l)−1

(A(l)Y − Bα(l+1))) and Σ̃β = (b−1
β + XTΣ(l)−1

X)−1.

• Sampling γ(l+1) from the conditional distribution below:

p(γ|Y, X, Z, U, β(l+1), α(l+1), ρ(l)) ∝ |Σ|− 1
2 exp{− 1

2 e(l,l+1),TΣ−1e(l,l+1)

− 1
2 (γ − γ0)

T B−1
γ (γ − γ0)}.

(10)
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where e(l,l+1) = A(l)Y − Xβ(l+1) − Bα(l+1).

• Sampling ρ(l+1) from the conditional distribution below:

p(ρ|Y, X, Z, U, β(l+1), α(l+1), γ(l+1)) ∝ |A| exp
{
−1

2
e(l+1)TΣ(l+1)−1

e(l+1)
}

. (11)

where e(l+1) = A(l+1)Y − Xβ(l+1) − Bα(l+1).

Step 4. Repeating Steps 2 and 3.
According to the steps of the above algorithm, we can easily obtain the sample se-

quences (β(t), α(t), γ(t), ρ(t)), t = 1, 2, · · · . It is easy to find that the fully conditional dis-
tributions p(τ2|α(l)), p(β|Y, X, Z, U, α(l), γ(l), ρ(l)) and p(α|Y, X, Z, U, β(l+1), γ(l), ρ(l)) are
Inverse Gamma and normal distributions, respectively, and extracting observations from
these familiar standard distributions is fast and easy. Unfortunately, fully conditional
distributions p(γ|Y, X, Z, U, β(l+1), α(l+1), ρ(l)) and p(ρ|Y, X, Z, U, β(l+1), α(l+1), γ(l+1)) are
nonstandard distributions and appear quite complex, making it quite difficult to extract
random numbers from these conditional distributions. To solve the problem of difficult
sampling of these posterior distributions, the Metropolis–Hastings algorithm is used. In
order to sample from (10) by Metropolis–Hastings algorithm, the normal distribution
N(0, σ2

γΩ−1
γ ) is chosen as the proposal distribution, in which we should choose a suitable

σ2
γ so that the average acceptance rate is approximately between 0.25 and 0.45 (Gelman et

al. [22]), and take

Ωγ =
1
2

n

∑
i=1

e2
i

exp{zT
i γ}

zizT
i + B−1

γ .

The process of implementing the Metropolis–Hastings algorithm is as follows: assuming
that the current value is γ(l) at the (l + 1)th iteration, we should generate a new candi-
date value γ∗ from N(γ(l), σ2

γΩ−1
γ ) and then decide whether to accept it based on the

following probability:

min

{
1,

p(γ∗|Y, X, Z, U, β(l+1), α(l+1), ρ(l))

p(γ(l)|Y, X, Z, U, β(l+1), α(l+1), ρ(l))

}
.

In addition, according to [18], the Bayesian estimate of ρ is obtained based on a Metropolis-
within-Gibbs step and by using sampling observations from (11).

Based on the observation results generated by the above calculation algorithm, the
Bayesian estimation of the unknown parameter (β, α, γ, ρ) can be obtained. Specifically, it
is assumed that the observation value {(β(j), α(j), γ(j), ρ(j)) : j = 1, 2, · · · , J} of (β, α, γ, ρ)
generated from the joint conditional distribution p(β, α, γ, ρ|Y, X, Z, U) is obtained by using
the hybrid algorithm proposed earlier. Then define Bayesian estimators of the unknown
parameters (β, α, γ, ρ) as follows:

β̂ =
1
J

J

∑
j=1

β(j), α̂ =
1
J

J

∑
j=1

α(j), γ̂ =
1
J

J

∑
j=1

γ(j), ρ̂ =
1
J

J

∑
j=1

ρ(j).

Similar to Geyer [23], it is not difficult to prove that (β̂, α̂, γ̂, ρ̂) are consistent estimates of
their corresponding posterior means. In addition, we use the “leave-one-out” technique
to obtain Bayesian estimates of posterior covariance matrices. For example, the specific
formula of the estimator for Var(β|θβ− , Y, X, Z, U) can be expressed as follows:

V̂ar(β|θβ− , Y, X, Z, U) = (J − 1)−1
J

∑
j=1

(β(j) − β̂)(β(j) − β̂)T ,
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in which θβ− denotes the parameter θ excluding β. A similar approach can be used to obtain
the estimators of Var(α|θα− , Y, X, Z, U), Var(ρ|θρ− , Y, X, Z, U), and Var(γ|θγ− , Y, X, Z, U).

4. Simulation Study

This section conducts a simulation study to evaluate the performance of the pro-
posed Bayesian method under different sample sizes, spatial parameter values, and prior
information selections. According to Lee [24] and Xie et al. [7], let n = R × m and
W = IR ⊗ Hm be the weight matrix, in which ⊗ represents the Kronecker product and
Hm = (lmlT

m − Im)/(m − 1), lm is an m-dimensional vector with all component elements
being 1. In order to investigate whether the proposed Bayesian estimation method is
sensitive to the selection of prior distributions, we consider three hyperparameter values in
the prior distributions of unknown parameters β, α, γ, ρ:

Case I: β0 = (1,−0.5, 0.5)T , bβ = 0.25 × I3, γ0 = (1,−0.5, 0.5)T , Bγ = 0.25 × I3,
α0 = (0, · · · , 0)T , aτ = 1, bτ = 1. This situation can be considered as having good
prior information.

Case II: β0 = (0, 0, 0)T, bβ = I3,γ0 = (0, 0, 0)T, Bγ = I3, α0 = (0, · · · , 0)T, aτ = 1, bτ = 1.
This hyperparameter situation is considered to have no prior information.

Case III: β0 = 3 × (1,−0.5, 0.5)T , bβ = 10 × I3,γ0 = 3 × (1,−0.5, 0.5)T , Bγ = 10 × I3,
α0 = (0, · · · , 0)T , aτ = 1, bτ = 1. This can be seen as a situation where the previous
information was inaccurate.

In this section, R is selected as 25, 50, 75 and m is set to 4, and thus, n is to be 100,
200, 300. Furthermore, we generate X and Z, respectively, from the multivariate normal
distribution with zero mean vector and covariance matrix Σ0 = (cij) where cij = 0.5|i−j|, i =
1, · · · , p(q), j = 1, · · · , p(q). Moreover, to reflect the different spatial dependencies between
response variables, spatial parameters ρ = −0.5, 0, 0.5 are selected to represent different
spatial dependencies; β = (1,−0.5, 0.5)T , g(ui) = 0.5 sin(2πui) where ui follows a uni-
form distribution U(0, 1),and the structure of the variance model is log(σ2

i ) = zT
i γ with

γ = (1,−0.5, 0.5)T .
Based on the various parameter setting environments and generated datasets men-

tioned above, we use the hybrid MCMC algorithm based on 100 replications to evaluate
Bayesian estimations of unknown parameters under different sample sizes. Checking
whether the MCMC sampler converges in algorithm implementation is an important thing.
Therefore, here the estimated potential scale reduction (EPSR) value is used to diagnose
whether the MCMC algorithm converges for each dataset [25]. It can be easily observed
that in all the runs we are considering, the EPSR value is very close to 1 and less than 1.1
after 3000 iterations. Therefore, after discarding the first 3000 burn-in iterations, collect
the observation results of the following J = 2000 for statistical inference. In addition, to
evaluate the performance of the nonparametric function estimation, the square root of
average square errors(RASE) are used here as the criterion for evaluation,

RASE(ĝ(u)) = E

{
1
n

n

∑
i=1

[ĝ(ui)− g(ui)]
2

} 1
2

.

The simulation results are listed in Tables 1–4. Moreover, in order to directly examine the
accuracy of the estimation of function g(u), we plot the true value of function g(u) and
its estimated curve under different cases. To save space, we only list some nonparametric
estimation curve results with different spatial parameters in Figures 1–3. Figures 1–3 depict
the real sine curve and its estimated curve based on B-spline approximation. It is easy
to observe that all estimated curves are close to the true curve, which indicates that the
estimation of g(·) using B-splines in the mean model performs well.
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Table 1. Bayesian estimation results of unknown parameters under different sample sizes and prior
information when ρ = 0.5.

Type n Para. Bias RMS SD

I

100

β1 0.0045 0.0911 0.0910

β2 0.0084 0.1004 0.1000
β3 0.0079 0.0926 0.0922
γ1 0.0053 0.1480 0.1480
γ2 0.0126 0.1459 0.1454
γ3 0.0215 0.1540 0.1524
ρ 0.0633 0.0975 0.0741

200

β1 0.0031 0.0710 0.0709
β2 0.0062 0.0674 0.0672
β3 0.0014 0.0696 0.0695
γ1 0.0252 0.1215 0.1188
γ2 0.0093 0.1294 0.1290
γ3 0.0075 0.1080 0.1078
ρ 0.0149 0.0557 0.0536

300

β1 0.0073 0.0554 0.0550
β2 0.0075 0.0568 0.0563
β3 0.0091 0.0597 0.0590
γ1 0.0049 0.0841 0.0840
γ2 0.0051 0.1074 0.1073
γ3 0.0047 0.0885 0.0884
ρ 0.0090 0.0448 0.0439

II

100

β1 0.0153 0.0987 0.0975
β2 0.0284 0.1122 0.1085
β3 0.0282 0.1083 0.1045
γ1 0.0223 0.1719 0.1704
γ2 0.0656 0.1866 0.1747
γ3 0.0540 0.1864 0.1784
ρ 0.0532 0.0979 0.0822

200

β1 0.0057 0.0685 0.0683
β2 0.0025 0.0768 0.0768
β3 0.0022 0.0727 0.0727
γ1 0.0004 0.1174 0.1174
γ2 0.0122 0.1401 0.1396
γ3 0.0008 0.1202 0.1202
ρ 0.0320 0.0622 0.0533

300

β1 0.0010 0.0658 0.0658
β2 0.0036 0.0625 0.0624
β3 0.0042 0.0593 0.0591
γ1 0.0018 0.1085 0.1085
γ2 0.0077 0.1170 0.1167
γ3 0.0083 0.0864 0.0860
ρ 0.0158 0.0439 0.0409
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Table 1. Cont.

Type n Para. Bias RMS SD

III

100

β1 0.0001 0.0994 0.0994

β2 0.0117 0.1106 0.1099
β3 0.0200 0.1073 0.1054
γ1 0.0330 0.1788 0.1758
γ2 0.0059 0.1855 0.1854
γ3 0.0218 0.1882 0.1869
ρ 0.0553 0.0986 0.0816

200

β1 0.0013 0.0686 0.0686
β2 0.0100 0.0780 0.0773
β3 0.0062 0.0731 0.0729
γ1 0.0217 0.1208 0.1189
γ2 0.0367 0.1465 0.1418
γ3 0.0135 0.1246 0.1238
ρ 0.0329 0.0624 0.0531

300

β1 0.0052 0.0663 0.0661
β2 0.0014 0.0627 0.0627
β3 0.0014 0.0593 0.0593
γ1 0.0121 0.1109 0.1102
γ2 0.0233 0.1205 0.1182
γ3 0.0160 0.0878 0.0863
ρ 0.0160 0.0440 0.0410

Table 2. Bayesian estimation results of unknown parameters under different sample sizes and prior
information when ρ = 0.

Type n Para. Bias RMS SD

I

100

β1 0.0017 0.1025 0.1025
β2 0.0065 0.1031 0.1029
β3 0.0192 0.0955 0.0936
γ1 0.0114 0.1689 0.1685
γ2 0.0089 0.1785 0.1783
γ3 0.0020 0.1573 0.1573
ρ 0.0092 0.0934 0.0929

200

β1 0.0074 0.0623 0.0618
β2 0.0002 0.0833 0.0833
β3 0.0042 0.0665 0.0663
γ1 0.0001 0.0995 0.0995
γ2 0.0050 0.1196 0.1195
γ3 0.0177 0.1082 0.1067
ρ 0.0043 0.0702 0.0701

300

β1 0.0038 0.0551 0.0549
β2 0.0093 0.0590 0.0582
β3 0.0102 0.0442 0.0430
γ1 0.0004 0.0904 0.0904
γ2 0.0061 0.1070 0.1068
γ3 0.0031 0.0977 0.0977
ρ 0.0004 0.0540 0.0540
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Table 2. Cont.

Type n Para. Bias RMS SD

II

100

β1 0.0180 0.1001 0.0985
β2 0.0027 0.1205 0.1205
β3 0.0111 0.1139 0.1134
γ1 0.0456 0.1827 0.1770
γ2 0.0596 0.2049 0.1960
γ3 0.0397 0.1852 0.1809
ρ 0.0125 0.0975 0.0967

200

β1 0.0000 0.0567 0.0567
β2 0.0041 0.0763 0.0762
β3 0.0044 0.0598 0.0597
γ1 0.0101 0.1219 0.1215
γ2 0.0028 0.1599 0.1598
γ3 0.0041 0.1352 0.1351
ρ 0.0012 0.0680 0.0680

300

β1 0.0043 0.0525 0.0523
β2 0.0004 0.0601 0.0601
β3 0.0018 0.0503 0.0503
γ1 0.0079 0.0910 0.0907
γ2 0.0019 0.1130 0.1130
γ3 0.0021 0.1001 0.1000
ρ 0.0032 0.0663 0.0662

III

100

β1 0.0016 0.0991 0.0991
β2 0.0157 0.1237 0.1227
β3 0.0013 0.1135 0.1135
γ1 0.0091 0.1838 0.1836
γ2 0.0025 0.2074 0.2074
γ3 0.0044 0.1888 0.1888
ρ 0.0117 0.0964 0.0957

200

β1 0.0070 0.0573 0.0569
β2 0.0033 0.0768 0.0767
β3 0.0003 0.0604 0.0604
γ1 0.0142 0.1229 0.1220
γ2 0.0281 0.1658 0.1634
γ3 0.0096 0.1387 0.1384
ρ 0.0017 0.0679 0.0679

300

β1 0.0002 0.0523 0.0523
β2 0.0053 0.0605 0.0603
β3 0.0044 0.0506 0.0504
γ1 0.0067 0.0923 0.0921
γ2 0.0179 0.1156 0.1142
γ3 0.0071 0.1021 0.1018
ρ 0.0035 0.0659 0.0658
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Table 3. Bayesian estimation results of unknown parameters under different sample sizes and prior
information when ρ = −0.5.

Type n Para. Bias RMS SD

I

100

β1 0.0184 0.1006 0.0989
β2 0.0087 0.1127 0.1123
β3 0.0051 0.1000 0.0999
γ1 0.0018 0.1711 0.1710
γ2 0.0183 0.1643 0.1633
γ3 0.0107 0.1699 0.1695
ρ 0.0364 0.1197 0.1141

200

β1 0.0124 0.0743 0.0733
β2 0.0184 0.0786 0.0764
β3 0.0022 0.0774 0.0773
γ1 0.0182 0.1269 0.1256
γ2 0.0091 0.1236 0.1233
γ3 0.0024 0.1247 0.1247
ρ 0.0077 0.0707 0.0703

300

β1 0.0078 0.0592 0.0587
β2 0.0067 0.0618 0.0614
β3 0.0016 0.0549 0.0549
γ1 0.0026 0.1008 0.1008
γ2 0.0074 0.1121 0.1119
γ3 0.0021 0.1044 0.1044
ρ 0.0099 0.0596 0.0r588

II

100

β1 0.0023 0.1156 0.1156
β2 0.0072 0.1083 0.1080
β3 0.0073 0.0958 0.0955
γ1 0.0519 0.1788 0.1711
γ2 0.0447 0.1885 0.1831
γ3 0.0173 0.1759 0.1751
ρ 0.0103 0.1074 0.1069

200

β1 0.0013 0.0756 0.0756
β2 0.0152 0.0888 0.0875
β3 0.0086 0.0740 0.0735
γ1 0.0296 0.1097 0.1056
γ2 0.0352 0.1359 0.1313
γ3 0.0275 0.1190 0.1158
ρ 0.0039 0.0693 0.0692

300

β1 0.0005 0.0520 0.0520
β2 0.0082 0.0668 0.0663
β3 0.0059 0.0627 0.0625
γ1 0.0224 0.1046 0.1022
γ2 0.0230 0.1092 0.1068
γ3 0.0157 0.0989 0.0977
ρ 0.0059 0.0662 0.0660
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Table 3. Cont.

Type n Para. Bias RMS SD

III

100

β1 0.0143 0.1080 0.1071
β2 0.0106 0.1198 0.1194
β3 0.0110 0.1107 0.1101
γ1 0.0032 0.1955 0.1954
γ2 0.0074 0.2199 0.2198
γ3 0.0143 0.2213 0.2208
ρ 0.0321 0.1208 0.1165

200

β1 0.0041 0.0691 0.0690
β2 0.0002 0.0824 0.0824
β3 0.0016 0.0792 0.0791
γ1 0.0116 0.1109 0.1103
γ2 0.0117 0.1396 0.1391
γ3 0.0075 0.1269 0.1267
ρ 0.0131 0.0798 0.0787

300

β1 0.0123 0.0608 0.0595
β2 0.0033 0.0655 0.0654
β3 0.0008 0.0553 0.0553
γ1 0.0055 0.0996 0.0994
γ2 0.0042 0.1384 0.1383
γ3 0.0247 0.0988 0.0956
ρ 0.0037 0.0524 0.0522

Table 4. The estimate for the nonparametric components based on RASE.

ρ n Type = I Type = I I Type = I I I

0.5
100 0.0456 0.0507 0.0490
200 0.0302 0.0381 0.0379
300 0.0230 0.0206 0.0204

0
100 0.0557 0.0616 0.0608
200 0.0356 0.0379 0.0378
300 0.0221 0.0251 0.0250

−0.5
100 0.0429 0.0630 0.0534
200 0.0342 0.0316 0.0355
300 0.0268 0.0251 0.0214
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Figure 1. When m = 4, R = 25, tpye = I, the curve plot of the estimated function and its true
values of g(u) based on different ρ’s (the corresponding spatial parameters from left to right are
ρ = 0.5, 0,−0.5).
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Figure 2. When m = 4, R = 50, tpye = I, the curve plot of the estimated function and its true
values of g(u) based on different ρ’s (the corresponding spatial parameters from left to right are
ρ = 0.5, 0,−0.5).
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Figure 3. When m = 4, R = 75, tpye = I, the curve plot of the estimated function and its true
values of g(u) based on different ρ’s (the corresponding spatial parameters from left to right are
ρ = 0.5, 0,−0.5).

In Tables 1–3, “Bias” represents the absolute difference between the true and mean
values estimated by Bayesian estimation of parameters based on 100 replicates, and “SD”
denotes standard deviation of the Bayesian estimates, while “RMS” is the root mean square
between the estimated and true values based on 100 replicates. From Tables 1–3, we can
see that (i) From the Bias, RMS and SD values of Bayesian estimation, it can be seen that
regardless of the prior information input, Bayesian estimation is quite accurate; and for
different prior distributions, the proposed estimation method performs well, indicating
that Bayesian estimation is not sensitive to prior information input. (ii) Bayesian estimation
improves as the sample size increases; (iii)The Bayesian estimation results obtained based
on different spatial parameters are similar. (iv) In the same situation, the RMS and SD
values of the mean parameters are smaller than that of the variance parameters, which
is consistent with the fact that lower order moments are easier to estimate than higher
order moments. Furthermore, from Figures 1–3, it can be seen that under the considered
parameter settings, the estimated function curve is very close to its corresponding true
curve, which is consistent with the phenomenon found in Table 4. In summary, the above
simulation research results indicate that applying the Bayesian estimation method proposed
in this paper to heterogeneous SSAR models is effective.

5. Real Data Analysis

Boston housing price data are a commonly used example, and many authors have
conducted in-depth analysis based on different statistical models, such as [26,27], and so on.
This section will also use the Bayesian estimation method proposed in this paper to analyze
these data. This dataset can be easily obtained from R’s spdep library, which includes
14 variables and 506 observations. A detailed explanation of the variables involved in the
dataset is presented in Table 5.
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Table 5. Detailed description of relevant variables involved in Boston housing data.

Related Variables Detailed Description

CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS Proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX Nitric oxide concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centres
RAD Index of accessibility to radial highways
TAX Full-value property-tax rate per $10,000
PTRATIO Pupil–teacher ratio by town
B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in USD 1000’s

In addition, following the variable selection results of Xie et al. [7], we take MEDV
as the response variable of the model (represented by Y) and the important explanatory
variables selected by Xie et al. [7] as the X- variables: CRIM (denoted by X1), ZN (denoted
by X2),NOX (denoted by X3), RM(denoted by X4), DIS (denoted by X5), RAD (denoted by
X6),TAX (denoted by X7), PTRATIO(denoted by X8), and B (denoted by X9). In order to
facilitate data modeling and analysis, all variables were centralized and the index variable
was set to u =

√
LSTAT.

In addition, the Euclidean distances calculated using longitude and latitude as [27,28]
are used to generate the space weight matrix W = (wij), where

wij = max
(

1 −
dij

d0
, 0
)

,

dij is the Euclidean distance, and d0 takes a value of 0.05 as the threshold distance. Thus,
the spatial weight matrix contains 19.1% non-zero elements. Then, here we consider the
heterogeneous SSAR model as follows:

Yi = ρ
n
∑

j=1
wijYj +

9
∑

k=1
Xikβk + g(ui) + εi,

σ2
i = exp

(
3
∑

k=1
Zikγk

)
,

i = 1, 2, · · · , 506.

(8)

where three explanatory variables Z1 = X4, Z2 = X5, Z3 = X6 are selected in the variance
model. Thus, the hybrid algorithm proposed earlier is applied to obtain Bayesian estimates
of β’s, γ’s, and ρ’s, in which a B-spline with K = 3 and noninformative prior information are
used. In order to check the convergence of the algorithm, Figure 4 shows the relationship
between the EPSR values of all unknown parameters and iterations, indicating that the
algorithm converges after approximately 3000 iterations due to the EPSR values of all
unknown parameters being less than 1.1 in approximately 3000 iterations. The Bayesian
estimates (EST) of β’s, γ’s and ρ’s and their standard deviation estimates (SD) , 95% credible
intervals (CI) are calculated. Results are given in Table 6. Figure 5 displays the Bayesian
estimate of the nonparametric function g(u), which also confirms a significant nonlinear
relationship between housing prices and the variable u. Some useful conclusions can be
obtained from the results of the table, which are basically consistent with the research
results of other authors. For example, the regression parameter corresponding to X1 in
the mean model is estimated to be negative, indicating that housing prices will decrease
as the per capita crime rate in urban areas increases. The estimated coefficient of X4 in
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the mean model is 0.3899, indicating that as the average number of rooms per dwelling
increases, housing prices will also increase. β̂5 is negative, indicating that the greater the
weighted distances to five Boston employment centres, the lower the housing price will
be. The regression parameter corresponding to X8 in the mean model is estimated to be
negative, indicating that housing prices will decrease as the pupil–teacher ratio by town
increases. The regression parameter corresponding to Z2in the variance model is estimated
to be negative, indicating that as the weighted distances to five Boston employment centres
increases, the fluctuation of housing prices will also decrease. In addition, based on the
estimation of γ, we can obtain the estimated value of σ2

i and present the scatter plot of σ̂2
i in

Figure 6, indicating that heteroscedasticity modeling for this dataset is reasonable.
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Figure 4. EPSR values for all parameters in Boston data analysis.

Table 6. Bayesian estimation results in Boston data analysis.

Parameter EST SD CI

β1 −0.1335 0.1098 (−0.3460, 0.0835)
β2 0.0386 0.0507 (−0.0614, 0.1397)
β3 −0.0839 0.0850 (−0.2541, 0.0803)
β4 0.3899 0.0931 (0.2034, 0.5633)
β5 −0.1591 0.0693 (−0.3043, −0.0305)
β6 0.2403 0.1182 (0.0122, 0.4697)
β7 −0.2143 0.0914 (−0.3908, −0.0346)
β8 −0.1288 0.0530 (−0.2366, −0.0259)
β9 0.1058 0.07521 (−0.0437, 0.2515)
γ1 0.2132 0.1602 ( −0.1234, 0.5461)
γ2 −0.3000 0.1937 ( −0.7381, 0.0715)
γ3 0.6484 0.1974 (0.2865, 1.0527)
ρ 0.1553 0.0910 (−0.0335, 0.3302)
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Figure 6. The scatter plot of σ̂2
i .

6. Conclusions and Discussion

Heteroscedasticity is a common phenomenon in spatial data modeling and analysis.
Therefore, this paper proposes heterogeneous SSAR models, where the variance parameter
is modeled as a function of the explanatory variable. Like mean regression modeling,
the variance component may also depend on various explanatory variables of interest, so
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estimating the joint models of the mean and variance becomes the basis for avoiding mod-
eling bias and reducing model complexity. Then, based on the nonparametric components
approximated by B-splines, we propose a complete Bayesian analysis of a heterogeneous
semiparametric spatial autoregressive models. Based on the Gibbs sampler and Metropolis–
Hastings algorithm, an effective MCMC sampling algorithm was developed for posterior
inference by generating posterior samples from the posterior distributions. Simulation
studies and real data analysis based on Boston housing data are used to illustrate the
proposed method. The results show that the proposed Bayesian method has high efficiency
and fast computational speed.

In addition, there are several interesting questions worth further research in the future.
For example, (i) it is interesting to consider variable selection for the parametric component
in the context of heterogeneous spatial autoregressive model; (ii) the model proposed in
the paper is also a worthwhile issue to study when there are missing response variables.
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