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Abstract: In this paper, we consider classes of decision tables with many-valued decisions closed
under operations of the removal of columns, the changing of decisions, the permutation of columns,
and the duplication of columns. We study relationships among three parameters of these tables: the
complexity of a decision table (if we consider the depth of the decision trees, then the complexity
of a decision table is the number of columns in it), the minimum complexity of a deterministic
decision tree, and the minimum complexity of a nondeterministic decision tree. We consider the
rough classification of functions characterizing relationships and enumerate all possible seven types
of relationships.

Keywords: closed classes of decision tables; deterministic decision trees; nondeterministic decision trees

1. Introduction

In this paper, we consider closed classes of decision tables with many-valued decisions
and study the relationships among three parameters of these tables: the complexity of a
decision table (if we consider the depth of decision trees, then the complexity of a decision
table is the number of columns in it), the minimum complexity of a deterministic decision
tree, and the minimum complexity of a nondeterministic decision tree.

A decision table with many-valued decisions is a rectangular table in which columns
are labeled with attributes, rows are pairwise different, and each row is labeled with a
nonempty, finite set of decisions. Rows are interpreted as tuples of values of the attributes.
For a given row, it is required to find a decision from the set of decisions attached to the row.
To this end, we can use the following queries: we can choose an attribute and ask what is
the value of this attribute in the considered row. We study two types of algorithms based
on these queries: deterministic and nondeterministic decision trees. One can interpret
nondeterministic decision trees for a decision table as a way to represent an arbitrary
system of true decision rules for this table that covers all rows. We consider in some
sense arbitrary complexity measures that characterize the time complexity of decision trees.
Among them, we distinguish so-called limited complexity measures, for example, the depth
of decision trees.

Decision tables with many-valued decisions often appear in data analysis, where
they are known as multilabel decision tables [1–3]. Moreover, decision tables with many-
valued decisions are common in such areas as combinatorial optimization, computational
geometry, and fault diagnosis, where they are used to represent and explore problems.

Decision trees [4–7] and decision rule systems [8–12] are widely used as classifiers as a
means for knowledge representation and as algorithms for solving various problems of
combinatorial optimization, fault diagnosis, etc. Decision trees and rules are among the
most interpretable models in data analysis [13].

The depth of deterministic and nondeterministic decision trees for computation
Boolean functions (variables of a function are considered as attributes) has been stud-
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ied quite intensively [14–16]. Note that the minimum depth of a nondeterministic decision
tree for a Boolean function is equal to its certificate complexity [17].

We study classes of decision tables with many-valued decisions closed under four
operations: the removal of columns, the changing of decisions, the permutation of columns,
and the duplication of columns. The most natural examples of such classes are closed
classes of decision tables generated by information systems [18]. An information system
consists of a set of objects (universe) and a set of attributes (functions) defined on the
universe and with values from a finite set. A problem over an information system is
specified by a finite number of attributes that divide the universe into nonempty domains
in which these attributes have fixed values. A nonempty finite set of decisions is attached
to each domain. For a given object from the universe, it is required to find a decision from
the set attached to the domain containing this object.

A decision table with many-valued decisions corresponds to this problem in a natural
way: the columns of this table are labeled with the considered attributes, and the rows
correspond to domains and are labeled with sets of decisions attached to domains. The set
of decision tables corresponding to problems over an information system forms a closed
class generated by this system. Note that the family of all closed classes is essentially wider
than the family of closed classes generated by information systems. In particular, the union
of two closed classes generated by two information systems is a closed class. However,
generally, there is not an information system that generates this class.

Various classes of objects that are closed under different operations have been inten-
sively studied. Among them, in particular, are classes of Boolean functions closed under
the operation of superposition [19], minor-closed classes of graphs [20], classes of read-once
Boolean functions closed under the removal of variables and the renaming of variables,
languages closed under taking factors, etc. Decision tables represent an interesting mathe-
matical object deserving mathematical research, particularly regarding the study of closed
classes of decision tables.

This paper continues the study of closed classes of decision tables that started with the
work of [21] and that were frozen for various reasons for many years. In [21], we studied
the dependence of the minimum depth of deterministic decision trees and the depth of
deterministic decision trees constructed by a greedy algorithm on the number of attributes
(columns) for conventional decision tables from classes closed under operations of the
removal of columns and the changing of decisions.

In the present paper, we study so-called t pairs (C, ψ), where C is a class of decision
tables closed under the considered four operations, and ψ is a complexity measure for this
class. The t pair is called limited if ψ is a limited complexity measure. For any decision
table T ∈ C, we have three parameters:

• ψi(T)—The complexity of the decision table T. This parameter is equal to the com-
plexity of a deterministic decision tree for the table T, which sequentially computes
the values of all attributes attached to columns of T.

• ψd(T)—The minimum complexity of a deterministic decision tree for the table T.
• ψa(T)—The minimum complexity of a nondeterministic decision tree for the table T.

We investigate the relationships between any two such parameters for decision tables
from C. Let us consider, for example, the parameters ψi(T) and ψd(T). Let n ∈ N. We study
relations of the kind ψi(T) ≤ n ⇒ ψd(T) ≤ u, which are true for any table T ∈ C. The
minimum value of u is the most interesting for us. This value (if it exists) is equal to

U di
Cψ(n) = max

{
ψd(T) : T ∈ C, ψi(T) ≤ n

}
.

We also study relations of the kind ψi(T) ≥ n ⇒ ψd(T) ≥ l. In this case, the maximum
value of l is the most interesting for us. This value (if it exists) is equal to

Ldi
Cψ(n) = min

{
ψd(T) : T ∈ C, ψi(T) ≥ n

}
.
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The two functions U di
Cψ and Ldi

Cψ describe how the behavior of the parameter ψd(T)

depends on the behavior of the parameter ψi(T) for tables from C.
There are 18 similar functions for all ordered pairs of parameters ψi(T), ψd(T), and

ψa(T). These 18 functions well describe the relationships among the considered parameters.
It would be very interesting to point out the 18 tuples of these functions for all t pairs and
all limited t pairs. But, this is a very difficult problem.

In this paper, instead of functions, we study types of functions. With any partial
function f : N → N, we associate its type from the set {α, β, γ, δ, ϵ}. For example, if the
function f has an infinite domain, and it is bounded from above, then its type is equal to
α. If the function f has an infinite domain, is not bounded from above, and the inequality
f (n) ≥ n holds for a finite number of n ∈ N, then its type is equal to β. Thus, we enumerate
the 18 tuples of the types of functions. These tuples are represented in tables called the
types of t-pairs. We prove that there are only seven realizable types of t pairs and only five
realizable types of limited t pairs.

First, we study 9 tuples of the types of functions U bc
Cψ, b, c ∈ {i, d, a}. These tuples are

represented in tables called upper types of t pairs. We enumerate all the realizable upper
types of t pairs and limited t pairs. After that, we extend the results obtained for the upper
types of t pairs to the case of the types of t pairs. We also define the notion of a union of
two t pairs and study the upper type of the resulting t pair, thus depending on the upper
types of the initial t pairs.

The obtained results allow us to point out cases where the complexity of deterministic
and nondeterministic decision trees is essentially less than the complexity of the decision
table (see Section 2.3). This finding may prove useful in related applications.

This paper is based on the work of [22], in which similar results were obtained for
classes of problems over information systems. We have generalized proofs from [22] to the
case of decision tables from closed classes and use some results from this paper to prove
the existence of t pairs and limited t pairs with given upper types.

In our previous work [7], we considered functions characterizing the growth in the
worst case of the minimum complexity of deterministic and nondeterministic decision
trees with the growth of the complexity of the set of attributes attached to columns of the
conventional decision table and also obtained preliminary results on the behavior of the
function characterizing the relationship between the former two parameters. In the current
work, we mainly focus on the rough classification of types.

The paper consists of eight sections. In Section 2, the basic definitions are considered.
In Section 3, we provide the main results related to the types of t pairs and limited t pairs. In
Sections 4–6, we study the upper types of t pairs and the limited t pairs. Section 7 contains
proofs of the main results, and Section 8 provides short conclusions.

2. Basic Definitions
2.1. Decision Tables and Closed Classes

Let N = {0, 1, 2, . . .} be the set of non-negative integers. For any k ∈ N \ {0, 1}, let
Ek = {0, 1, . . . , k − 1}. The set of nonempty finite subsets of the set N will be denoted by
P(N). Let F be a nonempty set of attributes (really, the names of attributes).

Definition 1. We now define the set of decision tables Mk(F). An arbitrary decision table T from
this set is a rectangular table with n ∈ N \ {0} columns labeled with attributes f1, . . . , fn ∈ F,
where any two columns labeled with the same attribute are equal. The rows of this table are pairwise
different and are filled in with numbers from Ek. Each row is interpreted as a tuple of values of
attributes f1, . . . , fn. For each row in the table, a set from P(N) is attached, which is interpreted as
a set of decisions for this row.

Example 1. Three decision tables T1, T2, and T3 from the set M2(F0), where F0 = { f1, f2, f3},
are shown in Figure 1.
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T1 =

f1 f2
0 0 {1}
1 0 {2, 3}
0 1 {2}
1 1 {4}

T2 =

f1 f2 f3
1 0 0 {1, 2}
0 1 0 {1, 3}
0 0 1 {4}
0 0 0 {1, 2, 3}

T3 =

f1 f1 f3
0 0 0 {1, 3}
1 1 0 {1}
0 0 1 {2}
1 1 1 {1, 2}

Figure 1. Decision tables T1, T2, and T3.

We correspond to the table T the following problem: for a given row of T, we should
recognize a decision from the set of decisions attached to this row. To this end, we can use
queries about the values of the attributes for this row.

We denote as At(T) the set { f1, . . . , fn} of attributes attached to the columns of T.
Π(T) denotes the intersection of the sets of decisions attached to the rows of T, and by
∆(T), we denote the set of rows of the table T. Decisions from Π(T) are called common
decisions for T. The table T will be called degenerate if ∆(T) = ∅ or if Π(T) ̸= ∅. We denote
as Mc

k(F) the set of degenerate decision tables from Mk(F).

Example 2. Two degenerate decision tables, D1 and D2, are shown in Figure 2.

D1 = f1 f2 D2 =

f1 f2 f3
1 0 0 {1, 2}
0 1 0 {1, 3}
0 0 0 {1, 2, 3}

Figure 2. Degenerate decision tables D1 and D2.

Definition 2. A subtable of the table T is a table obtained from T through the removal of some of
its rows. Let Θ(T) = {( f , δ) : f ∈ At(T), δ ∈ Ek} and Θ∗(T) be the set of all finite words in the
alphabet Θ(T), including the empty word λ. Let α ∈ Θ∗(T). We now define a subtable Tα of the
table T. If α = λ, then Tα = T. Let α = ( fi1 , δ1) · · · ( fim , δm). Then, Tα consists of all the rows of
T that, in the intersection with columns fi1 , . . . , fim , have values δ1, . . . , δm, respectively.

Example 3. Two subtables of the tables T1 and T2 (depicted in Figure 1) are shown in Figure 3.

T1( f1, 1) =
f1 f2
1 0 {2, 3}
1 1 {4}

T2( f1, 0)( f2, 0)( f3, 0) =
f1 f2 f3
0 0 0 {1, 2, 3}

Figure 3. Subtables T1( f1, 1) and T2( f1, 0)( f2, 0)( f3, 0) of tables T1 and T2 shown in Figure 1.

We now define four operations on the set Mk(F) of decision tables:

Definition 3. Removal of columns: We can remove an arbitrary column in a table T with at least
two columns. As a result, the obtained table can have groups of equal rows. We keep only the first
row in each such group.
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Definition 4. Changing of decisions: In a given table T, we can change in an arbitrary way sets of
decisions attached to rows.

Definition 5. Permutation of columns: We can swap any two columns in a table T, including the
attached attribute names.

Definition 6. Duplication of columns: For any column in a table T, we can add its duplicate next
to that column.

Definitions 5 and 6 characterize the two most natural examples of operations applied
to information systems. Definitions 3 and 4 allows us to say that we cover important classes
of information systems (see Section 2.4).

Example 4. Decision tables T′
1,T′

2,T′′
1 , and T′′

2 depicted in Figure 4 are obtained from decision
tables T1 and T2 shown in Figure 1 by operations of changing the decisions, removal of columns,
permutation of columns, and duplication of columns, respectively.

T′
1 =

f1 f2
0 0 {1, 4}
1 0 {2, 3}
0 1 {3}
1 1 {4}

T′
2 =

f1
1 {1, 2}
0 {1, 3}

T′′
1 =

f2 f1
0 0 {1}
0 1 {2, 3}
1 0 {2}
1 1 {4}

T′′
2 =

f1 f2 f2 f3
1 0 0 0 {1, 2}
0 1 1 0 {1, 3}
0 0 0 1 {4}
0 0 0 0 {1, 2, 3}

Figure 4. Decision tables T′
1,T′

2,T′′
1 , and T′′

2 obtained from tables T1 and T2 shown in Figure 1 by
operations of changing the decisions, removal of columns, permutation of columns, and duplication
of columns, respectively.

Definition 7. Let T ∈ Mk(F). The closure of the table T is a set, which contains all the tables
that can be obtained from T by the operations of the removal of columns, the changing of decisions,
the permutation of columns, and the duplication of columns using only such tables. We denote the
closure of the table T by [T]. It is clear that T ∈ [T].

Definition 8. Let C ⊆ Mk(F). The closure [C] of the set C is defined in the following way:
[C] = ⋃

T∈C [T]. We say that C is a closed class if C = [C]. In particular, the empty set of tables is a
closed class.

Example 5. We now consider a closed class C0 of decision tables from the set M2({ f1, f2}), which
is equal to [Q], where the decision table Q is depicted in Figure 5. The closed class C0 contains all
the tables depicted in Figure 6 and all the tables that can be obtained from them by the operations of
the duplication of columns and the permutation of columns.

Q =

f1 f2
1 0 {1}
0 1 {2}
0 0 {3}

Figure 5. Decision table Q.
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Q1 =

f1 f2
1 0 d1
0 1 d2
0 0 d3

Q2 =
f1
1 d4
0 d5

Q3 =
f2
0 d6
1 d7

Figure 6. Decision tables from closed class C0, where d1, . . . , d7 ∈ P(N).

If C1 and C2 are closed classes belonging to Mk(F), then C1 ∪ C2 is also a closed
class. We can consider closed classes C1 and C2 belonging to different sets of decision
tables. Let C1 ⊆ Mk1(F1) and C2 ⊆ Mk2(F2). Then, C1 ∪ C2 is a closed class, and
C1 ∪ C2 ⊆ Mmax(k1,k2)

(F1 ∪ F2).

2.2. Deterministic and Nondeterministic Decision Trees

A finite directed tree with the root is a finite directed tree in which exactly one node
has no entering edges. This node is called the root. Nodes of the tree, which have no
outgoing edges, are called terminal nodes. Nodes that are neither the root nor the terminal
are called worker nodes. A complete path in a finite directed tree with the root is any
sequence of nodes and edges starting from the root node and ending with a terminal node
ξ = v0, d0, . . . , vm, dm, vm+1, where di is the edge outgoing from the node vi and entering
the node vi+1, i = 0, . . . , m.

Definition 9. A decision tree over the set of decision tables Mk(F) is a labeled finite directed
tree with the root with at least two nodes (the root and a terminal node) possessing the following
properties:

• The root and the edges outgoing from the root are not labeled.
• Each worker node is labeled with an attribute from the set F.
• Each edge outgoing from a worker node is labeled with a number from Ek.
• Each terminal node is labeled with a number from N.

We denote as Tk(F) the set of decision trees over the set of decision tables Mk(F).

Definition 10. A decision tree from Tk(F) is called deterministic if it satisfies the following conditions:

• Exactly one edge leaves the root.
• The edges outgoing from each worker node are labeled with pairwise different numbers.

Let Γ be a decision tree from Tk(F). Denote as At(Γ) the set of attributes attached to
the worker nodes of Γ. Set Θ(Γ) = {( f , δ) : f ∈ At(Γ), δ ∈ Ek}. Denote as Θ∗(Γ) the set of
all finite words in the alphabet Θ(Γ), including the empty word λ. We correspond to an
arbitrary complete path ξ = v0, d0, . . . , vm, dm, vm+1 in Γ, as well as a word π(ξ). If m = 0,
then π(ξ) = λ. Let m > 0 and, for i = 1, . . . , m, the node vi is labeled with an attribute
f ji , and the edge di is labeled with the number δi. Then, π(ξ) = ( f j1 , δ1) · · · ( f jm , δm). We
denote as τ(ξ) the number attached to the terminal node of the path ξ. We denote as
Path(Γ) the set of complete paths in the tree Γ.

Definition 11. Let T ∈ Mk(F). A nondeterministic decision tree for the table T is a decision tree
Γ over Mk(F) satisfying the following conditions:

• At(Γ) ⊆ At(T).
•

⋃
ξ∈Path(Γ) ∆(Tπ(ξ)) = ∆(T).

• For any row r ∈ ∆(T) and any complete path ξ ∈ Path(Γ), if r ∈ ∆(Tπ(ξ)), then τ(ξ)
belongs to the set of decisions attached to the row r.

Example 6. Nondeterministic decision trees Γ1 and Γ2 for decision tables T1 and T2 shown in
Figure 1 are depicted in Figure 7.
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Figure 7. Nondeterministic decision trees Γ1 and Γ2 for decision tables T1 and T2 depicted in Figure 1.

Definition 12. A deterministic decision tree for the table T is a deterministic decision tree over
Mk(F), which is a nondeterministic decision tree for the table T.

Example 7. Deterministic decision trees Γ′
1 and Γ′

2 for decision tables T1 and T2 shown in Figure 1
are depicted in Figure 8.

Figure 8. Deterministic decision trees Γ′
1 and Γ′

2 for decision tables T1 and T2 depicted in Figure 1.

2.3. Complexity Measures

Denote as F∗ the set of all finite words over the alphabet F, including the empty
word λ.

Definition 13. A complexity measure over the set of decision tables Mk(F) is any mapping
ψ : F∗ → N.

Definition 14. The complexity measure ψ will be called limited if it possesses the following properties:

(a) ψ(α1α2) ≤ ψ(α1) + ψ(α2) for any α1, α2 ∈ F∗.

(b) ψ(α1α2α3) ≥ ψ(α1α3) for any α1, α2, α3 ∈ F∗.

(c) For any α ∈ F∗, the inequality ψ(α) ≥ |α| holds, where |α| is the length of α.

We extend an arbitrary complexity measure ψ onto the set Tk(F) in the following
way. Let Γ ∈ Tk(F). Then, ψ(Γ) = max{ψ(φ(ξ)) : ξ ∈ Path(Γ)}, where φ(ξ) = λ if
π(ξ) = λ and φ(ξ) = f1 · · · fm if π(ξ) = ( f1, δ1) · · · ( fm, δm). The value ψ(Γ) will be called
the complexity of the decision tree Γ.
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We now consider an example of a complexity measure. Let w : F → N \ {0}. We define
the function ψw : F∗ → N in the following way: ψw(α) = 0 if α = λ and ψw(α) = ∑m

i=1 w( fi)
if α = f1 · · · fm. The function ψw is a limited complexity measure over Mk(F), and it is
called a weighted depth. If w ≡ 1, then the function ψw is called the depth and is denoted by h.

Let ψ be a complexity measure over Mk(F) and T be a decision table from Mk(F), in
which rows are labeled with attributes f1, . . . , fn. The value ψi(T) = ψ( f1 · · · fn) is called
the complexity of the decision table T. We denote by ψd(T) the minimum complexity of a
deterministic decision tree for the table T. We denote by ψa(T) the minimum complexity of
a nondeterministic decision tree for the table T.

2.4. Information Systems

Let A be a nonempty set and F be a nonempty set of functions from A to Ek.

Definition 15. Functions from F are called attributes, and the pair U = (A, F) is called an
information system.

Definition 16. A problem over U is any (n + 1) tuple z = (ν, f1, . . . , fn), where n ∈ N \ {0},
ν : En

k → P(N), and f1, . . . , fn ∈ F.

The problem z can be interpreted as a problem of searching for at least one number
from the set z(a) = ν( f1(a), . . . , fn(a)) for a given a ∈ A. We denote as Probl(U) the set of
problems over the information system U.

We correspond to the problem z a decision table T(z) ∈ Mk(F). This table has n
columns labeled with attributes f1, . . . , fn. A tuple δ̄ = (δ1, . . . , δn) ∈ En

k is a row of the
table T(z) if and only if the system of equations

{ f1(x) = δ1, . . . , fn(x) = δn}

has a solution from the set A. This row is labeled with the set of decisions ν(δ̄). Let
Tab(U) = {T(z) : z ∈ Probl(U)}. One can show that the set Tab(U) is a closed class of
decision tables.

Closed classes of decision tables based on information systems are the most nat-
ural examples of closed classes. However, the notion of a closed class is essentially
wider. In particular, the union Tab(U1) ∪ Tab(U2), where U1 and U2 are information
systems, is a closed class, but generally, we cannot find an information system U such that
Tab(U) = Tab(U1) ∪ Tab(U2).

2.5. Types of T Pairs

First, we define the notion of a t pair.

Definition 17. A pair (C, ψ), where C is a closed class of decision tables from Mk(F), and ψ
is a complexity measure over Mk(F), is called a test pair (or t pair for short). If ψ is a limited
complexity measure, then t pair (C, ψ) will be called a limited t pair.

Let (C, ψ) be a t pair. We have three parameters ψi(T), ψd(T), and ψa(T) for any
decision table T ∈ C. We now define functions that describe the relationships among these
parameters. Let b, c ∈ {i, d, a}.

Definition 18. We define the partial functions U bc
Cψ : N → N and Lbc

Cψ : N → N as

U bc
Cψ(n) = max

{
ψb(T) : T ∈ C, ψc(T) ≤ n

}
,

Lbc
Cψ(n) = min

{
ψb(T) : T ∈ C, ψc(T) ≥ n

}
.
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If the value U bc
Cψ(n) is definite, then it is the unimprovable upper bound on the values

ψb(T) for tables T ∈ C satisfying ψc(T) ≤ n. If the value Lbc
Cψ(n) is definite, then it is the

unimprovable lower bound on the values ψb(T) for tables T ∈ C satisfying ψc(T) ≥ n.
Let g be a partial function from N to N. We denote as Dom(g) the domain of g. Denote

Dom+(g) = {n : n ∈ Dom(g), g(n) ≥ n} and Dom−(g) = {n : n ∈ Dom(g), g(n) ≤ n}.

Definition 19. Now, we define the value typ(g) ∈ {α, β, γ, δ, ϵ} as the type of g. Then, we have
the following:

• If Dom(g) is an infinite set and g is bounded from the above function, then typ(g) = α.
• If Dom(g) is an infinite set, Dom+(g) is a finite set, and g is unbounded from the above

function, then typ(g) = β.
• If both sets Dom+(g) and Dom−(g) are infinite, then typ(g) = γ.
• If Dom(g) is an infinite set and Dom−(g) is a finite set, then typ(g) = δ.
• If Dom(g) is a finite set, then typ(g) = ϵ.

Example 8. One can show that typ(1) = α, typ(⌈log2 n⌉) = β, typ(n) = γ, typ(n2) = δ, and
typ( 1

⌊1/n⌋ ) = ϵ.

Definition 20. We now define the table typ(C, ψ), which is called the type of t pair (C, ψ). This is a
table with three rows and three columns, in which the rows from top to bottom and the columns from
left to right are labeled with the indices i, d, a. The pair typ(Lbc

Cψ) typ(U bc
Cψ) is in the intersection of

the row with index b ∈ {i, d, a} and the column with index c ∈ {i, d, a}.

3. Main Results

The main problem investigated in this paper is finding all the types of t pairs and
limited t pairs. The solution to this problem describes all the possible (in terms of functions
U bc
Cψ,Lbc

Cψ and types, b, c ∈ {i, d, a}) relationships among the complexity of decision tables,
the minimum complexity of the nondeterministic decision trees for them, and the minimum
complexity of the deterministic decision trees for these tables. We now define seven tables:

T1 =

i d a
i ϵα ϵα ϵα
d ϵα ϵα ϵα
a ϵα ϵα ϵα

T2 =

i d a
i γγ ϵϵ ϵϵ
d αα ϵα ϵα
a αα ϵα ϵα

T3 =

i d a
i γγ δϵ ϵϵ
d αβ γγ ϵϵ
a αα αα ϵα

T4 =

i d a
i γγ γϵ ϵϵ
d αγ γγ ϵϵ
a αα αα ϵα

T5 =

i d a
i γγ γϵ γϵ
d αγ γγ γγ
a αγ γγ γγ

T6 =

i d a
i γγ γϵ γϵ
d αγ γγ γδ
a αγ βγ γγ

T7 =

i d a
i γγ γϵ γϵ
d αγ γγ γϵ
a αγ αγ γγ

Theorem 1. For any t pair (C, ψ), the relation typ(C, ψ) ∈ {T1, T2, T3, T4, T5 , T6, T7} holds. For
any i ∈ {1, 2, 3, 4, 5, 6, 7}, there exists a t pair (C, ψ) such that typ(C, ψ) = Ti.
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Theorem 2. For any limited t pair (C, ψ), the relation typ(C, ψ) ∈ {T2, T3, T5 , T6, T7} holds. For
any i ∈ {2, 3, 5, 6, 7}, there exists a limited t pair (C, h) such that typ(C, h) = Ti.

4. Possible Upper Types of T Pairs

We begin our study by considering the upper type of t pair, which is a simpler object
than the type of t pair.

Definition 21. Let (C, ψ) be a t pair. We now define table typu(C, ψ), which will be called the
upper type of t pair (C, ψ). This is a table with three rows and three columns, in which the rows
from top to bottom and the columns from left to right are labeled with the indices i, d, a. The value
typ(U bc

Cψ) is in the intersection of the row with index b ∈ {i, d, a} and the column with index
c ∈ {i, d, a}. The table typu(C, ψ) is called the upper type of t pair (C, ψ).

In this section, all possible upper types of t pairs are enumerated. We now define
seven tables:

t1 =

i d a
i α α α
d α α α
a α α α

t2 =

i d a
i γ ϵ ϵ
d α α α
a α α α

t3 =

i d a
i γ ϵ ϵ
d β γ ϵ
a α α α

t4 =

i d a
i γ ϵ ϵ
d γ γ ϵ
a α α α

t5 =

i d a
i γ ϵ ϵ
d γ γ γ
a γ γ γ

t6 =

i d a
i γ ϵ ϵ
d γ γ δ
a γ γ γ

t7 =

i d a
i γ ϵ ϵ
d γ γ ϵ
a γ γ γ

Proposition 1. For any t pair (C, ψ), the relation typu(C, ψ) ∈ {t1, t2, t3, t4 , t5, t6, t7} holds.

Proposition 2. For any limited t pair (C, ψ), the relation typu(C, ψ) ∈ {t2, t3 , t5, t6, t7} holds.

We divide the proofs of the propositions into a sequence of lemmas.

Lemma 1. Let T be a decision table from a set of decision tables Mk(F), and let ψ be a complexity
measure over Mk(F). Then, the inequalities ψa(T) ≤ ψd(T) ≤ ψi(T) hold.

Proof. Let the columns of table T be labeled with the attributes f1, . . . , fn. It is not difficult
to construct a deterministic decision tree Γ0 for table T, which sequentially computes the
values of attributes f1, . . . , fn. Evidently, ψ(Γ0) = ψi(T). Therefore, ψd(T) ≤ ψi(T). If a
decision tree Γ is a deterministic decision tree for T, then Γ is a nondeterministic decision
tree for T. Therefore, ψa(T) ≤ ψd(T).

Let (C, ψ) be a t pair, n ∈ N, and b, c ∈ {i, d, a}. The notation U bc
Cψ(n) = ∞ means that

the set X = {ψb(T) : T ∈ C, ψc(T) ≤ n} is infinite. The notation U bc
Cψ(n) = ∅ means that

the set X is empty. Evidently, if U bc
Cψ(n) = ∞, then U bc

Cψ(n + 1) = ∞. It is not difficult to
prove the following statement.

Lemma 2. Let (C, ψ) be a t pair, and b, c ∈ {i, d, a}. Then, we have the following:
(a) If there exists n ∈ N such that U bc

Cψ(n) = ∞, then typ(U bc
Cψ) = ϵ.

(b) If there is no n ∈ N such that U bc
Cψ(n) = ∞, then Dom(U bc

Cψ) = {n : n ∈ N, n ≥ n0},
where n0 = min{ψc(T) : T ∈ C}.
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Let (C, ψ) be a t pair, and b, c, e, f ∈ {i, d, a}. The notation U bc
Cψ ◁ U e f

Cψ means that, for
any n ∈ N, the following statements hold:

(a) If the value U bc
Cψ(n) is definite, then either U e f

Cψ(n) = ∞ or the value U e f
Cψ(n) is

definite, and the inequality U bc
Cψ(n) ≤ U e f

Cψ(n) holds.

(b) If U bc
Cψ(n) = ∞, then U e f

Cψ(n) = ∞.
Let ⪯ be a linear order on the set {α, β, γ, δ, ϵ} such that α ⪯ β ⪯ γ ⪯ δ ⪯ ϵ.

Lemma 3. Let (C, ψ) be a t pair. Then, typ(U bi
Cψ) ⪯ typ(U bd

Cψ) ⪯ typ(U ba
Cψ) and

typ(U ab
Cψ) ⪯ typ(U db

Cψ) ⪯ typ(U ib
Cψ) for any b ∈ {i, d, a}.

Proof. From the definition of the functions U bc
Cψ, b, c ∈ {i, d, a} and from Lemma 1, it follows

that U bi
Cψ ◁ U bd

Cψ ◁ U ba
Cψ and U ab

Cψ ◁ U db
Cψ ◁ U ib

Cψ for any b ∈ {i, d, a}. Using these relations and
Lemma 2, we obtain the statement of the lemma.

Lemma 4. Let (C, ψ) be a t pair, and b, c ∈ {i, d, a}. Then, we have the following:
(a) typ(U bc

Cψ) = α if and only if the function ψb is bounded from above on the closed class C.

(b) If the function ψb is unbounded from above on C, then typ(U bb
Cψ) = γ.

Proof. The statement (a) is obvious. For (b), let the function ψb be unbounded from above
on C. One can show that in this case the equality U bb

Cψ(n) = n holds for infinitely many

n ∈ N. Therefore, typ(U bb
Cψ) = γ.

Corollary 1. Let (C, ψ) be a t pair, and b ∈ {i, d, a}. Then, typ(U bb
Cψ) ∈ {α, γ}.

Lemma 5. Let (C, ψ) be a t pair, and typ(U ii
Cψ) ̸= α. Then,

typ(U id
Cψ) = typ(U ia

Cψ) = ϵ.

Proof. Using Lemma 4, we conclude that the function ψi is unbounded from above on C.
Let m ∈ N. Then, there exists a decision table T ∈ C for which the inequality ψi(T) ≥ m
holds. Let us consider a degenerate decision table T′ ∈ C obtained from T by replacing
the sets of decisions attached to the rows by the set {0}. It is clear that ψi(T′) ≥ m. Let Γ
be a decision tree that consists of the root, the terminal node labeled with 0, and the edge
connecting these two nodes. One can show that Γ is a deterministic decision tree for the
table T′. Therefore, ψa(T′) ≤ ψd(T′) ≤ ψ(Γ) = ψ(λ). Taking into account that m is an
arbitrary number from N, we obtain U id

Cψ(ψ(λ)) = ∞ and U ia
Cψ(ψ(λ)) = ∞. Using Lemma 2,

we conclude that typ(U id
Cψ) = typ(U ia

Cψ) = ϵ.

Example 9. Let us consider a t pair (C0, h), where C0 is a closed class described in Example 5.
It is clear that the function hi is unbounded from above on C0, and the functions ha and hd are
bounded from above on C0. Using Lemma 4, we obtain that typ(U ab

C0h) = typ(U db
C0h) = α for any

b ∈ {i, d, a}, and typ(U ii
C0h) = γ. Using Lemma 5, typ(U id

C0h) = typ(U ia
C0h) = ϵ. Therefore,

typu(C0, h) = t2.

Lemma 6. Let (C, ψ) be a t pair. Then, typ(U ai
Cψ) ∈ {α, γ}.

Proof. Using Lemma 3 and Corollary 1, we obtain typ(U ai
Cψ) ∈ {α, β, γ}. Using Lemma 2,

Dom(U ai
Cψ) = {n : n ∈ N, n ≥ n0} for some n0 ∈ N. Set D = Dom(U ai

Cψ). Assume that

typ(U ai
Cψ) = β. Then, there exists m ∈ D such that U ai

Cψ(n) < n for any n ∈ D, n > m.
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Let us prove by induction on n that, for any decision table T from C, if ψi(T) ≤ n, then
ψa(T) ≤ m0, where m0 = max{m, ψ(λ)}. Using Lemma 1, we conclude that the considered
statement holds under the condition n ≤ m. Let it hold for some n, n ≥ m. Let us show that
this statement holds for n+ 1 too. Let T ∈ C, ψi(T) ≤ n+ 1, and let the columns of the table
T be labeled with the attributes fi1 , . . . , fik . Since n + 1 > m, we obtain ψa(T) ≤ n. Let Γ be
a nondeterministic decision tree for the table T, and ψ(Γ) = ψa(T). Assume that in Γ, there
exists a complete path ξ in which there are no worker nodes. In this case, a decision tree that
consists of the root, the terminal node labeled with τ(ξ), and the edge connecting these two
nodes is a nondeterministic decision tree for the table T. Therefore, ψa(T) ≤ ψ(λ) ≤ m0.
Assume now that each complete path in the decision tree Γ contains a worker node. Let
ξ ∈ Path(Γ), ∆(Tπ(ξ)) ̸= ∅, ξ = v0, d0, . . . , vp, dp, vp+1 and, for i = 1, . . . , p, the node vi is
labeled with the attribute fi, and the edge di is labeled with the number δi. Let the decision
table T′ be obtained from the decision table T using the operations of the permutation of
columns and the duplication of columns so that its columns are labeled with attributes
f1, . . . , fp, fi1 , . . . , fik . We obtain the decision table T′′ from T′ by removal of the last k
columns. Let us denote as Tξ the decision table obtained from T′′ by changing the set of
decisions corresponding to the row (δ1, . . . , δp) with {τ(ξ)} and for the remaining rows
with {τ(ξ) + 1}. It is clear that ψi(Tξ

)
≤ n. Using the inductive hypothesis, we conclude

that there exists a nondeterministic decision tree Γξ for the table Tξ such that ψ(Γξ) ≤ m0.
We denote as Γ̃ξ a tree obtained from Γξ by the removal of all the nodes and edges that
satisfy the following condition: there is not a complete path ξ ′ in Γξ that contains this node
or edge and for which τ(ξ ′) = τ(ξ). Let {ξ : ξ ∈ Path(Γ), ∆(Tπ(ξ)) ̸= ∅} = {ξ1, . . . , ξr}.
Let us identify the roots of the trees Γ̃ξ1 , . . . , Γ̃ξr . We denote as G the obtained tree. It is not
difficult to show that G is a nondeterministic decision tree for the table T, and ψ(G) ≤ m0.
Thus, the considered statement holds. Using Lemma 4, we conclude that typ(U ai

Cψ) = α.

The obtained contradiction shows that typ(U ai
Cψ) ∈ {α, γ}.

Let T be a decision table from Mk(F). We now give the definitions of the parameters
N(T) and M(T) of the table T.

Definition 22. We denote as N(T) the number of rows in the table T.

Definition 23. Let the columns of table T be labeled with the attributes f1, . . . , fn ∈ F. We now
define the parameter M(T). If table T is degenerate, then M(T) = 0. Let T now be a nondegenerate
table, and δ̄ = (δ1, . . . , δn) ∈ En

k . Then, M(T, δ̄) is the minimum natural m such that there exist
attributes fi1 , . . . , fim ∈ At(T) for which T( fi1 , δi1) · · · ( fim , δim) is a degenerate table. We denote
M(T) = max{M(T, δ̄) : δ̄ ∈ En

k }.

The following statement follows immediately from Theorem 3.5 [23].

Lemma 7. Let T be a nonempty decision table from Mk(F) in which each row is labeled with a set
containing only one decision. Then,

hd(T) ≤ M(T) log2 N(T).

Lemma 8. Let (C, ψ) be a limited t pair, and typ(U ai
Cψ) = α. Then, typ(U di

Cψ) ∈ {α, β}.

Proof. Using Lemma 4, we conclude that there exists r ∈ N such that the inequality
ψa(T) ≤ r holds for any table T ∈ C.

Let T be a nonempty table from C in which the columns are labeled with the at-
tributes f1, . . . , fn and δ̄ = (δ1, . . . , δn) ∈ En

k . We now show that there exist attributes
fi1 , . . . , fim ∈ At(T) such that the subtable T(δ̄) = T( f1, δ1) · · · ( fn, δn) is equal to the sub-
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table T( fi1 , δi1) · · · ( fim , δim), and m ≤ r if δ̄ is a row of T; as well, m ≤ r + 1 if δ̄ is not a row
of T.

Let δ̄ be a row of T. Let us change the set of decisions attached to the row δ̄ with
the set {1} and for the remaining rows of T with the set {0}. We denote the obtained
table as T′. It is clear that T′ ∈ C. Taking into account that ψa(T′) ≤ r and the complex-
ity measure ψ has the property (c), it is not difficult to show that there exist attributes
fi1 , . . . , fim ∈ At(T′) = At(T) such that m ≤ r, and T′( fi1 , δi1) · · · ( fim , δim) contains only
the row δ̄. From here, it follows that T(δ̄) = T( fi1 , δi1) · · · ( fim , δim).

Let δ̄ be not a row of T. Let us show that there exist attributes fi1 , . . . , fim ∈ At(T) such
that m ≤ r + 1, and the subtable T( fi1 , δi1) · · · ( fim , δim) is empty. If T( f1, δ1) is empty, then
the considered statement holds. Otherwise, there exists q ∈ {1, . . . , n − 1} such that the
subtable T( f1, δ1) · · · ( fq, δq) is nonempty, but the subtable T( f1, δ1) · · · ( fq+1, δq+1) is empty.
We denote as T′ the table obtained from T by the removal of the attributes fq+1, . . . , fn. It is
clear that T′ ∈ C, and (δ1, . . . , δq) is a row of T′. According to what has been proven above,
there exist attributes fi1 , . . . , fip ∈ { f1, . . . , fq} such that

T′( fi1 , δi1) · · · ( fip , δip) = T′( f1, δ1) · · · ( fq, δq)

and p ≤ r. Using this fact, one can show that T( fi1 , δi1) · · · ( fip , δip)( fq+1, δq+1) is empty
and is equal to T(δ̄).

Let T1 ∈ C. We denote as T2 the decision table obtained from T1 by the removal of
all the columns in which all the numbers are equal. Let the columns of T2 be labeled with
attributes f1, . . . , fn. We now consider the decision table T3, which is obtained from T2 by
changing the decisions so that the decision set attached to each row of table T3 contains only
one decision and, for any two non-equal rows, the corresponding decisions are different. It
is clear that T3 ∈ C. It is not difficult to show that ψd(T1) ≤ ψd(T2) ≤ ψd(T3).

We now show that the inequality ψ( f ) ≤ r holds for any attribute f ∈ At(T3). Let us
denote as T′ the decision table obtained from T3 by the removal of all the columns except
the column labeled with the attribute f . If there is more than one column in T3, which is
labeled with the attribute f , then we keep only one of them. Let the decision table Tf be
obtained from T′ by changing the set of decisions for each row (δ) with the set of decisions
{δ}. It is clear that Tf ∈ C. Let Γ be a nondeterministic decision tree for the table Tf , and
ψ(Γ) = ψa(Tf ) ≤ r. Since the column f contains different numbers, we have f ∈ At(Γ).
Using the property (b) of the complexity measure ψ, we obtain ψ(Γ) ≥ ψ( f ). Consequently,
ψ( f ) ≤ r.

Taking into account that, for any δ̄ ∈ ∆(T3), there exist attributes fi1, . . . , fim ∈ { f1, . . . , fn}
such that m ≤ r, and T3( fi1 , δi1) · · · ( fim , δim) contains only the row δ̄, it is not difficult to
show that

N(T3) ≤ nr · kr. (1)

According to what has been proven above, for any δ̄ ∈ En
k , there exist attributes fi1 , . . . ,

fim ∈ { f1, . . . , fn} such that m ≤ r + 1, and T3( fi1 , δi1) · · · ( fim , δim) = T3( f1, δ1) · · · ( fn, δn).
Taking into account this equality, one can show that

M(T3) ≤ r + 1. (2)

Using Lemma 7, as well as inequalities (1) and (2), we conclude that there exists a deter-
ministic decision tree Γ for the table T3 with h(Γ) ≤ M(T3) log2 N(T3) ≤ (r + 1)2 log2(kn).
Taking into account that ψ( f ) ≤ r for any attribute f ∈ At(T3) and that the complexity
measure ψ has the property (a), we obtain

ψd(T3) ≤ (r + 1)3 log2(kn).

Consequently, ψd(T1) ≤ (r + 1)3 log2(kn). Taking into account that the complexity
measure ψ has the property (c), we obtain ψi(T1) ≥ n. Since T1 is an arbitrary decision table
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from C, we have that Dom+(U di
Cψ) is a finite set. Therefore, typ(U di

Uψ) ̸= γ. Using Lemma 3

and Corollary 1, we obtain typ(U di
Cψ) ∈ {α, β}.

Proof of Proposition 1. Let (C, ψ) be a t pair. Using Corollary 1, we conclude that
typ(U ii

Cψ) ∈ {α, γ}. Using Corollary 1 and Lemma 3, we obtain typ(U di
Cψ) ∈ {α, β, γ}.

From Lemma 6, it follows that typ(U ai
Cψ) ∈ {α, γ}. Then, we have the following:

(a) Let typ(U ii
Cψ) = α. Using Lemmas 3 and 4, we obtain typu(C, ψ) = t1.

(b) Let typ(U ii
Cψ) = γ and typ(U di

Cψ) = α. Using Lemmas 3, 4, and 5, we obtain
typu(C, ψ) = t2.

(c) Let typ(U ii
Cψ) = γ and typ(U di

Cψ) = β. From Lemma 5, it follows that

typ(U id
Cψ) = typ(U ia

Cψ) = ϵ. Using Lemmas 3 and 6, we obtain typ(U ai
Cψ) = α. From

this equality and from Lemma 4, it follows that typ(U ad
Cψ) = typ(U aa

Cψ) = α. Using the equal-

ity typ(U di
Cψ) = β, Lemma 3, and Corollary 1, we obtain typ(U dd

Cψ) = γ. From the equalities,

typ(U dd
Cψ) = γ, typ(U aa

Cψ) = α and from Lemmas 2 and 4, it follows that typ(U da
Cψ) = ϵ. Thus,

typu(C, ψ) = t3.
(d) Let typ(U ii

Cψ) = typ(U di
Cψ) = γ and typ(U ai

Cψ) = α. Using Lemma 5, we obtain

typ(U id
Cψ) = typ(U ia

Cψ) = ϵ. From Lemma 4, it follows that typ(U ad
Cψ) = typ(U aa

Cψ) = α.

Using Lemma 3 and Corollary 1, we obtain typ(Udd
Cψ) = γ. From this equality, equality

typ(U aa
Cψ) = α, and from Lemmas 2 and 4, it follows that typ(Uda

Cψ) = ϵ. Thus, typu(C, ψ) = t4.

(e) Let typ(U ii
Cψ) = typ(U di

Cψ) = typ(U ai
Cψ) = γ. Using Lemma 5, we conclude that

typ(U id
Cψ) = typ(U ia

Cψ) = ϵ. Using Lemma 3 and Corollary 1, we obtain

typ(U dd
Cψ) = typ(U ad

Cψ) = typ(U aa
Cψ) = γ. Using Lemma 3, we obtain typ(U da

Cψ) ∈ {γ, δ, ϵ}.
Therefore, typu(C, ψ) ∈ {t5, t6, t7}.

Proof of Proposition 2. Let (C, ψ) be a limited t pair. Taking into account that the complex-
ity measure ψ has the property (c) and using Lemma 4, we obtain typ(U ii

Cψ) ̸= α. Therefore,
typu(C, ψ) ̸= t1. Using Lemma 8, we obtain typu(C, ψ) ̸= t4. From these relations and
Proposition 1, it follows that the statement of the proposition holds.

5. Realizable Upper Types of T Pairs

In this section, all realizable upper types of t pairs are enumerated.

Proposition 3. For any i ∈ {1, 2, 3, 4, 5, 6, 7}, there exists a t pair (C, ψ) such that

typu(C, ψ) = ti.

Proposition 4. For any i ∈ {2, 3, 5, 6, 7}, there exists a limited t pair (C, h) such that

typu(C, h) = ti.

The proofs of these propositions are based on the results obtained for information
systems [22].

Let U = (A, F) be an information system, where the attributes from F have values
from Ek, and ψ is a complexity measure over U [22]. Note that ψ is also a complexity
measure over the set of decision tables Mk(F). Let z = (ν, f1, . . . , fn) be a problem over U.
In [22], three parameters of the problem z were defined: ψi

U(z) = ψ( f1 · · · fn) was called
the complexity of the problem z description, ψd

U(z) was called the minimum complexity
of a decision tree with attributes from the set { f1, . . . , fn}—which solves the problem z
deterministically—and ψa

U(z) was called the minimum complexity of a decision tree with
attributes from the set { f1, . . . , fn}, which solves the problem z nondeterministically.
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Let b, c ∈ {i, d, a}. In [22], the partial function U bc
Uψ : N → N was defined as follows:

U bc
Uψ(n) = max{ψb

U(z) : z ∈ Probl(U), ψc
U(z) ≤ n}.

The table typlu(U, ψ) for the pair (U, ψ) was defined in [22] as follows: this is a table
with three rows and three columns, in which the rows from top to bottom and the columns
from left to right are labeled with the indices i, d, a. The value typ(U bc

Uψ) is in the intersection
of the row with the index b ∈ {i, d, a} and the column with the index c ∈ {i, d, a}.

We now prove the following proposition:

Proposition 5. Let U be an information system and ψ be a complexity measure over U. Then,

typlu(U, ψ) = typu(Tab(U), ψ).

Proof. Let z = (ν, f1, . . . , fn) be a problem over U and T(z) be the decision table cor-
responding to this problem. It is easy to see that ψi

U(z) = ψi(T(z)). One can show
that the set of decision trees solving the problem z nondeterministically and using only
the attributes from the set { f1, . . . , fn} (see corresponding definitions in [22]) is equal to
the set of nondeterministic decision trees for the table T(z). From here, it follows that
ψa

U(z) = ψa(T(z)) and ψd
U(z) = ψd(T(z)). Using these equalities, we can show that

typlu(U, ψ) = typu(Tab(U), ψ).

This proposition allows us to transfer the results obtained for information systems
in [22] to the case of closed classes of decision tables. Before each of the following seven
lemmas, we define a pair (U, ψ), where U is an information system, and ψ is a complexity
measure over U.

Let us define a pair (U1, π) as follows: U1 = (N, F1), where F1 = { f }, f ≡ 0, and
π ≡ 0.

Lemma 9. typu(Tab(U1), π) = t1.

Proof. From Lemma 4.1 [22], it follows that typlu(U1, π) = t1. Using Proposition 5, we
obtain typu(Tab(U1), π) = t1.

Let us define a pair (U2, h) as follows: U2 = (N, F2), where F2 = F1.

Lemma 10. typu(Tab(U2), h) = t2.

Proof. From Lemma 4.2 [22], it follows that typlu(U2, h) = t2. Using Proposition 5, we
obtain typu(Tab(U2), h) = t2.

Let us define a pair (U3, h) as follows: U3 = (N, F3), where F3 = {li : i ∈ N \ {0}} and,
for any i ∈ N \ {0}, j ∈ N, if j ≤ i, then li(j) = 0, and if j > i, then li(j) = 1.

Lemma 11. typu(Tab(U3), h) = t3.

Proof. From Lemma 4.3 [22], it follows that typlu(U3, h) = t3. Using Proposition 5, we
obtain typu(Tab(U3), h) = t3.

Let us define a pair (U4, µ) as follows: U4 = (N, F4), where F4 = F3, µ(λ) = 0,
µ(li1 · · · lim) = 1 if m = 1 or m = 2, and i1 > i2, µ(li1 · · · lim) = max{i1, . . . , im} in
other cases.

Lemma 12. typu(Tab(U4), µ) = t4.

Proof. From Lemma 4.4 [22], it follows that typlu(U4, µ) = t4. Using Proposition 5, we
obtain typu(Tab(U4), µ) = t4.
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Let us define a pair (U5, h) as follows: U5 = (N, F5), where F5 = { fi : i ∈ N \ {0}}
and, for any i ∈ N \ {0}, j ∈ N, if i = j, then fi(j) = 1, and if i ̸= j, then fi(j) = 0.

Lemma 13. typu(Tab(U5), h) = t5.

Proof. From Lemma 4.5 [22], it follows that typlu(U5, h) = t5. Using Proposition 5, we
obtain typu(Tab(U5), h) = t5.

Let us define a pair (U6, h) as follows: U6 = (N, F6), where F6 = F5 ∪ G, G = {g2i+1 :
i ∈ N} and, for any i ∈ N, j ∈ N, if j ∈ {2i + 1, 2i + 2}, then g2i+1(j) = 1, and if j /∈
{2i + 1, 2i + 2}, then g2i+1(j) = 0.

Lemma 14. typu(Tab(U6), h) = t6.

Proof. From Lemma 4.6 [22], it follows that typlu(U6, h) = t6. Using Proposition 5, we
obtain typu(Tab(U6), h) = t6.

Let us define a pair (U7, h) as follows: U7 = (N, F7), where F7 = F3 ∪ F5.

Lemma 15. typu(Tab(U7), h) = t7.

Proof. From Lemma 4.7 [22], it follows that typlu(U7, h) = t7. Using Proposition 5, we
obtain typu(Tab(U7), h) = t7.

Proof of Proposition 3. The statement of the proposition follows from Lemmas 9–15.

Proof of Proposition 4. The statement of the proposition follows from Lemmas 10, 11, 13,
14, and 15.

6. Union of T Pairs

In this section, we define a union of two t pairs, which is also a t pair, and study
its upper type. Let τ1 = (C1, ψ1) and τ2 = (C2, ψ2) be t pairs, where C1 ⊆ Mk1(F1), and
C2 ⊆ Mk2(F2). These two t pairs are called compatible if F1 ∩ F2 = ∅ and ψ1(λ) = ψ2(λ).
We now define a t pair τ = (C, ψ), which is called a union of compatible t pairs τ1 and τ2.

Definition 24. The closed class C in τ is defined as follows: C = C1 ∪ C2 ⊆ Mmax(k1,k2)
(F1 ∪ F2).

The complexity measure ψ in τ is defined for any word α ∈ (F1 ∪ F2)
∗ in the following way: if

α ∈ F∗
1 , then ψ(α) = ψ1(α); if α ∈ F∗

2 , then ψ(α) = ψ2(α); if α contains letters from both F1 and
F2, then ψ(α) can have an arbitrary value from N. In particular, if ψ1 = ψ2 = h, then with ψ we
can use the depth h.

We now consider the upper type of t pair τ = (C, ψ). We denote as m̃ax the function
maximum for the linear order α ⪯ β ⪯ γ ⪯ δ ⪯ ϵ.

Theorem 3. The equality typ(Ubc
Cψ) = m̃ax(typ(Ubc

C1ψ1
), typ(Ubc

C2ψ2
)) holds for any b, c ∈ {i, d, a},

except for the case that bc = da and typ(U da
C1ψ1

) = typ(U da
C2ψ2

) = γ. In the last case,

typ(U da
Cψ) ∈ {γ, δ}.

Proof. Let n ∈ N and b, c ∈ {i, d, a}. We now define the value M = max(U1,U2), where
U1 = U bc

C1ψ1
(n), and U2 = U bc

C2ψ2
(n). Both U1 and U2 have values from the set {∅, ∞} ∪N

(see the definitions before Lemma 2). If U1 = U2 = ∅, then M = ∅. If one of U1,U2 is
equal to ∅ and another one is equal to a number m ∈ N, then M = m. If U1,U2 ∈ N, then
M = max(U1,U2). If at least one of U1,U2 is equal to ∞, then M = ∞.

The following equality follows from the definition of the partial function U bc
Cψ(n),

where n ∈ N, and b, c ∈ {i, d, a}: U bc
Cψ(n) = max(U bc

C1ψ1
(n),U bc

C2ψ2
(n)). Later in the
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proof, we will use this equality without special mention. From this equality, we obtain
typ(U bc

C1ψ1
) ⪯ typ(U bc

Cψ) and typ(U bc
C2ψ2

) ⪯ typ(U bc
Cψ). We now consider two different cases

separately: (1) typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

) and (2) typ(U bc
C1ψ1

) ̸= typ(U bc
C2ψ2

). Thus, we have
the following:

(1) Let typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

).

(a) Let typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

) = α. Since the functions U bc
C1ψ1

and U bc
C2ψ2

are both

bounded from above, we obtain that the function U bc
Cψ = max(U bc

C1ψ1
,U bc

C2ψ2
) is also bounded

from above. From this, it follows that typ(U bc
Cψ) = m̃ax(typ(U bc

C1ψ1
), typ(U bc

C2ψ2
)) = α.

(b) Let typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

) = β. From the fact that Dom+(U bc
C1ψ1

) and Dom+(U bc
C2ψ2

)

are both finite, we obtain that Dom+(U bc
Cψ) is also finite. Similarly, one can show that U bc

Cψ

is unbounded from above on C. From here, it follows that typ(U bc
Cψ) = m̃ax(typ(U bc

C1ψ1
),

typ(U bc
C2ψ2

)) = β.

(c) Let typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

) = γ. From here, it follows that the function ψb

is unbounded from above on C. From Proposition 1, it follows that bc belongs to the
set {ii, di, dd, da, ai, ad, aa}. Let c = b. Using Lemma 4, we obtain typ(U bb

Cψ) = γ. Let

bc ∈ {di, ai, ad}. Using Lemma 3 and the inequalities typ(U bc
C1ψ1

) ⪯ typ(U bc
Cψ) and

typ(U bc
C2ψ2

) ⪯ typ(U bc
Cψ), we obtain typ(U bc

Cψ) = γ. The only case left is when bc = da.

Since there is no n ∈ N for which U bc
C1ψ1

(n) = ∞ or U bc
C2ψ2

(n) = ∞, then according to

Lemma 2, we obtain that Dom(U bc
Cψ) is an infinite set. Therefore, typ(U bc

Cψ) ̸= ϵ, and hence,

typ(U bc
Cψ) ∈ {γ, δ}. From Proposition 6, it follows that both cases are possible. Thus, we

have the following:
(d) Let typ(U bc

C1ψ1
) = typ(U bc

C2ψ2
) = δ. From here, it follows that there is no n ∈ N for

which U bc
C1ψ1

(n) = ∞ or U bc
C2ψ2

(n) = ∞. Using Lemma 2, we conclude that Dom(U bc
Cψ) is an

infinite set. From the fact that Dom−(U bc
C1ψ1

) and Dom−(U bc
C2ψ2

) are both finite, we obtain

that Dom−(U bc
Cψ) is also finite. Therefore, typ(U bc

Cψ) = m̃ax(typ(U bc
C1ψ1

), typ(U bc
C2ψ2

)) = δ.

(e) Let typ(U bc
C1ψ1

) = typ(U bc
C2ψ2

) = ϵ. Since both Dom(U bc
C1ψ1

) and Dom(U bc
C2ψ2

) are finite

sets, we obtain that Dom(U bc
Cψ) is also a finite set. Therefore, typ(U bc

Cψ) = m̃ax(typ(U bc
C1ψ1

),

typ(U bc
C2ψ2

)) = ϵ.

(2) Let typ(Ubc
C1ψ1

) ̸= typ(Ubc
C2ψ2

). Denote f = Ubc
C1ψ1

and g = Ubc
C2ψ2

. Let typ( f ) ⪯ typ(g).
We now consider a number of cases.

(a) Let typ(g) = ϵ. From here, it follows that Dom(g) is a finite set. Taking into account
this fact, we obtain that Dom(max( f , g)) is also a finite set. Therefore,
typ(max( f , g)) = m̃ax(typ( f ), typ(g)) = ϵ. Later, we assume that typ(g) ̸= ϵ.

(b) Let typ( f ) = α. Then, both f and g are nondecreasing functions, f is bounded
from above, and g is unbounded from above. From here, it follows that there exists
n0 ∈ N such that f (n) < g(n) for any n ∈ N, n ≥ n0. Using this fact, we conclude that
max( f (n), g(n)) = g(n) for n ≥ n0. Therefore, typ(max( f , g)) = m̃ax(typ( f ), typ(g)) = typ(g).
Later, we will assume that typ( f ) ̸= α. It means we should only consider the pairs
(typ( f ), typ(g)) ∈ {(β, δ), (β, γ), (γ, δ)}.

(c) Let typ( f ) = β, typ(g) = δ. From here, it follows that Dom−( f ), Dom+(g) are both
infinite sets, and Dom+( f ), Dom−(g) are both finite sets. Taking into account that both f
and g are nondecreasing functions, we obtain that there exists n0 ∈ N such that f (n) < g(n)
for any n ∈ N, n ≥ n0. Therefore, typ(max( f , g)) = m̃ax(typ( f ), typ(g)) = typ(g) = δ.

(d) Let typ( f ) = β, typ(g) = γ. Then, Dom+(max( f , g)) is an infinite set. Taking
into account that Dom−(g) is an infinite set and that Dom+( f ) is a finite set, we obtain
that Dom−(max( f , g)) is also an infinite set. Therefore, typ(max( f , g)) = m̃ax(typ( f ),
typ(g)) = typ(g) = γ.
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(e) Let typ( f ) = γ, typ(g) = δ. From here, it follows that Dom+(max( f , g)) is an
infinite set, and Dom−(max( f , g)) is a finite set. Therefore, typ(max( f , g)) = m̃ax(typ( f ),
typ(g)) = typ(g) = δ.

The next statement follows immediately from Proposition 1 and Theorem 3.

Corollary 2. Let τ1 and τ2 be compatible t pairs, and let τ be a union of these t pairs. Then, the
possible values of typu(τ) are in the table shown in Figure 9 in the intersection of the row labeled
with typu(τ1) and the column labeled with typu(τ2).

t1 t2 t3 t4 t5 t6 t7
t1 t1 t2 t3 t4 t5 t6 t7
t2 t2 t2 t3 t4 t5 t6 t7
t3 t3 t3 t3 t4 t7 t7 t7
t4 t4 t4 t4 t4 t7 t7 t7
t5 t5 t5 t7 t7 t5, t6 t6 t7
t6 t6 t6 t7 t7 t6 t6 t7
t7 t7 t7 t7 t7 t7 t7 t7

Figure 9. Possible upper types of a union of two compatible t pairs.

To finalize the study of unions of t pairs, we prove the following statement:

Proposition 6. (a) There exist compatible t pairs τ1
1 and τ1

2 and their union τ1 such that
typu(τ

1
1 ) = typu(τ

1
2 ) = typu(τ

1) = t5.
(b) There exist compatible t pairs τ2

1 and τ2
2 and their union τ2 such that

typu(τ
2
1 ) = typu(τ

2
2 ) = t5 and typu(τ

2) = t6.

Proof. For i ∈ N, we denote Fi = {ai, bi, ci}, and Gi in the decision table depicted in
Figure 10. We study the t pair (Ti, ψi), where Ti is the closed class of decision tables from
M2(Fi), which is equal to [Gi], and ψi is a complexity measure over M2(Fi) defined in the
following way: ψi(λ) = 0, ψi(ai) = ψi(bi) = ψi(ci) = i and ψi(α) = i + 1 if α ∈ F∗

i and
|α| ≥ 2.

Gi =

ai bi ci
1 0 0 {1}
0 1 0 {2}
0 0 1 {3}

Figure 10. Decision table Gi.

We now study the function U da
Tiψi

. Since the operations of the duplication of columns
and the permutation of columns do not change the minimum complexity of the determinis-
tic and nondeterministic decision trees, we only consider the operations of the changing of
decisions and the removal of columns.

Using these operations, the decision tables from Ti can be obtained from Gi in three
ways: (a) only through the changing of decisions, (b) by removing one column and through
the changing of decisions, and (c) by removing two columns and through the changing of
decisions. Figure 11 demonstrates examples of the decision tables from Ti for each case.
Without loss of generality, we can restrict ourselves to considering these three tables: H1,
H2, and H3.
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a) H1 =

ai bi ci
1 0 0 d1
0 1 0 d2
0 0 1 d3

b) H2 =

ai bi
0 0 d4
1 0 d5
0 1 d6

c) H3 =
ci
0 d7
1 d8

Figure 11. Decision tables from closed class Ti, where d1, . . . , d8 ∈ P(N).

We consequently have the following:
(a) There are three different cases for the table H1: (i) the sets of decisions d1, d2, d3

are pairwise disjoint, (ii) there are l, t ∈ {1, 2, 3} such that l ̸= t, dl ∩ dt ̸= ∅ and
d1 ∩ d2 ∩ d3 = ∅, and (iii) d1 ∩ d2 ∩ d3 ̸= ∅. In the first case, ψa

i (H1) = i and ψd
i (H1) = i + 1.

In the second case, ψa
i (H1) = i and ψd

i (H1) = i. In the third case, ψa
i (H1) = 0 and

ψd
i (H1) = 0.

(b) There are three different cases for the table H2: (i) the sets of decisions d4, d5, d6 are
pairwise disjoint, (ii) there are l, t ∈ {4, 5, 6} such that l ̸= t, dl ∩ dt ̸= ∅ and d4 ∩ d5 ∩ d6 = ∅,
and (iii) d4 ∩ d5 ∩ d6 ̸= ∅. In the first case, ψa

i (H2) = i + 1, and ψd
i (H2) = i + 1. In the

second case, we have either ψa
i (H2) = ψd

i (H2) = i + 1 or ψa
i (H2) = ψd

i (H2) = i depending
on the intersecting decision sets. In the third case, ψa

i (H2) = 0, and ψd
i (H2) = 0.

(c) There are two different cases for the table H3: (i) d7 ∩ d8 = ∅ and (ii) d7 ∩ d8 ̸= ∅. In
the first case, ψa

i (H3) = i, and ψd
i (H3) = i. In the second case, ψa

i (H3) = 0, and ψd
i (H3) = 0.

As a result, we obtain that, for any n ∈ N,

U da
Tiψi

(n) =

{
0, n < i,
i + 1, n ≥ i.

(3)

Let K be an infinite subset of the set N. Denote FK = ∪i∈KFi and TK = ∪i∈K[Gi]. It is
clear that TK is a closed class of decision tables from M2(FK). We now define a complexity
measure ψK over M2(FK). Let α ∈ F∗

K. If α ∈ F∗
i for some i ∈ K; then, ψK(α) = ψi(α). If α

contains letters from both Fi and Fj, and if i ̸= j, then ψK(α) = 0.
Let K = {nj : j ∈ N} and nj < nj+1 for any j ∈ N. We define a function φK : N → N

as follows. Let n ∈ N. If n < n0, then φK(n) = 0. Let, for some j ∈ N, that nj ≤ n < nj+1.
Then, φK(n) = nj. Using (3), one can show that, for any n ∈ N,

U da
TKψK

(n) = φK(n).

Using this equality, one can prove that typ(U da
TKψK

) = γ if the set N \ K is infinite and

that typ(U da
TKψK

) = δ if the set N \ K is finite.

Denote K1
1 = {3j : j ∈ N}, K1

2 = {3j + 1 : j ∈ N} and K1 = K1
1 ∪ K1

2. Denote
τ1

1 = (TK1
1
, ψK1

1
), τ1

2 = (TK1
2
, ψK1

2
), and τ1 = (TK1 , ψK1). One can show that the t pairs

τ1
1 and τ1

2 are compatible and that τ1 is a union of τ1
1 and τ1

2 . It is easy to prove that
typ(U da

TK1
1

ψK1
1

) = typ(U da
TK1

2
ψK1

2

) = typ(U da
TK1 ψK1

) = γ. Using Proposition 2, we obtain

typu(τ
1
1 ) = typu(τ

1
2 ) = typu(τ

1) = t5.
Denote K2

1 = {2j : j ∈ N}, K2
2 = {2j + 1 : j ∈ N} and K2 = K2

1 ∪ K2
2 = N. Denote

τ2
1 = (TK2

1
, ψK2

1
), τ2

2 = (TK2
2
, ψK2

2
), and τ2 = (TK2 , ψK2). One can show that the t pairs

τ2
1 and τ2

2 are compatible and that τ2 is a union of τ2
1 and τ2

2 . It is easy to prove that
typ(U da

TK2
1

ψK2
1

) = typ(U da
TK2

2
ψK2

2

) = γ and typ(U da
TK2 ψK2

) = δ. Using Proposition 2, we obtain

typu(τ
2
1 ) = typu(τ

2
2 ) = t5 and typu(τ

2) = t6.

7. Proofs of Theorems 1 and 2

First, we consider some auxiliary statements.
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Definition 25. Let us define a function ρ : {α, β, γ, δ, ϵ} → {α, β, γ, δ, ϵ} as follows:
ρ(α) = ϵ, ρ(β) = δ, ρ(γ) = γ, ρ(δ) = β, ρ(ϵ) = α.

Proposition 7 (Proposition 5.1 [22]). Let X be a nonempty set f : X → N, g : X →
N,U f g(n) = max{ f (x) : x ∈ X, g(x) ≤ n}, and Lg f (n) = min{g(x) : x ∈ X, f (x) ≥ n} for
any n ∈ N. Then, typ(Lg f ) = ρ(typ

(
U f g

)
).

Using Proposition 7, we obtain the following statement:

Proposition 8. Let (C, ψ) be a t pair, and b, c ∈ {i, d, a}. Then, typ(Lcb
Cψ) = ρ(typ(U bc

Cψ)).

Corollary 3. Let (C, ψ) be a t pair, and i ∈ {1, . . . , 7}. Then, typu(C, ψ) = ti if and only if
typ(C, ψ) = Ti.

Proof of Theorem 1. The statement of the theorem follows from Propositions 1 and 3 and
from Corollary 3.

Proof of Theorem 2. The statement of the theorem follows from Propositions 2 and 4 and
from Corollary 3.

8. Conclusions

This paper is devoted to a comparative analysis of the deterministic and nondeter-
ministic decision tree complexity for decision tables from closed classes. It is a qualitative
research: we have considered a finite number of types of the behavior of functions char-
acterizing the relationships among different parameters of decision tables. In this paper,
we have enumerated all the realizable types of t pairs and limited t pairs. We have also
defined the notion of a union of two t pairs and studied the upper type of the resulting t
pair, thus depending on the upper types of the initial t pairs. The obtained results allow
us to point out cases where the complexity of deterministic and nondeterministic decision
trees is essentially less than the complexity of the decision table. Future publications will
be related to a quantitative research: we will study the lower and upper bounds on the
considered functions.
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