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Abstract: Through the pendulum mechanism inside the spherical shell, the centroid can be varied 

circumferentially, enabling the spherical robot to achieve omnidirectional flexible movement. Ad-

ditionally, the radial variation ability of the centroid enables spherical robots to adopt two distinct 

driving modes: the traditional lower pendulum driving mode and the inverted pendulum driving 

mode. There are two manifestations of radial variation in the centroid: having different radial posi-

tions of the centroid and achieving radial movement of the centroid. Focusing on these two mani-

festations, experimental data are obtained through different motion velocities and different motion 

slopes to conduct research on the influence of radial variation in the centroid on the motion of spher-

ical robots. Based on the experimental data, multiple indicators are analyzed, including response 

speed, convergence speed, stability, and overshoot, as well as steering ability, climbing ability, and 

output power. The impact of the radial variation ability of the centroid on the control performance, 

locomotion capability, and energy consumption of spherical robots is summarized, and the correla-

tion model relating the motion requirements to the radial position of the centroid is established, 

providing a theoretical basis for the selection of driving modes and centroid positions for spherical 

robots facing complex task requirements. 

Keywords: spherical robot; inverted pendulum drive; radial variation of centroid; motion  

characteristics; pendulum length model 

 

1. Introduction 

Compared to conventional mobile robots, the spherical enclosed shell endows spher-

ical robots with the capability to prevent overturning and achieve an omnidirectional fast 

movement while also possessing strong self-protection and low energy consumption 

characteristics [1,2]. These inherent advantages enable spherical robots to effectively ad-

dress rapid deployment operations in hazardous and confined work environments. Since 

the successful development of the first spherical robot in 1996, numerous research insti-

tutions have maintained a high level of attention and continuous research on spherical 

robot-related technologies, with the number of related research outcomes consistently sta-

ble in internationally renowned journals such as IEEE and ASME. 

Research on the driving mechanisms of spherical robots is currently focused on four 

main directions: wheeled eccentric torque driving mechanisms (Figure 1a), multi-wheel 

friction internal driving mechanisms (Figure 1b), and pendulum eccentric torque driving 

mechanisms (Figure 1c), as well as other novel driving mechanisms such as wind-driving 

mechanisms (Figure 1d), localized deformation of the spherical shell (Figure 1e), and leg-

driving mechanisms (Figure 1f) [3–5]. The wheeled eccentric torque driving mechanism 

was the initial driving mechanism for spherical robots, achieving omnidirectional move-

ments through the motion of a small car inside the shell, as seen in the Rollo series of 
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spherical robots [6]. In-depth research on this type of driving mechanism has been con-

ducted by teams at Beijing Jiaotong University in China [7]. The multi-wheel friction in-

ternal driving mechanism enables the omnidirectional movement of spherical robots 

through frictional interaction between multiple friction wheels inside the shell and the 

inner wall of the shell. Relevant teams at National Taiwan University and Zanjan Univer-

sity in Iran have conducted in-depth research on this mechanism [8,9]. 

 

Figure 1. Different driving mechanisms of spherical robots: (a) a spherical robot utilizing a wheeled 

eccentric torque driving mechanism; (b) a spherical robot utilizing a multi-wheel friction internal 

driving mechanisms; (c) a spherical robot utilizing a pendulum eccentric torque driving mecha-

nisms; (d) a spherical robot utilizing a wind-driving mechanisms; (e) a spherical robot utilizing a 

localized deformation of the spherical shell; (f) a spherical robot utilizing a leg-driving mechanisms. 

With the advantages of low mechanism complexity, a simple connection between the 

internal mechanism and the spherical shell, and high driving efficiency, the pendulum 

eccentric torque (PET) is the most extensively studied driving mechanism for spherical 

robots [10]. As a core component within the internal mechanism of spherical robots based 

on the PET driving mechanism, the position of the pendulum directly affects the centroid 

position of the spherical robot, thereby influencing its motion state [11]. J.C. Yoon et al. 

designed a PET spherical robot named KisBot II, where the main shaft frame and pendu-

lum mechanism could rotate 360° vertically inside the sphere without interfering with 

each other, endowing it with the ability for omnidirectional flexible movement [12]. S. 

Mahboubi et al. designed a spherical robot driven by dual pendulums, where two motors 

independently drove two symmetrically positioned pendulum mechanisms. Through the 

coordination between the pendulums, the spherical robot achieved linear motion, arc mo-

tion, turning in place, and hopping [13]. B.P. DeJong et al. designed a spherical robot 

driven by four pendulums, with the four independently movable pendulums distributed 

inside the spherical shell in a tetrahedral configuration. This configuration enabled the 

spherical robot to apply rolling torque in any direction while stationary, thereby achieving 

omnidirectional flexible movement [14]. M. YUE et al. proposed a horizontally collinear-

driven spherical robot and a coaxial dual eccentric mass-driven ellipsoidal robot, expand-

ing the dual-drive mechanism of the PET and enhancing motion flexibility [15]. Q. ZHAN 

et al. successively proposed multiple BHQ series spherical robots, among which the BHQ-

2 spherical robot added a visual function to the spherical robots based on further expand-

ing the dual-drive mechanism [16–18]. G. LI et al. designed the “Watcher” spherical robot, 

effectively improving the positioning and target detection capabilities of spherical robots 

based on multi-sensor fusion technology, promoting the effective application of pendu-

lum eccentric torque-driven spherical robots in practical task environments [19]. 

The complex and ever-changing unstructured task environments are placing increas-

ingly higher demands on the practicality of spherical robots. The improvement of practi-

cality is aimed not only at enhancing the control performance of spherical robots but also 

at enhancing the diverse adaptability to different task requirements, such as long endur-

ance and high mobility [20]. However, current research on spherical robots driven by pen-

dulum eccentric torque has primarily concentrated on traditional variations in the swing-

ing mechanism, specifically exploring different methods of circumferential variation, 

without genuinely considering the practical enhancement of spherical robots. If the pen-

dulum possesses both circumferential and radial motion capabilities, meaning the cen-

troid of the spherical robot can vary radially, then the pendulum can facilitate a transition 
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between the upper and lower hemispheres of the spherical robot. In this scenario, the 

spherical robot can achieve not only the traditional lower pendulum driving mode but 

also a new inverted pendulum driving mode (as shown in Figure 2). When the spherical 

robot operates in two different driving modes, the position of the pendulum can move 

radially. This means that the pendulum’s range of motion within the spherical shell can 

be increased, thereby enriching the motion capabilities of the spherical robot and enhanc-

ing its ability to handle various task requirements in unstructured environments. 

 

Figure 2. Two driving modes of spherical robot. 

There are two manifestations of radial variation for the centroid: having different ra-

dial positions of the centroid and achieving radial movement of the centroid. For the two 

different driving modes of the spherical robot, we conducted experimental research using 

two routes: different motion velocities and different motion slopes. Following the acqui-

sition of relevant experimental data, we analyzed the motion of the spherical robot, taking 

into account factors such as the control system response speed, convergence speed, stabil-

ity, overshoot, steering ability, climbing ability, and output power. We then summarized 

the impact of the radial variation of the centroid on motion performance and theorized 

these findings. Additionally, we explored the mathematical model that links the motion 

requirements of the spherical robot to the radial position of the centroid. This research 

provides a foundation for selecting the driving mode and centroid position of radial-var-

iable spherical robots for complex task requirements. 

The rest of this study is organized as follows: Section 2 introduces the experimental 

platform and experimental settings, namely the radial variable centroid spherical robot 

BYQ-GS, and sets up control analysis indicators and relevant experimental parameters. 

Section 3 is the acquisition of motion experimental data. Section 4 analyzes the experi-

mental data corresponding to the motion indicators and summarizes the relevant law and 

correlation model on the radial variable centroid spherical robot. Section 5 conducts an 

experimental verification of the analysis results. Section 6 summarizes the research work. 

2. Experimental Platform and Experimental Settings 

We used the radial variable centroid spherical robot BYQ-GS as the experimental 

platform and presented the spatial multi-body dynamics model for unstructured task en-

vironments. We adopted the Hierarchical Sliding Mode Control (HSMC) method to con-

trol the robot and set relevant control parameters. To obtain data corresponding to the 

even specified motion analysis indicators, we set the experimental parameters for the dif-

ferent radial positions and radial movements of the centroid. 

2.1. Experimental Platform 

The experimental platform adopts the radial variable centroid spherical robot BYQ-

GS (Figure 3a,b), and the pendulum of the spherical robot can move radially. When the 

pendulum is located on the upper side or the lower side of the internal mechanism (Figure 

3c,d), the centroid of the spherical robot can be located on the upper or lower hemispheres, 

thus achieving the lower pendulum driving mode or the inverted pendulum driving 
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mode. When in different driving modes, spherical robots can achieve radial variation in 

the centroid through the radial movement of the pendulum. 

 

Figure 3. Prototype of spherical robot BYQ-GS: (a) design model; (b) physical model with half of 

the spherical shell removed; (c) physical model of internal structure in lower pendulum driving 

mode; (d) physical model of internal structure in inverted pendulum driving mode. 

The basic performance of the spherical robot BYQ-GS is detailed in Table 1. The 

spherical shell is constructed from a glass fiber reinforced polymer (GFRP) composite ma-

terial, with a thickness of 2.3 mm and an outer diameter of 400 mm, featuring a layup 

sequence of [0/90]6. The control system employs a host computer to send commands, 

while the mobile end is responsible for receiving, processing, and executing commands. 

Additionally, the mobile end facilitates the transmission of real-time pose data generated 

by relevant sensors during motion to the host computer. The pose feedback system con-

sists of motor encoders, an MTi-300 inertial measurement unit (IMU), and a BD992-INS 

multi-star multi-frequency high-precision combined navigation board (RTK). The meas-

urement accuracy of the IMU angles is 0.05°, the theoretical positioning accuracy of RTK 

is 0.008 m, the velocity measurement accuracy is 0.007 m/s, and the pitch/roll angle meas-

urement accuracy is 0.10°. This system is capable of the real-time acquisition of the global 

position, heading, velocity, and attitude information. After computation, we can obtain 

the motion state information of the spherical robot [21–23]. 

Table 1. Performance of spherical robot BYQ-GS. 

Parameter Type Value Parameter Type Value 

total mass (kg) 12.8 range of pendulum length variation (m) 0.04–0.12 

pendulum mass (kg) 4.7 rated velocity of pendulum radial movement (m/s) 0.03 

outer radius (mm) 200 rated motion velocity (maximum pendulum length) (m/s) 4 

drop height (cm) ≥25 rated acceleration (maximum pendulum length) (m/s2) 0.7 

endurance (h) ≥1 climbing capability (maximum pendulum length) (°) 10 

2.2. Spatial Multi-Body Dynamics Model 

When the radial variable centroid spherical robot operates in two different driving 

modes, its simplified model of omnidirectional multi-body motion is shown in Figure 4. 

Driving mode 1 is defined as the lower pendulum driving mode, and driving mode 2 is 

defined as the inverted pendulum driving mode. 



Machines 2024, 12, 422 5 of 25 
 

 

 

Figure 4. Simplified model for the omnidirectional multi-body motion of the radial variable centroid 

spherical robot. 

0  is the inertial coordinate system fixed to the slope. b  is the coordinate system 

fixed to the spherical shell and rolls with it. c  is the coordinate system fixed to the main 

frame and rotates with it. The coordinate origins of b  and c  coincide with the geo-

metric center of the spherical shell. d  is the coordinate system fixed to the pendulum 

and rotates with it, with the centroid of the pendulum as the origin. cx  and bx  con-

stantly coincide and have the same orientation. dy  and bx  maintain the same orienta-

tion throughout. In the initial state, c  coincides with b , and the main frame rotates 

about bx  with an angle of  . Each axis of d  remains parallel to c , and the pendu-

lum rotates about cy  with an angle of  . The slope angle is  . The zyx Euler angles 

from 0  to b  are denoted as ( , , )   , where   represents the heading angle,   

represents the roll angle and   represents the pitch angle. The coordinates of the geo-

metric center of the spherical shell in 0  are represented as ( , , )x y z , and the radius of 

the spherical shell is represented as R . The variable pendulum length for two different 

driving modes is denoted as L . The torque of the long-axis motor in the cx  direction is 

represented as  , the torque of the short-axis motor in the cy  direction is represented 

as  , and the torque of the pendulum lifting motor in the dz  direction is represented as 

L . 

The pendulum length L  of the radial variable centroid spherical robot is one of the 

variables. The position, attitude, and centroid position of the spherical robot can be fully 

described by the eight generalized coordinates in q  as shown in Equation (1), while the 

three nonholonomic constraints can be expressed in matrix form as shown in Equation (1) 

[21,24,25]. 

       1 2 3

cos sin cos 0 0 0

0 sin cos cos 0 0 0

0 sin 0 0 0

T

R R

x y L R Rq A q q A q A A 

 
      
  

  

  

       



 (1) 

Based on Lagrange’s equation of the first kind, the dynamic models of the radial var-

iable centroid spherical robot for driving mode 1 and mode 2 in an ideal task environment 

are given by Equation (2). 

       , T
i i iM q q V q q E q τ A q λ     (2)

where, 8 8( )iM q   represents the inertia matrix, 8 1( , )iV q q    represents the nonlinear 

term, 1 2 3[ ]Tλ λ λ λ  represents the undetermined multiplier vector corresponding to the 

nonholonomic constraint, [ ]T
Lτ       represents the input torque vector, P  is de-

fined as the lead of the linear module screw, and the input transformation matrix ( )iE q  

can be expressed in the following form. 
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 
 

3

0 0 sin cos 0 0 1 0

0 0 0 0 1 1 0 0

0 0 cos 0 0 0 0 2

i

i

m P

E q

 
 

  
 
 

 

 

 (3)

In order to eliminate the impact of nonholonomic constraints on the dynamic model 

construction process, we set the output variable of the spherical robot system to 3q . Under 

an ideal task environment, the dynamic model of the radial variable centroid spherical 

robot in driving mode 1 and mode 2 can be transformed into Equation (4). 

3 2

1 1 1
3 3

Δ

Δ ( Δ Δ )T T T
i i i i i

q q

M q M C M C q C V C E τ  



   

 

   
 (4)

where, regardless of the position of the radial variable centroid spherical robot within the 

state space, matrix Δ  remains invertible, and 

    2

3

5 5

3

cos sin cos 0

= , , , , Δ sin cos cos 0

0 0

TT
i i

R R

x y L R R
A

M C M C q C q
I

I


  
         
    


  

      (5)

According to the performance parameters of the spherical robot BYQ-GS prototype 

shown in Table 1, the value of L  is relatively small and the action time is short, so the 

effect on the generalized coordinate   can be neglected. The generalized coordinates 

( , , , , , , , )x y L      is correlated with the generalized torque ( , )    and can be influ-

enced by L  and L , but it cannot affect the variations in L  and L , while L  corre-

sponds one-to-one with L . In order to reduce the complexity of the dynamic model, we 

separately set and control L  and L  during the control process and only set the desired 

value for ( , , , , , , , )x y L      in the control strategy. The dynamic model for unstructured 

task environments, based on the ideal task environment shown in Equation (4), is repre-

sented by Equation (6). 

   , m fx fn dv du fcM q q N q q τ τ τ τ τ τ τ τ τ             (6)

where, mτ  represents the output torque of the motor, fτ  represents the friction term of 

motion, and dτ  represents the disturbance from the mechanism or external environ-

ment. According to whether the disturbance is controllable, dτ  is divided into controlla-

ble part dvτ  and uncontrollable part duτ , and fτ  is divided into linear part fxτ  and 

nonlinear part fnτ . The controllable compensating torque fcτ  is used to represent dvτ  

and fxτ , which mainly comes from the rolling friction couple moment exerted by the 

ground on the spherical shell, as well as the friction torque inside the joint caused by the 

viscous damping of the bearing. The uncertain factor τ  is used to represent duτ  and 

fnτ . 

According to Equation (6), in unstructured environments, the motion control of a 

spherical robot needs to consider three aspects: parameters related to the robot itself, con-

trollable factors during motion, and uncertain and uncontrollable factors during motion. 

( , ( ))t tξ u  is used to represent uncertain terms, which include uncertain factors such as 

uncontrollable bounded unknown disturbances and nonlinear friction. We convert Equa-

tion (6) into the form shown in Equation (7) and further express it as the state space ex-

pression of the subsystem shown in Equation (8) and the generalized coordinate 

( , , , )i x y    [16]. 

        , , , ,f t g t t t tq q q q u ξ u     (7)

i i i i iq f g u     (8)
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where, 1 1
1 1 1( , , ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( )T T T

i i i fcf t f f t g g t u uq q M q N q q g q M q u τ τ            

1( , ( )) ( )T
it u tξ    . 

2.3. Experimental Settings 

The radial variation of a spherical robot’s centroid manifests in two forms: having 

different radial positions of the centroid during motion and achieving radial movement 

of the centroid during motion. When conducting motion research on spherical robots ex-

hibiting these two manifestations, it is necessary to consider the evaluation indicators for 

motion and methods for obtaining experimental data. 

2.3.1. Evaluation Indicators for Motion 

The setting of control evaluation indicators and the method for obtaining experi-

mental data are shown in Figure 5. We divided the motion evaluation indicators of spher-

ical robots into three aspects: control performance, locomotion capability, and energy con-

sumption. Control performance was comprehensively analyzed through four indicators 

of the control system: response speed, convergence speed, stability, and overshoot. Loco-

motion capability is analyzed through two indicators: steering ability and climbing ability. 

We obtained experimental data for these indicators through two routes. The first route is 

motion with different expected velocities on the horizontal plane, and the experimental 

scene is an outdoor track and field runway. We conducted experiments by combining 

different pendulum lengths L  with different expected velocities dv . The second route is 

motion with different slope angles, and the experimental venue is a wooden slope meas-

uring 2.5 m × 2.5 m. The slope angle can be adjusted by varying the number and position 

of wooden blocks underneath the slope. We conducted experiments by combining differ-

ent pendulum lengths L  and slope angles  . 

 

Figure 5. The setting of control evaluation indicators and the method for obtaining data. 

The data for motion evaluation indicators are based on the motion position error of 

the spherical shell ( ) ( ) ( )x xe t p t x t   and the swing position error of the pendulum 

( ) ( ) ( )e t p t t    . Here, ( )xp t  and ( )p t  represent the theoretical values of the real-time 

position, while ( )x t  and ( )t  represent the actual values of the real-time position. The 

experimental data corresponding to each indicator are as follows. 

2.3.2. Parameter Settings for Controller 

We defined the first layer of the sliding surface ( )iS t , the second layer of the sliding 

surface ( )S t , and the exponential approach law S  of the spherical shell subsystem, main 

frame subsystem, and pendulum subsystem, respectively, as presented below. 

1 2( ) ( ) ( ) ( ) ( ) tanh( )i i i i i iS t e t a e t S t c S t S S S         (9)

where, ( )ie t  represents the difference between the expected value ( )ip t  and the real-

time value ( )i t  of the generalized coordinates, ( , , , )i x y   . The controller parameter 

settings for different routes are shown in Table 2 [26–28]. 
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Table 2. The controller parameter settings for different routes. 

Route  , , ,x ya a a a 
 

 , , ,x yc c c c 
 

 , 1 2
 

1 (0.83, 7.26, 2.85, 0.21) (8.81, 1.73, 2.18, 0.94) (5.45, 1.97) 

2 (1.47, 11.82, 0.78, 4.19) (15.62, 0.94, 5.65, 7.17) (2.56, 5.44) 

2.3.3. Parameter Settings for Experiment 

Experiment type 1 involved different radial positions of the centroid, with the pen-

dulum length L  remaining constant during motion. Experiment type 2 involved radial 

movement of the centroid, where the pendulum length transitioned from the initial length 

0L  to the target length dL  at a constant speed of 0.01 m/s at the beginning of motion. 

Based on Equation (10), we analyzed the impact of the radial movement of the centroid 

on the motion evaluation indicators during the motion process. Each type of experiment 

was conducted through two different routes, and we compared the motion evaluation 

indicators of spherical robots in two different driving modes. The selected parameters for 

the experiments, including expected velocities dv  and slope angles  , as well as the in-

itial and desired states of the control system, are all shown in Figure 6. 

   0 d 0ii i L L Lindicator data indicator data  (10)

 

Figure 6. Parameter settings for experiment. 

Due to the influence of the rolling resistance couple moment on the motion process, 

for the swing angle   and  , as shown in Figure 4, the theoretical equilibrium angles 

are p  and p  in the state of motion convergence and can be determined by consider-

ing the relevant descriptions in References [29,30]. With the premise that the system can 

converge, we analyzed the experimental results of the lower pendulum driving mode and 

inverted pendulum driving mode based on the evaluation indicators for motion. To en-

sure the reliability of the experimental data and facilitate a more intuitive comparison of 

the results, we repeated the experiment five times and calculated the average of the ob-

tained data. We then preprocessed the experimental data using the Savitzky–Golay 

smoothing algorithm (window size: 40, polynomial degree: 2) to obtain the final dataset 

for the experiment [31,32]. 

We normalized the mathematical models constructed for different indicators using 

Equation (11), which maps the data to the (0, 1) range for processing. This approach en-

sures the data retain their original distribution while also making the variation patterns 

of the relevant indicators more universal and eliminating the dimensional effects of dif-

ferent indicators during the construction process of the correlation model [33]. 

     min max minNorm z z z z z    (11)

We used the least squares method to fit the n data obtained from the experiment. 

According to the error theory analysis method, the fitting accuracy of the fitting value 
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),( i i x yf  relative to the actual value i z  of the coordinate points is represented by Equa-

tion (12) [34,35]. 

    
2

1

, 3
n

f i i i

i

f x y z n


    (12)

3. Acquisition of Motion Experimental Data 

The motion evaluation of spherical robots was divided into three aspects: control 

performance, locomotion capability, and energy consumption. Therefore, we collected 

and processed experimental data of multiple evaluation indicators in the above three as-

pects, respectively. 

Experiment type one involved experiments with different radial positions of the cen-

troid during motion. The blue symbols represent the experimental data of the lower pen-

dulum driving mode, while the red symbols represent the experimental data of the in-

verted pendulum driving mode. We applied the least squares method to formally fit the 

experimental data, with undetermined coefficients rounded to two decimal places. Sub-

sequently, we established its mathematical model and calculated the fitting accuracy of 

the mathematical model according to Equation (12). In the mathematical model, i  repre-

sents two different driving modes, and j  represents two different routes for obtaining 

experimental data. To eliminate the influence of indicator dimensions and provide a vis-

ual analysis of the motion of the spherical robot BYQ-GS under different pendulum 

lengths, we normalized the fitted equations based on Equation (11). Here, 1i   refers to 

the lower pendulum driving mode, and 2i   refers to the inverted pendulum driving 

mode. By inputting the actual values of the pendulum length L , expected velocity dv , 

and slope angle   into the fitted equations, the indicator value under two different driv-

ing modes can be obtained. The range of pendulum length L  is [0.04, 0.12]. The range of 

dv  is [0.2, 1.6]. The range of   corresponding to L  is less than the maximum slope an-

gle defined in Figure 6. The variation range of the indicator value is [0, 1], where smaller 

values indicate better indicator performance. 

Experiment type two involved experiments with a radial movement of the centroid 

during motion. The radial movement of the centroid was achieved through pendulum 

radial movement, which can be divided into two directions, as shown in Figure 6: pendu-

lum length gradually increased from 0.04 m to 0.12 m, and pendulum length gradually 

decreased from 0.12 m to 0.04 m. The blue symbols represent experimental data. We ana-

lyzed the experimental data and summarized the change trend according to Equation (10). 

3.1. Control Performance 

As shown in Figure 6, the evaluation indicators for control performance were divided 

into four aspects: response speed, convergence speed, stability, and overshoot. 

3.1.1. Response Speed 

We evaluated the response speed of the control system of the spherical robot BYQ-

GS under two different driving modes by means of Route 1 and Route 2. The evaluation 

indicators were the generation time of maximum torque maxt  . 

Experiment type 1: The trends of maxt   are shown in Figure 7. When the pendulum 

length, target parameters, and environmental parameters of the spherical robot were con-

sistent under two different driving modes, max1 max 20.12s 0.32st t     (Tables S1–S4). The 

experimental data shown in Figure 7 were fitted with a mathematical model, and the fit-

ting results can be represented by Equation (13). 
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(a) (b) 

Figure 7. Experimental data of maxt   obtained from experiments with different radial positions of 

the centroid. (a) Route 1, (b) Route 2. 

( ) 3 3 2 2 2 2
max 1 2 3 4 5 6 7 8 9 10Route

i
jt K a x a y a x a y a x a y a x y a xy a xy a             (13)

The coefficients of Equation (13) are presented in Table 3. According to Equation (12), 

the maximum fitting accuracy of max1t   and max 2t   to the experimental data is 0.155 s, 

which does not affect our ability to assess the trend of the experimental data. 

Table 3. The coefficients for Equation (13). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

max1t   
(1)
Route _1K  , dL v  −884.82 −0.14 321.30 0.38 −46.99 −0.28 −1.52 0.10 −0.16 3.14 
(1)
Route _ 2K  ,L   −1215.67 0.01 385.97 −0.01 −45.27 −0.03 6.28 −0.02 1.11 2.72 

max 2t   
(2)
Route _1K  , dL v  −1358.33 −0.18 416.85 0.46 −50.16 −0.39 −4.53 0.63 −0.17 2.88 
(2)
Route _ 2K  ,L   −1149.95 0.01 341.22 −0.01 −37.57 0.01 −0.58 −0.03 0.12 2.19 

Based on Equation (11), the response speed of the control system ( )
Norm( , , )i

dK L v   un-

der driving mode one and driving mode two can be represented by Equation (14). 

   
2

( ) ( )
Norm Route_

1

, , Norm Norm 2i i
d s

s

K L v K


 
   

  (14)

Experiment type 2: The trends of max1t   and max 2t   are shown in Figure 8. Accord-

ing to the Equation (10), 0 0max ( ) max ( )di i L L i Lt t      (Tables S6–S9). 

(a) 

 

(b) 

 

Figure 8. Experimental data of  obtained from experiments with radial movement of the cen-

troid. (a) Route 1, (b) Route 2. 

We analyzed the experimental data of the response speed of the control system, and 

the results of the analysis are presented in Table 4. 

  

max t
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Table 4. The results of the analysis for the experimental data of the response speed maxt  . 

 
The Pendulum Length Transitioned from L0  to dL  

: . : .dL L0 0 04m 0 12m  : . : .dL L0 0 12m 0 04m  

Route 1 

vd (m/s): 0.2 → 1.6 

1  [89.67%, 94.13%] [108.99%, 112.06%] 

2  [84.71%, 91.20%] [113.93%, 116.12%] 

Route 2 

 : 0° → 10° 

1  [93.64%, 96.51%] [105.51%, 108.55%] 

2  [86.05%, 91.79%] [109.34%, 113.58%] 

3.1.2. Convergence Speed 

We evaluated the convergence speed of the control system of the spherical robot 

BYQ-GS under two different driving modes by means of Route 1 and Route 2. The evalu-

ation indicators were the motion convergence time rt , and the motion convergence state 

can be determined using Equation (15). 

max min max min0.1 0.1e e e e e      (15)

Experiment type 1: The trends of rt  are shown in Figure 9. The pendulum length, 

target parameters, and environmental parameters of the spherical robot were consistent 

under two different driving modes, 2 10.48s 6.30sr rt t   (Tables S1–S4). The experimental 

data shown in Figure 9 were fitted with a mathematical model, and the fitting results can 

be represented by Equation (16). 

  
(a) (b) 

Figure 9. Experimental data of rt  obtained from experiments with different radial positions of the 

centroid. (a) Route 1, (b) Route 2. 

( ) 3 3 2 2 2 2
1 2 3 4 5 6 7 8 9 10Route

i
ri jt F a x a y a x a y a x a y a x y a xy a xy a            (16)

The coefficients of Equation (16) are presented in Table 5. According to Equation (12), 

the maximum fitting accuracy of 1rt  and 2rt  to the experimental data is 0.171 s, which 

does not affect our ability to assess the trend of the experimental data. 

Table 5. The coefficients for Equation (16). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1rt  

(1)
Route_1F  , dL v  −10,252.34 −1.98 3414.05 15.92 −400.65 −8.09 −324.44 −96.94 108.19 24.64 
(1)

Route_ 2F  ,L   −15,154.5 0.01 4332.2 0.16 −436.34 7.06 356.04 −1.29 −99.2 20.08 

2rt  

(2)
Route_1F  , dL v  −8911.1 1.05 3283.28 16.58 −434.59 8.56 −307.23 −160.61 163.14 28.88 
(2)

Route_2F  ,L   −14,975.63 0.01 4393.38 0.16 −457.49 8.31 418.84 −1.32 −116.84 21.58 

Based on Equation (11), the convergence speed of the control system ( )
Norm ( , , )i

dF L v   

under driving mode one and mode two can be represented by Equation (17). 

   ( ) ( )
Norm Route_

1

2

, , Norm Norm 2i i
d s

s

F L v F


 
   

  (17)
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Experiment type 2: The trends of 1rt  and 2rt  are shown in Figure 10. According to 

the Equation (10), 0 0( ) ( )di ri L L ri Lt t  (Tables S6–S9). 

(a) 

 

(b) 

 

Figure 10. Experimental data of rt  obtained from experiments with radial movement of the cen-

troid. (a) Route 1, (b) Route 2. 

We analyzed the experimental data of the convergence speed of the control system, 

and the results of the analysis are presented in Table 6. 

Table 6. The results of the analysis for the experimental data of the convergence speed rt . 

 
The Pendulum Length Transitioned from L0  to dL  

: . : .dL L0 0 04m 0 12m  : . : .dL L0 0 12m 0 04m  

Route 1 

vd (m/s): 0.2 → 1.6 

1  85.99% → 64.30% 113.63% → 178.52% 

2  80.67% → 61.02% 126.64% → 188.33% 

Route 2 

 : 0° → 10° 

1  92.54% → 68.33% 142.06% → 186.14% 

2  87.55% → 50.64% 169.32% → 203.98% 

3.1.3. Stability 

We evaluated the stability of the control system of the spherical robot BYQ-GS under 

two different driving modes by means of Route 1 and Route 2. The evaluation indicators 

were the root mean square error of position error rmsee  when motion is unconverged, in-

cluding the position of the spherical shell rmsexe   and the position of the pendulum rmsee  . 

Experiment type 1: The trends of rmsexe   and rmsee   are shown in Figure 11. The pen-

dulum length, target parameters, and environmental parameters of the spherical robot 

were consistent under two different driving modes, rmse2 rmse10.109m 1.721mx xe e    ,

rmse2 rmse10.026rad 0.154rade e      (Tables S1–S4). The experimental data shown in Fig-

ure 11 were fitted with a mathematical model, and the fitting results can be represented 

by Equation (18). 

(a) 
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(b) 

  

Figure 11. Experimental data of  and  obtained from experiments with different radial 

positions of the centroid. (a) Route 1, (b) Route 2. 

1
( ) 3 3 2 2 2 2

2 3 4 5 6 7 8 9 10r Routemse
i

i je H a x a y a x a y a x a y a x y a xy a xy a            (18)

The coefficients of Equation (18) are presented in Table 7. According to Equation (12), 

the maximum fitting accuracy of rmse1xe  , rmse2xe  , rmse1e   and rmse2e   to the experimental 

data are 0.0236 m, 0.0203 m, 0.0091 rad, and 0.0074 rad, respectively, which does not affect 

our ability to assess the trend of the experimental data. 

Table 7. The coefficients for Equation (18). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

-rmse1xe  

(1)
Route_1xH   , dL v  850.90 0.10 −197.58 −0.12 9.15 0.67 −21.13 0.39 −1.67 0.71 

(1)
Route_2xH   ,L   −908.33 −0.01 237.48 0.01 −21.20 0.14 10.45 0.01 −2.35 0.75 

-rmse1e  

(1)
Route_1H   , dL v  61.46 −0.01 −16.44 0.02 1.23 0.04 1.63 −0.01 −0.58 0.06 

(1)
Route_2H   ,L   −54.94 −0.01 16.03 0.01 −1.67 0.02 1.91 −0.01 −0.42 0.08 

-rmse2xe  

(2)
Route_1xH   , dL v  1101.19 0.38 −269.16 −0.20 13.83 0.89 −13.53 −3.24 −0.64 0.74 

(2)
Route_2xH   ,L   −1278.90 −0.01 334.51 0.01 −29.85 0.20 15.99 0.01 −3.54 1.05 

-rmse2e  

(2)
Route_1H   , dL v  85.71 0.01 −22.75 0.01 1.68 0.05 2.24 −0.19 −0.59 0.07 

(2)
Route_2H   ,L   −72.83 0.01 21.28 0.01 −2.22 0.03 2.56 −0.01 −0.56 0.10 

Based on Equation (11), we normalized the eight fitted equations represented by 

Equation (18); that is, the stability of the control system ( )
Norm ( , , )i

dH L v   under driving 

modes one and two can be represented by Equation (19). 

     ( ) ( ) ( )
Norm Route_ Rout

1

2

e_, , Norm Norm Norm 4i i i
d x s s

s

H L v H H 



 
    

 
   (19)

Experiment type 2: The trends of rmsexe   and rmsee   are shown in Figure 12. According 

to the Equation (10),  0 0 0 0rmse ( ) rmse ( ) rmse ( ) rmse ( )( ) ( ) 2d di x L L x L L L Le e e e          (Tables S6–S9). 

(a) 

 

rmsexe  rmsee
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(b) 

 

Figure 12. Experimental data of  and  obtained from experiments with radial move-

ment of the centroid. (a) Route 1, (b) Route 2. 

We analyzed the experimental data on the stability of the control system, and the 

results of the analysis are presented in Table 8. 

Table 8. The results of the analysis for the experimental data of the stability rmsee . 

 
The Pendulum Length Transitioned from L0  to dL  

: . : .dL L0 0 04m 0 12m  : . : .dL L0 0 12m 0 04m  

Route 1 

vd (m/s): 0.2 → 1.6 

1  85.84% → 67.09% 108.30% → 120.91% 

2  76.38% → 61.72% 159.41% → 170.24% 

Route 2 

 : 0° → 10° 

1  81.27% → 52.45% 141.02% → 172.72% 

2  78.85% → 48.80% 152.07% → 189.78% 

3.1.4. Overshoot 

We evaluated the overshoot of the control system of the spherical robot BYQ-GS un-

der two different driving modes by means of Route 1 and Route 2. The evaluation indica-

tors were the maximum absolute value of motion position error max| |e , including the po-

sition of the spherical shell max| |xe  and the position of the pendulum max| |e . 

Experiment type 1: The trends of max| |xe  and max| |e  are shown in Figure 13. The 

pendulum length, target parameters, and environmental parameters of the spherical robot 

were consistent under two different driving modes, max1 max 20.023m 0.249m| | | |x xe e    and 

max1 max 20.022rad 0.235rad| | | |e e     (Tables S1–S4). The experimental data shown in Fig-

ure13 were fitted with a mathematical model, and the fitting results can be represented 

by Equation (20). 

(a)   

rmsexe  rmsee
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(b)   

Figure 13. Experimental data of  and  obtained from experiments with different ra-

dial positions of the centroid. (a) Route 1, (b) Route 2. 

1
( ) 3 3 2 2 2 2

2 3 4 5 6 7 0max 8 9 1Route| | i
ji G a x a y a x a y a x a y a x y a xye a xy a            (20)

The coefficients of Equation (20) are presented in Table 9. According to Equation (12), 

the maximum fitting accuracy of max1| |xe , max 2| |xe , max1| |e  and max 2| |e  to the experi-

mental data are 0.0124 m, 0.0101 m, 0.0137 rad and 0.0117 rad, respectively, which does 

not affect our ability to assess the trend of the experimental data. 

Table 9. The coefficients for Equation (20). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

max1| |xe  
(1)

Route _1xG   
, dL v  −112.79 0.07 45.6 0.04 −8.46 −0.1 −50.63 −0.4 6.99 0.71 

(1)
Route _ 2xG   

,L   −658.78 −0.01 117.29 0.01 −16.36 0.05 −2.38 −0.01 −0.61 0.62 

max1| |e  
(1)

Route _1G   
, dL v  −70.53 −0.04 22.08 0.02 −4.34 −0.06 −9.3 −0.35 0.87 0.5 

(1)
Route _ 2G   

,L   −1320.96 0.01 344.28 0.01 −29.24 0.23 17.99 −0.05 −4.02 0.93 

max 2| |xe  
(2)

Route _1xG   , dL v  −88.84 0.04 34.55 0.09 −7.04 −0.19 −41.64 −0.56 6.34 0.65 
(2)

Route _ 2xG   ,L   −425.77 −0.01 114.28 0.01 −10.57 0.03 −1.17 −0.02 −0.32 0.43 

max 2| |e  
(2)

Route _1G   , dL v  −61.45 0.03 19.5 0.18 −3.95 −0.12 −9.02 −0.35 1.26 0.47 
(2)

Route _ 2G   ,L   −795.22 0.01 212.73 0.01 −18.58 0.13 8.46 −0.02 −2.03 0.61 

Based on Equation (11), we normalized the eight fitted equations represented by 

Equation (20); that is, the overshoot of the control system ( )
Norm ( , , )i

dG L v   under driving 

modes one and two can be represented by Equation (21). 

     ( ) ( ) ( )
Norm Route_ Rout

1

2

e_, , Norm Norm Norm 4i i i
d x s s

s

G L v G G 



 
    

 
   (21)

Experiment type 2: The trends of max| |xe  and max| |e  are shown in Figure 14. Accord-

ing to the analysis method represented by Equation (10), 

 0 0 0 0( ) ( ) ( )max max max ma )x(( ) ( ) 2| | | | | | | |d di L L Lx L L Lxe e e e      (Tables S6–S9). 

max| |xe max| |e
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(a) 

 

(b) 

 

Figure 14. Experimental data of max| |xe  and max| |e  obtained from experiments with radial move-

ment of the centroid. (a) Route 1, (b) Route 2. 

We analyzed the experimental data of the overshoot of the control system, and the 

results of the analysis are presented in Table 10. 

Table 10. The results of the analysis for the experimental data of the overshoot max| |e . 

 
The Pendulum Length Transitioned from L0  to dL  

: . : .dL L0 0 04m 0 12m  : . : .dL L0 0 12m 0 04m  

Route 1 

vd (m/s): 0.2 → 1.6 

1  87.85% → 68.11% 135.53% → 171.28% 

2  73.01% → 59.73% 146.72% → 187.70% 

Route 2 

 : 0° → 10° 

1  88.92% → 68.67% 126.32% → 182.24% 

2  82.87% → 60.09% 137.93% → 191.13% 

3.2. Energy Consumption 

We evaluated the energy consumption of the spherical robot BYQ-GS under two dif-

ferent driving modes by means of Route 1 and Route 2. The evaluation indicators were the 

average output power iP  of the drive motor in each sampling period, while the BYQ-GS 

spherical robot moved at the expected velocity of 1 s (50 sampling periods) after motion 

convergence, and the method for obtaining P is shown in Equation (22). The experimental 

data for the evaluation indicator were obtained after motion convergence; therefore, the 

evaluation of energy consumption was only conducted through experiment type one. 

 
50

1

9.55 50i j j
j

P n


   (22)

where, j  represents the output torque of the drive motor in the jth sampling period. jn  

represents the rotational speed of the drive motor in the jth sampling period [36]. 

In experiment type one, the trends of P  are shown in Figure 15. The pendulum 

length, target parameters, and environmental parameters of the spherical robot were con-

sistent under two different driving modes, 1 20.052W 1.452WP P    (Tables S1–S4).The 
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experimental data shown in Figure 15 were fitted with a mathematical model, and the 

fitting results can be represented by Equation (23). 

  
(a) (b) 

Figure 15. Experimental data of iP  obtained from experiments with different radial positions of the 

centroid. (a) Route 1, (b) Route 2. 

1
( ) 3 3 2 2 2 2

2 3 4 5 6 7 8 9 10Route
i

i jU a x a y a x a y a x a yP a x y a xy a xy a            (23)

The coefficients of Equation (23) are presented in Table 11. According to Equation (12), 

the maximum fitting accuracy of 1P  and 2P  to the experimental data is 0.024 W, which 

does not affect our ability to assess the trend of the experimental data. 

Table 11. The coefficients for Equation (23). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1P  
(1)
Route _1U  , dL v  −1717.60 0.26 517.79 −1.36 −36.86 1.26 −10.76 16.48 −9.03 1.15 
(1)
Route _ 2U  ,L   780.17 0.01 −209.84 0.05 23.04 0.20 51.62 −0.72 −3.88 −0.31 

2P  
(2)
Route _1U  , dL v  −938.25 −0.12 314.88 −0.10 −23.67 0.12 −21.45 8.44 −0.29 0.95 
(2)
Route _ 2U  ,L   447.85 0.01 −122.76 0.04 15.41 0.12 41.61 −0.59 −3.10 −0.15 

Based on Equation (11), we normalized the four fitted equations represented by 

Equation (23); that is, the energy consumption ( )
Norm ( , , )i

dU L v   under driving modes one 

and two can be represented by Equation (24). 

   )
2

( ) (
Norm Route_

1

, , Norm Norm 2i i
d x s

s

U L v U 



 
  

 
  (24)

3.3. Locomotion Capability 

As shown in Figure 6, the evaluation indicators for the locomotion capability were 

divided into two aspects: climbing ability and steering ability. 

3.3.1. Climbing Ability 

Section 3 conducts the research on motion through experiments type one and type 

two. For each experiment type, the experimental data were obtained through two differ-

ent routes. By analyzing the experimental data obtained through Route 2, we can conclude 

that when the motion of the BYQ-GS spherical robot can converge, the climbing ability of 

the spherical robot under the inverted pendulum driving mode is equivalent to that under 

the lower pendulum driving mode. 

Based on the data of experiment type one, the relationship between the pendulum 

length L  and the maximum climbing angle   is shown in Figure 16a. As the pendulum 

length L  gradually varies from 0.04 m to 0.12 m, the maximum climbing angle   grad-

ually increases from 3° to 10° (Tables S3–S5). The experimental data shown in Figure 16a 
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were fitted with a mathematical model, and the fitting results can be represented by Equa-

tion (25). According to Equation (12), the maximum fitting accuracy of  A L  to the ex-

perimental data is 0.085°, which does not affect our ability to assess the trend of the ex-

perimental data. 

  3 210416.67 2857.14 152.98 5.20A L L L L      (25)

Based on the data of experiment type two, the relationship between the pendulum 

length L  and the maximum climbing angle   is shown in Figure 16b. In comparison to 

the motion with a constant pendulum length 0.04mL , the climbing ability increases 

from 3° to 5° when the pendulum length L  gradually increases from 0.04 m to 0.12 m at 

the beginning of the motion (Tables S8–S10). Similarly, in comparison to the motion with 

a constant pendulum length 0.12mL , the climbing ability decreases from 10° to 3° when 

the pendulum length gradually decreases from 0.12 m to 0.04 m at the beginning of the 

motion. 

 
(a) (b) 

Figure 16. Experimental data of climbing ability obtained from experiments: (a) Different radial po-

sitions of the centroid; (b) Radial movement of the centroid during motion. 

Based on Equation (11), we normalized the fitted equations represented by Equation (25); 

that is, the climbing ability  A L  can be represented by Equation (26). 

    Norm Norm 1A L A L  (26)

3.3.2. Steering Ability 

We evaluated the steering ability of the spherical robot BYQ-GS under two different 

driving modes by means of Route 2. Using the line connecting the target position and the 

initial position as a reference, the maximum distance between the motion trajectory and 

the line connecting the initial and target positions maxD  is utilized to evaluate the steering 

capability of the spherical robot, where the distance between the real-time position ( , )x y  

and the line connecting the initial and target positions is denoted as | | 2D x y  . The de-

termination of motion convergence is based on the stability of the spherical robot within 

a 4 cm error range from the target position for 5 s. 

Due to the necessity of obtaining experimental data, which requires the spherical ro-

bot to perform omnidirectional motion on different slope angles, we reconfigured the ex-

perimental parameters for Route 2, with the initial state of the control system set to 

0 0 0 0 0 0 0[ , , , , , , ] [0,0, 2,0,0,0,0]x y         and 0 0 0 0 0 0 0[ , , , , , , ] [0,0,0,0,0,0,0]x y            and 

the desired state of the control system set to [ , , , ] [2,2,0, ]d d d dx y p    and 

[ , , , ] [0,0,0,0]d d d dx y     . 

Experiment type 1: The trends of maxD  are shown in Figure 17. The pendulum 

length, target parameters, and environmental parameters of the spherical robot were con-

sistent under two different driving modes, max1 max 20.061m 0.219mD D   (Table S5). The 

experimental data shown in Figure 17 were fitted with a mathematical model, and the 

fitting results can be represented by Equation (27). 
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Figure 17. Experimental data of maxD  obtained from experiments with different radial positions of 

the centroid. 

1

( ) 3 3 2 2 2 2
2 3 4 5 6 7 8 9 10max i

iB a x a yD a x a y a x a y a x y a xy a xy a            (27)

The coefficients of Equation (23) are presented in Table 12. According to Equation (12), 

the maximum fitting accuracy of max1D  and max2D  to the experimental data is 0.0082 m, 

which does not affect our ability to assess the trend of the experimental data. 

Table 12. The coefficients for Equation (27). 

 x, y a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

max1D  (1)B  ,L   −224.59 0.01 85.44 0.01 −14.92 −0.03 1.85 −0.02 −0.05 1.37 

max 2D  (2)B  ,L   −156.89 −0.01 61.45 0.01 −11.72 −0.08 0.22 −0.02 0.45 1.19 

Based on Equation (11), we normalized the two fitted equations represented by Equa-

tion (27); that is, the steering ability ( )iB  under driving modes one and two can be repre-

sented by Equation (28). 

 ( ) ( )
Norm , Normi iB L B     (28)

Experiment type 2: The trends of max1D  and max 2D  are shown in Figure 18. Accord-

ing to the Equation (10), 0 0max ( ) max ( )di i L L i LD D  (Table S10). 

 

Figure 18. Experimental data of maxD  obtained from experiments with radial movement of the cen-

troid. 

We analyzed the experimental data of the steering ability, and the results of the anal-

ysis are presented in Table 13. 

Table 13. The results of the analysis for the experimental data of the convergence speed maxD . 

 
The Pendulum Length Transitioned from L0  to dL  

: . : .dL L0 0 04m 0 12m  : . : .dL L0 0 12m 0 04m  

 : 0° → 10° 
1  78.20% → 65.61% 116.03% → 127.29% 

2  70.03% → 60.20% 127.60% → 143.91% 
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4. Analysis of Motion Experimental Data 

We analyzed the motion control experimental data of the BYQ-GS spherical robot 

under two types of radial variation in the centroid, namely different radial positions of 

the centroid and radial movement of the centroid during motion. 

4.1. Influence Law of Radial Variation in Centroid 

In terms of the experimental data on control performance, locomotion capability, and 

energy consumption, the overall variation trend of the inverted pendulum driving mode 

mirrors that of the lower pendulum driving mode. 

 Compared to the lower pendulum driving mode, the inverted pendulum driving 

mode demonstrated an advantage in response speed, overshoot, steering capability, 

and energy consumption while exhibiting disadvantages in convergence speed and 

stability. The climbing ability under two different driving modes was equivalent. 

 As motion speed or task slope increased, the response speed of both driving modes 

remained relatively stable while the steering capability improved; however, conver-

gence speed, stability, overshoot, and energy consumption deteriorated. 

 With an increase in the distance between the centroid and the center of the sphere, 

the response speed, convergence speed, stability, overshoot, climbing ability, and 

steering capability of both driving modes improved, while energy consumption de-

teriorated. 

 Compared to the motion where the radial position of the centroid remained constant 

when the radial position of the centroid gradually moved during the initial phase of 

motion, the response speed, convergence speed, stability, overshoot, climbing ability, 

steering capability, and energy consumption in either the inverted pendulum driving 

mode or lower pendulum driving mode varied accordingly. However, with an in-

creased motion velocity or task slope, the degree of variation in the above indicators 

differed. The degree of variation in the response speed remained relatively stable, 

while the degree of variation in the convergence speed, stability, overshoot, climbing 

ability, steering capability, and energy consumption increased. Nevertheless, the de-

gree of variation in the inverted pendulum driving mode consistently exceeded that 

of the lower pendulum driving mode. 

4.2. Correlation Model Relating the Motion Requirements to the Radial Position of the Centroid 

Based on the fitting mathematical model of the seven indicators of the BYQ-GS spher-

ical robot, we mapped the slope angle, motion speed, and optimal pendulum length of 

the BYQ-GS spherical robot and the target spherical robot one by one and constructed a 

correlation model relating the motion requirements to the radial position of the centroid. 

This model ensures universality when facing spherical robots with radial variable cen-

troid capabilities and can comprehensively consider the control performance, locomotion 

capability, and energy consumption according to the different requirements of the spher-

ical robot for motion performance. 

The optimal pendulum length L  of the spherical robot is our ultimate target to 

achieve. We define the maximum climbing capability max  and the maximum motion 

speed maxv  of the actual spherical robot in use, and the slope angle   and the required 

motion speed v  in specific tasks. For the BYQ-GS spherical robot, its maximum climbing 

capability is 10°, maximum motion speed is 4 m/s, the slope angle to be faced is  , the 

required motion speed is v , and the range of optimal pendulum length L  is 

0.04m 0.12mL  . We can establish the correspondence between the climbing capability 
  of the BYQ-GS spherical robot and the actual climbing capability   of the spherical 

robot in use as o
max10   , and the correspondence between the motion speed v  of the 

BYQ-GS spherical robot and the motion speed v  of the actual spherical robot in use as 

max4v v v . 



Machines 2024, 12, 422 21 of 25 
 

 

We define i = 1 as the lower pendulum driving mode and i = 2 as the inverted pendu-

lum driving mode. In Equation (29), ( )Control ( , , )i L v    is the mathematical model of the 

control performance of the BYQ-GS spherical robot, which is jointly determined by the 

response speed fitting equation ( )
Norm
iK  shown in Equation (14), the convergence speed fit-

ting equation ( )
Norm

iF  shown in Equation (17), the stability fitting equation ( )
Norm
iH  shown in 

Equation (19), and the overshoot fitting equation ( )
Norm
iG  shown in Equation (21). 

( )Move ( , )i L   is the mathematical model of the locomotion capability of the BYQ-GS spher-

ical robot, which is jointly determined by the climbing ability fitting equation NormA  

shown in Equation (26), the steering capability fitting equation ( )
Norm
iB  shown in Equation 

(28). ( )Energy ( , , )i L v    is the mathematical model of the energy consumption of the BYQ-

GS spherical robot, which is determined by ( )
Norm
iU  shown in Equation (24). 

         ( ) ( ) ( ) ( ) ( ) ( )
NormNorm N

(
N

) ( ) ( )
Norm Norm orm orm NormControl , , 4 Move , 2 Energy , ,i i ii i i i i iK F H G LA B UL v L v               (29) 

We transform the problem of determining the optimal pendulum length into the op-

timization problem, as shown in Equation (30). According to the actual demand for mo-

tion performance during the execution of the spherical robot’s task, 1n , 2n  and 3n  are 

respectively designated as weighting parameters, and 1 2 3 1n n n   . The greater the pa-

rameter value, the more significant the corresponding requirements become. Once the 

value of   is given, 1( )A   represents the pendulum length value corresponding to   

obtained based on Equation (25). 

       
 

( ) ( ) ( ) ( )
1 2 3

1

min Control , , Move , Energy , ,

s.t. 0 10 0 4 0.04 0.12

i i i if L n L v n L n L v

v L L A  

  

      

      

  

  

 
 (30)

The optimal value of L  can be obtained by using Equation (30). By converting L  

through Equation (31), the optimal pendulum length L  for the actual use of the spherical 

robot can be obtained. 

max 0.12L L L   (31)

where, maxL  is the maximum pendulum length that the spherical robot can achieve. 

During the task preparation phase, we first select the driving mode based on the mo-

tion performance laws of the two driving modes and the actual requirements of the task. 

Subsequently, considering the task requirements for motion performance, as well as the 

slope   and the required motion speed v , we determine and adjust the optimal pendu-

lum length L  using Equations (30) and (31). This significantly enhances the practicality 

of the spherical robot when facing unstructured task environments. 

5. Experimental Verification of Motion Performance Analysis Results 

We have utilized the BYQ-GS spherical robot as our experimental platform and em-

ployed HSMC to accomplish motion control of the spherical robot. Taking the motion ef-

fect of keeping the pendulum length L  at 0.12 m in the traditional lower pendulum driv-

ing mode as a comparison, we conducted experimental validation on the motion effect 

after selecting the driving mode and optimal pendulum length based on the motion per-

formance requirements. The experimental environment was an outdoor track and field 

runway. We simulated two different task requirements in unstructured environments, 

where the slope angle   in Equation (30) was set to 0°, and the expected velocity dv  was 

set to 1 m/s.  

In Experiment 1, priority was given to energy consumption. Therefore, we set the 

weighting parameter of control performance 1n  to 0.1, the weighting parameter of loco-

motion capability 2n  to 0.1, and the weighting parameter of energy consumption 3n  to 

0.8. In Experiment 2, priority was given to the control system’s overshoot; control perfor-

mance and energy consumption needed to be taken into consideration at the same time. 
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Therefore, we set the weighting parameter of control performance 1n  to 0.45, the 

weighting parameter of locomotion capability 2n  to 0.1, and the weighting parameter of 

energy consumption 3n  to 0.45. 

According to the influence law of radial variation in the centroid in Section 4.1, the 

BYQ-GS spherical robot in Experiment 1 and Experiment 2 both adopted the inverted 

pendulum driving mode; that is, the driving mode parameter i in Equation (30) was set to 

two, and the optimization problem shown in Equation (30) was solved using the Fmincon 

function in MATLAB R2021a, yielding the optimal pendulum length denoted as 

0.105mL  for Experiment 1 and 0.092mL  for Experiment 2 [37,38]. Throughout the exper-

iments, the parameters of the HSMC controller were maintained consistent with Route 2, de-

picted in Figure 6. The pendulum length L  remained constant throughout the experi-

mental process. 

The results of Experiment 1 are presented in Table 14. The objective of Experiment 1 

was to optimize energy consumption; thus, a comparison was made regarding the aver-

age output power P  of the drive motor in each sampling period. Based on the statistical 

indicators of the experimental data shown in Table 14, compared to the pendulum length 

0.12mL  in the lower pendulum driving mode, when the spherical robot was in the 

lower pendulum driving mode and the pendulum length was 0.105mL , the decrease in 

P  was 12.13%. Similarly, when the spherical robot was in the inverted pendulum driving 

mode and 0.105mL , the decrease in P  was 33.16%. These results indicate that com-

pared to the pendulum length 0.12mL  in the lower pendulum driving mode, when the 

spherical robot was in the inverted pendulum driving mode and the pendulum length 

was 0.105mL , the energy consumption level of the BYQ-GS spherical robot experienced 

a significant reduction. 

Table 14. Experimental data of motion performance indicators obtained in Experiment 1. 

Driving Mode L/m rt /s xe max| | /m e max| | /rad x rmsee  /m rmsee /rad t max /s P /W 

Lower pendulum 0.12 7.83 0.202 0.206 0.909 0.167 0.54 2.078 

Lower pendulum 0.105 9.03 0.334 0.283 1.124 0.178 0.66 1.826 

Inverted pendulum 0.105 10.92 0.268 0.198 1.507 0.223 0.48 1.389 

The objective of Experiment 2 was to optimize the control system’s overshoot; control 

performance and energy consumption needed to be taken into consideration at the same 

time. Thus, a comparison was made regarding the average levels of four control perfor-

mance indicators, namely the generation time of maximum torque maxt  , the motion con-

vergence time rt , the root mean square error of position error rmsee , and the maximum 

absolute value of motion position error max| |e , while simultaneously conducting a com-

parison on the average output power P  of the drive motor in each sampling period. 

Based on the statistical indicators of the experimental data shown in Table 15, compared 

to the pendulum length 0.12mL  in the lower pendulum driving mode, when the spher-

ical robot was in the lower pendulum driving mode and the pendulum length was 

0.092mL , the average improvement rate of the four control performance indicators was 

50.92%, while the decrease in P  was 23.72%. Similarly, when the spherical robot was in 

the inverted pendulum driving mode and 0.092mL , the average improvement rate of 

the four control performance indicators was 39.94%, while the decrease in P  was 42.35%. 

These results indicate that compared to the pendulum length 0.12mL  in the lower pen-

dulum driving mode, the spherical robot was in the inverted pendulum driving mode and 

the pendulum length was 0.092mL ; although the control performance was reduced, the 

energy consumption performance could be improved at the same time. 
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Table 15. Experimental data of control performance indicators obtained in Experiment 2. 

Driving Mode L/m rt /s xe max| | /m e max| | /rad x rmsee  /m rmsee /rad t max /s P /W 

Lower pendulum 0.12 7.83 0.202 0.206 0.909 0.167 0.54 2.078 

Lower pendulum 0.092 9.33 0.412 0.327 1.392 0.192 0.84 1.585 

Inverted pendulum 0.092 11.28 0.302 0.213 1.692 0.246 0.59 1.198 

The above two sets of experimental results demonstrate that by employing the influ-

ence law of radial variation in the centroid and the correlation model relating the motion 

requirements to the radial position of the centroid, it was possible to pre-select and set the 

driving mode and optimal pendulum length L  of spherical robots. This significantly en-

hances the practicality of spherical robots in unstructured task environments. 

6. Conclusions 

Considering the influence of the inverted pendulum driving mode and the radial 

variation ability of the centroid on the motion of spherical robots, we utilized the tradi-

tional lower pendulum driving mode of spherical robots as a comparative reference. We 

conducted motion experiments with the spherical robots under different driving modes, 

motion velocities, and motion slope angles based on task characteristics in unstructured 

environments. Upon analyzing the experimental results, incorporating four control per-

formance indicators (response speed, convergence speed, stability, and overshoot), two 

locomotion capability indicators (climbing ability and steering ability), and an energy con-

sumption indicator, we analyzed the control performance, locomotion capability, and en-

ergy consumption of spherical robots under two different driving modes. The main work 

includes the following two aspects: 

 We have summarized the influence law of radial variation in the centroid and eluci-

dated the advantages and disadvantages of the inverted pendulum driving mode 

compared to the lower pendulum driving mode. 

 We have developed a correlation model relating the motion requirements to the ra-

dial position of the centroid, providing a basis for the reasonable selection of the ra-

dial position of the centroid when spherical robots face different task requirements 

in an unstructured environment. 

The above research work fills the gap in research on the impact of radial variation of 

the centroid on PET spherical robots’ motion. This finding holds significant theoretical 

significance and guiding value for enhancing the diversified task execution capabilities of 

spherical robots in unstructured environments. When conducting the design of PET 

spherical robots, researchers can leverage this finding to focus on breakthroughs in the 

range and speed of radial variation in the centroid, as well as efficient transitions between 

the lower pendulum driving mode and inverted pendulum driving mode, thereby further 

enhancing the diversified task execution capability of spherical robots. 
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