
Citation: Zhao, R.; Yang, X.; He, Y.

Learning Causes of Functional

Dynamic Targets: Screening and Local

Methods. Entropy 2024, 26, 541.

https://doi.org/10.3390/e26070541

Academic Editor: Adam Lipowski

Received: 2 April 2024

Revised: 13 June 2024

Accepted: 23 June 2024

Published: 24 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Learning Causes of Functional Dynamic Targets: Screening
and Local Methods
Ruiqi Zhao 1, Xiaoxia Yang 2,* and Yangbo He 1,*

1 School of Mathematical Sciences, Peking University, Beijing 100871, China; zhaorq@pku.edu.cn
2 College of Science, Beijing Forestry University, Beijing 100083, China
* Correspondence: yxx77@bjfu.edu.cn (X.Y.); heyb@math.pku.edu.cn (Y.H.)

Abstract: This paper addresses the challenge of identifying causes for functional dynamic targets,
which are functions of various variables over time. We develop screening and local learning methods
to learn the direct causes of the target, as well as all indirect causes up to a given distance. We first
discuss the modeling of the functional dynamic target. Then, we propose a screening method to select
the variables that are significantly correlated with the target. On this basis, we introduce an algorithm
that combines screening and structural learning techniques to uncover the causal structure among
the target and its causes. To tackle the distance effect, where long causal paths weaken correlation,
we propose a local method to discover the direct causes of the target in these significant variables and
further sequentially find all indirect causes up to a given distance. We show theoretically that our
proposed methods can learn the causes correctly under some regular assumptions. Experiments based
on synthetic data also show that the proposed methods perform well in learning the causes of the target.

Keywords: screening method; local structure learning; functional dynamic target; direct causes;
indirect causes

1. Introduction

Identifying the causes of a target variable is a primary objective in numerous research
studies. Sometimes, these target variables are dynamic, observed at distinct time intervals,
and typically characterized by functions or distinct curves that depend on other variables
and time. We call them functional dynamic targets. For example, in nature, the growth
of animals and plants is usually multistage and nonlinear with respect to time [1–3]. The
popular growth curve functions, including Logistic, Gompertz, Richards, Hossfeld IV, and
Double-Logistic functions, have S shapes [3], and have been widely used to model the
patterns of growth. In psychological and cognitive science, researchers usually fit individual
learning and forgetting curves by power functions; individuals may have different curve
parameters [4,5].

The causal graphical model is widely used for the automated derivation of causal
influences in variables [6–9] and demonstrates excellent performance in presenting complex
causal relationships between multiple variables and expressing causal hypotheses [7,10,11]. In
this paper, we aim to identify the underlying causes of these functional dynamic targets using
the graphical model. There are three main challenges for this purpose. Firstly, identifying the
causes is generally more challenging than exploring associations, even though the latter has
received substantial attention, as evidenced by the extensive use of Genome-Wide Association
Studies (GWAS) within the field of bioinformatics. Secondly, it is difficult to use a causal
graphical model to represent the generating mechanism of dynamic targets and to find the
causes of the targets from observational data when the number of variables is very large. For
example, one needs to find the genes that affect the growth curve of individuals from more
than thousands of Single-Nucleotide Polymorphisms (SNPs). Finally, the variables considered
are mixed, which increases the complexity of representing and learning the causal model. We
discuss these three challenges in detail below.

Entropy 2024, 26, 541. https://doi.org/10.3390/e26070541 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26070541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1153-588X
https://doi.org/10.3390/e26070541
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26070541?type=check_update&version=1

Entropy 2024, 26, 541 2 of 24

First of all, traditional statistical methods can only discover correlations between
variables, rather than causal relationships, which may give false positive or false negative
results for finding the real causes of the target. In fact, the association between the target
and variables may originate from different causal mechanisms. For example, Figure 1
displays several different causal mechanisms possibly resulting in a statistically significant
association between the target and variables. In Figure 1, X1, X2, X3 are three random
variables, Y = (Y1, · · · , Yn) is a vector representing a functional dynamic target, in which
Yi, i = 1, . . . , n are states of the target in n time points, and direct edges represent direct
causal relations among them. Using the statistical methods, we are very likely to find
that X1 is associated with Y significantly in all four cases. However, it is hard to identify
whether X1 is a real cause of Y without further causal learning. As shown in Figure 1, X1
might be a direct cause of Y in Figure 1a,c, a cause but not a direct cause in Figure 1b, and
not a cause in Figure 1d.

(a) (b)

(c) (d)

Figure 1. The causal graphs when the variable X1 is significantly associated with Y: (a) V-structures.
(b) Chains. (c) Triangles. (d) Forks.

In addition, when the number of candidate variables is very huge, both learning
causal structures and discovering target causes become very difficult. In fact, learning the
complete causal graph is redundant and wasteful for the task of finding causes, as the focus
should be on the target variable’s local structure. PCD-by-PCD algorithm [12] is adept at
identifying such local structures and efficiently distinguishing parents, children, and some
descendants. The MB-by-MB method [13] , in contrast, simplifies this by learning Markov
Blanket (MB) sets for identifying direct causes/effects, leveraging simpler and quicker
techniques compared with PCD sets with methods like PCMB, STMB, and EEMB [14–16].
The CMB algorithm further streamlines this process using a topology-based MB discovery
approach [17]. However, Ling [18] pointed out that Expand-Backtracking-type algorithms,
such as the PCD-by-PCD and CMB algorithms, may overlook some v-structures, leading to
numerous incorrect edge orientations. To tackle these issues, the APSL algorithm was intro-
duced and designed to learn the subgraph within a specific distance centered around the
target variable. Nonetheless, its dependence on the FCBF method for Markov Blanket learn-
ing tends to produce approximate sets rather than precise ones [19]. Furthermore, Ling [18]
emphasized learning the local graph within a certain distance from the target rather than
focusing on the causes of the target.

Entropy 2024, 26, 541 3 of 24

Finally, the variables in question are varied; specifically, the targets consist of dynamic
time series or complex curves, while the other variables may be either discrete or contin-
uous. Consequently, measuring the connections between the target and other variables
presents significant challenges. For instance, traditional statistical methods used to assess
independence or conditional independence between variables and complex targets might
not only be inefficient but also ineffective, especially when there is an insufficient sample
size to accurately measure high-order conditional independence.

In this paper, we introduce a causal graphical model tailored for analyzing dynamic
targets and propose two methods to identify the causes of such a functional dynamic
target assuming no hidden variables or selection biases. Initially, after establishing our
dynamic target causal graphical model, we conduct an association analysis to filter out most
variables unrelated to the target. With data from the remaining significantly associated
variables, we then combine the screening method with structural learning algorithms and
introduce the SSL algorithm to identify the causes of the target. Finally, to mitigate the
distance effects that can mask the association between a cause and the target in data sets
where the causal chain from cause to target is excessively long, we propose a local method.
This method initially identifies the direct causes of the target and then proceeds to learn the
causes sequentially in reverse order along the causal path.

The main contributions of this paper include the following:

• We introduce a causal graphical model that combines Bayesian networks and func-
tional dynamic targets to represent the causal mechanism of variables and the target.

• We present a screening method that significantly reduces the dimensions of potential
factors and combines it with structural learning algorithms to learn the causes of a
given target and prove that all identifiable causes can be learned correctly.

• We propose a screening-based and local method to learn the causes of the functional
dynamic target up to any given distance among all factors. This method is helpful when
association disappears due to the long distance between indirect causes and the target.

• We experimentally study our proposed method on a simulation data set to demonstrate
the validity of the proposed methods.

2. Preliminary

Before introducing the main results of this paper, we need to clarify some definitions
and notations related to graphs. Furthermore, unless otherwise specified, we use capital
letters such as V to denote variables or vertices, boldface letters such as V to denote variable
sets or vectors, and lowercase letters such as v and v to denote the realization of a variable
or vector, respectively.

A graph G is a pair (V, E), in which V = {V1, · · · , Vp} is the vertex set and E ⊆
E∗(V) := (V×V)\{(Vi, Vi) | Vi ∈ V} is the edge set. To simplify the symbols, we use V
to represent both random variables and the corresponding nodes in the graph. For any
two nodes Vi, Vj ∈ V, an undirected edge between Vi and Vj, denoted by Vi −Vj, is an edge
satisfying (Vi, Vj) ∈ E and (Vj, Vi) ∈ E, while a directed edge between Vi and Vj, denoted
by Vi → Vj, is an edge satisfying (Vi, Vj) ∈ E and (Vj, Vi) /∈ E. If all edges in a graph
are undirected (directed), the graph is called an undirected (directed) graph. If a graph
has both undirected and directed edges, then it is called a partially directed graph. For a
given graph G, we use V(G) and E(G) to denote its vertex set and edge set, respectively,
where G can be an undirected, directed, or partially directed graph. For any V′ ⊆ V, the
induced subgraph of G over V′, denoted by G(V′) or GV′ , is the graph with vertex set
V′ and edge set E(V′) ⊆ E containing all and only edges between vertices in V′, that is,
GV′ = (V′, E(V′)), where E(V′) := E ∩ (V′ ×V′).

In a graph G, Vi is a parent of Vj and Vj is a child of Vi if the directed edge Vi → Vj is
in G. Vi and Vj are neighbors of each other if the undirected edge Vi − Vj is in G. Vi and
Vj are called adjacent if they are connected by an edge, regardless of whether the edge is
directed or undirected. We use Pa(Vi,G), Ch(Vi,G), Ne(Vi,G), Adj(Vi,G) to denote the sets
of parents, children, neighbors, and adjacent vertices of Vi in G, respectively. For any vertex

Entropy 2024, 26, 541 4 of 24

set V′ ⊆ V, the parent set of V′ in G can be defined as Pa(V′,G) = ∪Vi∈V′Pa(Vi,G)\V′. The
sets of children, neighbors, and adjacent vertices of V′ in G can be defined similarly. A root
vertex is the vertex without parents. For any vertex Vi ∈ V, the degree of Vi in G, denoted
by deg(Vi,G), is the number of Vi’s adjacent vertices, that is, deg(Vi,G) = |Adj(Vi,G)|. The
skeleton of G, denoted by Gs, is an undirected graph obtained by transforming all directed
edges in G to undirected edges, that is, Gs := (V, ES), where Es := {(Vi, Vj) ∈ V×V | Vi ∈
Adj(Vj,G)}.

The sequence < Vi1 , · · · , Vin > in graph G is an ordered collection of distinct vertices
Vi1 , · · · , Vin . A sequence becomes a path, denoted by (Vi1 , · · · , Vin), if every pair of consecu-
tive vertices in the sequence is adjacent in G. The vertices Vi1 and Vin serve as the endpoints,
with the rest being intermediate vertices. For a path π = (Vi1 , · · · , Vin) in G, and for any
1 ≤ k ≤ n, the subpath from Vi1 to Vik is π(Vi1 , Vik) = (Vi1 , · · · , Vik), and path π can thus be
represented as a combination of its subpaths, denoted by π = π(Vi1 , Vik)⊕ π(Vik , Vin). A
path is partially directed if there is no directed edge Vik+1

→ Vik in G for any k = 1, . . . , n− 1.
A partially directed path is directed (or undirected) if all its edges are directed (or undi-
rected). A vertex Vi is an ancestor of Vj and Vj is a descendant of Vi if there exists a directed
path from Vi to Vj or Vi = Vj. The sets of ancestors and descendants of Vi in the graph G
are denoted by An(Vi,G) and De(Vi,G), respectively. Furthermore, a vertex Vi is a possible
ancestor of Vj and Vj is a possible descendant of Vi if there is a partially directed path
from Vi to Vj. The sets of possible ancestors and possible descendants of Vi in graph G
are denoted by PossAn(Vi,G) and PossDe(Vi,G), respectively. For any vertex set V′ ⊆ V,
the ancestor set of V′ in graph G is An(V′,G) := ∪Vi∈V′An(Vi,G). The sets of possible
ancestors and (possible) descendants of V′ in graph G can be defined similarly.

A (directed, partially directed, or undirected) cycle is a (directed, partially directed,
or undirected) path from a node to itself. The length of a path (cycle) is the number of
edges on the path (cycle). The distance between two variables Vi and Vj is the length
of the shortest directed path from Vi to Vj. A directed acyclic graph (DAG) is a directed
graph without directed cycles, and a partially directed acyclic graph (PDAG) is a partially
directed graph without directed cycles. A chain graph is a partially directed graph in which
all partially directed cycles are undirected. This indicates that both DAGs and undirected
graphs can be considered as specific types of chain graphs.

In a graph G, a v-structure is a tuple (Vi, Vj, Vk) satisfying Vi → Vj ← Vk with
Vi /∈ Adj(Vk,G), in which Vj is called a collider. A path π is d-separated (blocked) by a set of
vertices Z if (1) π contains a chain Vi → Vj → Vk or a fork Vi ← Vj → Vk with Vj ∈ Z; (2) π
contains a v-structure Vi → Vj ← Vk with De(Vj,G) /∈ Z, and is d-connected otherwise [20].
Sets of vertices X and Y are d-separated by Z if and only if Z blocks all paths from any vertex
Vi ∈ X to any vertex Vj ∈ Y, denoted by X ⊥⊥G Y | Z. Furthermore, for any distribution
P, X ⊥⊥P Y | Z denotes that X and Y are conditional independent given Z. Given a DAG
G and a distribution P, the Markov condition holds if X ⊥⊥P Y | Z ⇒ X ⊥⊥G Y | Z, while
faithfulness holds if X ⊥⊥G Y | Z⇒ X ⊥⊥P Y | Z. In fact, for any distribution, there exists
at least one DAG such that the Markov condition holds, but there are some certain distribu-
tions that do not satisfy faithfulness to any DAG. Therefore, unlike the Markov condition,
faithfulness is often regarded as an assumption. In this paper, unless otherwise stated, we
assume that faithfulness holds, that is, X ⊥⊥G Y | Z⇔ X ⊥⊥P Y | Z. For simplicity, we use
the symbol ⊥⊥ to denote both (conditional) independence and d-separation.

From the concepts described, it can be inferred that a DAG characterizes the (con-
ditional) independence relationships among a set of variables. In fact, multiple different
DAGs may characterize the same conditional independent relationship. According to the
Markov condition and faithfulness assumption, if the d-separation relationship contained
in two DAGs is exactly the same, then these two DAGs are said to be Markov equivalent.
Furthermore, two DAGs are Markov equivalent if and only if they share the same skeleton
and v-structures [21]. All Markov equivalent DAGs constitute a Markov equivalent class,
which can be represented by a completely partially directed acyclic graph (CPDAG) G∗.
Two vertices are adjacent in the CPDAG G∗ if and only if they are adjacent in all DAGs in

Entropy 2024, 26, 541 5 of 24

the equivalent class. The directed edge Vi → Vj in CPDAG G∗ indicates that this directed
edge appears in all DAGs within the equivalent class, whereas the undirected edge Vi −Vj
signifies that Vi → Vj is present in some DAGs and Vi ← Vj in others within the equivalent
class [22]. A CPDAG is a chain graph [23] and can be learned by observational data and
Meek’s rules [24] (Figure 2).

Figure 2. Meek’s rules comprise four orientation rules. If the graph on the left-hand side of a rule is
an induced subgraph of a PDAG, then the corresponding rule can be applied to replace an undirected
edge in the induced subgraph with a directed edge. This replacement results in the induced subgraph
transforming into the graph depicted on the right-hand side of the rule.

3. The Causal Graphical Model of Potential Factors and Functional Dynamic Target

Let X = {X1, · · · , Xp} be a set of random variables representing potential factors and
Y = (Y1, · · · , Yq) be a functional dynamic target, where Yi, for i = 1, . . . , q, represents the
state of the target at q different time points. Let G be a DAG defined over X ∪ Y, and let GX
be the subgraph induced by G over the set of potential factors X. Suppose that the causal
network of X can be represented by GX, and when combined with the joint probabilities
over X, denoted by P(·), we obtain a causal graphical model (GX, P). Consequently, the
data generation mechanisms of X and Y follow a causal Bayesian network model of GX and
a model determined by the direct causes Pa(Y,G) of Y, respectively. Formally, we define a
causal graphical model of the functional dynamic target as follows.

Definition 1. Let G be a DAG over X ∪ Y, Pa(Y,G) denote the direct causes of Y in G and
Ch(Y,G) = ∅, P(·) be a joint distribution over X , and Θ be parameters determining the ex-
pectations of the functional dynamic target Y, which is influenced by Pa(Y,G). Then, the triple
(G, P(·), Θ) constitutes a causal graphical model for Y if the following two conditions hold:

1. The pair (GX, P) constitutes a Bayesian network model for X.
2. The functional dynamic target Y follows the following model :

Y = µ̃(Θ) + ϵ̃Y, (1)

where µ̃(Θ) = (µ(t1, Θ), · · · , µ(tq, Θ)) is the vector of the mean function at time t1, . . . , tq,
and ϵ̃Y = (ϵY,t1 , . . . , ϵY,tq) is the vector of error terms with mean of zero, that is, E(ϵY,ti) = 0,
i = 1, . . . , q.

Different functional dynamic targets use different mean functions. For example, the
optimal mean function of growth curves of different species varies from the Gompertz func-
tion, µ(t, (a, b, c)) = ae−be−ct

, the Richards function, µ(t, (a, b, c, d)) = a/(1+ be−ct)d, the Hoss-
feld function, µ(t, (a, k, c)) = atk/(c + tk), and the Logistic function, µ(t, (a, r, c)) = a/(1 +

Entropy 2024, 26, 541 6 of 24

e−r(t−c)) to Double-Logistic function, µ(t, (a1, r1, c1, a2, r2, c2)) = a1/(1+ e−r1(t−c1)) + a2/(1+
e−r2(t−c2)) [25–27].

A causal graphical model of the functional dynamic target can be interpreted as a data
generation mechanism of variables in X and Y as follows. First, the root variables in GX
are generated according to their marginal probabilities. Then, following the topological
ordering of the DAG GX, for any non-root-variable X, when its parent nodes Pa(X,G) have
been generated, X can be drawn from P(X | Pa(X,G)), which is the conditional probability
of X given its parent set Pa(X,G). Finally, the target is generated by Equation (1). According
to Definition 1, the Markov condition holds for the causal graphical model of a dynamic
target, that is, for any pair of variables Xi and Xj, the d-separation of Xi and Xj given a set
Z in G implies that Xi and Xj are conditionally independent given Z.

Given a mean function µ(t, Θ), we can estimate parameters Θ̂ as follows,

Θ̂ = arg min
Θ

n

∑
i=1

q

∑
j=1

(
yi,tj − µ(tj, Θ)

)2
,

where n and q represent the number of individuals and the length of the functional dynamic
target, respectively. The residual sum of squares (RSS) is minimized at Θ̂. The Akaike
information criterion (AIC) can be used to select the appropriate mean function µ∗ to fit the
functional dynamic targets. We have

µ∗ = arg min
µ

(nq + nq log(2π) + nq log(RSS/q) + 2|Θ̂|).

4. Variable Screening for Causal Discovery

For the set of potential factors X and the functional dynamic target Y, our task is to
find the direct causes and all causes of Y up to a given distance. An intuitive method
involves learning the causal graph G to find all causes of Y. Alternatively, we could first
learn the causal graph GX and then identify all variables that have directed paths to Y.
However, as mentioned in Section 1, this intuitive approach has three main drawbacks. To
address these challenges, we propose a variable screening method to reduce the number of
potential factors, and a hypothesis testing method to test for (conditional) independence
between potential factors and Y. By integrating these methods with structural learning
approaches, we have developed an algorithm capable of learning and identifying all causes
of functional dynamic targets.

Let X be a variable with level K. The variable X is not independent of Y if there exists at
least two values of X, say X = x1 and X = x2, such that the conditional distributions of Y
given X = x1 and X = x2 are different. Conversely, if the conditional distribution of Y given
X = x remains unchanged for any x, we have that X and Y are independent. Let Θx be the
parameter of the mean function of the functional dynamic target with X = x. To ascertain
whether the variable X is not independent of Y, we implement the following test:

H0 : Θx = Θx′ , ∀x, x′ ∈ {1, . . . , K}, (2)

H1 : Θx ̸= Θx′ , ∃x, x′ ∈ {1, . . . , K}. (3)

Let yi = (yi,t1 , . . . , yi,tq) be the ith sample of the functional dynamic target with X = xi.
Under the null hypothesis, yi is modeled as yi = µ̃(Θ) + ϵ̃, whereas under the alternative
hypothesis, it is modeled as yi = µ̃(Θxi) + ϵ̃. Let ln L(Y, Θ) denote the unrestricted log-
likelihood of Y under H0 and let ln L(Y, ΘH1) = ∑K

x=1 ln L(Y, Θx) denote the restricted
log-likelihood of Y under H1. The likelihood ratio statistic is calculated as follows:

LR = −2(ln L(Y, Θ)− ln L(Y, ΘH1)). (4)

Entropy 2024, 26, 541 7 of 24

Under certain regular conditions, the statistic LR approximately follows χ2 distribu-
tion, and the degrees of freedom of this χ2 distribution are determined by the difference in
the numbers of parameters between H0 and H1, as specified in Equations (2) and (3).

Therefore, by applying hypothesis tests described in Equations (2) and (3) to each
potential factor, we can identify all variables significantly associated with the dynamic
target. We denote these significant variables as Xsig, defined as Xsig = {X | X ∈ X, X ⊥̸⊥ Y}.
Indeed, since the mean function of the dynamic target depends on its direct causes, which
in turn depend on indirect causes, the dynamic target ultimately depends on all its causes.
Therefore, when X is precisely a cause of Y, we can reject the null hypothesis in Equation (2),
implying that Xsig includes all causes of the dynamic target, assuming no statistical errors.
Therefore, given a dynamic target Y, perform hypothesis testing of H0 against H1 as defined
in Equations (2) and (3) to each potential factor sequentially, then we can obtain the set Xsig
and their corresponding p-values {Xpv}X∈Xsig , in which Xpv is the p-value of the variable
X ∈ Xsig.

A causal graphical model, as described in Definition 1, necessitates adherence to the
Markov conditions for variables and the functional dynamic target. Given the Markov con-
dition and the faithfulness assumption, a natural approach to identifying the causes of the
functional dynamic target involves learning the causal structure of Xsig and subsequently
discerning the relationship between each variable X ∈ Xsig and Y. For significant variables
Xsig, we present the following theorem, with its proof available in Appendix A.2:

Theorem 1. Suppose that (G, P, Θ) constitutes a causal graphical model for the functional dynamic
target Y as defined in Definition 1, with the faithfulness assumption being satisfied. Let Xsig denote
the set comprising all variables in X that are dependent on Y. Then, the following assertions hold:

1. Xsig consists of all causes and the descendants of these causes of Y, that is, Xsig = An(Y,G)∪
De(An(Y,G),G).

2. For any two variables X1, X2 ∈ Xsig, if either X1 or X2 is a cause of Y, then X1, X2 are not
adjacent in GXsig if and only if there exists a set A ∈ Xsig such that X1 ⊥⊥ X2 | A.

3. For any two variables X1, X2 ∈ Xsig, if there exists a set A ∈ Xsig such that X1 ⊥⊥ X2 | A,
then X1, X2 are not adjacent in GXsig .

The first result of Theorem 1 implies the soundness and rationality of the method for
finding Xsig mentioned above. The second result indicates that when at least one end of an
edge is a cause of Y, this edge can be accurately identified (in terms of its skeleton, not its
direction) using any well-known structural learning methods, such as the PC algorithm [28]
and GES algorithm [29]. Contrasting with the second result, the third specifies that for any
pair of variables X1, X2 ∈ Xsig, if a separation set exists in Xsig that blocks X1, X2, then these
variables are not adjacent in the true graph G. However, the converse does not necessarily
hold due to the potential presence of a confounder or common cause X3 /∈ Xsig, which
can led to the appearance of an extraneous edge between X1 and X2 in the causal graph G
derived solely from data on Xsig. To accommodate this, the CPDAG learned from Xsig is
denoted as G ′Xsig

, and the induced subgraph that corresponds to the true graph G over Xsig

is represented as G∗Xsig
. An illustrative example follows to elaborate on this explanation.

Example 1. In Figure 3, Figure 3a presents a true graph defined over X = {X1, . . . , X5} and
Y. Here, the set of significant variables is Xsig = {X1, X2, X3, X5}, and X4 is independent of
Y. Figure 3b illustrates the induced subgraph G∗1,Xsig

of the CPDAG G∗1 over the set Xsig, while
Figure 3c displays the graph learned through the structural learning method, such as the PC
algorithm, applied to Xsig. It should be noted that, in G1, {X4} is a separation set of X1 and X2, that
is, X1 ⊥⊥ X2 | X4. However, since X4 /∈ Xsig and structural learning only utilize data concerning
Xsig, no separation set exists for X1 and X2 in Xsig. Consequently, X1 and X2 appear adjacent
in the learned graph G ′1,Xsig

. Furthermore, given X2 ⊥⊥ X3 and X2 ⊥̸⊥ X3 | X1, the structural
learning method identifies a v-structure X2 → X1 ← X3. A similar process yiel X1 → X2 ← X5.

Entropy 2024, 26, 541 8 of 24

Therefore, a bidirected edge X1 ↔ X2 appears in the learned graph G ′1,Xsig
but not in G∗1,Xsig

, as
highlighted by the red edge in Figure 3c.

Similarly, Figure 3d presents a true graph G2 defined over X = {X1, . . . , X5} and Y. In this
scenario, the set of significant variables is identified as Xsig = {X1, X2, X3, X5}, with X4 being
independent of Y. Figure 3b depicts the induced subgraph G∗2,Xsig

of the CPDAG G∗2 over Xsig,
while Figure 3c illustrates the graph learned through the structural learning method, such as the
PC algorithm, applied to Xsig. In G2, the set {X1, X4} acts as a separation set between X2 and X3,
indicating X2 ⊥⊥ X3 | (X1, X4). However, with X4 /∈ Xsig and structural learning relying solely
on data concerning Xsig, a separation set for X2 and X3 in Xsig no longer exists. As a result, X2 and
X3 appear adjacent in the learned graph G ′2,Xsig

. Furthermore, given X3 ⊥⊥ X5 and X3 ⊥̸⊥ X5 | X2,
the structural learning method is capable of identifying a v-structure X3 → X2 ← X5. Therefore, a
directed edge X3 → X2 is present in the learned graph G ′2,Xsig

but not in G∗2,Xsig
, as highlighted by

the red edge in Figure 3f.

(a) (b) (c)

(d) (e) (f)

Figure 3. An example to illustrate the difference between G ′Xsig
and G∗Xsig

: (a) True graph G1. (b) G∗1,Xsig
.

(c) G ′1,Xsig
. (d) True graph G2. (e) G∗2,Xsig

. (f) G ′2,Xsig
.

Example 1 illustrates two scenarios in which the graph G ′Xsig
might include false

positive edges that do not exist in G∗Xsig
. Importantly, these additional false edges may not

appear between the causes of Y. Instead, they may occur between the causes and noncauses
of Y, or exclusively among the noncauses of Y, as delineated in Theorem 1. The complete
result is given by Proposition A1 in Appendix A.2. Indeed, a more profound inference
can be drawn: the presence of extra edges does not compromise the structural integrity
concerning the causes of Y, affecting neither the skeleton nor the orientation.

Theorem 2. The edges in Es(G ′Xsig
)\Es(G∗Xsig

), if exists, do not affect the skeleton or orientation of

edges among the ancestors of Y in G∗. Furthermore, we have An(Y,G∗Xsig∪Y) = An(Y,G ′Xsig∪Y)

and PossAn(Y,G∗Xsig∪Y) ⊆ PossAn(Y,G ′Xsig∪Y), where G∗Xsig∪Y and G ′Xsig∪Y are graphs by adding

a node Y and directed edges from Y’s direct causes to Y in graphs G∗Xsig
and G ′Xsig

, respectively.

According to Theorem 2, it is evident that although the graph G ′Xsig
obtained through

structural learning does not exactly match the induced subgraph of CPDAG G∗ over Xsig
corresponding to the true graph, the causes of the functional dynamic target Y in these
two graphs are identical, including the structure among these causes. Thus, in terms
of identifying the causes, the two graphs can be considered equivalent. Furthermore,

Entropy 2024, 26, 541 9 of 24

Theorem 2 indicates that all possible ancestors of Y in G∗Xsig∪Y are also possible ancestors in

G ′Xsig∪Y, though the converse may not hold. The detailed proof is available in Appendix A.2.

Example 2. The true graph G is given by Figure 4a, and the corresponding CPDAG G∗ is itself,
that is, G = G∗. In this case, the set of significant variables is Xsig = {X1, X2, X4}. Figure 4b is the
induced graph G∗Xsig∪Y of G (G∗) over Xsig, and Figure 4c is the CPDAG G ′Xsig∪Y obtained by using

the structural learning method on Xsig. Then, we have An(Y,G∗Xsig∪Y) = An(Y,G ′Xsig∪Y) = {X1},
while PossAn(Y,G∗Xsig∪Y) = ∅ ⊆ {X2, X4} = PossAn(Y,G ′Xsig∪Y).

(a) (b) (c)

Figure 4. An example to illustrate the results in Theorem 2: (a) True graph G. (b) G∗Xsig∪Y. (c) G ′Xsig∪Y.

According to the causal graphical model in Definition 1 and the faithfulness assump-
tion, Y is the sum of the mean function and an independent noise, and the mean function is
a deterministic function of Y’s direct causes. Therefore, for any nondescendant of Y, say X,
given the direct causes of Y, that is, Pa(Y,G), X is independent of Y. On the contrary, for
any X ∈ Xsig, X is a direct cause of Y if and only if there is no subset A ⊆ Adj(X,G) such
that X ⊥⊥ Y | A.

Let A be a subset of Xsig. For any X ∈ Xsig and X /∈ A, to test the conditional
independence X ⊥⊥ Y | A, consider the following test:

H0 : ΘA=a,X=x = ΘA=a,X=x′ , ∀a, x, x′, (5)

H1 : ΘA=a,X=x ̸= ΘA=a,X=x′ , ∃a, x, x′. (6)

Under the null hypothesis, the parameter only depends on the value of the set A,
which can be denoted as ΘA, while under the alternative hypothesis, the parameter is
determined by the values of both A and X, which can be denoted as ΘA,X . Let ln L(Y, ΘA)
be the log-likelihood of Y under H0, and ln L(Y, ΘA,X) be the log-likelihood of Y under H1.
The likelihood ratio statistic is

LR = −2(ln L(Y, ΘA)− ln L(Y, ΘA,X)). (7)

Under certain regular conditions, the statistic LR approximately follows χ2 distribu-
tion, with degrees of freedom equal to |ΘA,X | − |ΘA|.

Based on the above results, we propose a screening and structural learning-based algo-
rithm to identify the causes of the functional dynamic target Y, as detailed in Algorithm 1.

In Algorithm 1, the initial step involves learning the structure over Xsig utilizing data
related to Xsig through a structural learning method, detailed in Lines 1–6. The notation
X ∗ −Y in Lines 3–4 signifies that the connection between X and Y could be either X−Y or
X ← Y. We first learn the skeleton of Xsig following the same procedure as the PC algorithm
(Line 1), with the details in Appendix A.1. Nevertheless, due to the potential occurrence of
bidirected edges, adjustments are made in identifying v-structures (Lines 2–5), culminating
in the elimination of all bidirected edges. According to Theorem 1, these bidirected edges,
which are removed directly (Line 5), are present only between causative and noncausative
variables or among noncausative variables of the functional dynamic target. Since these
variable pairs are inherently (conditional) independent, removing such edges does not
compromise the (conditional) independence relationships among the remaining variables,

Entropy 2024, 26, 541 10 of 24

as shown in Theorem 2 and Example 1. Subsequently, we designate the set of direct causes
as DC := Xsig and sequence these variables in ascending order of their correlations with Y
(Lines 7–8). This is because variables with weaker correlation are less likely to be the direct
cause of Y. Placing these variables at the beginning of the sequence can quickly exclude non-
direct-cause variables in the subsequent conditional independence tests, thereby enhancing
the algorithm’s efficiency, simplifying its complexity, and reducing the required number of
conditional independence tests. Next, we add directed edges from all vertices in Xsig to Y
(Line 9) to construct the graph G ′Xsig∪Y. For each directed edge, say X → Y, we check the
conditional independence of X and Y given a subset AX of DC (Lines 12–14). In seeking the
separation set AX , the search starts with single-element sets, progressing to sets comprising
two elements, and so forth. Upon identifying a separation set, both vertices and directed
edges are removed from DC and G ′Xsig∪Y, respectively (Lines 15–17). Lastly, if the separation
set’s size k surpasses that of DC, implying that no conditional independence of X and Y
can be found given any subset of DC, the directed edge X → Y remains in G ′Xsig∪Y.

Algorithm 1 SSL: Screening and structural learning-based algorithm

Require: Xsig and their corresponding p-values {Xpv}X∈Xsig , data sets about Xsig and Y.
Ensure: Causes of Y.

1: Learn the skeleton G ′s(Xsig) of the CPDAG G ′Xsig
defined on Xsig and obtain corre-

sponding separation sets S based on the data set related to Xsig via Algorithm A1 in
Appendix A.1;

2: repeat
3: Find the structure X ∗ −Y− ∗Z satisfying X /∈ Adj(Z,G) in graph G ′s(Xsig);
4: If Y /∈ S(X, Z), then orient as X∗ → Y ← ∗Z;
5: until All structures X ∗ −Y− ∗Z with X /∈ Adj(Z,G) in G ′s(Xsig) have been tested;
6: Construct the CPDAG G ′Xsig

by deleting all bidirected edges and using Meek’s rules to
orient as many undirected edges as possible in graph G ′s(Xsig);

7: Let DC := Xsig;
8: Sort DC in ascending order of associations with Y using {Xpv}X∈Xsig ;
9: Let G ′Xsig∪Y be the graph by adding a node Y to the graph G ′Xsig

,and for each X ∈ Xsig,
add a directed edge X → Y to the graph G ′Xsig∪Y;

10: Set k := 1;
11: while k < |DC|, do
12: for each vertex X ∈ DC, do
13: for each subset AX of DC\{X} with k vertices, do
14: Test the conditional independence Y ⊥⊥ X | AX using Equations (5) and (6);
15: if Y ⊥⊥ X | AX , then
16: Delete the directed edge X → Y in graph G ′Xsig∪Y;
17: Let DC := DC\{X};
18: end if
19: end for
20: end for
21: k := k + 1;
22: end while
23: return G ′Xsig∪Y.

Entropy 2024, 26, 541 11 of 24

According to Theorem 1 and the discussion after Example 2, DC is the set of all
direct causes of Y if all assumptions in Theorem 1 hold and all statistical tests are correct.
Further, according to Theorem 2, all ancestors of Y can be obtained from the graph G ′Xsig∪Y.
Therefore, Algorithm 1 can learn all the causes of Y correctly.

Note that in Algorithm 1, we first traverse the sizes of the separation set (Line 11) and
then, for each given size, traverse all variables in the DC set and all possible separations
with that size (Line 12 and 13) to test for the conditional independence of each variable and
Y. That is, first fix the size of the separation set to 1, and then traverse all variables. After all
variables are traversed once, increase the size of the separation set to 2, and then traverse
all variables again. The advantage of this arrangement is that it can quickly remove the
nondirect causes of Y and reduce the size of the DC set, thereby reducing the number of
conditional independence tests and improving their accuracy. Furthermore, it is worth
mentioning that the reason why we directly add directed edges from variables in DC to Y
in graph G ′Xsig∪Y (Line 9) is because we assume the descendant set of Y is empty, as shown
in Definition 1, and in this case, Y’s adjacent set is exactly the direct causes we are looking
for. If there is no such assumption, then it is necessary to judge the variables in Y’s adjacent
set and distinguish the parents from the children.

5. A Screening-Based and Local Algorithm

Based on the previous results and discussions, we can conclude that Algorithm 1
is capable of correctly identifying the causes of a functional dynamic target. However,
Algorithm 1 requires recovering the complete causal structure of Xsig and Y. As analyzed
in Section 1, learning the complete structure is unnecessary for identifying the causes of the
target. Furthermore, Algorithm 1 may be influenced by the distance effect, whereby the
correlation between a cause and the target may diminish from the data when the path from
the cause to the target is too lengthy. Consequently, identifying this cause variable through
observational data becomes challenging, potentially leading to missed causes. Therefore,
we propose a screening-based and local approach to address these challenges.

In this section, we introduce a three-stage approach to learn the causes of functional
dynamic targets. Initially, utilizing the causal graphical model, we apply a hypothesis test-
ing method to screen variables, identifying factors significantly correlated with the target.
Subsequently, we employ a constraint-based method to find the direct causes of the target
from these significant variables. Lastly, we present a local learning method to discover the
causes of these direct causes within any specified distance. We begin with the introduction of
a screening-based algorithm that can learn the direct causes of Y, as shown in Algorithm 2.

In Algorithm 2, we initially set the set of direct causes DC := Xsig and arrange these
variables in ascending order of their correlations with Y (Lines 1–2), which is the same
as Algorithm 1. We introduce a set NX to contain variables determined not to belong
to X’s separation set, starting as an empty set (Line 3). We then check the conditional
independence of each variable X ∈ DC with Y. During the search for the separation set
AX, A is set as all subsets of DC\(X ∪NX) with k variables and is arranged roughly in
descending order of their associations with Y (Lines 7–8). This is because variables that
have a stronger correlation with Y are more likely to be the direct causes and are also
more likely to become the separation set of other variables. Placing these variables at the
beginning of the order can quickly find the separation set of nondirect causes and remove
these variables from DC, which can reduce the number of conditional independence tests
and accelerate the algorithm. Once we find the separation set AX for X and Y, we remove X
from DC and add X to NV for each V ∈ AX (Lines 11–13). This is because when AX is the
separation set of X and Y, the variables in AX appear in the path from X to Y. Consequently,
X should not be in the separation set for variables in AX with respect to Y. Compared
with Algorithm 1, introducing NX in Algorithm 2 improves efficiency and speed. While
Algorithm 1 requires examining every subset of DC\X (Line 8 in Algorithm 1), Algorithm 2
only needs to evaluate subsets of DC\(X ∪NX) (Line 7 in Algorithm 2). The theoretical
validation of Algorithm 2’s correctness is presented below.

Entropy 2024, 26, 541 12 of 24

Algorithm 2 Screening-based algorithm for learning direct causes of Y
Require: Xsig and their corresponding p-values {Xpv}X∈Xsig , data sets about Xsig and Y.
Ensure: Direct causes of Y.
1: Let DC := Xsig;
2: Sort DC in ascending order of associations with Y using {Xpv}X∈Xsig ;
3: Let NX := ∅ for each X ∈ DC;
4: Set k := 1;
5: while k < |DC|, do
6: for each vertex X in DC, do
7: Let A be the set of all subsets of DC\({X} ∪NX) with k variables;
8: Sort A approximately in descending order of associations with Y;
9: for each AX ∈ A, do

10: Test the conditional independence Y ⊥⊥ X | AX using Equations (5) and (6);
11: if Y ⊥⊥ X | AX , then
12: Set DC := DC\{X}
13: Add X to NV for each V ∈ AX ;
14: break
15: end if
16: end for
17: end for
18: k := k + 1
19: end while
20: return DC.

Theorem 3. If all assumptions in Theorem 1 hold, and there are no errors in the independence tests,
then Algorithm 2 can correctly identify all direct causes of Y.

Next, we aim to identify all causes of Y within a specified distance. One natural
method is to recursively apply Algorithm 2, starting with Y’s direct causes and then
expanding to their direct causes. This process continues until all causes within the set
distance are found. However, this method’s effectiveness for Y relies on the assumption
that Y has no descendants, making its adjacent set its parent set. This is not the case for
other variables. Thus, we must further analyze and distinguish variables in the adjacent set
of other variables. Consequently, we introduce the LPC algorithm in Algorithm 3.

Algorithm 3 LPC(T, U) algorithm

Require: a target node T, a data set over variables X, a non-PC set U.
Ensure: the PCD set of T and set S containing all separation relations.

1: Set PCD := {X : X ∈ X\U, and T ⊥̸⊥ X}; k := 1; S := ∅;
2: while k < |PCD|, do
3: for each vertex X ∈ PCD, do
4: if there exists AX ⊆ PCD\{X} such that |AX | = k and (T ⊥⊥ X | AX), then
5: Set PCD := PCD\{X} and add tuple (T, X, AX) to S;
6: end if
7: end for
8: k := k + 1;
9: end while

10: return PCD and S.

Algorithm 3 aims to learn the local structure of a given target variable T, but in fact,
the final PCD set includes T’s Parents, Children, and Descendants. This is because when
verifying the conditional independence (Line 4), we remove some nonadjacent variables
of T in advance (Line 1), resulting in some descendant variables being unable to find the
corresponding separation set.

Entropy 2024, 26, 541 13 of 24

Example 3. In Figure 5, let T = X1, U = ∅. Since X1 ⊥⊥ X4, we initially have PCD = {X2, X3}
(Line 1 in Algorithm 3). Note that there originally exists a conditional independent relationship
X1 ⊥⊥ X3 | (X2, X4) in the graph, but since we remove the vertex X4 in advance, there is no longer
a separation set of X1 and X3 in the set of PCD. Therefore, X3 cannot be removed from PCD further
and the output PCDX1 = {X2, X3}, that is, X3, which is a descendant of X1 but not a child of X1,
is included in PCDX1 .

Figure 5. An example to illustrate the PCD set obtained by Algorithm 3.

Example 3 illustrates that there may indeed be some nonchildren descendants of the
target variable in the PCD set obtained by Algorithm 3. Below, we show that one can
identify these non-child-descendant variables by repeatedly applying Algorithm 3. For
example, in Example 3, the PCD set of X1 is PCDX1 = {X2, X3}. Then, we can apply
Algorithm 3 to X3 and find that the PCD set of X3 is PCDX3 = {X2, X4}. It can be seen
that X1 is not in PCDX3 . Hence, we can conclude that X3 is a nonchildren descendant of
X1; otherwise, X1 must be in PCDX3 . Through this method, we can delete the non-child-
descendant variables from the PCD set, so that the PCD set only contains the parents and
children of the target variable. Based on this idea, we propose a step-by-step algorithm to
learn all causes of a functional dynamic target locally, as shown in Algorithm 4.

Algorithm 4 PC-by-PC: Finding all causes of target T within a given distance
Require: a target set T ⊆ V = X ∪ Y, data set over V, and the maximum distance m.
Ensure: all causes of T with length up to m.
1: Set n := 1, n′ := 0, CanC := T;
2: Initial graph G with directed edges from each vertex in T to an auxiliary node L;
3: repeat
4: Set X = CanCn;
5: Let U = {V : X /∈ PCV , ∀V ∈ CanC1:n−1};
6: Get the PCD set and the separation set (PCX , SX) = LPC(X, U);
7: for each V ∈ PCX ∩ CanC1:n−1 do
8: if X ∈ PCV then
9: Add an undirected edge X−V to graph G;

10: else
11: PCX := PCX\{V}, PCV := PCV\{X};
12: end if
13: end for
14: Update G by modifying structures like V1 − X − V2, X − V1 − V2 and X − V1 ← V2 to V1 → X ← V2,

X → V1 ← V2 and X → V1 ← V2 respectively, if the middle vertex is not in the separation set of the two
end vertices;

15: if X is the last vertex of CanC then
16: Update G by orientating undirected edges as much as possible via Meek’s rule;
17: for each V ∈ CanCn′ :n, do
18: Add PCV\CanC to the end of CanC if |Path(V, L)| < m or the m-th edge close to L in Path(V, L) is

undirected;
19: end for
20: end if
21: n′ := n, n := n + 1;
22: until X is the last vertex of CanC;
23: return G and S.

Entropy 2024, 26, 541 14 of 24

In Algorithm 4, CanCn represents the n-th variable in the set CanC, and CanC1:n−1
represents the first to the (n− 1)-th variable in the set CanC. Path(V, L) denotes the shortest
path from V to L in graph G. There are many methods to learn the shortest path, such as the
Dijkstra algorithm [30]. Algorithm 4 uses the mentioned symmetric validation method to
remove descendants from the PCD set (Lines 7–13), and hence, we directly write the PCD
set as the PC set (Line 6). When our task is to learn all causes of a functional dynamic target
Y, the target set T as the algorithm input is all direct causes of Y, which can be obtained by
Algorithm 2, and the auxiliary node L is exactly the functional dynamic target Y (Line 2).
In fact, we can prove it theoretically, as shown below.

Theorem 4. If the faithfulness assumption holds and all independence tests are correct, then
Algorithm 4 can learn all causes of the input target set T within a given distance m correctly.
Further, if all assumptions in Theorem 1 holds, T is the set of direct causes of the functional dynamic
target Y, and the auxiliary node L in Algorithm 4 is Y, then Algorithm 4 can learn all causes of Y
within a given distance (m + 1) correctly.

Note that the above algorithm gradually spreads outward from the direct causes of Y,
and at each step, the newly added nodes are all in the PC set of previous nodes (Line 18),
which only involves the local structure of all causes of Y, greatly improving the efficiency and
accuracy of the algorithm. Moreover, Algorithm 4 identifies the shortest path between each
cause variable and Y. When the m-th edge on one path from Y cannot be oriented, it only
continues to expand from that path, instead of expanding all paths (Line 18 in Algorithm 4),
which simplifies the algorithm and reduces the learning of redundant structures.

6. Experiments

In this section, we compare the effectiveness of different methods for learning the
direct and all causes of a functional dynamic target through simulation experiments. As
mentioned before, to our knowledge, existing structural learning algorithms lack the
specificity needed to identify causes of functionally dynamic targets, so we only compare
the methods we proposed, which are as follows:

1. SSL algorithm: The screening and structural learning-based algorithm given in
Algorithm 1, which can learn both direct and all causes of a dynamic target simulta-
neously;

2. S-Local algorithm: First, use the screening-based algorithm given in Algorithm 2, which
can learn direct causes of a functional dynamic target, and then use the PC-by-PC algorithm
given in Algorithm 4, which can learn all causes of a functional dynamic target.

In fact, our proposed SSL algorithm integrates elements of the screening method
with those of traditional constraint-based structural learning techniques, as depicted in
Algorithm 1. In its initial phase, the SSL algorithm is a modified version of the PC algo-
rithm, extending its capabilities to effectively handle bidirectional edges introduced by the
screening process. This extension of the PC algorithm, tailored to address the causes of the
dynamic target, positions the SSL algorithm as a strong candidate for a benchmark.

In this simulation experiment, we randomly generate a causal graph G consisting
of a dynamic target Y and p = (15, 100, 1000, 10,000) potential factors. Additionally, we
randomly select 1 to 2 variables from these potential factors to serve as direct causes for
Y. The potential factors are all discrete with finite levels, while the functional dynamic
target Y = (Y1, · · · , Y24) is a continuous vector, and its mean function is a Double-Logistic
function, that is,

Yt = µt|Pa(Y,G) + ϵt, t = 1, . . . , 24,

where

µt|Pa(Y,G) =
a1|Pa(Y,G)

1 + exp(−r1|Pa(Y,G)(t− c1|Pa(Y,G)))
+

a2|Pa(Y,G)
1 + exp(−r2|Pa(Y,G)(t− c2|Pa(Y,G)))

,

Entropy 2024, 26, 541 15 of 24

and ϵt = ϵt−1 + εt, εt ∼ N(0, 0.022). The Pa(Y,G) in the subscript of the above equations
indicates that parameters are affected by the direct causes of Y. For each causal graph G,
we randomly generate the corresponding causal mechanism, that is, the marginal and con-
ditional distributions of potential factors and the functional dynamic target, and generate
the simulation data from it. We use different sample sizes n = (50, 100, 200, 500, 1000) and
repeat the experiment 100 times for each sample size. In addition, we adopt adaptive signif-
icance level values in the experiment, because as the number of potential factors increases,
the strength of screening also increases. In other words, as the number of potential factors
p increases, the significance level α of the (conditional) independence test decreases. For
example, α is 0.05 when p = 100, while α is 0.0005 when p = 10,000.

To evaluate the effectiveness of different methods, suppose Xl is the set of learned
direct causes of Y by algorithms, and Xd is the set of true direct causes of Y in the generated
graph. Then, let TP = |Xl ∩ Xd|, FP = |Xl\Xd|, FN = |Xd\Xl |, and we have

recall =
TP

TP + FN
, precision =

TP
TP + FP

, accuracy =
p− FP− FN

p
,

where p is the number of potential factors. It can be seen that the recall measures how
much the algorithm has learned among all the true direct causes. Precision measures how
much of the direct causes learned by the algorithm are correct. Accuracy measures the
proportion of correct judgments on whether each variable is a direct cause or not. The
evaluation indicators for learning all causes can also be defined similarly.

The experiment results are shown in Table 1, in which time represents the total time
(in seconds) consumed by the algorithm, and rec, prec, acc represent the average value of
recall, precision, and accuracy over 100 experiments, respectively. In addition, different
subscripts represent different methods. DC and AC denote that algorithms learn direct
causes and all causes, respectively.

Table 1. Experimental results of SSL algorithm and S-Local algorithm under different settings.

p n timeSSL timeS−Local Cause recSSL recS−Local precSSL precS−Local accSSL accS−Local

15

50 50 55 DC 0.487 0.500 0.352 0.474 0.866 0.929
AC 0.157 0.487 0.721 0.814 0.445 0.640

100 64 49 DC 0.557 0.829 0.485 0.814 0.905 0.975
AC 0.143 0.656 0.786 0.877 0.451 0.733

200 112 60 DC 0.538 0.885 0.386 0.856 0.888 0.981
AC 0.224 0.882 0.603 0.878 0.476 0.854

500 676 85 DC 0.551 0.939 0.466 0.929 0.927 0.989
AC 0.363 0.977 0.567 0.893 0.552 0.916

1000 1126 126 DC 0.778 0.981 0.691 0.963 0.957 0.996
AC 0.566 0.996 0.702 0.890 0.667 0.923

100

50 251 277 DC 0.293 0.283 0.072 0.256 0.934 0.984
AC 0.112 0.223 0.154 0.358 0.867 0.915

100 224 227 DC 0.398 0.755 0.141 0.656 0.956 0.993
AC 0.104 0.604 0.226 0.688 0.884 0.946

200 290 235 DC 0.292 0.917 0.113 0.828 0.962 0.996
AC 0.123 0.891 0.205 0.763 0.891 0.961

500 890 336 DC 0.221 0.916 0.071 0.900 0.962 0.997
AC 0.145 0.966 0.156 0.753 0.892 0.957

1000 1509 527 DC 0.462 0.978 0.156 0.962 0.967 0.999
AC 0.327 0.996 0.308 0.668 0.908 0.933

Entropy 2024, 26, 541 16 of 24

Table 1. Cont.

p n timeSSL timeS−Local Cause recSSL recS−Local precSSL precS−Local accSSL accS−Local

1000

50 836 839 DC 0.814 1.000 0.073 1.000 0.989 1.000
AC 0.336 0.204 0.235 0.924 0.985 0.992

100 936 962 DC 0.860 1.000 0.069 1.000 0.988 1.000
AC 0.587 0.573 0.379 0.867 0.988 0.995

200 1204 1222 DC 0.980 1.000 0.083 1.000 0.989 1.000
AC 0.724 0.847 0.446 0.861 0.989 0.997

500 2376 1930 DC 1.000 1.000 0.118 1.000 0.992 1.000
AC 0.804 0.922 0.500 0.814 0.991 0.997

1000 4015 3118 DC 1.000 1.000 0.121 1.000 0.993 1.000
AC 0.873 0.998 0.523 0.813 0.992 0.998

10,000

50 9109 9480 DC 0.667 1.000 0.150 1.000 1.000 1.000
AC 0.148 0.148 0.194 1.000 0.999 0.999

100 10,008 10,463 DC 0.654 1.000 0.101 1.000 0.999 1.000
AC 0.376 0.538 0.285 0.884 0.999 1.000

200 13,710 13,836 DC 0.923 1.000 0.101 1.000 0.999 1.000
AC 0.551 0.833 0.395 0.871 0.999 1.000

500 21,084 18,343 DC 1.000 1.000 0.130 1.000 0.999 1.000
AC 0.782 0.919 0.502 0.813 0.999 1.000

1000 31,476 31,862 DC 1.000 1.000 0.126 1.000 0.999 1.000
AC 0.813 0.959 0.505 0.787 0.999 1.000

In Table 1, since the SSL algorithm obtains direct and all causes simultaneously through
complete structural learning, for the sake of fairness, we only count the total time for both
algorithms. It can be seen that the time of the two algorithms is approximately linearly
related to the number of potential factors p. Moreover, when p is fixed, the algorithm
takes longer and longer as the sample size n increases. In fact, for SSL algorithms, most
of the time is spent on learning the complete graph structure. Therefore, as n increases,
the (conditional) independence test becomes more accurate, resulting in an increase in the
size of set Xsig and a larger graph to learn, which naturally increases the time required. For
the S-Local algorithm, more than 99% of the time is spent on optimizing the log-likelihood
function during the (conditional) independence test in the screening stage. As n increases,
the optimization time becomes longer and the total time also increases accordingly. This
also explains why the time of the S-Local algorithm increases linearly as the number of
variables increases, since the number of independence tests required increases roughly
linearly. In addition, it can be seen that in most cases, the S-Local algorithm takes less time
than the SSL algorithm, especially when p is small. However, when p is large, the time used
by the two algorithms is similar. This is mainly because in this experimental setting, the
mechanism of the functional dynamic target Y is relatively complex, and its mean function
is a Double-Logistic function with too many parameters, which requires much time for
optimization. In fact, even if there is only one binary direct cause, the mean function will
have 13 parameters. When the mechanism of the functional dynamic target is relatively
simple, the time required for the S-Local algorithm will also be greatly reduced. Besides, it
should be noted that more than 99% of the time, the S-Local algorithm is used to check the
independence in the screening step, and in practice, this step can be performed in parallel,
which will greatly reduce the time required.

When learning the direct cause, whether it is recall, precision, or accuracy, the results of
the S-Local algorithm are much higher than those of the SSL algorithm, especially the value
of precision. The precision values of the SSL algorithm are very small, mainly because the
accuracy of learning the complete graph structure is relatively low, resulting in learning many
non-direct-cause variables in the local structure of Y. Particularly when p is large, it is difficult
to correctly recover the local structure of Y. What’s more, it should be noted that under the
same sample size, when p is small, the values of recall, precision and accuracy obtained by
S-Local algorithm are not as good as those obtained when p is large. For example, when

Entropy 2024, 26, 541 17 of 24

p = 15, n = 50, we have recS−Local = 0.500, precS−Local = 0.474 and accS−Local = 0.929, but
when p = 10,000, n = 50, we have recS−Local = 1.000, precS−Local = 1.000 and accS−Local = 1.000.
The recall and accuracy values of the SSL algorithm also show similar results. This result does
not violate our intuition, as we use adaptive significance levels in the experiment. When p
is large, in order to increase the strength of screening and facilitate subsequent learning of
all causes, we use a smaller significance level. Therefore, the algorithm is more rigorous in
determining whether a variable is the direct cause of Y when learning direct causes, making it
easier to exclude those non-direct-cause variables.

When learning all causes, the recall and accuracy values of the SSL algorithm and
S-Local algorithm increase monotonically with respect to the sample size, and even in
cases with many potential factors, both algorithms can achieve very good results. For
example, when p = 10,000, the accuracy values of both algorithms are above 99.9%. Of
course, overall, the results of the S-Local algorithm are significantly better than those of
the SSL algorithm. However, it should be noted that the values of precision of the two
algorithms show different trends. The precision value of the SSL algorithm increases
monotonically with n when p is large, but the trend is not significant when p is small.
This is because the SSL algorithm is affected by the distance effect, and as n gradually
increases, (conditional) independence tests also become more accurate. As a result, many
causes that are far away from Y can be identified. When p is large, the number of causes
that are far away from Y is also large. Therefore, the precision of the SSL algorithm will
gradually increase. However, when p is small, most variables have a short distance from Y.
Although the SSL algorithm can also obtain more causes (the value of recSSL increases), it
also includes some noncause variables that are strongly related to Y in the set of causes.
At this time, the value of precision does not have a clear trend. On the other hand, the
precision value of the S-Local algorithm monotonically increases with respect to n when p
is small, and as p gradually increases, this trend gradually transforms into a monotonic
decrease. This is because when p is small, as n increases, the S-Local algorithm can identify
more causes through a more accurate (conditional) independence test. However, when p is
large, the number of noncause variables obtained by the S-Local algorithm is greater than
the number of causes. Therefore, the recall value still increases, but the precision value
gradually decreases. In other words, in this case, there is a trade-off between the values of
recall and precision of the S-Local algorithm. However, it should be noted that although
the trends of precision values are different, the accuracy values of both algorithms increase
with the increase in sample size.

It should be noted that the primary objective of the models and algorithms introduced
in this paper is to identify the causes of functional dynamic targets, addressing the "Cause
of Effect" (CoE) challenge, rather than directly predicting Y. However, based on the
causal graphical model for these targets, correctly identifying Y’s direct causes is indeed
sufficient for making accurate predictions. In the simulation experiment, with 15 nodes
and 1000 samples, the Mean Squared Error (MSE) of prediction is 0.281 for simulations
that incorrectly learn Y’s direct causes. This figure dropped to 0.185 when the causes were
correctly identified, reflecting a significant reduction in prediction error of approximately
34%. Additionally, as illustrated in Table 1, the S-Local algorithm demonstrated exceptional
accuracy in identifying the direct causes, with a success rate consistently above 98% in most
cases. This high level of accuracy indicates that our algorithms perform well in predicting
Y as well.

7. Discussion and Conclusions

In this paper, we first establish a causal graphical model for functional dynamic targets
and discuss hypothesis testing methods for testing the (conditional) independence between
random variables and functional dynamic targets. In order to deal with situations where
there are too many potential factors, we propose a screening algorithm to screen out some
variables that are significantly related to the functional dynamic target from a large number
of potential factors. On this basis, we propose the SSL algorithm and S-Local algorithm to

Entropy 2024, 26, 541 18 of 24

learn the direct causes and all causes within a given distance of functional dynamic targets.
The former utilizes the screening algorithm and structural learning methods to learn both
the direct and all causes of functional dynamic targets simultaneously by recovering the
complete graph structure of the screened variables. Its disadvantage is that learning the
complete structure of the graph is very difficult and redundant, and it is also affected by
the distance effect, resulting in a low accuracy in learning causes. The latter first uses a
screening-based algorithm to learn the direct causes of functional dynamic targets, and
then uses our proposed PC-by-PC algorithm, a step-by-step locally learning algorithm, to
learn all causes within a given distance. The advantage of this algorithm is that all learning
processes are controlled within the local structure of current nodes, making the algorithm
no longer affected by the distance effect. In fact, this algorithm only focuses on the local
structure of each cause variable, rather than learning the complete graph structure, greatly
saving time and space. Moreover, the algorithm not only pays attention to the distance, but
also can identify the direct path between each cause variable and the functional dynamic
target, so that the algorithm does not need to identify the whole structure of a certain part
but only learns the part of the local structure involving the cause variables, further reducing
the learning of redundant structures.

It should be noted that when the causal mechanism of functional dynamic targets
is very complex, the time required for the S-Local algorithm may greatly increase. In
addition, the choice of significance level will also have an impact on the precision of the
algorithm. Thus, how to simplify the causal model of functional dynamic targets and how
to reasonably choose an appropriate significance level are two directions of our future
work.

Author Contributions: Conceptualization, R.Z. and X.Y.; methodology, R.Z. and X.Y.; software, R.Z.
and X.Y.; validation, R.Z. and Y.H.; formal analysis, R.Z., X.Y. and Y.H.; investigation, R.Z., X.Y.
and Y.H.; resources, Y.H.; data curation, R.Z. and X.Y.; writing—original draft preparation, R.Z.;
writing—review and editing, R.Z. and Y.H.; visualization, R.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
grant number 2022ZD0160300.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The simulated data can be regenerated using the codes, which can be
provided to the interested user via an email request to the correspondence author.

Acknowledgments: Thank Qingyuan Zheng for providing technical support.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1

In Algorithm 1, we first screen variables significantly related to Y through the hy-
pothesis testing of H0 against H1 as defined in Equations (2) and (3), and learn the causal
structure of these variables via a structural learning method. However, it should be noted
that due to the absence of some variables in some separation sets, the graph we learn here is
not the true CPDAG, but may have some extra edges, which may be directed or bidirected.
Therefore, we need to make some modifications to the structural learning algorithm. As
shown in Algorithm 1, we first learn the skeleton through the original structural learning
method and then find v-structures by using a variant algorithm (Lines 2–5 in Algorithm 1).
Hence, taking the PC algorithm as an example, we give the method to learn the skeleton
G ′s(Xsig) below.

Entropy 2024, 26, 541 19 of 24

Algorithm A1 PC algorithm to learn the skeleton G ′s(Xsig).

Require: Xsig, data sets about Xsig.
Ensure: the skeleton G ′s(Xsig) and all separation sets S .

1: Construct a complete undirected graph G defined over Xsig;
2: Set k := −1;
3: repeat
4: k := k + 1;
5: repeat
6: Find an ordered variable pair (X, Y) satisfying |Adj(X,G)\{Y}| ≥ k in graph G;
7: repeat
8: Find a subset S ⊆ Adj(X,G)\{Y} with size k;
9: if X ⊥⊥ Y | S, then

10: delete the undirected edge X−Y from graph G;
11: save S as S(X, Y) and S(Y, X) and add them into S ;
12: end if
13: until The undirected edge X−Y is deleted or all subsets S ⊆ Adj(X,G)\{Y} have

been selected;
14: until The conditional independence test has been completed for all ordered variable

pairs (X, Y) all sets S that meet the conditions;
15: until For each ordered variable pair (X, Y), we have |Adj(X,G)\{Y}| < k;
16: return G and S .

Appendix A.2

Proof of Theorem 1. We know that all causes of Y and the descendants of these causes
are d-connected with Y. Since the faithfulness assumption holds for the causal graphical
model (G, P, Θ), we have that all causes of Y and the descendants of these causes are not
independent of Y. From the definition Xsig = {X | X ∈ X and X ⊥̸⊥ Y}, we have that
Xsig contains all causes of Y and the descendants of these causes. Meanwhile, according
to the definition of the causal graphical model (G, P, Θ), the functional dynamic target Y
has no children. Therefore, all d-connected paths from a vertex X to Y should be either
X → · · · → · · · → Y or X ← · · · ← X′ → · · · → Y. Clearly, the vertex X is either a cause of
Y or a descendant of a cause of Y. Now, we have shown that the vertices in Xsig are either
causes of Y or descendants of causes of Y. Statement 1 is proved.

Now, we prove the Statement 2. The faithfulness assumption makes sure that X1 and
X2 are not adjacent in GXsig if there exists a set A ∈ Xsig such that X1 ⊥⊥ X2 | A. We just
need to prove the “only if” part, that is, there exists a set A ∈ Xsig such that X1 ⊥⊥ X2 | A if
X1 and X2 are not adjacent in GXsig .

• Consider the case that both X1 and X2 are causes of Y. Since X1 and X2 are not
adjacent in GXsig , either X1 is a nondescendant of X2 or X2 is a nondescendant of X1.
Without loss of generality, we assume that X1 is a nondescendant of X2. Since X2 is a
cause of Y, according to Statement 1, we have Pa(X2,G) = Pa(X2,GXsig) ⊆ Xsig. Let
A = Pa(X2,G), we can obtain the result X1 ⊥⊥ X2 | A.

• Consider the case that X1 is a cause of Y and X2 is not a cause of Y. If X2 is not a
descendant of X1, similar to the discussion in the previous case, we have X1 ⊥⊥ X2 | A
where A = Pa(X1,G) = Pa(X1,GXsig) ⊆ Xsig. If X2 is a descendant of X1, we have
that all paths from X2 to X1 with the first directed edge as X2 → · are d-separated,
otherwise, there should be a directed cycle. Let A1 consist of all parents of X2 that
are d-connected with X1 in G. Clearly, A1 ⊂ Xsig since X1 is a cause of Y. Then, let
A = A1 ∪ Pa(X1,G) ⊆ Xsig. Since Pa(X1,G) blocks all d-connected paths between

Entropy 2024, 26, 541 20 of 24

X1 and X2 through Pa(X1,G), and the set A1 blocks all paths like X1 → · · · → X2,
we have that the set A blocks all d-connected paths between X1 and X2 in G, that is,
X1 ⊥⊥ X2 | A holds.

• Consider the case that X2 is a cause of Y and X1 is not a cause of Y, which is symmetric
to the second case and can be discussed similarly.

Therefore, the “only if” part of Statement 2 is proven.
Statement 3 holds directly since the faithfulness assumption holds for the causal

graphical model (G, P, Θ).

Proposition A1. The edges in Es(G ′Xsig
)\Es(G∗Xsig

), if they exist, do not appear between two
ancestors of Y in G.

Proof of Proposition A1. For any two nonadjacent vertices X1, X2 ∈ An(Y,G), if there is
no directed path from X1(or X2) to X2(or X1), then Pa(X1,G)(or Pa(X2,G)) ⊆ Xsig is a
separation set relative to the pair (X1, X2), and hence there is no edge between X1 and X2
in the graph GXsig . Therefore, without loss of generality, we assume X1 ∈ An(X2,G). In this
case, since X2 is an ancestor of Y, S = Pa(Cn(X1, X2,G),G)\De(Cn(X1, X2,G),G) ⊆ Xsig
is a separation set relative to the pair (X1, X2), in which Cn(X1, X2,G) is the set of all
intermediate nodes on the directed paths from X1 to X2 in G. Hence, there is no edge
between X1 and X2 in the graph GXsig .

Proof of Theorem 2. According to Proposition A1, the edge X1 − X2 in Es(G ′Xsig
)\Es(G∗Xsig

)

may have two cases:
Case 1. X1 ∈ An(Y,G), X2 ∈ De(An(Y,G),G)\An(Y,G).
Case 1.1. X1 /∈ An(X2,G). Since X2 is a nondescendant of X1, Pa(X1,G) ⊆ Xsig is a

separation set relative to (X1, X2). Hence, there is no edge between X1 and X2 in graph
G ′Xsig

, which is a contradiction.

Case 1.2. X1 ∈ An(X2,G). In this case, there are four possible paths between X1 and
X2 in the graph G:

Case 1.2.1. Causal path X1 → · · · → X2. In this case, given any vertex Z on this
path different from X1 and X2, this path can be blocked, implying that X1 and X2 are not
adjacent in G ′Xsig

, which is a contradiction.

Case 1.2.2. Non-causal-path X1 ← · · · ∗ − ∗ X2. Since X1 ∈ An(Y,G), all parents of X1
are in the set Xsig. Hence, conditioning on the parent of X1 on this path can block this path,
implying that X1 and X2 are not adjacent in G ′Xsig

, which is a contradiction.
Case 1.2.3. Non-causal-path X1 → · · · ← X2. There must exist at least one v-structure

in the path, and the path can be blocked given an empty set. Suppose the nearest v-structure
to X2 is W → Z ← · · · ← X2, then the collider Z in this v-structure can not appear on any
causal paths from X1 to X2; otherwise, there will be a directed cycle in graph G. Hence, X1
and X2 are not adjacent in G ′Xsig

, which is a contradiction.
Case 1.2.4. Non-causal-path X1 → · · · ← · · · → X2. There must exist at least one

v-structure in the path, and the path can be blocked given an empty set. However, different
from Case 1.2.3, the colliders of the v-structures in this path may occur on some causal paths
from X1 to X2. According to Case 1.2.1, these vertices may need to be adjusted to block the
causal paths. We use Figure A1 to make an illustration in detail. In Figure A1, with out loss
of generality, we suppose Zi ∈ De(An(Y,G),G)\An(Y,G), i = 1, . . . , p. If not, let the point
in the path that is farthest from X1 and belongs to the set An(Y,G) be the new X1. In this
case, in the non causal path p0 = X1 → Z1 ← U1 → · · · ← Up → X2, all colliders Zi are
in the causal path p1 = X1 → Z1 → · · · → Zp → X2, and Ui /∈ Xsig, i = 1, . . . , p. In order
to block the causal path p1, it is necessary to adjust some vertices in {Zi, i = 1, . . . , p}, say
{Zk1, · · · , Zkl}. But at this time, the path p = p1(X1, Zk1)⊕ p0(Zk1, Zk1+1)⊕ p1(Zk1+1, Zk2)⊕
· · · ⊕ p0(Zkl, Zkl+1)⊕ p1(Zkl+1, X2) cannot be blocked. In fact, even if all Zi, i = 1, . . . , p are
adjusted, the non-causal-path p0 still cannot be blocked.

Entropy 2024, 26, 541 21 of 24

Figure A1. Illustration for Case 1.2.4.

In general, in Case 1, only when the situation in Case 1.2.4 (Figure A1) occurs, the
edges in E(G ′Xsig

)\E(G∗Xsig
) will appear. Then we have X1 ∈ Adj(Zi,G ′Xsig

), i = 1, . . . , p

and X1 ∈ Adj(X2,G ′Xsig
). Note that Rule 1–Rule 3 of Meek’s rules only orient the edges

backward. In other words, in Case 1, no matter how the edges in E(G ′Xsig
)\E(G∗Xsig

) are

oriented, they do not affect the orientation of the edges between vertices in An(Y,G). For
instance, when applying Rule 3 of Meek’s rules, as shown in Figure A2, if X1 − X2 is the
edge in E(G ′Xsig

)\E(G∗Xsig
) due to Case 1.2.4, then the following hold:

• If X1 ∈ An(Y,G), X2 ∈ De(An(Y,G),G)\An(Y,G), then because of the directed edge
X2 → X4, we can obtain X4 ∈ De(An(Y,G),G)\An(Y,G), implying that the new
oriented edge X1 → X4 is the directed edge out of the set An(Y,G), which does not
affect the orientation of edges between vertices in An(Y,G).

• If X2 ∈ An(Y,G), X1 ∈ De(An(Y,G),G)\An(Y,G), then because of the directed edge
X2 → X4, we have X4 ∈ De(An(Y,G),G). Note that if X4 ∈ An(Y,G), then we have
X3 ∈ An(Y,G) and X3 → X1 ∈ E(G). Since in Case 1.2.4, only paths between X2 and
X1 cannot be blocked, and all such paths have an arrow pointing to X1. Hence, in the
process of learning the graph G ′Xsig

, we have X2 ⊥⊥ X3 and X2 ⊥̸⊥ X3 | X1, implying

that a v-structure X3 → X1 ← X2 occurs in the graph G ′Xsig
before applying Meek’s

rules, which is a contradiction. Hence, X4 ∈ De(An(Y,G),G)\An(Y,G), implying
that the newly oriented edge X1 → X4 is the directed edge between vertices in the set
De(An(Y,G),G)\An(Y,G), which does not affect the orientation of edges between
vertices in An(Y,G).

Figure A2. Rule 3 of Meek’s rules as an example to illustrate Case 1.

Other cases of Meek’s rules can be similarly proved. In fact, for Case 1 as shown in
Figure A1, if there exists a vertex W ∈ De(An(Y,G),G) ∩ Pa(X2,G) such that the edge
between X2 and W may be misoriented in G ′Xsig

due to the new edges in Es(G ′Xsig
)\Es(G∗Xsig

),

we have W ∈ Adj(Zp,G); otherwise, W → X2 ← Zp forms a v-structure and the edge W →
X2 can be oriented correctly in both G ′Xsig

and G∗Xsig
. And then, we have W ∈ Adj(Zp−1,G);

otherwise, W → Zp can be oriented by v-structure and W → X2 can be oriented correctly
in both G ′Xsig

and G∗Xsig
by applying Rule 2 of Meek’s rules if the edge between Zp and X2 is

directed and using Lemma 1 in [24] if the edge between Zp and X2 is undirected. Similarly,
we have W ∈ Adj(Zi,G), i = 1, . . . , p and W ∈ Adj(X1,G). Note that the vertices X1, X2 and
W form a triangle, implying that the edge between W and X2 cannot be oriented by applying
Meek’s rules to the edge between X1 and X2 in G ′Xsig

, which contradicts the assumption.

Case 2. X1, X2 ∈ De(An(Y,G),G)\An(Y,G).
Case 2.1. X1 /∈ An(X2,G) and X2 /∈ An(X1,G). In this case, there are three possible

paths between X1 and X2 in the graph G:
Case 2.1.1. Non-causal-path X1 → · · · → X2. The specific discussion is similar to

Case 1.2.3.

Entropy 2024, 26, 541 22 of 24

Case 2.1.2. Non-causal-path X1 → · · · ← · · · → X2 (or X1 ← · · · → · · · ← X2). There
must exist at least one v-structure in the path, and the path can be blocked given an empty
set. Note that, different from Case 1.2.4, there is no causal path between X1 and X2 at this
time, implying that the collider of the v-structure closest to X2 (or X1) will not be adjusted.
Therefore, X1 and X2 are not adjacent in G ′Xsig

, which is a contradiction.
Case 2.1.3. Non-causal-path X1 ← · · · → X2. Since some parents of X1 or X2 may

not belong to the set Xsig, this path cannot be blocked. For example, in the fork X1 ←
Z → X2, when Z /∈ Xsig, an edge in Es(G ′Xsig

)\Es(G∗Xsig
) appears between X1 and X2.

Similar to the discussion at the end of Case 1, no matter how this edge is oriented, Meek’s
rules are backward-oriented, so the orientation of this edge only happens inside the set
De(An(Y,G),G) and does not affect the orientation within the set An(Y,G).

Case 2.2. X1 ∈ An(X2,G) (the case of X2 ∈ An(X1,G) can be discussed similarly). In
this case, there are four possible paths between X1 and X2 in the graph G:

Case 2.2.1. Causal path X1 → · · · → X2. The discussion is the same as Case 1.2.1.
Case 2.2.2. Non-causal-path X1 → · · · ← X2 or X1 ← · · · → · · · ← X2. The discussion

is the same as Case 1.2.3.
Case 2.2.3. Non-causal-path X1 → · · · ← · · · → X2. The discussion is the same as

Case 1.2.4.
Case 2.2.4. Non-causal-path X1 ← · · · → X2. The discussion is the same as Case 2.1.3.
Case 2.3. This case is symmetric to Case 2.2 and can be discussed similarly.
We already proved that the edges in Es(G ′Xsig

)\Es(G∗Xsig
) do not affect the skeleton or

orientation of edges between ancestors of Y in G∗. In fact, it is worth mentioning that, in
the above proof, all discussions focus on graph G, implying that the orientation of edges
between vertices in An(Y,G) are not affected by the new edge in Es(G ′Xsig

)\Es(G∗Xsig
). In

other words, the ancestors of Y in the two graphs are the same, while the possible ancestors
of Y in G∗Xsig

are also the possible ancestors of Y in G ′Xsig
, but not vice versa.

Proof of Theorem 3. We need to prove that for any X ∈ Xsig, X is a direct cause of Y if
and only if there is no subset A ⊆ Xsig\({X} ∪NX) such that X ⊥⊥ Y | A. According to
Theorem 1, the “only if” part holds obviously.

Now, we prove the “if” part. According to Theorem 1, for any X ∈ Xsig, X is a direct
cause of Y if and only if there is no subset A ⊆ Xsig\{X} such that X ⊥⊥ Y | A. Hence,
using the definition of NX in Algorithm 2, it suffices to prove that if we have Y ⊥⊥ X | A,
then for each non-direct-cause variable V ∈ A, there exists at least one separation set of
V and Y that does not contain X. In fact, paths between V and Y can be divided into two
types: paths that go through X and paths that do not go through X. For paths that do not
go through X, the separation set naturally does not contain X. Then, for any path that goes
through X, the path can be represented as p(V, Y) = p(V, X)⊕ p(X, Y), where p(X, Y) has
already been blocked by some variables in set A. Therefore, whether the subpath p(V, X)
is blocked or not, the path p(V, Y) can be separated by a set that does not contain X.

Proof of Theorem 4. We first prove that Algorithm 3 can learn the PCD set PCDT of a
target node T correctly. Similar to the definition of Xsig, let Tsig ⊆ X be the set of variables
associated with T. As shown in Line 1 in Algorithm 3, the initial value PCD0

T of PCDT
is {X : X ∈ V\U, and T ⊥̸⊥ X}, which is a subset of Tsig. In fact, if the non-PC set U is
empty, then we have PCD0

T = Tsig. According to the Markov condition and the faithfulness
assumption, for any X ∈ Tsig, X is a parent or child of T if and only if there is no subset
A ⊆ Tsig\{X} such that X ⊥⊥ T | A. Hence, PCDT contains all parents and children of T.
For any nondescendant variable of T, the set of T’s parents separates them from T. Due
to the lack of a separation set, some descendant variables of T may be included in PCDT ,
as shown in Example 3. Therefore, PCDT obtained by Algorithm 3 consists of T’s parents,
children, and some descendants.

Now, we prove that Algorithm 4 can learn all causes of T within a given distance m.
First, according to the discussion following Example 3, Algorithm 4 can learn the PC set of

Entropy 2024, 26, 541 23 of 24

each variable correctly by using Algorithm 3 and symmetric validation method (Lines 7–13
in Algorithm 4). In other words, Algorithm 4 can learn the skeleton of the local structure of
each variable correctly. Next, note that once the skeleton of the local structure of a variable
is determined, its separation sets from other variables are also obtained at the same time
(Line 6 in Algorithm 4). Therefore, all v-structures can be learned correctly because they
are determined by local structures and separation sets (Line 14 in Algorithm 4). Combined
with Meek’s rules, Algorithm 4 learns the orientation of the local structure of each variable
correctly. Finally, we show that continuing the algorithm cannot obtain more causes of
T within a distance m. Notice that we learn the local structure of nodes layer by layer,
and we only learn the next layer after all the nodes of a certain layer have been learned
(Line 15 in Algorithm 4). Hence, once Algorithm 4 is stopped, it means that all directed
paths pointing to T with a distance less than or equal to m have been found, and the m-th
edge of these paths has been directed. As shown above, we can correctly obtain all edges
and v-structures and their orientations. Hence, continuing the algorithm can only orient
new edges that are farther away from T (> m), which is not what we care about.

We already showed that Algorithm 4 can correctly learn all causes of T that are within
a distance of m from T. Note that the distance between a functional dynamic target Y and
its direct causes is always 1. Thus, obviously, if T is exactly the set of Y’s direct causes
obtained from Algorithm 2, and the node L in Line 2 in Algorithm 4 is exactly Y, then
according to Theorem 3 and the proof above, Algorithm 4 learns all causes of Y within a
given distance m + 1 correctly.

References
1. Karkach, F. Trajectories and models of individual growth. Demogr. Res. 2006, 15, 347–400.
2. Richards, A.S. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301.
3. Zimmerman, D.L.; Núñez-Antón, V. Parametric modelling of growth curve data: An overview. Test 2011, 10, 1–73.
4. Murre, J.M.; Chessa, A.G. Power laws from individual differences in learning and forgetting: Mathematical analyses. Psychon.

Bull. Rev. 2001, 18, 592–597.
5. Wixted, J.T.; Chessa, A.G. On Common Ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia.

Psychol. Rev. 2004, 111, 864–879.
6. Sachs, K.; Perez, O.; Pe’er, D.; Lauffenburger, D.A.; Nolan, G.P. Causal protein-signaling networks derived from multiparameter

single-cell data. Science 2005, 308, 523–529.
7. Pearl J. Causality Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009.
8. Han, B.; Park, M.; Chen, X.W. A Markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinform. 2010, 11, S5.
9. Duren Z.; Wang, Y. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals

regulatory network during mESC differentiation. Sci. Rep. 2016, 6, 22656.
10. Heckman, J.J. Comment on “Identification of causal effects using instrumental variables”. J. Am. Stat. Assoc. 1996, 91, 459–462.
11. Winship, C.; Morgan, S.L. The estimation of causal effects from observational data. Annu. Rev. Sociol. 1999, 25, 659–706.
12. Yin, J.; Zhou, Y.; Wang, C.; He, P.; Zheng, C.; Geng, Z. Partial Orientation and Local Structural Learning of Causal Networks for

Prediction. In Proceedings of the Causation and Prediction Challenge at WCCI, Hong Kong, China, 1–6 June 2008; pp. 93–105.
13. Wang, C.; Zhou, Y.; Zhao, Q.; Geng, Z. Discovering and Orienting the Edges Connected to a Target Variable in a DAG via a

Sequential Local Learning Approach. Comput. Stat. Data Anal. 2014, 77, 252–266.
14. Pena, J.M.; Nilsson, R.; Bjorkegren, J.; Tegner J. Towards Scalable and Data Efficient Learning of Markov Boundaries. J. Mach.

Learn. Res. 2007, 45, 211–232.
15. Gao, T.; Ji, Q. Efficient Markov Blanket Discovery and Its Application. IEEE Trans. Cybern. 2017, 47, 1169–1179.
16. Wang, H.; Ling, Z.; Yu, K.; Wu, X. Towards Efficient and Effective Discovery of Markov Blankets for Feature Selection. Inf. Sci.

2020, 509, 227–242.
17. Gao, T.; Ji, Q. Local Causal Discovery of Direct Causes and Effects. In Proceedings of the Advances in Neural Information

Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2512–2520.
18. Ling, Z.; Yu, K.; Wang, H.; Liu, L.; Li, J. Any Part of Bayesian Network Structure Learning. IEEE Trans. Neural Netw. Learn. Syst.

2019, 14, 1–14.
19. Yu, L.; Liu, H. Efficient Feature Selection via Analysis of Relevance and Redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224.
20. Pearl, J.; Shafer, G. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Mateo, CA,

USA, 1988.
21. Verma, T.; Pearl, J. Equivalence and synthesis of causal models. In Proceedings of the 6th Conference on Uncertainty in Artificial

Intelligence, Cambridge, MA, USA, 27–29 July 1990; pp. 220–227.
22. Pearl, J.; Geiger, D.; Verma, T. Conditional independence and its representations. Kybernetika 1989, 25, 33–44.

Entropy 2024, 26, 541 24 of 24

23. Andersson, S.A.; Madigan, D.; Perlman, M.D. A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat.
1997, 25, 505–541.

24. Meek, C. Causal inference and causal explanation with background knowledge. In Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–20 August 1995; pp. 403–410.

25. Fekedulegn, D.; Mac Siúrtáin, M.P.; Colbert, J.J. Parameter estimation of nonlinear models in forestry. Silva Fenn. 1999, 33, 327–336.
26. Gossman, M.; Koops, W. Multiple analysis of growth curves in chickens. Poulty Sci. 1988, 67, 33–42.
27. Xu, M.J.; Zhu, L.B.; Zhou, S.; Ye, C.G.; Mao, M.X.; Sun, K.; Su, L.D.; Pan, X.H.; Zhang, H.X.; Huang, S.G.; et al. A computational

framework for mapping the timing of vegetative phase change. New Phytol. 2016, 211, 750–760.
28. Spirtes, P.; Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 1991, 9, 62–72.
29. Chickering, D.M. Optimal structure identification with greedy search. J. Mach. Learn. Res. 2002, 3, 507–554.
30. West, D. Introduction to Graph Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1996.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Preliminary
	The Causal Graphical Model of Potential Factors and Functional Dynamic Target
	Variable Screening for Causal Discovery
	A Screening-Based and Local Algorithm
	Experiments
	Discussion and Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

