
Citation: Santos, A.S.; Pereira, P.H.;

Abrantes, P.P.; Farina, C.; Maia Neto,

P.A.; de Melo e Souza, R. Time-

Dependent Effective Hamiltonians for

Light–Matter Interactions. Entropy

2024, 26, 527. https://doi.org/

10.3390/e26060527

Academic Editors: Fernando C.

Lombardo and Paula I. Villar

Received: 27 May 2024

Revised: 12 June 2024

Accepted: 14 June 2024

Published: 19 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Time-Dependent Effective Hamiltonians for Light–Matter
Interactions
Aroaldo S. Santos 1,2, Pedro H. Pereira 1, Patrícia P. Abrantes 3 , Carlos Farina 3, Paulo A. Maia Neto 3,*
and Reinaldo de Melo e Souza 1

1 Instituto de Física, Universidade Federal Fluminense, Niterói 24210-346, Rio de Janeiro, Brazil;
arofisica@gmail.com (A.S.S.); pedro_h@id.uff.br (P.H.P.); reinaldos@id.uff.br (R.d.M.e.S.)

2 Instituto Federal do Paraná, Telêmaco Borba 84269-090, Paraná, Brazil
3 Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Rio de Janeiro, Brazil;

ppabrantes91@gmail.com (P.P.A.); farina@if.ufrj.br (C.F.)
* Correspondence: pamn@if.ufrj.br

Abstract: In this paper, we present a systematic approach to building useful time-dependent effective
Hamiltonians in molecular quantum electrodynamics. The method is based on considering part of
the system as an open quantum system and choosing a convenient unitary transformation based on
the evolution operator. We illustrate our formalism by obtaining four Hamiltonians, each suitable to
a different class of applications. We show that we may treat several effects of molecular quantum
electrodynamics with a direct first-order perturbation theory. In addition, our effective Hamiltonians
shed light on interesting physical aspects that are not explicit when employing more standard ap-
proaches. As applications, we discuss three examples: two-photon spontaneous emission, resonance
energy transfer, and dispersion interactions.

Keywords: effective Hamiltonians; time-dependent Hamiltonians; quantum fluctuations; molecular
quantum electrodynamics; light–matter interactions

1. Introduction

In molecular quantum electrodynamics, atoms and molecules are treated within non-
relativistic quantum mechanics, and the electromagnetic field mediating the interactions is
quantized. This approach, born with Dirac’s seminal treatment of spontaneous emission [1],
is still an ongoing and intense research field, especially with the unprecedented control of
light–matter interactions at the atomic scale reached in the last decades.

All phenomena in this topic can be fully understood by starting with the classical
minimal coupling Hamiltonian and quantizing it. For molecular quantum electrodynamics,
the most convenient approach is to work in the Coulomb gauge. Throughout this work,
we shall deal with neutral molecules, in which case we can make a unitary transformation
on the minimal coupling Hamiltonian and work with the equivalent multipolar Hamilto-
nian [2–6]. Nonetheless, the generality of these Hamiltonians is also their main weakness,
since we must perform extensive calculations to obtain the quantities describing most of
the effects. For instance, the interaction between two nonpolar molecules in their ground
state results from a tedious fourth-order perturbative calculation.

Here comes the convenience of working with effective Hamiltonians, which are tai-
lored for each specific application, bringing several physical insights and shortening the
technical calculation to a much simpler and lower perturbative order analysis. An insightful
example is the dynamical polarizability (DP) Hamiltonian, obtained by R. Passante and
collaborators [7,8], which is built directly on the molecular dynamical polarizability instead
of its electric dipole operator, capturing better the physics governing the interaction. Indeed,
nonpolar molecules do not possess permanent electric dipole moments, and their interac-
tion is possible only due to virtual internal transitions that are automatically taken into
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account by the dynamical polarizability. This is the main message of effective Hamiltonians:
building the relevant physical mechanism into the Hamiltonian lowers the perturbative
order required in calculations. With the DP Hamiltonian, intermolecular interactions are
determined by means of a second-order calculation. Effective Hamiltonians and actions
are also useful in describing non-stationary systems and have been employed to develop a
multipolar approach to the dynamical Casimir effect [9] and to understand its microscopic
origin [10–14].

Effective Hamiltonians are easily constructed from unitary transformations [15],
but there is no general recipe to generate useful ones. In this paper, we fill this gap
by presenting a systematic method to obtain convenient effective Hamiltonians and by
discussing their physical implications. To illustrate our approach, we derive four gen-
eral effective Hamiltonians allowing us to extend the scope of applications to important
phenomena in molecular quantum electrodynamics.

Our method is based on choosing a unitary transformation inspired by (but not equal
to) the Hermitian conjugate of the evolution operator for the system. A key concept for our
formalism is that the linear susceptibility χ of a quantum system is built from the unequal
time commutator of an appropriate operator O describing the system. For the context
explored in this paper, we shall take O as being (i) the molecular dipole operator, in which
case χ is related to the molecular polarizability, and (ii) the electric field operator, with χ
representing the electric field generated by a point dipole (Green function), as discussed in
Appendix A.

The importance of the unequal time commutators of the electric field operators in
connection to the measurability of the fields was stressed in the literature [16,17]. Here, we
show that the unequal time commutators can be taken as the basis to generate convenient
effective Hamiltonians by allowing a given degree of freedom to effectively dress another
one. Physically, this is equivalent to considering part of our system (a molecule or the
electromagnetic field) as an open quantum system that is effectively dressed by an appro-
priate unitary evolution operator, thus yielding an effective time-dependent Hamiltonian
for the system.

In Section 2, we employ our formalism to set up the Hamiltonian Heff
M , in which the

molecular degrees of freedom are dressed by the field. This Hamiltonian generalizes the
DP one in two aspects: (i) it naturally accounts for internal dissipation in the molecules,
and (ii) it does not require the molecules to remain in the same internal state (usually the
ground state) during the process to be described. The latter aspect is a key element and
enables us to evaluate the two-photon spontaneous emission (TPSE) in Section 3 within
first-order perturbation theory—a much simpler route than the one commonly followed in
the literature.

From Section 4 on, we work with situations involving more than one molecule. We
employ our method to build the second effective Hamiltonian Heff

F , where one molecule,
say molecule B, dresses the field. With this dressing, the field acting on the other molecules
is given by the superposition of the vacuum electric field with the electric dipole field
generated by B. In Section 5, we demonstrate the convenience of Heff

F by directly computing
the resonance energy transfer (RET) between two quantum emitters in first order.

Then, in Section 6, we analyze dipole–dipole correlation effects and show that different
effective Hamiltonians are convenient depending on the distance separating the molecules.
In the asymptotic long-distance limit, we demonstrate the Hamiltonian Heff

MF, in which the
field dresses the molecules, and, in turn, one of the dressed molecules dresses back the
field. This Hamiltonian is similar to Heff

F , but now the electric field generated by molecule
B does not depend on the molecular dipole operator. Instead, it is produced by the dipole
induced by the vacuum itself. In the particular case where we assume the molecules to
be in the ground state, in the long-distance limit, we recover the Hamiltonian originally
proposed by P.W. Milonni [18].

Finally, for the short-distance limit (the non-retarded regime), we follow a comple-
mentary route: first, one molecule dresses the field, and then the dressed field dresses
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back the molecules. This leads us to a new effective Hamiltonian Heff
FM. We demonstrate

its convenience by applying it in Section 7 to obtain the London interaction energy in
first-order perturbation theory and show that this route provides some relevant physical
insights. Indeed, our approach can quantify the contributions to the interaction energy
coming from the dipole fluctuations of each molecule. The above examples surely do not
exhaust the list of useful effective Hamiltonians, and our method should be valuable for
several additional applications.

2. The Field Dresses the Molecules

We begin with a single neutral molecule at position R in the presence of the quan-
tized electromagnetic field. In the dipole approximation, the Hamiltonian describing the
system is

Htotal = H0 − d · E(R) , (1)

where d is the molecular dipole operator, and E(R) is the quantized electric field evalu-
ated at the molecule’s center-of-mass position R. Note that in the dipole approximation,
the electric field can be taken as uniform over the scale of the molecule. H0 stands for the
free Hamiltonians and is given by

H0 = H0m + ∑
kσ

h̄ωk

(
a†

kσakσ +
1
2

)
. (2)

In this expression akσ(a†
kσ) stands for the annihilation (creation) operator for a photon with

wavector k and polarization σ, whose electromagnetic field oscillates with a frequency
ωk = |k|c. H0m is the free molecular Hamiltonian whose eigenstates and eigenenergies are
assumed to be known. The coupling between the molecule and field, given by the second
term on the right-hand side of Equation (1), can be treated as a perturbation. Therefore, it is
convenient to work in the interaction picture with the interaction Hamiltonian

H(t) = −d(t) · E(R, t) . (3)

The time dependence is obtained by evolving the operators with the free Hamiltonian
H0. A nonpolar molecule is characterized by not having a permanent electric dipole in its
ground state |g⟩, i.e., ⟨g|d|g⟩ = 0. Thus, any process during which the molecule does not
excite, such as the Stark shift, must be obtained at least through second-order perturbation
theory. If |ψ(t)⟩ symbolizes the state of the molecule–field system in the interaction picture,
then its evolution can be written as

ih̄
d
dt
|ψ(t)⟩ = H(t)|ψ(t)⟩ . (4)

An equivalent description is generated once we apply a unitary transformation to the
state. We choose it as

UM(t) = e
i
h̄
∫ t
−∞dt′H(t′) . (5)

Note that transformation (5) implements the Heisenberg picture to first order in H, thus
canceling, at this order, the time evolution of |ψ(t)⟩, which is precisely our goal. If
[H(t), H(t′)] = 0, then the transformation given in Equation (5) would implement the
Heisenberg picture exactly. Therefore, in the representation defined by UM, the time evolu-
tion of |ψ(t)⟩ results from the non-vanishing value of the commutator [H(t), H(t′)], which
is consistent with the discussion on linear susceptibilities outlined in Section 1. As will
become clear below, this transformation effectively dresses the molecular degree of freedom
indicated by the subscript M. Next, we derive the equation satisfied by |ψM(t)⟩ = UM|ψ(t)⟩.
From Equation (4), we find

ih̄
d
dt
|ψM(t)⟩ = HM|ψM(t)⟩ , (6)
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with

HM(t) = UM(t)H(t)UM(t)−1 + ih̄
dUM(t)

dt
U−1

M (t) . (7)

Here enters the fact that we are not looking for an equivalent Hamiltonian but rather an
effective one. We desire an equivalent Hamiltonian only up to quadratic order in the dipole
operator, and thus, we are allowed to expand UM and collect results up to the second order
in H, obtaining

UM(t) ≈ 1 +
i
h̄

∫ t

−∞
dt′H(t′)− 1

2h̄2

[∫ t

−∞
dt′H(t′)

]2
, (8)

d
dt

UM(t) ≈ i
h̄

H(t)− 1
2h̄2

∫ t

−∞
dt′{H(t), H(t′)} . (9)

Note that the expansion in Equation (8) does not correspond to a Dyson series, since the
unitary transformation given in Equation (5) is not an evolution operator (it lacks a time-
ordering operator). These expansions differ in the second-order term, and we stress that
the third term on the right side of Equation (8) is proportional to the square of the second
term, which is crucial for the results we will obtain. We define the effective Hamiltonian
Heff

M (t) as the second-order approximation of HM, which is obtained by substituting the
previous relations into Equation (7):

Heff
M (t) = − i

2h̄

∫ t

−∞
dt′[H(t), H(t′)] , (10)

where we used the identity 2H(t)H(t′) = [H(t), H(t′)] + {H(t), H(t′)}. Notice that the
linear term in the dipole vanished. From Equation (3) and since electric field operators at
the same spatial point commute at all times (see Appendix A), we are left with

Heff
M (t) = − i

2h̄

∫ t

−∞
dt′[dj(t), dl(t′)]Ej(R, t)El(R, t′) , (11)

where we employed Einstein notation and denoted by j, l = 1, 2, 3 the Cartesian components
of the operators. The great convenience of this Hamiltonian is that it is quadratic in the
operators, thus halving the required perturbation order in comparison to the Hamiltonian
given by Equation (3). We point out that our demonstration remains the same whether the
electric field is quantized or not. As an example, with this effective Hamiltonian, the Stark
effect can be obtained from a first-order perturbative calculation. We emphasize that this
Hamiltonian is valid only within first-order perturbation theory, but improvements can be
made if one keeps extra terms in Equations (8) and (9). Heff

M mixes both the materials’ and
fields’ degrees of freedom. When the atom is assumed to remain in the ground state, we
may take the expectation value of Heff

M in the molecular’s subspace defined by the ground
state through the evaluation of ⟨g|Heff

M (t)|g⟩. We stress here that we are not acting on the
field subspace, and thus, this average is still an operator in the field variables, which we
denote by

Heff(gg)
M (t) = −1

2

∫ ∞

−∞
dt′αjl(t− t′)Ej(R, t)El(R, t′) , (12)

with
αjl(t− t′) =

i
h̄

θ(t− t′)
〈

g|[dj(t), dl(t′)]|g
〉

(13)

being the molecular dynamical polarizability tensor for the ground state describing its
linear response to an applied electric field—see Appendix A for details. For practical
applications and some physical interpretations, it is generally more suitable to work with
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the dynamical polarizability in the Fourier representation rather than in the time domain.
To do so, we write the free electromagnetic field in the usual form:

E(R, t′) = ∑
kσ

Ekσ(R, t′) = ∑
kσ

[
E(+)

kσ (R)e−iωkt′ + E(−)
kσ (R)eiωkt′

]
, (14)

where ωk = c|k|, σ is the polarization degree of freedom, and the superscript + (−) refers
to positive (negative) frequencies of the field. Substituting Equation (14) into (12), we
arrive at

Heff(gg)
M (t) = −1

2
dind(t) · E(R, t) , (15)

where
dind

j (t) = ∑
kσ

[
αjl(ωk)El(+)

kσ (R, t) + αjl(−ωk)El(−)
kσ (R, t)

]
(16)

stands for the vacuum-induced dipole operator, and El(±)
kσ (R, t) = El(±)

kσ (R)e∓iωkt is the l-th

Cartesian component of E(±)
kσ (R, t). Notice that dind(t) acts on the field’s Hilbert space. Due

to the reality of α(t− t′), αjl(−ωk) = α∗jl(ωk), and, thus, dind(t) is an Hermitian operator.
If dissipation is negligible, we re-obtain as a particular case the DP Hamiltonian [7]

Heff(DP)
M (t) = −1

2 ∑
kσ

αjl(ωk)El
kσ(R, t)Ej(R, t) . (17)

Physically, this is the quantum counterpart of the interaction energy of a polarizable system
without permanent electric dipole moments in the presence of an external electric field.
In the case without dissipation, the dynamical polarizability in the Fourier space is given
by (see Appendix A)

αjl(ω) = −1
h̄ ∑

r ̸=g
dgr

j drg
l

(
1

ω−ωrg
− 1

ω + ωrg

)
, (18)

where r denotes the excited internal molecular states, and dgr = ⟨g|d|r⟩ = drg∗ is the
transition dipole moment between states g and r, while ωrg is the corresponding transi-
tion frequency.

There are some subtleties concerning the unitary transformation employed in this
section. One could argue that once the integration present in Equation (5) starts from −∞,
our truncation in Equation (9) is not rigorous. The point is that the molecule has a finite
memory, characterized by a time scale τ. This means that αjl(t− t′) vanishes for t− t′ ≫ τ
in Equation (13), enabling the lower limit in (5) to be replaced by t− τ. The validity of this
truncation is then tantamount to the validity of the perturbative method in the molecule–
field interaction, justifying our approach. This argument also underlies the convenience of
working in the Fourier space. Convergence of the time integration in Equation (12) requires
that we account for dissipation in the polarizability. Nevertheless, in many cases of interest,
the most relevant Fourier modes are far from molecular resonances, and we may neglect
dissipation when using Equations (15) and (16).

Another important aspect is that the effective Hamiltonian (11) is convenient only
when first-order perturbation theory in Hamiltonian (3) vanishes, even though regular-
ization techniques may render it applicable if this is not the case [8]. We may separate
the main applications of the effective Hamiltonian Heff

M into two groups: (i) the molecule
remains in the same internal state during the entire process, and the expectation value of
the electric dipole operator in this state is zero; (ii) the molecule undergoes a transition
between two internal states, but the electric dipole operator is unable to connect these two
states. Examples involving (i) have already been discussed in the literature [7,8], in contrast
with case (ii). One fascinating example of this second group is the two-photon spontaneous
emission, with selection rules forbidding the one-photon transition. In the next section,
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we explore this example from the perspective of the effective Hamiltonian derived in
this section.

3. Application to the Two-Photon Spontaneous Emission

An excited molecule may decay to its ground state through the emission of two
photons in the so-called two-photon spontaneous emission (TPSE). This phenomenon is
particularly interesting when the one-photon transition is forbidden. The TPSE makes
the vacuum unstable and is responsible for the initial buildup of the intracavity field in
two-photon micromasers [19–21]. More recently, it was shown that the simultaneously
emitted photons can be indistinguishable and entangled in time and frequency [22–24],
renewing the interest in this phenomenon [25–29]. This section aims to obtain the TPSE
rate directly from first-order perturbation theory in Hamiltonian (11). Let us consider that
a molecule in an internal state |e⟩ decays in vacuum to its ground state |g⟩ through the
emission of two photons with wavevectors k and k′ and polarizations σ and σ′. To this end,
it suffices to analyze the matrix element of Heff

M connecting the initial and the final states,
given by

⟨g; 1kσ1k′σ′ |Heff
M (t)|e; 0⟩ = −1

2

∫ ∞

−∞
dt′Dge

jl (t, t′)⟨1kσ1k′σ′ |Ej(0, t)El(0, t′)|0⟩ , (19)

where we chose the origin of our coordinate system at the position of the molecule. Here,
|0⟩ denotes the vacuum state of the electromagnetic field. We also define

Dge
jl (t, t′) =

i
h̄

θ(t− t′)⟨g|[dj(t), dl(t′)]|e⟩ , (20)

which involves only the molecular degrees of freedom and quantifies the linear response
of the molecule to an applied field connecting internal states |e⟩ and |g⟩. Note that, when
taking |e⟩ = |g⟩ in Equation (20), the tensor

←→
D yields as a particular case the polarizability

of the molecule, which is given by Equation (13). The TPSE rate is immediately obtained in
the long-time limit by substituting Equation (19) into Fermi’s golden rule. In general, it is
more convenient to represent

←→
D in Fourier space. We begin by writing

d(t) = eiH0m(t−t0)de−iH0m(t−t0) (21)

and, at the end, we take t0 → −∞. In this expression, H0m denotes the free molecular
Hamiltonian, with eigenstates satisfying H0m|r⟩ = h̄ωr|r⟩, so that by inserting a closure
relation I = ∑r |r⟩⟨r| into Equation (20), we obtain

Dge
jl (t, t′) = α

ge
jl (t− t′)e−iωegt′ , (22)

with

α
ge
jl (t− t′) =

i
h̄

θ(t− t′)∑
r

[
dgr

j dre
l e−iωrg(t−t′) − dgr

l dre
j eiωre(t−t′)

]
. (23)

The instant t0 plays a role only in an unimportant global phase, which was discarded.
In Fourier space, Equation (23) becomes

α
ge
jl (ω) =

1
h̄ ∑

r

(
dgr

j dre
l

ωrg −ω
+

dgr
l dre

j

ωre + ω

)
. (24)
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The desired matrix element given in Equation (19) can be obtained from Equation (14).
For emission processes, only positive frequency modes contribute. Using Equation (22), we
also obtain

⟨g; 1kσ1k′σ′ |Heff
M (t)|e; 0⟩ =

h̄
√

ωkωk′

4ε0V
ei(ωk+ωk′−ωeg)t×[

ϵ
j
kσϵl

k′σ′α
ge
jl (ωeg −ωk′) + ϵ

j
k′σ′ϵ

l
kσα

ge
jl (ωeg −ωk)

]
, (25)

where ϵ
j
kσ is the jth Cartesian component of the polarization unit vector for the mode with

wavevector k and polarization σ, and V is the volume of the quantization box. In the
long-time limit, we are interested in photon pairs satisfying the condition ωk + ωk′ = ωeg.
With this, we see that αjl(ωeg−ωk′) = αjl(ωk) = αlj(ωeg−ωk), where we used Equation (24)
in the last equality. Therefore, we may simplify Equation (25) to

⟨g; 1kσ1k′σ′ |Heff
M (t)|e; 0⟩ =

h̄
√

ωkωk′

2ε0V
ei(ωk+ωk′−ωeg)tϵ

j
k′σ′ϵ

l
kσα

ge
jl (ωeg −ωk) . (26)

The probability rate of emitting one photon in a solid angle dΩ around k̂ and with a
frequency in the interval (ω, ω + dω) and another in a solid angle dΩ′ around k̂′, as well
as with a frequency in the interval (ω′, ω′ + dω′), is given by (from now on we denote
ω ≡ ωk and ω′ ≡ ωk′ )

dΓTPSE =
V2

(2π)6 dΩdΩ′dωdω′
ω2ω′2

c6

∣∣∣∫ t
0 dt′⟨g; 1kσ1k′σ′ |Heff

M (t′)|e; 0⟩
∣∣∣2

h̄2t
. (27)

Employing Fermi’s golden rule, we arrive at

dΓTPSE

dΩdΩ′dωdω′
=

ω3ω′3

c6(2π)5(2ε0)2

∣∣∣ϵj
k′σ′ϵ

l
kσα

ge
jl (ωeg −ω)

∣∣∣2δ(ωeg −ω−ω′) . (28)

Integration over the solid angles may be readily evaluated from the identity

∑
σ,σ′

∫
dΩdΩ′ϵj

k′σ′ϵ
m∗
kσ ϵn∗

k′σ′ϵ
l
kσ =

(8π)2

9
δmlδjn . (29)

We also integrate over ω′ to find the photon emission rate:

dΓTPSE

dω
=

ω3(ωeg −ω)3

18c6π3ε2
0

α
ge
jl (ωeg −ω)α

∗ge
jl (ωeg −ω) , (30)

which is equivalent to the result of Ref. [2].
When performing second-order perturbation theory, the usual notation is to describe

the molecular response in terms not of αge—which is a function of a single frequency
variable, but rather a function of two frequency variables, which are obtained from
Equation (24) by replacing ωre + ω by ωrg −ω′ in the second term. The calculation from
the new effective Hamiltonian (11) not only yields the two-photon spontaneous emission
rate with a much shorter first-order calculation but also describes the results in terms of a
single frequency variable function that sheds an interesting light on the physical mechanism
involved in the phenomenon. In order to unveil the physical significance of α

ge
jl , let us

project the Hamiltonian Heff
M into the field’s Hilbert space, thus generalizing Equation (12)

for situations where the molecule undergoes an internal transition. This is done by defining
the new effective Hamiltonian from Equation (11):

Heff(ge)
M (t) := ⟨g|Heff

M (t)|e⟩ = −1
2

∫ t

−∞
dt′Dge

jl (t, t′)Ej(0, t)El(0, t′) , (31)
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which involves only electric field operators. Note that Dge
jl (t, t′), given by Equation (20),

is not a real number, and, therefore, Heff(ge)
M is non-Hermitian. This is due to the fact that

the field degrees of freedom alone constitute an open quantum system, extracting energy
from the drive provided by the molecular internal transitions encapsulated in Dge

jl (t, t′).
The non-hermiticity of Hamiltonian (31) also reflects the break of time inversion symmetry
imposed by the two-photon decay.

Following the same steps that led us from Equations (12) to (15), we obtain

Heff(ge)
M (t) = −1

2
dind(ge)(t) · E(R, t) , (32)

where the induced dipole for the transition |e⟩ −→ |g⟩ is given by

dind(ge)
j (t) = ∑

kσ

[
α

ge
jl (ωeg + ωk)El(+)

kσ (R, t) + α
ge
jl (ωeg −ωk)El(−)

kσ (R, t)
]
e−iωegt . (33)

For this reason, we denominate α
ge
jl as the transition polarizability tensor. This is a useful

concept whenever the transition dipole element of a given internal molecular transition
vanishes but can be induced by an external electric field. It generalizes the concept of the
polarizability tensor, which stands for the dipole induced for a fixed internal molecular state.
This induced transition dipole acts as an external source oscillating with frequency ωeg and
driving the field appearing in the effective Hamiltonian (31). Here, ωeg > 0 indicates that
energy-conserving processes must be accompanied by photon creation, as can be verified
in Equation (14). In this case, only the last term in Equation (33) contributes to the process.
The other term is relevant for two-photon absorption, and the calculation presented in the
section applies with minor modifications to this case.

4. The Molecules Dress the Field

In the previous section, we investigated the convenience of employing effective Hamil-
tonians in which the electric field dresses the molecules. Now, we shall analyze the opposite
case and present an effective Hamiltonian that describes a molecule dressing the electric
field operator. Consider two nonpolar molecules A and B. The electric dipole Hamiltonian
describing this system in the interaction picture is

H(2) = HA + HB , (34)

where Hζ = −dζ(t) · E(Rζ , t), and dζ is the electric dipole operator of molecule ζ = A, B,
whose center of mass is at position Rζ . We again represent the system’s state with |ψ(t)⟩,
satisfying Equation (4), but implicitly including a tensor product of both the molecules’
and fields’ states. We follow the same reasoning as in the previous section. In this case,
however, we want the molecule B to dress the electric field operator. Hence, we choose as
the unitary transformation the inverse of the evolution operator for the coupling between
molecule B and the field:

UF = T̃ e
i
h̄
∫ t
−∞dt′HB(t′) , (35)

where T̃ is the anti-time ordering operator (earlier-time operators on the left). Its presence
implies a crucial difference in comparison with Equation (5), and its purpose is to eliminate
HB so that the entire role played by molecule B will be through the field it produces.
If only molecule B were present, the unitary transformation UF would take the interaction
picture into the Heisenberg picture. Nonetheless, in the presence of atom A, this unitary
transformation yields a new effective Hamiltonian, to which we now turn our attention.

Following steps analogous to those in Section 2, the equivalent Hamiltonian is given by

HF = UFH(2)(t)U−1
F + ih̄

∂UF

∂t
U−1

F . (36)
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Due to the anti-time ordering operator, we have ih̄∂tUF = −UFHB, and, thus,

HF = −dA(t) ·UFE(RA, t)U−1
F , (37)

canceling HB as anticipated. Expanding up to the linear term in dB, we obtain (see
Appendix A)

UFE(RA, t)U−1
F ≈ E(RA, t) + Edip,B(RA, t) , (38)

where

Edip,B(RA, t) =
1

4πε0

3[r̂ · dB(tr)]r̂− dB(tr)

r3 +
3
[
r̂ · ḋB(tr)

]
r̂− ḋB(tr)

cr2

+

[
r̂ · d̈B(tr)

]
r̂− d̈B(tr)

c2r

 , (39)

with r = RA − RB and tr = t− r/c being the retarded time. This expression corresponds
to the electric field generated by dipole B at the position of molecule A. This result is
readily extended to any number of molecules by exchanging HB −→ HB + HC + · · · in
Equation (35), thus obtaining

Heff
F = −dA(t) ·

[
E(RA, t) + ∑

ζ=B,C,...
Edip,ζ(RA, t)

]
. (40)

While Equation (37) is exact and constitutes an equivalent Hamiltonian, Equation (40)
is effective and valid only up to linear order in dB, dC, etc. It is worth mentioning that
Equation (40) can be generalized to other situations. For instance, if atom A is in the
presence of a magnetically polarizable atom [30,31], we have to add the electric field
produced by the magnetic dipole of atom B in Equation (38). In the next section, we
demonstrate the convenience of the new effective Hamiltonian Heff

F by obtaining the RET
rate in a first-order calculation.

5. Application to the Resonance Energy Transfer

In a resonance energy transfer (RET) process, an excited molecule decays through
nonradiative channels, transferring its energy to a molecule in the ground state [32–41].
This phenomenon is of notable importance to many areas of science due to its broad
range of applications across fields such as chemistry [42], medicine [43], and biology [44].
Throughout this section, we discuss the probability that an excited molecule A decays,
exciting an identical molecule B that was initially in its ground state, placed at a distance r
from A, with both in vacuum.

Up to the second order in perturbation theory, the probability amplitude of interest
can be calculated as [15]

M f i ≈ ⟨ψ f |Hint|ψi⟩+ lim
η→0+

∑
r

⟨ψ f |Hint|ψr⟩⟨ψr|Hint|ψi⟩
Ei − Er + iη

. (41)

In this expression, |ψi⟩ = |eA, gB, 0kσ⟩ (with energy Ei) and |ψ f ⟩ = |gA, eB, 0kσ⟩ describe,
respectively, the system’s initial and final states, ĤInt is the interaction Hamiltonian, and |ψr⟩
are the intermediate states with energy Er. In the standard approach, the interaction
Hamiltonian is taken as the dipolar Hamiltonian given by Equation (34): Hint = H(2).
With this choice, however, the first term in Equation (41) vanishes, and the RET rate is
obtained from second-order perturbation theory. Here, we offer an alternative and simpler
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approach by letting atom B dress the field and taking Hint = Heff
F , as in Equation (40).

In this case, it suffices to calculate the first-order matrix element

M f i = −⟨gA|dA(t)|eA⟩ · ⟨eB|Edip,B(RA, t)|gB⟩ . (42)

Following Equation (21), the first matrix element on the right-hand side of the previous
equation becomes (more precisely, we should consider the evolution beginning at time t0;
however, as explained in Section 3, this would only contribute as an irrelevant global phase)

⟨gA|dA(t)|eA⟩ = e−iωegtdge
A , (43)

and, by using Equation (39), the terms contained in the second matrix element give the
contributions

⟨eB|dB(tr)|gB⟩ = eiωegte−ikrdeg
B , (44)

⟨eB|∂tdB(tr)|gB⟩ =
∂

∂t
⟨eB|dB(tr)|gB⟩ = iωegeiωegte−ikrdeg

B ,

⟨eB|∂2
t dB(tr)|gB⟩ =

∂2

∂t2 ⟨eB|dB(tr)|gB⟩ = −ω2
egeiωegte−ikrdeg

B , (45)

where k = ωeg/c. Replacing these results in Equation (42), we arrive at

M f i =
dge

i,Adeg
j,Be−ikr

4πϵ0r3

[
(δij − 3r̂i r̂j)(1 + ikr)− (δij − r̂i r̂j)k2r2

]
. (46)

By applying Fermi’s golden rule,

ΓRET =
2π

h̄2 ρ(ω f )
∣∣∣M f i

∣∣∣2 , (47)

where ρ(ω f ) is the density of final states with energy E f = h̄ω f , and we directly recover
the well-known result for the RET rate [45,46].

6. The Dressed Molecules Dress the Field—And the Reverse

The first-order perturbation in the Hamiltonian (40) vanishes whenever the electric
dipole operator of one of the molecules cannot connect the involved molecular states.
An example is the force between molecules in their ground state to be analyzed in the next
section. Here, instead, we focus on a general discussion without specifying the molecular
internal state. The physical mechanism that limits the dipole–dipole correlation depends
strongly on the distance R separating the molecules. Indeed, two characteristic time scales
are key to understanding the two different regimes: the time it takes light to travel between
the molecules, tγ = r/c, and the characteristic time for dipole fluctuations, td = 1/ω0,
where ω0 is a typical transition frequency for the molecules. In the asymptotic long-
distance regime, tγ ≫ td, it is the electrodynamical retardation that limits the dipole–dipole
correlation, and we may neglect dispersion in the atomic response. In the opposite short-
distance regime, electrodynamical retardation is negligible, and it is now the delay in the
molecular response that limits the dipole–dipole correlation. Now, the molecular dispersion
is crucial, but we can take the electrostatic limit for the electric field produced by each
electric dipole. To go deeper into the physical particularities of these two complementary
regimes, we shall develop a different effective Hamiltonian appropriate to each case.

6.1. The Dressed Molecules Dress the Field: Retarded Long-Distance Regime

In the long-distance regime, we may neglect dispersion in the molecules, which is
tantamount to considering an instantaneous molecular response. This means that the time-
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scale variation for the electric field is much slower than the molecular response, enabling
us to approximate

i
h̄

∫ t

−∞
dt′[dj(t), dl(t′)]El(R, t′) ≈ ΠjlEl(R, t) , (48)

when evaluating the effective Hamiltonian Heff
M (t) given by Equation (11). We have defined

the molecular operator Πjl as

Πjl =
i
h̄

∫ ∞

−∞
dt′θ(t− t′)[dj(t), dl(t′)] . (49)

From Equation (13), we see that the expectation value ⟨g|Πjl |g⟩ is the static polarizability
of the molecule in its ground state, given by setting ω = 0 in Equation (18). The tensor
operator Πjl generalizes this concept by enabling us to capture the static response even
for processes involving changes in the molecular internal state. Substituting (48) into (11)
leads to

Heff,s
M (t) = −1

2
ΠjlEj(R, t)El(R, t) , (50)

which corresponds to the static response limit of Heff
M (t).

In the case of two molecules, dipole–dipole correlations arise in second-order pertur-
bation theory in the Hamiltonian

Heff,s
M

(2)(t) = Heff,s
M,A

(2)(t) + Heff,s
M,B

(2)(t) = −1
2

ΠA,jlEj(RA, t)El(RA, t)− 1
2

ΠB,jlEj(RB, t)El(RB, t) , (51)

where Πζ,jl is the operator (49) for molecule ζ = A, B.
An equivalent Hamiltonian where the molecules couple directly with each other will

be able to capture the dipole–dipole correlation in first-order perturbation theory. This can
be done by employing the unitary transformation

UMF = T̃e
i
h̄
∫ t
−∞dt′Heff,s

M,B(t
′) , (52)

which mimics the one employed in Section 4, with the difference that it is the dressed
molecule (through operator Πjl), instead of the naked molecule, that dresses the field.
Following the same steps that led us from Equation (34) for molecule B into Equation (37),
we get

Heff,s
MF (t) = UMFHeff,s

M,A(t)U
−1
MF . (53)

Heff,s
MF is very suitable for handling effects related to the interaction between atoms A and

B because the expansion of UMF in Equation (53) contains terms combining the product
ΠA,jlΠB,mn. Such terms also appear through a fourth-order perturbation theory in Hamilto-

nian (34) but already appear in first order here. To obtain Heff,s
MF , it is enough to implement

the transformation rule for the electric field at RA, since ΠA,jl commutes with ΠB,mn. Sub-
stituting Equation (50) into (52), we obtain the following up to linear order in ΠB (see
Appendix A):

UMFE(RA, t)U−1
MF ≈ E(RA, t) + Eind

dip,B(RA, t) , (54)

where Eind
dip,B(RA, t) is given by Equation (39) with the substitution dB,j(tr) −→ ΠB,jkEk(RB, tr).

This result is mathematically similar to Equation (38) but with a remarkable physical
difference. Here, the field is dressed not by a naked molecule but by a dressed one. This
means that the source of the electric dipole field is not the molecular dipole operator but
rather a vacuum-induced dipole—as indicated by the superscript “ind” in Equation (54).
From Equations (53) and (54), we arrive at

Heff,s
MF (t) = −1

2
ΠA,jk

(
Ek(RA, t)Eind

dip,B,j(RA, t) + Eind
dip,B,k(RA, t)Ej(RA, t)

)
, (55)
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where we have kept only the terms capturing the dipole–dipole correlation and neglected
the higher-order term ΠA,jkEind

dip,B,k(RA, t)Eind
dip,B,j(RA, t). This expression is manifestly sym-

metric upon the exchange A ←→ B, as can be verified by substituting Equation (39)
into (55).

As an application of the effective Hamiltonian (55), we may consider that both
molecules are at their ground states throughout the entire process. In this case, we may take
the expectation value of Heff,s

MF (t) in the ground states of the molecules, which is equivalent
to substituting the operators Πjl with the static polarizability tensor of the corresponding
molecule in Equation (55). In the particular case of isotropic molecules, this reproduces
the asymptotic long-distance limit of the effective Hamiltonian originally employed by
P.W. Milonni, which readily yields the known Casimir–Polder result in first order [18]. For
comparison, when taking the average of Heff,s

M
(2) (see Equation (51)) over the molecular

ground state, the resulting effective Hamiltonian [47] yields the Casimir–Polder energy
only to the second order of perturbation theory.

In the opposite short-distance limit, molecular dispersion is essential, and we cannot
make the approximation given by Equation (48). In this case, it is more convenient to work
with a different effective Hamiltonian, which we shall present in the next subsection.

6.2. The Dressed Field Dresses the Molecules: Non-Retarded Regime

We now turn to the opposite regime, in which the intermolecular distance is so small
that we may neglect the electromagnetic retardation in comparison to the molecular re-
sponse time. Unlike the other examples in this paper, this case does not require quantization
of the electromagnetic field. On the other hand, the molecular dispersion is crucial in this
regime. The dipole–dipole correlation is usually obtained from a second-order perturbation
theory in the dipole–dipole Hamiltonian [48]

Hdd =
dA,jdB,k

(
δjk − 3r̂j r̂k

)
4πε0r3 , (56)

where r = rr̂ is the position of molecule B with respect to molecule A. Notice that this
Hamiltonian is a particular case of Equation (40) without the vacuum electric field operator
and with the dipole electric field taken in the electrostatic approximation. In the non-
retarded regime, the field and the molecular operators switch roles with respect to what
happens in the retarded asymptotic regime. While, in the latter, we could begin with
Hamiltonian (48), which approximates the molecular response with its dressed static
response, Equation (56) is precisely the opposite: now it is the field that is dressed by its
static response. Indeed, the electrostatic dipole field leading to (56) corresponds to the
zero-frequency limit of the Green function of the wave equation, which plays the role of
the field susceptibility, as discussed in Appendix B.

Mirroring the procedure of the previous subsection, we let the already-dressed field
dress the molecules, thus leading to a new effective Hamiltonian. In the long-distance
regime, we employed a unitary transformation extending the formalism of Section 4. Here,
on the other hand, we want to extend the formalism developed in Section 2. As a first
step, we write Hamiltonian (56) in the interaction picture and then take as the unitary
transformation the operator

UFM = exp
(

i
h̄

∫ t

−∞
dt′Hdd(t′)

)
, (57)

which should be compared to Equation (5). Following steps analogous to the ones leading
to Equation (10) yields

Heff
FM(t) = − i

2h̄

∫ t

−∞
dt′[Hdd(t), Hdd(t′)] . (58)



Entropy 2024, 26, 527 13 of 23

Since operators involving different molecules commute, we have

[dA,j(t)dB,k(t), dA,m(t′)dB,n(t′)] =
[dA,j(t), dA,m(t′)]{dB,k(t), dB,n(t′)}

2

+
{dA,j(t), dA,m(t′)}[dB,k(t), dB,n(t′)]

2
. (59)

By substituting Equation (56) and the previous identity into Equation (58), we obtain the
effective Hamiltonian

Heff
FM = −

i
(

δjk − 3r̂j r̂k

)
(δmn − 3r̂m r̂n)

64h̄π2ε2
0r6

∫ t

−∞
dt′
(
[dA,j(t), dA,m(t′)]{dB,k(t), dB,n(t′)}

+ {dA,j(t), dA,m(t′)}[dB,k(t), dB,n(t′)]
)

. (60)

The new effective Hamiltonian (60) has two terms that capture the physics involved
in the dipole–dipole correlation. The product [dA,j(t), dA,m(t′)]{dB,k(t), dB,n(t′)}measures
how the dipole fluctuations of molecule B induces a dipole in molecule A, while the other
term is its reciprocal. This decomposition is possible because, differently from the standard
approach based on second-order perturbation theory with the time-independent dipole–
dipole Hamiltonian (56) where the two molecules are considered as an isolated system,
here, we take the complementary approach of considering each molecule separately as an
open quantum system. This perspective offers two main novelties: (i) Heff

FM brings to light
the dynamical character of the dispersion interaction by making an explicit connection with
dipole fluctuations, and (ii) Heff

FM enables us to assess the contribution from the fluctuations
of each molecule separately. In the next section, we analyze an example that illustrates
these advantages.

7. Application to the London Interaction Energy

In this section, we consider the dispersion interaction between two ground-state non-
polar molecules A and B in vacuum, which interact due to correlations between their
fluctuating electric dipoles. As discussed in the previous section, the physical mechanism
limiting the dipole–dipole correlation strongly depends on comparing the distance separat-
ing the molecules and their internal transition wavelengths. For ground-state molecules,
the resulting intermolecular interaction energy exhibits a different power-law dependence
with distance in each of the two regimes discussed in Section 6.

As originally demonstrated by London [49], the non-retarded interaction energy can be
obtained without quantizing the electromagnetic field and scales with 1/r6. The asymptotic
long-distance limit was first obtained in the seminal paper by Casimir and Polder [50],
where they showed that retardation imposes the necessity of quantizing the electromagnetic
field and demonstrated that the interaction energy scales asymptotically with 1/r7.

Both regimes have still been at the center of intense investigation in recent years.
Casimir–Polder forces have been studied considering excited [51–56] and chiral [57–60]
particles. The influence of neighboring surfaces with ever-increasing complexity [61–73]
and with dynamical [74–76] and thermal effects [77–83] has also been considered.

The force in the non-retarded regime—sometimes referred to as London or van der
Waals force—plays a pivotal role in chemistry [84] and condensed matter physics, where
short-range interactions prevail. In van der Waals heterostructures, two-dimensional mate-
rials are stacked and held together by London dispersion forces, generating materials with
fascinating physical properties that are useful for designing new electronic devices [85–87].
Density functional theory provides a powerful framework capable of obtaining increasingly
precise descriptions of molecular polarizabilities and London dispersion forces [88–90].
Modifications of the force due to an intervening electrolyte medium [91–93], with the atomic
motion in connection with quantum friction [94–105] or with non-local interferometric
phases [106–108], the atomic internal state [109], and coming from boundary conditions im-
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posed by nearby structures [110–114], have disclosed important features of the London–van
der Waals interactions.

In the previous section, we discussed how the Casimir–Polder result for the asymptotic
long-distance limit can be derived from the effective Hamiltonian Heff

MF (55). In this section,
we obtain the London result for the short-distance non-retarded limit from the new effective
Hamiltonian Heff

FM (60), which provides new physical insights into the dipole–dipole corre-
lation present in the non-retarded regime. By taking the average of Hamiltonian (60) in the
ground state of the molecules and employing the result (13) for the molecular polarizability
tensors αA

jl , αB
jl , we obtain

ELondon = −
h̄
(

δjk − 3r̂j r̂k

)
(δmn − 3r̂m r̂n)

64π2ε2
0r6

∫ ∞

−∞
dτ
(

αA
jm(τ)η

B
kn(τ) + ηA

jm(τ)α
B
kn(τ)

)
, (61)

where we defined the symmetrical dipole correlation function

η
ζ
jm(τ) :=

1
h̄
⟨g|
{

dζ
j (t
′ + τ), dζ

m(t′)
}
|g⟩ , (62)

with ζ = A, B. To work in the Fourier space, we can apply Parseval’s theorem, so
Equation (61) becomes

ELondon = −
h̄
(

δjk − 3r̂j r̂k

)
(δmn − 3r̂m r̂n)

128π3ε2
0r6

∫ ∞

−∞
dω
(

αA
jm(ω)ηB

kn(ω) + ηA
jm(ω)αB

kn(ω)
)

, (63)

where we used that ηA,B(ω) are real functions, as they are Fourier transforms of real even
functions. This result is the analog for two molecules of the decomposition obtained for an
atom coupled to the vacuum electric field [115–117]. In the latter, the field susceptibility
captures the field radiation reaction. More recently, an analogous decomposition was also
obtained for atoms interacting with a scalar quantum field [118]. A decomposition similar
to (63) was employed to derive a nonlocal phase for a moving atom interacting with a
planar surface [119] and a Sagnac-like atomic phase induced by a rotating nanosphere [120].

In the isotropic case, the polarizability tensors simplify to α
A(B)
rs (τ) = δrsαA(B)(τ), and

the symmetric correlation functions simplify to η
A(B)
rs (τ) = δrsηA(B)(τ). Then, Equation (63)

leads to
ELondon = − 3h̄

64π3ε2
0r6

∫ ∞

−∞
dω
(

αA(ω)ηB(ω) + ηA(ω)αB(ω)
)

. (64)

In Appendix B, we employ the analytical properties of the correlation functions to demon-
strate that our results are equivalent to the standard way of expressing the London interac-
tion energy for any molecular model of the polarizabilities. Here, we show the convenience
of Equation (64) by considering the simple case of two-level atoms, for which (ζ = A, B) [18]

αζ(ω) =
α

ζ
0ω2

0ζ

ω2
0ζ −ω2

, (65)

ηζ(ω) = πα
ζ
0ω0ζ

[
δ(ω−ω0ζ) + δ(ω + ω0ζ)

]
. (66)

Let us analyze each contribution to the London interaction energy in Equation (64) sepa-
rately. We define

EA→B
London = − 3h̄

64π3ε2
0r6

∫ ∞

−∞
dω ηA(ω)αB(ω) , (67)
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as the contribution arising from the dipole induced at atom B by the dipole fluctuations of
atom A. From Equations (65) and (66), we obtain

EA→B
London = −

3h̄αA
0 αB

0 ω0Aω0B

32π2ε2
0r6

ω0B

ω2
0B −ω2

0A
. (68)

The interaction energy is ELondon = EB→A
London + EA→B

London, with EB→A
London being obtained by

interchanging the roles of A and B in Equation (68).
Let us consider ω0A > ω0B. In that case, from Equation (68), we see that EA→B

London > 0,
indicating that the dipole induced at a slower atom by a faster one generates a repulsive
contribution to the dispersion force. This is due to the fact that the polarizability given by
Equation (65) becomes negative for frequencies higher than the atomic transition frequency.
Indeed, the induced dipole at the slower atom B cannot follow the fast oscillation of the
fluctuating dipole of atom A. The induced dipole at B lags behind the field of atom A and
points opposite to its direction at a given time. As a consequence, the induced dipole at
B repels the fluctuating dipole at A. However, the opposite holds for the complementary
term EB→A

London: the dipole induced in the faster atom A can follow the dipole fluctuations of
atom B in phase, leading to an attractive contribution. Attraction overcomes repulsion by a
factor ω0A/ω0B, since the slower atom couples less effectively to the field than the faster
one. If ω0A = ω0B, each contribution diverges due to a resonant response. This divergence
would be avoided if dissipation were taken into account. Nevertheless, it is remarkable that
the divergence cancels once we sum EB→A

London and EA→B
London, leaving us with the well-behaved

total interaction energy

ELondon = −
3h̄αA

0 αB
0

32π2ε2
0r6

ω0Aω0B
ω0A + ω0B

, (69)

which agrees with the result [2] calculated from second-order perturbation theory based on
the dipole–dipole Hamiltonian (56).

Notice that varying ω0B while keeping the other parameters fixed shows that the
attraction is maximal when ω0B → ∞. The previous decomposition clearly illustrates the
physical mechanism involved. From Equation (68), we see that in this limit, the repulsive
contribution EB→A

London vanishes, indicating that atom A is effectively transparent, decoupling
from the rapid oscillating field produced by B. The attractive term in Equation (68), on the
other hand, takes its maximal absolute value in this limit, since the response of atom B is
so fast that it perfectly mirrors the fluctuations of the other atom. In this sense, we may
conclude that atom B in the limit ω0B → ∞ is the atomic analog of a perfect conductor.

As was true with the other effective Hamiltonians discussed in this paper, we see that
the convenience of employing Heff

FM is twofold: (i) it lowers the perturbation order required
to obtain the London dispersion energy from second to first order, and (ii) it offers physical
insights into the mechanisms involved in the phenomenon. The results in this section can
be readily extended for multilevel atoms. To this end, it suffices to substitute Equations (65)
and (66) with a summation over all internal transition frequencies.

8. Final Remarks and Conclusions

All phenomena in molecular quantum electrodynamics can be obtained from the
multipolar Hamiltonian. In this paper, we restricted our attention to phenomena that
can be treated perturbatively (which includes the vast majority of cases in this field). In
most situations, the dominant effect is obtained from a high-order perturbation theory,
requiring intermediate states to connect the initial and the final states. A clear example is the
interatomic interaction. While in classical electrodynamics, we may always take the field
at each charged particle as the superposition of the field generated by all other particles,
in standard quantum electrodynamics, each particle couples only to the free electromagnetic
field. Consequently, we must go up to the fourth order to obtain the dominant contribution
when considering molecules without permanent electric dipole moments. An alternative
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is to build effective Hamiltonians. They are customized for each specific application and
lose meaning and validity after some point in the perturbative expansion. Not only do
they greatly simplify the technical difficulties involved in calculations using the multipolar
Hamiltonian, but, equally importantly, the effective Hamiltonians cast the phenomena in a
new light, offering insightful physical interpretations.

Several effective Hamiltonians have successfully been employed by many authors in
the last decades. In this paper, we have developed a systematic approach to constructing
effective Hamiltonians, which allowed us to derive a number of new ones, choosing as a
unitary transformation the Hermitian conjugate of the evolution operator for part of the
system. This transfers part of the time evolution from the vector state to the operators,
dressing them and providing a Hamiltonian that requires a lower order in perturbation
theory to account for the process of interest. This method can always be used when the first-
order perturbation theory vanishes. Our approach yields time-dependent Hamiltonians
that enable us to follow the energy exchange between matter and the field, with each
subsystem constituting an open quantum system. We emphasize here that our system of
interest is the entire molecule–field system, and it is not interesting to trace over any of the
subsystems, as is common in an open quantum system approach [121–123].

As a first application, we have derived the Hamiltonian Heff
M , where the field dresses

the molecule and the dipole operators are replaced by their commutator at different times.
If we project the commutator in an internal molecular state, it yields the dynamical po-
larizability of the molecule for the corresponding state. Its nondiagonal elements, on the
other hand, allow the dressing to leave the molecule in a final state that is different from
the initial one. We have demonstrated that this new time-dependent Hamiltonian provides
a simpler treatment of the two-photon spontaneous emission, as the dominant contribution
is obtained in first-order perturbation theory. In addition, our formalism introduces the
concept of an induced dipole transition, which generalizes the notion of an induced dipole
for a given internal state.

Then, we discussed applications involving two molecules A and B. We constructed
the new effective Hamiltonian Heff

F through a unitary transformation that transfers all of
the effects related to molecule B to the electric field it generates. In this way, molecule A
feels an effectively dressed electric field given by the superposition of the free vacuum
electric field, and the one generated by the dipole operator of molecule B. Heff

F allows for
the description of the resonance energy transfer rate in first-order perturbation theory.

Lastly, we derived two additional Hamiltonians that merge aspects of the previous
two, where each one is appropriate for a different intermolecular distance regime. In the
asymptotic long-distance regime, molecular dispersion is negligible, enabling us to derive
an effective Hamiltonian Heff

MF which is formally similar to Heff
M . In this new case, however,

the field acting on molecule A is given by the superposition of the free electric field and the
one produced by the vacuum-induced dipole generated on molecule B. When we average
Heff

MF over the molecular ground state, we re-obtain the asymptotic limit of the Hamiltonian
employed by P. Milonni [18].

Finally, for the short-distance non-retarded limit, we derived our fourth and last
effective Hamiltonian Heff

FM based on the fact that, in this limit, we do not need to quantize
the electric field. This effective Hamiltonian enables us to clearly identify the different
physical mechanisms involved in the correlations responsible for the interaction, separating
one term where the dipole fluctuations of molecular A induce a dipole on molecule B and
another term where the roles are exchanged.

As a final application, we employed Heff
FM to obtain the London dispersion interaction

energy in first-order perturbation theory. We showed that, for two-level atoms, the dipole
fluctuations of the atom with the higher transition frequency give rise to a repulsive term,
since its fast fluctuations cannot be followed by the slower atom. Nonetheless, the force
between two isotropic atoms is always attractive, since the fluctuations of the slower atom
are strongly correlated and easily followed by the faster atom, overcoming the repulsive
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contribution. The possibility of quantitatively and separately analyzing the contributions
arising from each mechanism correlating fluctuating systems is an advantage of Heff

FM.
The Hamiltonians presented in this paper can be employed in a great variety of situa-

tions. For instance, one may treat the effects of boundaries in the two-photon spontaneous
emission or resonance energy transfer by simply introducing the appropriate field modes.
As in the examples discussed in this paper, these effective Hamiltonians allow for a direct
first-order calculation within perturbation theory. More notably, the methodology intro-
duced here can be applied to generate other effective Hamiltonians that may optimize
calculations and provide physical intuition.
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Appendix A. Susceptibilities

Appendix A.1. Molecular Polarizability

Let us find the time evolution of the expected value of the dipole operator in the atomic state
|ϕ(t)⟩, as determined by the electric dipole interaction Hamiltonian H(t) given by Equation (3).
We operate in the interaction picture, so |ϕ(t)⟩ ≈

(
I− i

h̄

∫ t
−∞dt′H(t′)

)
|ϕ(−∞)⟩. This implies

that, up to the second order in the dipole operator,

⟨d(t)⟩t =
〈

d(t)− i
h̄

∫ t

−∞
dt′[d(t), H(t′)]

〉
−∞

, (A1)

where ⟨O⟩t = ⟨ϕ(t)|O|ϕ(t)⟩. All of the electric field contributions to the molecular electric
dipole are contained in the second term on the right-hand side of Equation (A1). Therefore,
we refer to this term as the induced dipole ⟨dind(t)⟩t, whose components can be written as

⟨dind
j (t)⟩t =

i
h̄

∫ t

−∞
dt′
〈
[dj(t), dl(t′)]

〉
−∞El(t′) =:

∫ ∞

−∞
dt′αjl(t− t′)El(t′) , (A2)

where αjl are the elements of the dynamical molecular electric polarizability tensor for
the molecular state |ϕ(−∞)⟩. We assume here that |ϕ(−∞)⟩ is an eigenstate of the free
molecular Hamiltonian H0, a situation where time translation symmetry ensures that the
average value of [d(t), d(t)′] is a function of t, t′ only through the difference t− t′, as in the
last equality.

For many applications, we are interested in the situation where |ϕ(−∞)⟩ is the ground
state, in which case the dynamical polarizability reduces to Equation (13). This expression
is still valid regardless of whether there is dissipation or not [124]. If there is no dissipation,
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the polarizability can be directly expressed in terms of the eigenstates |r⟩ of H0. Inserting a
closure relation I = ∑r |r⟩⟨r| into Equation (13), we obtain the familiar expression

αjl(t− t′) =
2
h̄

θ(t− t′)∑
r

dgr
j drg

l sin[ωrg(t− t′)] . (A3)

In Fourier space, the above expression immediately translates to Equation (18).

Appendix A.2. The Field of a Dipole Is the Field Susceptibility

From the expression of the quantized electric field, it is straightforward to show that
(see Section 2.8 of Ref. [18])

i
h̄

θ(t− t′)[Ej(r, t), El(r
′, t′)] =

1
ε0
DjlGr(|r− r′|, t− t′) , (A4)

where Gr is the retarded Green function of the wave equation, and Djl is the differential
operator

Djl = ∂j∂
′
l −

δjl

c2 ∂t∂
′
t . (A5)

On the other hand, from Maxwell’s equation, the electric field generated by a charge density
ρ and electric current density J is given by(

∇2 − 1
c2

∂2

∂t2

)
E =

∇ρ

ε0
+

1
ε0c2 ∂t J . (A6)

As a source, let us consider a point dipole d existing only at time t′ placed at r′, such
that [125,126]

ρ(r, t) = −d ·∇δ(r− r′)δ(t− t′) , (A7)

J(r, t) = dδ(r− r′)∂tδ(t− t′) . (A8)

From Equation (A6) and after integrating by parts, the electric field generated by this point
dipole is

Edip,j(r, t) = − dl
ε0

(
∂j∂l −

δjl

c2 ∂2
t

)
Gr(|r− r′|, t− t′) =

dl
ε0
DjlGr(|r− r′|, t− t′) , (A9)

where we used ∂l = −∂′l and ∂t = −∂′t because Gr depends only on the differences r − r′

and t− t′. Comparing this result with Equation (A4), one can see that

Edip(r, t) =
i
h̄

∫ t

−∞
dt′dl(t′)[E(r, t), El(r

′, t′)] (A10)

is the electric field at (r, t) generated by the dipole d(t′) at r′, whose explicit expression is
given by Equation (39).

Some comments are in order. (i) While Equation (A2) is approximate, Equation (A10)
is exact, as a consequence of the linearity of Maxwell’s equations. (ii) Edip is an op-
erator containing both a molecule operator d(t) and an identity operator in Fock field
space, as the field commutator is a c-number. This last property is also a consequence
of the linearity of Maxwell’s equations. (iii) This same procedure can be adapted to
other sources. For instance, substituting dn(t′)[E(r, t), En(r′, t′)] into Equation (A10) with
(a) mn(t′)[E(r, t), Bn(r′, t′)] generates the electric field at (r, t) produced by a magnetic
dipole m(t′) at r′, (b) dn(t′)[B(r, t), En(r′, t′)] generates the magnetic field at (r, t) caused
by a electric dipole d(t′) at r = r′, (c) Qln(t′)[E(r, t), ∂′lEn(r′, t′)] generates the electric field
at (r, t) induced by the quadrupole tensor Qln(t′) at position r′, and so on. (iv) We could
have reached these same conclusions from an approach analogous to our approach for
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molecular susceptibility. Indeed, let us assume that the interaction Hamiltonian HInt(t′)
in the interaction picture is linear in the electric and magnetic fields. Now, we are not
restricted to point sources. For example, it can be the field generated by prescribed classical
charge and current fluctuations in a macroscopic body. Analogously to Equation (A1),
we have

E(t) ≈ E0(t)−
i
h̄

∫ t

−∞
dt′[E0(t), HInt(t′)] . (A11)

The second term in Equation (A11) can be recognized as the field produced by the source
present in HInt. For the electric dipole case, HInt(t) = −d(t) · E(r, t), and we immediately
recover Equation (A10). However, notice that while Equation (A10) is exact, Equation (A11)
is an approximation. Indeed, [HInt(t1), [HInt(t2), E0(t)]] ̸= 0, since the dipole operators in
different instants of time do not commute. This reflects that, although Maxwell’s equations
are linear, the dipole induced in matter depends nonlinearly on the field, which, in turn,
produces a nonlinearity in the time evolution of the electric field. Still, if HInt depends
only on material classical and prescribed variables, as in the aforementioned example of a
macroscopic body, then Equation (A11) becomes an exact equation.

Appendix B. London Interaction in the Imaginary Frequency Domain

Here, we demonstrate the equivalence between Equation (64) and the expression that
is usually employed in the literature [2]

ELondon = − 3h̄
32π3ε2

0r6

∫ ∞

−∞
dωαA(iω)αB(iω) . (A12)

From the fluctuation–dissipation theorem at zero temperature, we have

ηζ(ω) = 2 sgn(ω) Im[αζ(ω)] , (A13)

where the sign function is defined as sgn(ω) = ω/|ω|. Substituting Equation (A13)
into (64),

ELondon = − 3h̄
32π3ε2

0r6

∫ ∞

−∞
dω
(

Re[αA(ω)] sgn(ω) Im[αB(ω)] + sgn(ω) Im[αA(ω)]Re[αB(ω)]
)

. (A14)

Recalling that Re[α(ω)] (Im[α(ω)]) is an even (odd) function, since α(τ) is a real number,
we obtain

ELondon = − 3h̄
16π3ε2

0r6
Im
∫ ∞

0
dω αA(ω)αB(ω) . (A15)

Causality implies that the polarizabilities are analytical in the superior half-plane [127],
allowing us to perform a Wick rotation, leading to Equation (A12).

References
1. Dirac, P.A.M. The Quantum Theory of the Emission and Absorption of Radiation. Proc. Royal Soc. Lond. A 1927, 114, 243.
2. Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover Publications: New York, NY, USA, 1984.
3. Compagno, G.; Passante, R.; Persico, F. Atom-Field Interactions and Dressed Atoms; Cambridge University Press: Cambridge,

UK, 1995.
4. Buhmann, S.Y. Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals

Forces; Springer: Cham, Switzerland, 2012.
5. Buhmann, S.Y. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction; Springer: Cham,

Switzerland, 2012.
6. Milonni, P.W. An Introduction to Quantum Optics and Quantum Fluctuations; Oxford University Press: Oxford, UK, 2019.
7. Passante, R.; Power, E.A.; Thirunamachandran, T. Radiation-molecule coupling using dynamic polarizabilities: Application to

many-body forces. Phys. Lett. A 1998, 249, 77. [CrossRef]
8. Passante, R.; Rizzuto, L. Effective Hamiltonians in nonrelativistic quantum electrodynamics. Symmetry 2021, 13, 2375. [CrossRef]
9. Alonso, L.; Matos, G.C.; Impens, F.; Neto, P.A.M.; de Melo e Souza, R. Multipole Approach to the Dynamical Casimir Effect with

Finite-Size Scatterers. Entropy 2024, 26, 251. [CrossRef]

http://doi.org/10.1016/S0375-9601(98)00654-9
http://dx.doi.org/10.3390/sym13122375
http://dx.doi.org/10.3390/e26030251


Entropy 2024, 26, 527 20 of 23

10. de Melo e Souza, R.; Impens, F.; Neto, P.A.M. Microscopic dynamical Casimir effect. Phys. Rev. A 2018, 97, 032514. [CrossRef]
11. Lo, L.; Law, C.K. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A 2018, 98, 063807. [CrossRef]
12. Belén Farías, M.; Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion induced radiation and quantum friction for a moving atom.

Phys. Rev. D 2019, 100, 036013. [CrossRef]
13. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Motion-induced radiation due to an atom in the presence of a graphene plane.

Universe 2021, 7, 158. [CrossRef]
14. Dalvit, D.A.R.; Kort-Kamp, W.J.M. Shaping dynamical Casimir photons. Universe 2021, 7, 189. [CrossRef]
15. Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics; Wiley: New York,

NY, USA, 1997.
16. Cresser, J.D. Electric field commutation relation in the presence of a dipole atom. Phys. Rev. A 1984, 29, 1984. [CrossRef]
17. Cresser, J.D. Unequal Time EM Field Commutators in Quantum Optics. Phys. Scr. 1988, T21, 52. [CrossRef]
18. Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics; Academic Press: New York, NY, USA, 1994.
19. Brune, M.; Raimond, J.M.; Goy, P.; Davidovich, L.; Haroche, S. Realization of a two-photon maser oscillator. Phys. Rev. Lett. 1987,

59, 1899. [CrossRef]
20. Davidovich, L.; Raimond, J.M.; Brune, M.; Haroche, S. Quantum theory of a two-photon micromaser. Phys. Rev. A 1987, 36, 3771.

[CrossRef]
21. Neto, P.A.M.; Davidovich, L.; Raimond, J.-M. Theory of the nondegenerate two-photon micromaser. Phys. Rev. A 1991, 43, 5073.

[CrossRef]
22. Hayat, A.; Ginzburg, P.; Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photonics 2008, 2, 238.

[CrossRef]
23. Wang, H.; Hu, H.; Chung, T.H.; Qin, J.; Yang, X.; Li, J.P.; Liu, R.Z.; Zhong, H.S.; He, Y.M.; Ding, X.; et al. On-demand semiconductor

source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 2019,
122, 113602. [CrossRef]

24. Zhang, J.; Ma, J.; Parry, M.; Cai, M.; Camacho-Morales, R.; Xu, L.; Neshev, D.N.; Sukhorukov, A.A. Spatially entangled photon
pairs from lithium niobate nonlocal metasurfaces. Sci. Adv. 2022, 8, eabq4240. [CrossRef]

25. Poddubny, A.N.; Ginzburg, P.; Belov, P.A.; Zayats, A.V.; Kivshar, Y.S. Tailoring and enhancing spontaneous two-photon emission
using resonant plasmonic nanostructures. Phys. Rev. A 2012, 86, 033826. [CrossRef]

26. Muniz, Y.; Manjavacas, A.; Farina, C.; Dalvit, D.A.R.; Kort-Kamp, W.J.M. Two-photon spontaneous emission in atomically thin
plasmonic nanostructures. Phys. Rev. Lett. 2020, 125, 033601. [CrossRef]

27. Hu, F.; Li, L.; Liu, Y.; Meng, Y.; Gonga, M.; Yang, Y. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero
material. Commun. Phys. 2021, 4, 84. [CrossRef]

28. Muniz, Y.; Abrantes, P.P.; Martín-Moreno, L.; Pinheiro, F.A.; Farina, C.; Kort-Kamp, W.J.M. Entangled two-plasmon generation in
carbon nanotubes and graphene-coated wires. Phys. Rev. B 2022, 105, 165412. [CrossRef]

29. Smeets, S.; Maes, B.; Rosolen, G. General framework for two-photon spontaneous emission near plasmonic nanostructures. Phys.
Rev. A 2023, 107, 063516. [CrossRef]

30. Feinberg, G.; Sucher, J. General Theory of the van der Waals Interaction: A model-independent approach. Phys. Rev. A 1970,
2, 2395. [CrossRef]

31. Farina, C.; Santos, F.C.; Tort, A.C. On the force between an electrically polarizable atom and a magnetically polarizable one. J.
Phys. A 2002, 35, 2477. [CrossRef]

32. Förster, T. Energiewanderung und fluoreszenz. Naturwissenschaften 1946, 33, 166. [CrossRef]
33. Martínez, P.L.H.; Govorov, A.; Demir, H.V. Understanding and Modeling Förster-Type Resonance Energy Transfer (FRET); Springer:

Singapore, 2017; Volume 1.
34. Milonni, P.W.; Rafsanjani, S.M.H. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys.

Rev. A 2015, 92, 062711. [CrossRef]
35. Biehs, S.-A.; Menon, V.M.; Agarwal, G.S. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a

hyperbolic metamaterial. Phys. Rev. B 2016, 93, 245439. [CrossRef]
36. Weeraddana, D.; Premaratne, M.; Gunapala, S.D.; Andrews, D.L. Controlling resonance energy transfer in nanostructure emitters

by positioning near a mirror. J. Chem. Phys. 2017, 147, 074117. [CrossRef]
37. Li, Y.; Nemilentsau, A.; Argyropoulos, C. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero

and other plasmonic waveguide systems. Nanoscale 2019, 11, 14635. [CrossRef]
38. Abrantes, P.P.; Szilard, D.; Rosa, F.S.S.; Farina, C. Resonance energy transfer at percolation transition. Mod. Phys. Lett. A 2020,

35, 2040022. [CrossRef]
39. Abrantes, P.P.; Bastos, G.; Szilard, D.; Farina, C.; Rosa, F.S.S. Tuning resonance energy transfer with magneto-optical properties of

graphene. Phys. Rev. B 2021, 103, 174421. [CrossRef]
40. Pini, F.; Francés-Soriano, L.; Andrigo, V.; Natile, M.M.; Hildebrandt, N. Optimizing upconversion nanoparticles for FRET

biosensing. ACS Nano 2023, 17, 4971. [CrossRef]
41. Nayem, S.H.; Sikder, B.; Uddin, S.Z. Anisotropic energy transfer near multi-layer black phosphorus. 2D Mater. 2023, 10, 045022.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevA.97.032514
http://dx.doi.org/10.1103/PhysRevA.98.063807
http://dx.doi.org/10.1103/PhysRevD.100.036013
http://dx.doi.org/10.3390/universe7050158
http://dx.doi.org/10.3390/universe7060189
http://dx.doi.org/10.1103/PhysRevA.29.1984
http://dx.doi.org/10.1088/0031-8949/1988/T21/010
http://dx.doi.org/10.1103/PhysRevLett.59.1899
http://dx.doi.org/10.1103/PhysRevA.36.3771
http://dx.doi.org/10.1103/PhysRevA.43.5073
http://dx.doi.org/10.1038/nphoton.2008.28
http://dx.doi.org/10.1103/PhysRevLett.122.113602
http://dx.doi.org/10.1126/sciadv.abq4240
http://dx.doi.org/10.1103/PhysRevA.86.033826
http://dx.doi.org/10.1103/PhysRevLett.125.033601
http://dx.doi.org/10.1038/s42005-021-00586-4
http://dx.doi.org/10.1103/PhysRevB.105.165412
http://dx.doi.org/10.1103/PhysRevA.107.063516
http://dx.doi.org/10.1103/PhysRevA.2.2395
http://dx.doi.org/10.1088/0305-4470/35/10/311
http://dx.doi.org/10.1007/BF00585226
http://dx.doi.org/10.1103/PhysRevA.92.062711
http://dx.doi.org/10.1103/PhysRevB.93.245439
http://dx.doi.org/10.1063/1.4998459
http://dx.doi.org/10.1039/C9NR05083C
http://dx.doi.org/10.1142/S0217732320400222
http://dx.doi.org/10.1103/PhysRevB.103.174421
http://dx.doi.org/10.1021/acsnano.2c12523
http://dx.doi.org/10.1088/2053-1583/acf052


Entropy 2024, 26, 527 21 of 23

42. Song, Q.; Yan, X.; Cui, H.; Ma, M. Efficient cascade resonance energy transfer in dynamic nanoassembly for intensive and
long-lasting multicolor chemiluminescence. ACS Nano 2020, 14, 3696. [CrossRef]

43. Rusanen, J.; Kareinen, L.; Levanov, L.; Mero, S.; Pakkanen, S.H.; Kantele, A.; Amanat, F.; Krammer, F.; Hedman, K.; Vapalahti, O.;
et al. A 10-Minute “Mix and Read” Antibody Assay for SARS-CoV-2. Viruses 2021, 13, 143. [CrossRef]

44. Bednarz, A.; Sønderskov, S.M.; Dong, M.; Birkedal, V. Ion-mediated control of structural integrity and reconfigurability of DNA
nanostructures. Nanoscale 2023, 15, 1317. [CrossRef]

45. Andrews, D.L.; Sherborne, B.S. Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys. 1987, 86, 4011.
[CrossRef]

46. Franz, J.C.; Buhmann, S.Y.; Salam, A. Macroscopic quantum electrodynamics theory of resonance energy transfer involving chiral
molecules. Phys. Rev. A 2023, 107, 032809. [CrossRef]

47. Craig, D.P.; Power, E.A. The asymptotic Casimir–Polder potential from second-order perturbation theory and its generalization
for anisotropic polarizabilities. Int. J. Quantum Chem. 1969, 3, 903. [CrossRef]

48. Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; Wiley-VCH: Weinheim, Germany, 2019; Volume II.
49. London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 1930, 63, 245. [CrossRef]
50. Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360. [CrossRef]
51. Power, E.A.; Thirunamachandran, T. Dispersion forces between molecules with one or both molecules excited. Phys. Rev. A 1995,

51, 3660. [CrossRef]
52. Power, E.A.; Thirunamachandran, T. Two- and three-body dispersion forces with one excited molecule. Chem. Phys. 1995, 198, 5.

[CrossRef]
53. Rizzuto, L.; Passante, R.; Persico, F. Dynamical Casimir-Polder energy between an excited- and a ground-state atom. Phys. Rev. A

2004, 70, 012107. [CrossRef]
54. Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. van der Waals interactions between excited atoms in generic environments.

Phys. Rev. A 2016, 94, 012705. [CrossRef]
55. Kien, F.L.; Kornovan, D.F.; Chormaic, S.N.; Busch, T. Repulsive Casimir-Polder potentials of low-lying excited states of a multilevel

alkali-metal atom near an optical nanofiber. Phys. Rev. A 2022, 105, 042817. [CrossRef]
56. Lu, B.-S.; Arifa, K.Z.; Ducloy, M. An excited atom interacting with a Chern insulator: Toward a far-field resonant Casimir–Polder

repulsion. Eur. Phys. J. D 2022, 76, 210. [CrossRef]
57. Jenkins, J.K.; Salam, A.; Thirunamachandran, T. Retarded dispersion interaction energies between chiral molecules. Phys. Rev. A

1994, 50, 4767. [CrossRef]
58. Salam, A. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules. J. Chem.

Phys. 2006, 124, 014302. [CrossRef]
59. Butcher, D.T.; Buhmann, S.Y.; Scheel, S. Casimir-Polder forces between chiral objects. New J. Phys. 2012, 14, 11301. [CrossRef]
60. Barcellona, P.; Safari, H.; Salam, A.; Buhmann, S.Y. Enhanced chiral discriminatory van der Waals interactions mediated by chiral

surfaces. Phys. Rev. Lett. 2017, 118, 193401. [CrossRef]
61. Wylie, J.M.; Sipe, J.E. Quantum electrodynamics near an interface. II. Phys. Rev. A 1985, 32, 2030. [CrossRef]
62. Buhmann, S.Y.; Welsch, D.-G.; Kampf, T. Ground-state van der Waals forces in planar multilayer magnetodielectrics. Phys. Rev. A

2005, 72, 032112. [CrossRef]
63. Dalvit, D.A.R.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Probing quantum-vacuum geometrical effects with cold atoms. Phys.

Rev. Lett. 2008, 100, 040405. [CrossRef]
64. Messina, R.; Dalvit, D.A.R.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Dispersive interactions between atoms and nonplanar

surfaces. Phys. Rev. A 2009, 80, 022119. [CrossRef]
65. Contreras-Reyes, A.M.; Guérout, R.; Neto, P.A.M.; Dalvit, D.A.R.; Lambrecht, A.; Reynaud, S. Casimir-Polder interaction between

an atom and a dielectric grating. Phys. Rev. A 2010, 82, 052517. [CrossRef]
66. Cysne, T.; Kort-Kamp, W.J.M.; Oliver, D.; Pinheiro, F.A.; Rosa, F.S.S.; Farina, C. Tuning the Casimir-Polder interaction via

magneto-optical effects in graphene. Phys. Rev. A 2014, 90, 052511. [CrossRef]
67. Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder interaction for gently curved surfaces. Phys. Rev. D 2014, 90, 081702(R).

[CrossRef]
68. Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces. Phys. Rev.

D 2015, 92, 025028. [CrossRef]
69. Garcion, C.; Fabre, N.; Bricha, H.; Perales, F.; Scheel, S.; Ducloy, M.; Dutier, G. Intermediate-range Casimir-Polder interaction

probed by high-order slow atom diffraction. Phys. Rev. Lett. 2021, 127, 170402. [CrossRef]
70. Abrantes, P.P.; Pessanha, V.; de Melo e Souza, R.; Farina, C. Controlling the atom-sphere interaction with an external electric field.

Phys. Rev. A 2021, 104, 022820. [CrossRef]
71. Marachevsky, V.N.; Sidelnikov, A.A. Casimir-Polder interaction with Chern-Simons boundary layers. Phys. Rev. D 2023,

107, 105019. [CrossRef]
72. Alves, D.T.; Queiroz, L.; Nogueira, E.C.M.; Peres, N.M.R. Curvature-induced repulsive effect on the lateral Casimir-Polder–van

der Waals force. Phys. Rev. A 2023, 107, 062821. [CrossRef]
73. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Casimir physics beyond the proximity force approximation: The derivative expansion.

Physics 2024, 6, 290. [CrossRef]

http://dx.doi.org/10.1021/acsnano.0c00847
http://dx.doi.org/10.3390/v13020143
http://dx.doi.org/10.1039/D2NR05780H
http://dx.doi.org/10.1063/1.451910
http://dx.doi.org/10.1103/PhysRevA.107.032809
http://dx.doi.org/10.1002/qua.560030613
http://dx.doi.org/10.1007/BF01421741
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRevA.51.3660
http://dx.doi.org/10.1016/0301-0104(95)00034-L
http://dx.doi.org/10.1103/PhysRevA.70.012107
http://dx.doi.org/10.1103/PhysRevA.94.012705
http://dx.doi.org/10.1103/PhysRevA.105.042817
http://dx.doi.org/10.1140/epjd/s10053-022-00544-x
http://dx.doi.org/10.1103/PhysRevA.50.4767
http://dx.doi.org/10.1063/1.2140000
http://dx.doi.org/10.1088/1367-2630/14/11/113013
http://dx.doi.org/10.1103/PhysRevLett.118.193401
http://dx.doi.org/10.1103/PhysRevA.32.2030
http://dx.doi.org/10.1103/PhysRevA.72.032112
http://dx.doi.org/10.1103/PhysRevLett.100.040405
http://dx.doi.org/10.1103/PhysRevA.80.022119
http://dx.doi.org/10.1103/PhysRevA.82.052517
http://dx.doi.org/10.1103/PhysRevA.90.052511
http://dx.doi.org/10.1103/PhysRevD.90.081702
http://dx.doi.org/10.1103/PhysRevD.92.025028
http://dx.doi.org/10.1103/PhysRevLett.127.170402
http://dx.doi.org/10.1103/PhysRevA.104.022820
http://dx.doi.org/10.1103/PhysRevD.107.105019
http://dx.doi.org/10.1103/PhysRevA.107.062821
http://dx.doi.org/10.3390/physics6010020


Entropy 2024, 26, 527 22 of 23

74. Messina, R.; Vasile, R.; Passante, R. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall. Phys.
Rev. A 2010, 82, 062501. [CrossRef]

75. Behunin, R.O.; Hu, B.-L. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field. Phys. Rev. A 2011,
84, 012902. [CrossRef]

76. Barcellona, P.; Passante, R.; Rizzuto, L.; Buhmann, S.Y. Dynamical Casimir–Polder interaction between a chiral molecule and a
surface. Phys. Rev. A 2016, 93, 032508. [CrossRef]

77. Goedecke, G.H.; Wood, R.C. Casimir–Polder interaction at finite temperature. Phys. Rev. A 1999, 11, 2577. [CrossRef]
78. Barton, G. Long-range Casimir–Polder-Feinberg-Sucher intermolecular potential at nonzero temperature. Phys. Rev. A 2001,

64, 032102. [CrossRef]
79. Obrecht, J.M.; Wild, R.J.; Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Cornell, E.A. Measurement of the Temperature Dependence of

the Casimir-Polder Force. Phys. Rev. Lett. 2007, 98, 063201. [CrossRef]
80. Haakh, H.; Intravaia, F.; Henkel, C.; Spagnolo, S.; Passante, R.; Power, B.; Sols, F. Temperature dependence of the magnetic

Casimir-Polder interaction. Phys. Rev. A 2009, 80, 062905. [CrossRef]
81. Chaichian, M.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Tureanu, A. Thermal Casimir-Polder interaction of different atoms with

graphene. Phys. Rev. A 2012, 86, 012515. [CrossRef]
82. Laliotis, A.; de Silans, T.P.; Maurin, I.; Ducloy, M.; Bloch1, D. Casimir–Polder interactions in the presence of thermally excited

surface modes. Nat. Commun. 2014, 5, 4364. [CrossRef]
83. Khusnutdinov, N.; Kashapov, R.; Woods, L.M. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials.

2D Mater. 2018, 5, 035032. [CrossRef]
84. Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Waltham, MA, USA, 2011.
85. Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419. [CrossRef]
86. Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater.

2016, 1, 16042. [CrossRef]
87. Castellanos-Gomez, A.; Duan, X.; Fei, Z.; Gutierrez, H.R.; Huang, Y.; Huang, X.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van der

Waals heterostructures. Nat. Rev. Methods Primers 2022, 2, 58. [CrossRef]
88. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-

charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [CrossRef]
89. Caldeweyher, E.; Mewes, J.-M.; Ehlert, S.; Grimme, S. Extension and evaluation of the D4 London-dispersion model for periodic

systems. Phys. Chem. Chem. Phys. 2020, 22, 8499. [CrossRef]
90. Chowdhury, S.T.u.R.; Tang, H.; Perdew, J.P. van der Waals corrected density functionals for cylindrical surfaces: Ammonia and

nitrogen dioxide adsorbed on a single-walled carbon nanotube. Phys. Rev. B 2021, 103, 195410. [CrossRef]
91. Dryden, D.M.; Hopkins, J.C.; Denoyer, L.K.; Poudel, L.; Steinmetz, N.F.; Ching, W.-Y.; Podgornik, R.; Parsegian, A.; French,

R.H. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.
Langmuir 2015, 31, 10145. [CrossRef]

92. Spreng, B.; Neto, P.A.M.; Ingold, G.-L. Plane-wave approach to the exact van der Waals interaction between colloid particles. J.
Chem. Phys. 2020, 153, 024115. [CrossRef]

93. Nunes, R.O.; Spreng, B.; de Melo e Souza, R.; Ingold, G.-L.; Neto, P.A.M.; Rosa, F.S.S. The Casimir Interaction between Spheres
Immersed in Electrolytes. Universe 2021, 7, 156. [CrossRef]

94. Scheel, S.; Buhmann, S.Y. Casimir-Polder forces on moving atoms. Phys. Rev. A 2009, 80, 042902. [CrossRef]
95. Barton, G. On van der Waals friction: I. Between two atoms. New J. Phys. 2010, 12, 113044. [CrossRef]
96. Pieplow, G.; Henkel, C. Fully covariant radiation force on a polarizable particle. New J. Phys. 2013, 15, 023027. [CrossRef]
97. Intravaia, F.; Behunin, R.O.; Dalvit, D.A.R. Quantum friction and fluctuation theorems. Phys. Rev. A 2014, 89, 050101(R). [CrossRef]
98. Intravaia, F.; Behunin, R.O.; Henkel, C.; Busch, K.; Dalvit, D.A.R. Failure of Local Thermal Equilibrium in Quantum Friction. Phys.

Rev. Lett. 2016, 117, 100402. [CrossRef]
99. Donaire, M.; Lambrecht, A. Velocity-dependent dipole forces on an excited atom. Phys. Rev. A 2016, 93, 022701. [CrossRef]
100. Reiche, D.; Intravaia, F.; Hsiang, J.-T.; Busch, K.; Hu, B.L. Nonequilibrium thermodynamics of quantum friction. Phys. Rev. A

2020, 102, 050203(R). [CrossRef]
101. Reiche, D.; Busch, K.; Intravaia, F. Nonadditive Enhancement of Nonequilibrium Atom-Surface Interactions. Phys. Rev. Lett. 2020,

124, 193603. [CrossRef]
102. Farías, M.B.; Lombardo, F.C.; Soba, A.; Villar, P.I.; Decca, R.S. Towards detecting traces of non-contact quantum friction in the

corrections of the accumulated geometric phase. NPJ Quantum Inf. 2020, 6, 25. [CrossRef]
103. Lombardo, F.C.; Decca, R.S.; Viotti, L.; Villar, P.I. Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum. Adv.

Quantum Technol. 2021, 4, 2000155. [CrossRef]
104. Dedkov, G.V.; Kyasov, A.A. Nonlocal friction forces in the particle-plate and plate-plate configurations: Nonretarded approxima-

tion. Surf. Sci. 2020, 700, 121681. [CrossRef]
105. Dedkov, G.V. Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry. Universe 2021, 7, 106.

[CrossRef]
106. Impens, F.; Behunin, R.O.; Ttira, C.C.; Neto, P.A.M. Non-local double-path Casimir phase in atom interferometers. EPL 2013,

101, 60006. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.82.062501
http://dx.doi.org/10.1103/PhysRevA.84.012902
http://dx.doi.org/10.1103/PhysRevA.93.032508
http://dx.doi.org/10.1103/PhysRevA.60.2577
http://dx.doi.org/10.1103/PhysRevA.64.032102
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/PhysRevA.80.062905
http://dx.doi.org/10.1103/PhysRevA.86.012515
http://dx.doi.org/10.1038/ncomms5364
http://dx.doi.org/10.1088/2053-1583/aac612
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1038/natrevmats.2016.42
http://dx.doi.org/10.1038/s43586-022-00139-1
http://dx.doi.org/10.1063/1.5090222
http://dx.doi.org/10.1039/D0CP00502A
http://dx.doi.org/10.1103/PhysRevB.103.195410
http://dx.doi.org/10.1021/acs.langmuir.5b00106
http://dx.doi.org/10.1063/5.0011368
http://dx.doi.org/10.3390/universe7050156
http://dx.doi.org/10.1103/PhysRevA.80.042902
http://dx.doi.org/10.1088/1367-2630/12/11/113044
http://dx.doi.org/10.1088/1367-2630/15/2/023027
http://dx.doi.org/10.1103/PhysRevA.89.050101
http://dx.doi.org/10.1103/PhysRevLett.117.100402
http://dx.doi.org/10.1103/PhysRevA.93.022701
http://dx.doi.org/10.1103/PhysRevA.102.050203
http://dx.doi.org/10.1103/PhysRevLett.124.193603
http://dx.doi.org/10.1038/s41534-020-0252-x
http://dx.doi.org/10.1002/qute.202000155
http://dx.doi.org/10.1016/j.susc.2020.121681
http://dx.doi.org/10.3390/universe7040106
http://dx.doi.org/10.1209/0295-5075/101/60006


Entropy 2024, 26, 527 23 of 23

107. Impens, F.; Ttira, C.C.; Neto, P.A.M. Non-additive dynamical Casimir atomic phases. J. Phys. B At. Mol. Opt. Phys. 2013,
46, 245503. [CrossRef]

108. Impens, F.; de Melo e Souza, R.; Matos, G.C.; Neto, P.A.M. Dynamical Casimir effects with atoms: From the emission of photon
pairs to geometric phases. EPL 2022, 138, 30001. [CrossRef]

109. Salam, A. van der Waals Dispersion Potential between Excited Chiral Molecules via the Coupling of Induced Dipoles. Physics
2023, 5, 247. [CrossRef]

110. Dung, H.T. Interatomic dispersion potential in a cylindrical system: Atoms being off axis. J. Phys. B 2016, 49, 165502. [CrossRef]
111. Zuki, F.M.; Edyvean, R.G.J.; Pourzolfaghar, H.; Kasim, N. Modeling of the Van Der Waals Forces during the Adhesion of

Capsule-Shaped Bacteria to Flat Surfaces. Biomimetics 2021, 6, 5. [CrossRef]
112. Laliotis, A.; Lu, B.-S.; Ducloy, M.; Wilkowski, D. Atom-surface physics: A review. AVS Quantum Sci. 2021, 3, 043501. [CrossRef]
113. Nogueira, E.C.M.; Queiroz, L.; Alves, D.T. Peak, valley, and intermediate regimes in the lateral van der Waals force. Phys. Rev. A

2021, 104, 012816. [CrossRef]
114. Nogueira, E.C.M.; Queiroz, L.; Alves, D.T. Sign inversion in the lateral van der Waals force. Phys. Rev. A 2022, 105, 062816.

[CrossRef]
115. Milonni, P.W.; Ackerhalt, J.R.; Smith, W.A. Interpretation of Radiative Corrections in Spontaneous Emission. Phys. Rev. Lett. 1973,

31, 958. [CrossRef]
116. Dalibard, J.; Dupont-Roc, J.; Cohen-Tannoudji, C. Vacuum fluctuations and radiation reaction: Identification of their respective

contributions. J. Phys. 1982, 43, 1617. [CrossRef]
117. Cohen-Tannoudji, C. Fluctuations in Radiative Processes. Phys. Scr. 1986, 12, 19. [CrossRef]
118. Zhou, W.; Cheng, S.; Yu, H. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations

and radiation reaction. Phys. Rev. A 2021, 103, 012227. [CrossRef]
119. Impens, F.; Ttira, C.C.; Behunin, R.O.; Neto, P.A.M. Dynamical local and nonlocal Casimir atomic phases. Phys. Rev. A 2014,

89, 022516. [CrossRef]
120. Matos, C.G.; de Melo e Souza, R.; Neto, P.A.M.; Impens, F. Quantum Vacuum Sagnac Effect. Phys. Rev. Lett. 2021, 127, 270401.
121. Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002.
122. Calzetta, E.A.; Hu, B.-L.B. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2022.
123. Weiss, U. Quantum Dissipative Systems; World Scientific: Singapore, 2007.
124. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [CrossRef]
125. Dubovik, V.M.; Tugushev, V.V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 1990, 187, 142. [CrossRef]
126. Pitombo, R.S.; Vasconcellos, M.; Farina, C.; de Melo e Souza, R. Source method for the evaluation of multipole fields. Eur. J. Phys.

2021, 42, 025202. [CrossRef]
127. Nussenzveig, H.M. Causality and Dispersion Relations; Academic Press: New York, NY, USA, 1972.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/0953-4075/46/24/245503
http://dx.doi.org/10.1209/0295-5075/ac6975
http://dx.doi.org/10.3390/physics5010019
http://dx.doi.org/10.1088/0953-4075/49/16/165502
http://dx.doi.org/10.3390/biomimetics6010005
http://dx.doi.org/10.1116/5.0063701
http://dx.doi.org/10.1103/PhysRevA.104.012816
http://dx.doi.org/10.1103/PhysRevA.105.062816
http://dx.doi.org/10.1103/PhysRevLett.31.958
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1088/0031-8949/1986/T12/003
http://dx.doi.org/10.1103/PhysRevA.103.012227
http://dx.doi.org/10.1103/PhysRevA.89.022516
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1016/0370-1573(90)90042-Z
http://dx.doi.org/10.1088/1361-6404/abcba5

	Introduction 
	The Field Dresses the Molecules
	Application to the Two-Photon Spontaneous Emission 
	The Molecules Dress the Field
	Application to the Resonance Energy Transfer
	The Dressed Molecules Dress the Field—And the Reverse
	The Dressed Molecules Dress the Field: Retarded Long-Distance Regime
	The Dressed Field Dresses the Molecules: Non-Retarded Regime

	Application to the London Interaction Energy 
	Final Remarks and Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	References

