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Abstract: Studies on the central and bilateral bridges of interior permanent magnet (IPM) motors often
focus on individual mechanical strength or electromagnetic performance, lacking comparative studies
on the electromagnetic performance of motors with different central and bilateral bridges under
the same mechanical strength. This paper designs three rotors with different central and bilateral
bridges and compares the electromagnetic performance of the three motors. First, to ensure the safe
operation of the three rotors at high speeds, the mechanical stress of each rotor has been analyzed
using the finite-element method (FEM). Subsequently, the major electromagnetic performances of
the three motors are analyzed and compared, including the air-gap flux density, back electromotive
force (back-EMF), inductance, salience, torque, power, loss, efficiency, and demagnetization. The
results indicate that the rotor without central bridges has the largest leakage flux and the lowest
torque but exhibits minimal torque ripple. The rotor with narrower bilateral bridges has the highest
torque and maximum torque ripple. The torque performance of the rotor with wider bilateral bridges
lies between the two aforementioned motors, and it possesses the highest efficiency. In the end, by
adjusting the dimensions of the permanent magnets, the torque of all three models increases, but the
motor with narrower bilateral bridges still has the largest torque. These findings provide valuable
references for rotor design.

Keywords: central and bilateral bridges; rotor design; electromagnetic performance

1. Introduction

In recent years, the issue of environmental pollution has prompted a heightened
global concern for environmental protection. As a crucial response to this increasingly
serious problem, the automotive industry has undergone a significant shift from internal
combustion engine vehicles to electric vehicles (EVs) [1–3]. The power source of EVs can
be obtained from renewable energy systems, such as solar or wind power. This feature
holds enormous potential for reducing greenhouse gas emissions and the release of toxic
wastes [4]. Permanent Magnet Synchronous Motors (PMSMs), with advantages such as
small size, high efficiency, and high power density, have become a key component of
EVs [5–8].

PMSMs can be further categorized into surface permanent magnet (SPM) motors and
interior permanent magnet (IPM) motors [9]. SPM motors require the use of a protective
sleeve for the permanent magnets (PMs), leading to a substantial increase in manufacturing
costs [10]. In contrast, IPM motors, with the PMs located inside the rotor, provide better
protection, eliminating the need for additional sheathing for safe operation. Furthermore,
the significant difference between the q-axis and d-axis inductance in IPM motors results
in a substantial increase in reluctance torque, enhancing overall motor performance. The
unique characteristics of IPM motors have made them particularly attractive for integration
into EVs [11]. Meanwhile, Fractional slot concentrated windings have been widely utilized
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mainly due to their increased power density, enhanced efficiency, reduced end-winding
lengths, decreased cogging torque, improved field-weakening capability, and fault tolerance.
Especially when combined with Fractional slot concentrated windings and IPM motors, it
exhibits even better performance [12].

IPM motors are widely used in EVs, such as those manufactured by brands like Toyota,
Honda, and Tesla [13–16], as well as in micro EVs like campus patrol EVs [17,18]. Over
the years, the evolving technological requirements of EVs have led to changes in motor
specifications. One significant aspect is motor speed, which demonstrates a noticeable
trend towards higher rotational speeds. This evolution is exemplified by the transition
from the 6000 revolutions per minute (rpm) motor speed in the 2004 Prius to 13,500 rpm
in 2010, then further to 17,000 rpm in 2017, and finally reaching 20,000 rpm in the Tesla
motor of 2021 [19,20]. The increase in rotational speed introduces a set of novel challenges
that encompass both the mechanical strength and electromagnetic performance aspects
of the motor.

Currently, substantial research is focused on investigating the impact of bridges
on the electromagnetic performance of motors. A detailed study in [21] employs the
finite-element method (FEM) to analyze the impact of parameters such as the central
and bilateral bridge widths and the PM angles on the electromagnetic performance of
motors. However, it overlooks the influence of parameter variations on the mechanical
strength of the rotor, resulting in certain rotors failing to achieve the optimal leakage flux
coefficient. Consequently, this oversight has repercussions on electromagnetic performance.
In [22], the study investigates the impact of different bilateral bridges on average torque and
introduces two innovative bilateral bridges. The findings suggest that the proposed bilateral
bridges reduce torque ripple while maintaining a constant average torque. However, the
mechanical strength of the rotor is not taken into account, leading to a lack of fairness in
the comparison. Ref. [23] investigates the influence of different bilateral bridge shapes on
electromagnetic performance but similarly overlooks the mechanical strength variations in
the rotor caused by changes in the bilateral bridges. Ref. [24] conducts a comprehensive
parametric sensitivity study on the impact of rotor geometrical parameters of IPM motors
on electromagnetic performance.

Rotor mechanical strength has also been extensively researched. The equivalent circle
method is employed to calculate rotor mechanical stress in [25], and the maximum rotor
speed is determined through this approach. Ref. [26] investigates the impact of bridge
widths and PM angles on the maximum rotor mechanical stress using analytical methods. A
precise function has been established to rapidly compute the maximum mechanical stress of
the rotor by determining the concentration factor. Comparative analysis with FEM indicates
minimal errors associated with this function [27]. A novel model is presented in [28], which
integrates the Timoshenko beam theory with an analogous spring network. This unique
model is specifically tailored to assess mechanical stress distribution in rotor systems.
Ref. [29] discusses various analytical methods for calculating rotor mechanical stress.
The above studies primarily focus on individual research on either the electromagnetic
performance or the mechanical strength of motors, lacking simultaneous consideration of
both aspects.

Ref. [30] compares SPM and IPM motors, revealing that IPM motors exhibit high field-
weakening capability and overload capacity, whereas SPM motors demonstrate virtually
no overload capacity. Ref. [13] introduces a novel triple-layer PM rotor with a uniform PM
size, therefore reducing the manufacturing cost of the rotor. In comparison to a single-layer
PM rotor, the proposed rotor exhibits lower losses; however, its cost remains higher than
that of the single-layer PM rotor. Ref. [16] introduces a motor design methodology and
conducts a comparative analysis of rotors with single-layer, double-layer, and three-layer
PMs. The research findings indicate that the single-layer PM rotor provides optimal overall
performance. Ref. [31] explores the cross-magnetization impact of various IPM rotor con-
figurations and introduces a rotor structure designed to mitigate the cross-magnetization
effect. Ref. [21] conducts a design and comparative investigation of IPM motors featuring
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various rotor topologies, such as spoke-type PMs, tangential-type PMs, U-shape PMs, and
V-shape PMs. The findings suggest that the IPM motor with V-shape PMs exhibits superior
performance. The above studies either solely investigate electromagnetic performance or
focus on rotor strength, with scarce literature examining the impact of different combi-
nations of central and bilateral bridge widths on motor performance while maintaining
consistent rotor strength.

The specific arrangement of this article is as follows. First, three rotors with differing
central and bilateral bridge widths will be designed, and a mechanical strength verification
will be conducted to ensure that these three rotors possess equivalent mechanical strength
under maximum rotational speed. Following this, an analysis and comparison of the
no-load performance and load performance of the three motors will be carried out.

2. Motor Specification and Mechanical Stress Analysis
2.1. Motor Specification

Figure 1 illustrates three IPM motors with different rotor designs, denoted as Model
A, Model B, and Model C. Model A distinguishes itself by the absence of central bridges,
whereas both Model B and Model C integrate central and bilateral bridges. However, in
comparison to Model B, Model C features narrower bilateral bridges and wider central
bridges. There are various combinations of central and bilateral bridge widths that can meet
the mechanical strength requirements of the rotor. However, to highlight the differences in
these designs, three models with significantly divergent central and bilateral bridge widths
have been selected. The specific widths of the central and bilateral bridges are determined
by the mechanical stress analysis in Section 2.2, and the exact values are marked in Figure 1.
In terms of other parameters, such as PM dimensions and stator specifications, these three
motors remain consistent. The cost of three motors is roughly the same. To decrease the
axial length of the motors, the stators of all motors have adopted the same concentrated
winding scheme. The main motor parameters are detailed in Table 1. The rated current is
20 A, and the rated speed is 3000 rpm.
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Figure 1. IPM motors with different rotors. (a) Model A. (b) Model B. (c) Model C.

Table 1. Main parameters of motor.

Parameters Value Parameters Value

Slot number 12 pole number 10
Turns per coil 60 Outer stator diameter (mm) 140

Rated speed (rpm) 3000 Axial length (mm) 130
Rated torque (Nm) 20 Air gap (mm) 0.5
Max speed (rpm) 18,000 DC voltage (V) 350

PM remanence (T) 1.28 PM coercivity (kA/m) 1023
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2.2. Mechanical Stress Analysis

To ensure the safe operation of the rotors, finite-element method (FEM) analysis
is conducted on the mechanical stress of three rotors at 1.2 times the maximum speed
(21,600 rpm). Figure 2 illustrates the mechanical stress distribution of the three rotors. To
show the deformation clearly, the deformation has been magnified 200 times. Clearly, Model
A exhibits the maximum deformation. After repeatedly adjusting the central and bilateral
bridge widths, the maximum mechanical stresses for the three models are 387.5 MPa,
373.6 Mpa, and 379.1 Mpa, respectively. The maximum mechanical stresses of the three
models are comparable, meeting the design requirements. The maximum mechanical stress
in Model A occurs on the bilateral bridges, whereas in Model B and Model C, it occurs on
the central bridges.
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The material parameters for the rotor are listed in Table 2. The absence of central
bridges in Model A results in increased bilateral bridge widths. Model B and Model C,
with central bridges, experience reduced rotor deformation, consequently lowering the me-
chanical stress on the rotor. Consequently, this leads to a reduction in the combined central
and bilateral bridge widths. The sum of the central and bilateral bridge widths at each rotor
pole is 6.0 mm, 2.8 mm, and 2.5 mm, respectively. Therefore, among these three models,
Model C exhibits the smallest leakage flux, while Model A has the highest leakage flux.

Table 2. Material parameters of rotor.

Parameters Steel Magnet

Young’s modulus (GPa) 210 200
Density (kg/m3) 7600 8200
Poisson’s ratio 0.27 0.3

Yield strength (MPa) 390 -

3. Comparison of No-Load Performance

The no-load performance mainly includes the air-gap flux density, back electromotive
force (back-EMF), and cogging torque. Figure 3a illustrates the air-gap flux density for
three models. Figure 3b depicts the Fourier decomposition of the air-gap flux density. It can
be seen that the air-gap flux distribution of Model A is closer to the sinusoidal waveform.
Model C, due to its minimal leakage flux, exhibits the highest fundamental amplitude
(fifth). However, its harmonic amplitudes also increase. The fundamental amplitudes of
the air-gap flux for the three models are 0.67 T, 0.91 T, and 0.93 T, respectively. A larger
fundamental amplitude can increase torque density. The total harmonic distortion (THD)
of the air-gap flux for the three models is 9.13%, 15.43%, and 18.94%, respectively. High
THD can lead to significant torque ripple and losses.
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Figure 3. Air-gap flux density (a) Waveforms. (b) Harmonics order.

Figure 4 illustrates the back-EMF and harmonic decomposition of three models at
3000 rpm. The waveform of Model A closely resembles a sine wave, and Model C exhibits
the highest fundamental and harmonic amplitudes. The back-EMF results of the three mod-
els are consistent with the air-gap flux density waveforms. The fundamental amplitudes of
the back-EMF for the three models are 135.6 V, 178.4 V, and 183.7 V, respectively.
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Figure 5 presents the line voltages of these three models. Due to the Y-type connection
of the stator windings, these waveforms do not include the third harmonic and its multiples.
The fundamental amplitudes of the line voltages for the three models are 234.5 V, 309.1 V,
and 316.0 V, respectively.
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The phenomenon of cogging torque, arising from the interaction between the stator
teeth and the rotor PMs, poses a significant challenge in motor design. Its presence
frequently results in undesirable consequences, notably the elevation in torque ripple.
Techniques such as skewed slots or skewed poles are frequently utilized to address stringent
design criteria and alleviate cogging torque.

The cogging torque waveforms of the three models are shown in Figure 6. Due to the
increased air-gap flux density, the cogging torque of Model B and Model C significantly
increases compared to Model A. The peak-to-peak values of the cogging torque for the
three models are 204.2 mNm, 386.2 mNm, and 490.6 mNm, respectively.
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4. Comparison of Load Performance
4.1. Inductance and Salience

Salience is defined as the discrepancy between the d-axis inductance (Ld) and the q-axis
inductance (Lq). A high level of salience is essential for achieving elevated torque output
and extending the constant power region. Ld and Lq are defined separately.

Ld = ψd−ψPM
id

Lq =
ψq
iq

(1)

where ψd and ψq represent the d-axis and q-axis magnetic flux, respectively. ψPM is de-
fined as the magnetic flux generated by PMs. id and iq represent the d-axis and q-axis
currents, respectively.

Figure 7a shows the variation of Ld with current. As the current increases, the motor
gradually tends to saturate, leading to a decrease in Ld for all three models. Model A
demonstrates the highest Ld, which can be attributed to its widest bilateral bridges. Con-
versely, Model C, characterized by the smallest total widths of central and bilateral bridges,
exhibits the minimum Ld. At the rated current of 20 A, the Ld values for the three models
are 4.09 mH, 3.53 mH, and 3.43 mH, respectively.

Figure 7b illustrates the variation of Lq with current. Similarly, as the current increases,
the Lq values decrease for all three models. Model A has the largest Lq, while the Lq values
for Model B and Model C are approximately the same. At the rated current of 20 A, the Lq
values of the three models are 4.49 mH, 4.318 mH, and 4.319 mH, respectively. When the
current is 40 A, the Lq values of the three models tend to be identical.
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Figure 7c shows the variation of salience with current. Due to Model C having the
minimum Ld, it results in Model C having the maximum salience. At the rated current
of 20 A, the salience values of the three models are, respectively, 0.40 mH, 0.788 mH, and
0.889 mH. As the current increases due to the saturation of the motor, the salience of Model
A first becomes less than zero, and then, nearing 40 A, the salience of Model B turns less
than zero. The salience of Model C remains consistently greater than zero. The salience of
less than zero results in the reluctance torque becoming negative, leading to a degradation
in motor performance.

4.2. Torque and Power

Figure 8a depicts the waveform of torque under maximum torque per ampere (MTPA)
control when the current is 20 A. Model C exhibits the highest average torque, attributed
to its maximum air-gap flux density and salience. Due to the highest THD of the air-
gap flux density in Model C, its torque ripple is maximal. Table 3 shows the average
torque, torque component, and torque ripple of three IPM motors when the current is
20 A, where Tavg represents average torque, ∆Tp-p represents peak-to-peak torque, Tripple
represents torque ripple.
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Table 3. Torque components of current = 20 A.

Parameters Model A Model B Model C

6th (Nm) 0.184 0.377 0.488
12th (Nm) 0.0451 0.226 0.641
18th (Nm) 0.012 0.029 0.035
Tave (Nm) 17.7 23.4 24.0

∆Tp-p (Nm) 0.430 1.15 1.99
Tripple (%) 2.43 4.91 8.29
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The waveform of torque at MTPA control when the current is 40 A is shown in
Figure 8b. It shows that the Model C has the highest average torque and the torque ripples.
Table 4 shows the average torque, torque component, and torque ripple of three IPM motors
when the current is 40 A.

Table 4. Torque components of current = 40 A.

Parameters Model A Model B Model C

6th (Nm) 0.993 1.79 2.10
12th (Nm) 0.18 0.82 1.49
18th (Nm) 0.051 0.052 0.061
Tave (Nm) 29.8 41.8 43.4

∆Tp-p (Nm) 2.03 4.49 6.17
Tripple (%) 6.81 10.74 14.21

To present the magnitude relationship between average torque and harmonic torque
more clearly, Figure 9 shows the Decibel graph of torque at different currents. The 0th order
represents the average torque.
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As is well known, the composition of electromagnetic torque for motors can be for-
mulated with Equation (2). The first term represents the PM torque, and the second term
represents the reluctance torque.

T = 3
2 p(ψPMiq + (Ld − Lq)idiq)

= 3
2 p(ψPM Ia cos θ + (Ld − Lq)Ia

2 sin θ cos θ)
(2)

where p is the number of pole pairs. Ia is the stator current. θ is the current angle lagging
the q-axis. Therefore, keeping the stator current constant, increasing ψpm can increase the
PM torque, and increasing salience can enhance the reluctance torque. Because the ψpm and
salience of Model C are the highest, the torque of Model C is always the largest.

The torque-angle characteristics of the three motors are shown in Figure 10. It can be
seen that when the current is 20 A, the current angles for maximum torque of the three
models are 20, 20, and 21 degrees, respectively. When the current is 40 A, the current angles
for maximum torque of the three models are 26, 27, and 28 degrees, respectively. Due to the
maximum salience of Model C, the current angle θ of Model C remains the largest.

Figure 11 illustrates the proportion of PM torque and reluctance torque for three
models under varying currents. At 20 A, the order of PM torque and reluctance torque for
all three models is as follows: Model C > Model B > Model A. Additionally, the reluctance
torque for all models is positive. At 40 A, due to saturation effects, both Model A and
Model B exhibit negative salience, resulting in negative values for their respective reluctance
torque. Since the salience of Model B approaches zero, its reluctance torque tends toward
zero as well. Conversely, at this point, Model C demonstrates positive saliency; hence, its
reluctance torque retains a positive value.
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Figure 12 illustrates the power characteristic curves of three models under the 40 A
current limit, with maximum power values of 6.0 kW, 9.2 kW, and 9.7 kW, respectively.
Model C, due to its lower leakage flux and maximum salience, exhibits the highest power
output across the entire speed range.
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4.3. Loss and Efficiency

Figure 13 illustrates the distribution of iron loss density for three models at the same
output (20 Nm and 3000 rpm). At this moment, the specific parameters of the three motors
are as shown in Table 5: It can be observed that under these conditions, Model A performs
the worst. Although it has smaller stator iron loss, its higher stator current leads to the
lowest efficiency. Model C, despite requiring the smallest stator current, incurs total losses
approximately greater than those of Model B, resulting in Model B achieving the highest
efficiency. The mechanical losses of the three models are determined by empirical formulas
from Ref. [32], all approximately equal to 27.5 W. The reluctance torque of the three models
remains highest in Model C; although the value is smaller, it still contributes to increased
motor output power.
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Table 5. The main calculated parameters of the motor at the same output.

Parameters Model A Model B Model C

Stator current (A) 23.0 17.0 16.5
Stator iron loss (W) 220.0 243.6 250.1
Rotor iron loss (W) 44.6 38.0 37.6

PM loss (W) 6.7 4.0 3.3
Mechanical loss (W) 27.5 27.5 27.5

Copper loss (W) 187.7 137.4 133.1
Efficiency (%) 92.81 93.33 93.29

Reluctance torque (Nm) 0.66 1.25 1.37

4.4. Demagnetization Analysis
4.4.1. Demagnetization Analysis

Demagnetization analysis is an important aspect of motor design. Demagnetization
of the PMs can affect the performance of the motor. The higher the temperature, the more
susceptible the PMs are to demagnetization. Therefore, this article conducts a demagneti-
zation analysis of three motors under extreme conditions (temperature of 180 ◦C, stator
current of 40 A, current angle of 90 deg).

Figure 14 shows the magnetic flux density of the three motors under extreme condi-
tions. The minimum magnetic flux densities for Model A, Model B, and Model C are 0.59 T,
0.52 T, and 0.55 T, respectively, all located near the central bridges. All three models do
not undergo demagnetization. Model A has the maximum magnetic flux density and the
lowest demagnetization risk due to the wide bilateral bridges, allowing a large amount
of demagnetizing magnetic field to pass through the bilateral bridges. This results in a
higher magnetic flux density within the PMs of Model A. Model B has a smaller minimum
magnetic flux density compared to Model C, as the narrow central bridges of Model B
cause some demagnetizing magnetic flux to enter the PMs.
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4.4.2. Analysis of the Impact of PM Dimensions on Demagnetization and Torque

This section will use PMs with the same volume to obtain the maximum torque of
three models by optimizing the length and thickness of the PMs. Due to the smaller size
change, the impact on rotor strength is being neglected. The minimum magnetic flux
density of the PMs changes with the increase of the thickness of the PMs, as shown in
Figure 15a. The motor torque varies with the increase in the thickness of the PMs, as
shown in Figure 15b. As the thickness of the PMs increases, the motor’s ability to resist
demagnetization improves. However, due to the increased thickness of the PMs, the length
of the PMs decreases, resulting in a decrease in motor torque.
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To ensure uniform demagnetization conditions across all three models, torque com-
parisons are made with the minimum magnetic flux density of the PMs set at 0.5 T. At
this point, the thicknesses of the PMs for Model A, Model B, and Model C are 2.6 mm,
2.9 mm, and 2.7 mm, respectively. The torque values for these models stand at 19.7 Nm,
24.0 Nm, and 25.6 Nm, respectively. Remarkably, after optimization, all three models
exhibit increased torque performance, with Model C maintaining the highest torque output
among them.

4.5. Thermal Analysis

Under the same output conditions (20 Nm, 3000 rpm), thermal analysis is conducted
on three motors utilizing natural cooling. As shown in Figure 16, the axial temperature
distributions of the three motors are illustrated. Since this operating condition is the most
commonly encountered for the motors, the temperatures of all three motors meet the
requirements, allowing for long-term stable operation. At this juncture, Model A exhibits
a higher overall temperature due to its higher stator current compared to Model B and
Model C. Model B maintains the lowest temperature among the three models, owing to
its lowest losses. All three motors meet the requirements of maximum rotor temperature
below 150 ◦C and maximum winding temperature below 130 ◦C, providing a significant
safety margin for the motors under extreme operating conditions (short-term overspeed
and overload).
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5. Conclusions

This article designs three rotors with different widths of central and bilateral bridges
and conducts a detailed comparison, reaching the following conclusions:

(1) Due to the absence of a central bridge, Model A requires a very thick bilateral bridge
to ensure rotor operation, resulting in a significant increase in magnetic flux leakage
and causing Model A to not meet torque requirements.

(2) The total bridge width of Model B and Model C is significantly smaller than that
of Model A, resulting in a reduction in inductance for both Model B and Model C.
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However, the decrease in the Ld compared to Lq is more significant for Model B and
Model C, leading to an increased salience for both. Among them, Model C has the
smallest Ld, maximizing its salience, which results in Model C having the highest
reluctance torque.

(3) Model B and Model C, both equipped with a central bridge configuration, meet the
torque design requirements. However, the narrow bilateral bridge design of Model C
results in the maximum air-gap flux density, leading to Model C exhibiting the highest
torque. Nonetheless, due to the higher THD of Model C, torque ripple also increases.

(4) At rated current, the losses of the three models follow the order Model C > Model B >
Model A. However, due to the lower losses of Model B, it has the highest efficiency.

(5) By adjusting the thickness of the PMs to ensure uniform demagnetization condi-
tions across all three models, Model C maintains the highest torque, while Model A
continues to exhibit the lowest torque.

In summary, the configuration of central and bilateral bridges significantly influences
both the electromagnetic performance and mechanical strength of IPM motors. The absence
of a central bridge can result in significant magnetic flux leakage, therefore impacting the
motor’s torque output. Adjustments in the widths of central and bilateral bridges can
notably affect the motor’s inductance, salience, and efficiency, consequently influencing its
overall performance.
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