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Abstract: Since the reliability of the avionics module is crucial for aircraft safety, the fault diagnosis 

and health management of this module are particularly significant. While deep learning-based prog-

nostics and health management (PHM) methods exhibit highly accurate fault diagnosis, they have 

disadvantages such as inefficient data feature extraction and insufficient generalization capability, 

as well as a lack of avionics module fault data. Consequently, this study first employs fault injection 

to simulate various fault types of the avionics module and performs data enhancement to construct 

the P2020 communications processor fault dataset. Subsequently, a multichannel fault diagnosis 

method, the Hybrid Attention Adaptive Multi-scale Temporal Convolution Network (HAAMTCN) 

for the integrated functional circuit module of the avionics module, is proposed, which adaptively 

constructs the optimal size of the convolutional kernel to efficiently extract features of avionics mod-

ule fault signals with large information entropy. Further, the combined use of the Interaction Chan-

nel Attention (ICA) module and the Hierarchical Block Temporal Attention (HBTA) module results 

in the HAAMTCN to pay more attention to the critical information in the channel dimension and 

time step dimension. The experimental results show that the HAAMTCN achieves an accuracy of 

99.64% in the avionics module fault classification task which proves our method achieves better 

performance in comparison with existing methods. 

Keywords: avionics module; fault diagnosis; adaptive convolution; attention mechanism;  

information entropy 

 

1. Introduction 

The avionics system refers to the electronic equipment required to support various 

functions of an aircraft. It is an essential component of the modern aircraft, handling flight 

control, navigation, communications, surveillance, and a wide range of other critical op-

erations [1]. With the rapid development of aviation technology, as the core of the avionics 

system, the avionics module is becoming more complex and integrated, and the demand 

for its improved performance, reliability, and safety is also increasing [2]. 

Fault prediction and health management are vital means of boosting system availa-

bility and maintenance efficiency, and for minimizing lifecycle costs. It is difficult to con-

duct fault diagnosis of avionics systems with more mature health degradation models; 

additionally, the lack of specific health data acquisition sensors prevents the health man-

agement system from obtaining abundant data to enable data-driven monitoring and 

fault diagnosis [3]. Therefore, timely and accurate fault diagnosis of the avionics module, 
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as well as implementing effective measures to repair the detected fault and thus maintain 

the operation of the module, is of great significance to ensure the safe and reliable opera-

tion of aircraft [2]. 

The various operation states and numerous failure modes of avionics modules lead 

to a broad distribution of fault signals with significant uncertainty, which are typical 

large-entropy signals. Considering the traditional methods, the equivalent circuit method 

is difficult to model, the signal-based Fast Fourier Transform (FFT) and Wavelet Trans-

form methods are susceptible to noise interference, and the machine learning-based Sup-

port Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithm have low accuracy 

[4,5]. In conclusion, traditional methods perform inadequately in dealing with large en-

tropy failure signals of the avionics module. 

Because of the dramatic increase in the volume of recorded data in recent years, deep 

learning-based methods, due to their impressive data exploitation capability, have shown 

remarkable advantages and wide applicability with large-entropy signals in the field of 

fault diagnosis. However, in avionics systems, data acquisition faces several challenges, 

such as data scarcity, security constraints, and complex system architectures. Addition-

ally, the avionics module contains a wide variety of electronic components with diverse 

properties, creating additional challenges in the training and deployment of deep learning 

models. 

To address the aforementioned limitations, we first simulate several fault states of 

the functional circuit module of the P2020 communications processor by using the fault 

injection technique; subsequently, we propose a multichannel fault diagnosis method, 

HAAMTCN, for the large-entropy fault signals of the avionics module, which utilizes 

Adaptive Multi-scale Temporal Convolution (AMTC) module adaptively and selects the 

convolution kernel size based on frequency domain information to fully extract temporal 

features. Meanwhile, it combines the Interaction Channel Attention (ICA) module and the 

Hierarchical Block Temporal Attention (HBAM) module as a hybrid attention mechanism 

to focus the whole model on more valuable information. The ICA module groups the 

channel dimensions into multiple sub-features and realizes the modulation between dif-

ferent channels through channel interactions. The HBTA module considers both time-step 

localized associations as well as long-time dependencies. This study makes the following 

contributions: 

1. The Adaptive Multi-scale Temporal Convolution (AMTC) module is proposed, 

which utilizes the FFT to search for the frequency of the channel with the largest 

contribution, and adaptively constructs the optimal multi-scale receptive field at an 

extremely rapid speed, to realize the comprehensive extraction of the features of the 

time series data. Additionally, residual concatenation is adopted to improve the ac-

curacy and stability of the network to enable stronger feature extraction capability 

for time series data. 

2. The Interaction Channel Attention (ICA) module is presented, which reshapes some 

channels into batch dimensions and groups the channel dimensions into multiple 

sub-features to better preserve the information of each channel and reduce the com-

putational overhead. Meanwhile, the regulation between different channels is real-

ized through channel interaction, enabling the model to dynamically learn and adjust 

the weight of different channels. 

3. The Hierarchical Block Temporal Attention (HBTA) module is proposed, which ap-

plies the multi-head attention mechanism to the raw feature maps in blocks to effec-

tively extract the local information while reducing the computational complexity and 

simultaneously performing the downsampling operation on the raw feature maps to 

expand the scope of multi-head attention to obtain sufficient global information. Fi-

nally, by combining the information at different hierarchical blocks, the relationship 

between time steps of sequential data can be effectively captured, which enhances 

the expressive power of the model. 
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4. Several fault states of the functional circuit module of the integrated modular avion-

ics (IMA) system are simulated by using the fault injection technique, and each ab-

normal state can be equated to the actual situation of a certain function degradation 

of the electronic module; this leads to the sampling and production of the dataset of 

avionics module faults. This dataset can provide a database for subsequent avionics 

module failure analysis. 

2. Related Work 

Presently, avionics module fault diagnosis methods are mainly categorized into 

model-based methods, signal-based methods, and data-driven methods. 

2.1. Model-Based and Signal-Based Approaches 

Model-based fault diagnosis methods are based on mathematical and physical mod-

els that realize the effective identification and assessment of system faults by accurately 

describing the characteristics of the diagnosed objects and verifying them against actual 

data. A previous study [6] detected chip faults based on a cellular automata array through 

compressed test vector coding combined with byte error correction coding techniques. In 

another study [7], a dynamic analysis method was proposed for state-correlated IMA fault 

recovery that examined the system state through the analysis of its dynamic behavior. A 

fault time propagation diagram [8] that provided a diagnostic basis for system faults was 

established through system analysis for IMA systems. Furthermore, other studies [9] have 

utilized fault propagation diagrams for the effective fault diagnosis of complex electronic 

systems with multichannel diagnostic information. While model-based fault diagnosis 

methods provide us with an effective means to analyze and address system faults, there 

are some obvious drawbacks and limitations when they are applied to avionics modules. 

First, avionics systems are structurally complex; therefore, modeling them is significantly 

challenging. Furthermore, many model-based methods are post hoc diagnostic, i.e., they 

can only analyze and diagnose faults after they have occurred. 

Therefore, signal processing techniques are being increasingly used to meet the needs 

of fault diagnosis more efficiently and directly. Additionally, these approaches are more 

intuitive and flexible as compared to model-based methods; they also require less com-

plex modeling processes, thus improving the efficiency and accuracy of fault diagnosis. 

Some researchers [10] reviewed the commonly utilized signal processing algorithms in 

electronic equipment fault diagnosis, including Time Synchronous Averaging, FFT, and 

Envelope Spectrum Analysis, and discussed the applicable scenarios of each method in 

depth. Additionally, a previous study [11] proposed a multiparameter evaluation method 

based on confidence value and Mahalanobis distance for the health assessment of complex 

programming logic device (CPLD) functional modules in an avionics system. While they 

have a wide range of applications in the field of fault diagnosis, these methods suffer from 

several problems and challenges. For example, in the face of noise-laden fault signals, the 

recognition ability of some signal processing methods may be insufficient. The processing 

of multichannel data is also a challenge for signal processing methods. In avionics sys-

tems, multiple sensors may simultaneously generate a large volume of data; therefore, 

determining how to extract key feature information from such data by signal processing 

methods needs to be investigated by future researchers. 

2.2. Data-Driven Approach 

Data-driven methods include traditional machine learning methods and deep learn-

ing methods. 

The core idea of traditional machine learning methods is using abundant monitoring 

data to construct data-driven models, further extracting key fault features from massive 

data to realize the intelligent diagnosis of a system’s status. A previous study [12] used 
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the SVM technique to achieve the effective diagnosis of single and multiple faults in in-

duction motors by measuring stator current and vibration signals. Another study [13] em-

ployed fault injection to simulate faults in the avionics system; the authors utilized the 

Back Propagation (BP) neural network for deep data mining, ultimately constructing an 

effective fault diagnosis algorithm. This approach reduces the dependence on expert 

knowledge and allows the diagnostic process to be more automatic and intelligent. How-

ever, machine learning methods, with their relatively simple model structures, are re-

stricted in their fitting ability when processing high-dimensional data and complex circuit 

function correlation functions. Moreover, researchers tend to apply different machine 

learning models to different scenarios. 

With the rapid upgrading of hardware equipment and progress of data processing 

technology, deep learning technology is gradually dominating the field of fault diagnosis 

and becoming a hot spot and mainstream direction for research. In one study [14], the soft 

failure signals of the avionics module was modeled employing fault injection; this signif-

icantly enhanced the accuracy of avionics system fault diagnosis based on Residual Neu-

ral Network (Res Net). A previous study [15] proposed an innovative method to stack 

transform the original signal to eliminate the effect of manual feature extraction; mean-

while, the researchers constructed a two-dimensional convolutional neural network 

model based on LeNet-5, that achieved a remarkable performance enhancement in fault 

diagnosis as compared to that by the traditional methods. Another study [16] proposed a 

method based on a time series encoder that consisted of a convolutional neural network 

and innovatively incorporated a convolutional attention mechanism before the output; 

this method was capable of accurately extracting fault-related information from longer 

variable length data. Another study [17] proposed a Multivariate Long Short-Term 

Memory Fully Convolutional Network (MLSTM-FCN) model for multichannel inputs by 

combining a full convolution module and a Long Short-Term Memory (LSTM) module as 

a feature extractor, further introducing a Squeeze-and-Excitation Block (SE) Channel at-

tention mechanism module; this model exhibited excellent performance when dealing 

with multivariate time series tasks. In another study [4], researchers designed a multi-

branch residual module comprising dilated convolution; this module was capable of ef-

fectively extracting multi-scale features in avionics equipment signals, thus providing 

richer and more accurate feature information for fault diagnosis. In the meantime, an in-

novative multiresolution hypergraph neural network algorithm [18] that reveals higher-

order complex associations among samples and digs deeper into the underlying struc-

tures in the data by constructing and integrating hypergraph structures at multiple reso-

lutions was proposed. In one study [19], the vibration signals generated by faults were 

converted into time-frequency images using Wavelet Transform methods; subsequently, 

a convolutional neural network-based fault diagnosis method was designed using these 

feature images. In some previous studies [20-22], a method for constructing a deep neural 

network was proposed, in which the network design was interpretable, and the network 

convolution parameters and fault characteristics corresponding to the fault were obtained 

through learning to exhibit excellent performance. However, regarding the electronic sys-

tems domain, research on deep learning applications is lagging behind to some extent as 

compared to that for the mechanical equipment domain due to factors such as the chal-

lenging nature of data acquisition and variability of electronic components. Nonetheless, 

with the continuous improvement in technology and further research, the potential of 

deep learning in the application of electronic system fault diagnosis remains enormous. 

3. Methodology 

3.1. HAAMTCN Structure 

For avionics module fault signals, which are high-information entropy signals, it is 

necessary to pay attention to the correlation of the information between the channels, and 

at the same time, the speed of the degradation process varies for different fault types as 
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well as for different channel signals. Therefore, multiple convolution kernels of different 

sizes are used to extract feature information from multiple scales. In the meanwhile, cur-

rent state-of-the-art methods often require extensive tuning of hyperparameters to en-

hance the quality of the extracted features for better extraction of data features. This often 

requires a significant amount of time. So, for the avionics module diagnostic task, we pro-

pose the HAAMTCN structure. 

The network architecture proposed in this study is illustrated in Figure 1, where the 

time series dataset of different fault types obtained by injecting anomalies is used as inputs 

that pass through three Adaptive Multi-scale Temporal Convolution (AMTC) modules 

and use the residual network structure. Problems encountered during the training of deep 

neural networks such as gradient vanishing and training difficulties are solved by residual 

connection that also improves the expressive and generalization abilities of the network, 

in which the residual connection branch passes through a 1 × 1 one-dimensional convolu-

tional layer and Batch Normalization layer. 

 

Figure 1. HAAMTCN structure. 

The obtained feature maps are input to the Hybrid Attention module (Figure 2) that 

comprises Interaction Channel Attention (ICA) module and Hierarchical Block Temporal 

Attention (HBTA) module. Combining these modules to process the input data and splic-

ing the processed results together to extract important feature information from the input 

data leads to enhancing the model’s attention to the input data and feature representation. 

The result is passed through the Global Average Pooling and Dropout layer. The Global 

Average Pooling averages the features on the whole feature map to capture the global 

information of the whole feature map, thus enabling the model to better learn the most 

important features. It also reduces the number of parameters and mitigates model com-

plexity, thus reducing the risk of overfitting. Finally, the different types of failure modes 

are categorized through SoftMax. 
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Figure 2. Hybrid Attention module. 

On the one hand, the model adaptively selects the convolutional kernel size and ex-

tracts sufficient feature information through a three-layer AMTC module with residual 

connection. Due to its strong feature extraction capability advantage, it is extremely suited 

for processing large information entropy signals such as avionics fault signals. On the 

other hand, Interaction Channel Attention and Hierarchical Block Temporal Attention are 

applied through the Hybrid Attention module to train the model to focus on the critical 

information of the feature map; eventually, the Global Average Pooling and Dropout lay-

ers reduce the parameter acceleration algorithm and minimize the risk of overfitting, 

which has a remarkable effect on equipping the model to distinguish different types of 

faults in the avionics module. 

3.2. Adaptive Multi-Scale Temporal Convolution Module 

The Adaptive Multi-scale Temporal Convolution (AMTC) module proposed in this 

study exploits the advantages of strong convolutional feature extraction capability, as well 

as adaptive selection of convolution kernel size when dealing with the large information 

entropy data. In this study, the spectrum for each channel of the fault signal is first ob-

tained according to the FFT, and the approximate optimal receptive field is determined 

based on the frequency corresponding to the maximum amplitude of each channel. A one-

dimensional convolutional layer with a kernel size of 3 × 1 is introduced in the initial stage 

to match the optimal receptive fields corresponding to the largest number of channels and 

refine finer features. Subsequently, these features are fed into a multichannel one-dimen-

sional convolution process, where the convolution kernels are of sizes 1 × 1, 9 × 1, 13 × 1, 

and 27 × 1—each of which corresponds to an optimal receptive field. These convolution 

results are spliced with the input features processed by maximum pooling to form a com-

pletely new feature map. Thereafter, this feature map is again subjected to multichannel 

parallel one-dimensional convolutional processing for secondary feature extraction, this 

time with convolutional kernel sizes of 1 × 1, 3 × 1, 5 × 1, and 7 × 1. Smaller convolutional 

kernel sizes are chosen for better identification of local patterns and features. Each splicing 

operation is immediately followed by a Batch Normalization layer and Rectified Linear 

Unit layer, the combination of which not only accelerates the training process but also 

makes the whole training more robust. 

Through this design, the AMTC module can not only adaptively select the appropri-

ate convolutional kernel size to approximate the optimal receptive field, which signifi-

cantly reduces the computational overhead regarding selecting suitable convolutional 

kernels, but at the same time, the utilization of the multichannel parallel convolutional 

strategy also dramatically improves the training efficiency of the model. The AMTC mod-

ule is illustrated in Figure 3. 
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Figure 3. AMTC module. 

For the convolution before the first splicing, a different convolutional kernel size is 

selected for each branch to obtain more sensory fields, and the output of the multi-scale 

convolution is spliced in the channel dimension. The output obtained by splicing can be 

expressed as follows: 

( )1 2, ,..., ,n

concat out out out poolingx Concat x x x x=
 

 

where i

outx  represents the output of the branch I, that can be expressed as 

1 0 ( )i i

out ix f f x=
  

where 0f  denotes the 3 × 1 convolution, 1

if  denotes the convolutional layer correspond-

ing to branch i; 

poolingx  represents the pooling channel and can be expressed as follows: 

( )( )2pooling ix f Maxpooling x=
 

 

where 2f  is the 1 × 1 convolution operation. 

Based on the FFT, the amplitude of each channel of the fault signal at different fre-

quencies can be obtained. The amplitude represents the intensity of each frequency com-

ponent in the signal spectrum, and the frequency component with a larger amplitude cor-

responds to the signal with larger energy concentrated at that frequency. The period with 

the largest contribution from each channel is calculated based on the frequency with the 

largest amplitude; thus, the appropriate convolutional kernel size is adaptively selected 

to roughly obtain the optimal receptive field that greatly reduces the computational over-

head required to sample various sizes of convolutional kernels. The frequency domain 

characteristics of the individual channels of fault class 1 are shown in Figure 4. 
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Figure 4. Frequency domain characteristics of each channel in fault class 1. 

For periodic time series data, the optimal receptive field should be able to cover a full 

cycle so that the network can capture the key features in the periodic pattern. If the recep-

tive field is too small to cover the complete cycle, it will result in the network failing to 

learn periodic features effectively. In contrast, if the sensory field is too large, it will con-

tain information from multiple cycles, leading to imprecisely learned features. Therefore, 

we chose a period of 1–2 times of the period corresponding to the maximum frequency of 

the contribution as the approximate optimal receptive field. 

The optimal receptive field is formulated as follows: 

( )
1

1

1

1
k

k k k i

i

l l f s
−

−

=

 
= + −  

 


 
 

kl  denotes the receptive field of layer k, 1kl −  denotes the receptive field of the layer k − 1, 

kf  denotes the size of the convolution kernel of layer k, and is  denotes the step size of 

layer i. 

3.3. Interaction Channel Attention Module 

In this section, we present the ICA (Interaction Channel Attention) module for time 

series data. This module incorporates both 1 × 1 and 3 × 1 branches to fulfill inter-channel 

information interaction and cross-channel feature extraction. This design not only facili-

tates the capture of deep correlations between channels but also effectively extends the 

receptive field of the network, thus offering enhanced characterization capabilities when 

processing complex time series patterns. For a multichannel time series, 
( )

1 2( , ,..., ) c n

nX x x x =  , where ix  denotes the vector of time step i, c denotes the number 

of channels, and n denotes the number of time steps, that is, the length of the sequence. 

The input is first divided into g groups through the group layer, reshaped into batch di-

mensions, and finally grouped into multiple sub-features of the channel dimensions. 

Through the Global Average Pooling process and in conjunction with the Group Normal-

ization layer, the attentional weight within each channel group is computed and applied 

to the channel features within the group to achieve the weighting of different channels 

within the group. Finally, the weighted in-group features are recombined into the final 

output; this ensures that the model retains key information while effectively reducing 

computational overhead, thus demonstrating superior performance and efficiency when 

dealing with large-scale time series data. 
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Overall, this channel attention mechanism realizes the proposed network’s adaptive 

selection and weighting of channel information by dynamically adjusting the importance 

weight of each channel, thus promoting the model’s characterization ability and perfor-

mance. Through channel interactions, the network can exploit inter-channel correlations 

more effectively and selectively strengthen or weaken the influence of specific channels 

according to the task requirements, thus improving the behavior and generalization of the 

model. The structure of the ICA mechanism is illustrated in Figure 5. 

 

Figure 5. ICA module. Here, b denotes the batch size, c denotes the number of channels, seq_len 

denotes the sequence length, and g denotes the number of groups. During the dimensional trans-

formation, * denotes multiplication and // denotes division. 

3.4. Hierarchical Block Temporal Attention Module 

Self-attention is a mechanism for a sequence module that dynamically assigns differ-

ent attentional weights to elements at different locations when processing sequence data, 

thus allowing the sequence module to better capture the relationships between different 

parts of the sequence. However, its computational complexity is high, and it has limita-

tions for capturing long-distance dependencies between different positions in a sequence, 

and it lacks positional information itself. 

To solve the above problem, Our Hierarchical Block Temporal Attention (HBTA) 

module acts on time series data by assigning different levels of attention to information at 

different time steps. The HBTA module divides the raw multichannel time series feature 

maps into multiple non-overlapping sub-feature maps along the time-step dimension us-

ing a suitably sized window, and the surrounding deficiencies are filled using 0 values. A 

multi-head attention mechanism is applied to each sub-feature map, and then the results 

are stitched together by the location of the blocks, avoiding interference from too distant 

time points while reducing the computational effort. At the same time, the original feature 

maps are downsampled multiple times using a large step-length one-dimensional convo-

lution to shorten the length of the time series and keep the number of channels constant. 

The same number of blocks as in the previous layer are adopted, and then the relationship 

between time steps is extracted by using the multi-head attention mechanism for the sub-

feature maps after the blocking. Finally, upsampling from bottom to top using transposed 

convolution expands its size to be the same as the result of the previous layer’s self-atten-

tion computation, with the number of channels unchanged, and then sums up with the 
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result of the previous layer’s self-attention on an element-by-element basis up to the up-

permost layer.  

In this way, a larger range of time point information can be obtained, which is ulti-

mately equivalent to the self-attentive computation of all time point information within 

the entire time series feature map, while the computational effort is greatly reduced. Using 

the multi-attention mechanism through the way of blocking in different positions can in-

clude the features in the time point more comprehensively, obtain the multi-angle time-

step self-attention information, and improve the accuracy and comprehensiveness of the 

time-step self-attention. The structure of the HBTA module proposed in this paper is 

shown in Figure 6. 

 

Figure 6. HBTA module. Lines of different colors denote time series of different channels. 

For the input feature map X, multiply each of the three feature matrices QW , KW , 
VW : 

Q

K

V

Q XW

K XW

V XW

=

=

=
 

 

Using Q, K, and V, the final output result matrix of the Attention layer is calculated: 

( ), , max
T

k

QK
Attention Q K V soft V

d

 
=  

 
   

 

/ /k hidd d n=
  

where hidd  is the size of the hidden layer of the multi-head attention mechanism and n  

is the number of multi-head attention mechanism heads. 

The original feature map is downsampled using one-dimensional convolution, and 

the relationship between the input time step inL  and the output time step outL  is 

( )2
1

in

out

L Padding KernelSize
L

Stride

+  −
= +

 
 

The upsampling operation is performed on the generated feature map using trans-

posed convolution, and the relationship between the input time step '

inL  and the output 

time step '

outL  is 
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( )' ' 1 2out inL L Stride Padding KernelSize= −  −  +
 

 

where Padding denotes the padding length, KernelSize denotes the one-dimensional con-

volutional kernel size, and Stride denotes the convolutional kernel move step. 

The HBTA module effectively captures the relationship between the time steps of 

sequence data. Capturing local temporal correlations independent of the long-range de-

pendencies of the entire sequence by applying multi-head attention at the sub-block level 

simultaneously reduces the computational complexity of the multi-head attention mech-

anism and enhances the robustness of the model. Local correlations in the sequence can 

be better captured by downsampling and applying the multi-attention mechanism on 

shorter sequences without the limitation of the length of the original sequence, and the 

feature information in the sequence can be extracted more efficiently. Upsampling the re-

sults of lower-level attention calculations and splicing them with the results of upper-level 

attention can enable the model to take into account different levels of information at the 

same time, enhancing the expressive power of the model and enabling it to better under-

stand the structure and characteristics of the entire time series. 

4. Experiment 

4.1. Evaluation Metrics 

Accuracy, precision, recall, and F1-Score were chosen as the evaluation metrics and 

were calculated as follows: 

TP TN

TP FP FN TN
Accuracy

+
=

+ + +  
 

Pr
TP

ecision
TP FP

=
+

  

TP

TP FN
Recall =

+
  

2
1

Precision Recall
F Score

Precision Recall


−

+
=   

When evaluating a multiclassification problem, it is common to decompose the multiclas-

sification problem into a set of n 2-classification problems, each time using one of the clas-

ses as the positive class and the remaining classes uniformly as the negative class, and 

finally, calculating the average. TP indicates that the positive class is predicted to be pos-

itive, TN indicates that the negative class is predicted to be negative, FP indicates that the 

negative class is predicted to be positive, and FN indicates that the positive class is pre-

dicted to be negative. 

4.2. Data Preprocessing 

In this study, the P2020 component in the data processing module adopted fault in-

jection to simulate the fault state, and all the multichannel data collected by fault injection 

were measured via voltage signal in V. The 16 collected channels were 1.05 V; 2.5 V; 3.3 

V; 5 V supply voltage and ground voltage signals; 1.5 V of DDR3; the supply voltage of 

reference voltage 1 and reference voltage 2; 3.3 V and negative voltage of NOR FLASH; 

3.3 V and negative voltage of NAND FLASH; 2.5 V; 3.3 V; and the reference voltage and 

negative voltage of P2020CPU on experimental circuit boards. Fourteen types of signal 

data were available for comparison with normal signals. The failure modes and collected 

parameters are shown in Table 1. 

Table 1. Multichannel acquisition data for injected fault signal. 
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Corresponding Failure Modes Fault Injection Point Injected Fault Signal Type 

Normal None None 

CPU processing power decreases 

P2020_GND Inject 0−0.2 V noise signal 

P2020_CLK 

Inject 0−0.3 V 1 KHz square wave signal 

Parallel connection of 200 ohm resistors 

Parallel connection of 470 nF capacitors 

Memory performance degradation 

DDR3_GND Inject 0−0.2 V noise signal 

DDR3_CLK 

Inject 0−0.3 V 5 KHz square wave signal 

Parallel connection of 470 nF capacitors 

Parallel connection of 200 ohm resistors 

DDR3_CK2 

Inject 0−0.3 V 5 KHz square wave signal 

Parallel connection of 200 ohm resistors 

Parallel connection of 470 nF capacitors 

NAND Flash_GND Inject 0−0.2 V noise signal 

NOR Flash_GND Inject 0−0.2 V noise signal 

According to the avionics module, fault signals are generally characterized by large 

information entropy; we performed preliminary filtering by calculating the information 

entropy of the signals obtained from fault injection. If the information entropy of the fault 

signal was below the threshold level, we reviewed the fault injection process and elimi-

nated the invalid data. The information entropy was calculated as follows: 

( ) ( ) ( )
1

log
n

i i

i

H X p x p x
=

= −   

where ( )ip x  denotes the probability that the random event X is ix . 

The simulation experiment is based on LabView’s data acquisition system software. 

According to the wiring to select the fault signal injection channel, we chose to parallel 

different capacitors or resistors to simulate different types of faults. For example, connect-

ing a resistor to the P2020_CLK pin corresponds to the fault type of CPU processing capa-

bility degradation, and connecting a capacitor to the DDR3_CLK pin corresponds to the 

fault type of memory performance degradation. In order to realize fault injection and out-

put waveform information acquisition, NI high-speed digital IO boards were used to pro-

vide excitation signals to the Field-Programmable Gate Array (FPGA). At the same time, 

the response signal of the FPGA was synchronously acquired back to the LabVIEW2012 

software for data processing. Through AD conversion, the voltage, current, frequency and 

other parameters are stored in the specified format to the PC, thus completing the fault 

injection and data acquisition. The signal amplitude of the fault injection is small, and no 

filtering is set to avoid the effect of filtering noise reduction on the injected noise signal. 

In deep learning tasks, data augmentation is the process of augmenting the size and 

diversity of the training dataset with a series of random transformations to increase the 

generalization ability and robustness of the model. Dataset enhancement is one of the 

most commonly employed methods of data enhancement; it must be noted that there are 

no specifically proposed dataset enhancement techniques for time series data; however, 

too-low data volumes available for training the model result in the risk of overfitting. 

In this study, overlapping sampling was taken to cut samples of length 256 in the 

original signal so that the training set contains a greater number of forms of samples and 

more feature information, increasing the diversity and adequacy of the data and provid-

ing additional information to support the training of the model. To control the overlap-

ping area between different samples, this study set a suitable size of offset; in this case, it 

was set to 64 for samples with a length of 256. Ultimately, the generated dataset comprises 

280,000 samples of 14 faults with 20,000 samples of each fault. For each fault type, 10,000 

pieces of data were selected to divide the training set and validation set for Dataset1 in 

order to tune the hyperparameters. The rest of the data were divided into k folds for k-
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fold cross-validation, where k-1 folds were used as the training set and 1 fold as the test 

set, and the experiment was repeated k times, and k was chosen as 10 for this experiment. 

Since the model performed stably in Dataset1, the average of the evaluation metrics for 

each of the k experiments was used as the final test set result when k-fold cross-validation 

was performed in Dataset2. The data labels are in the one-hot form. One-hot coding con-

verts the categorical variables into binary numeric vectors, where the vector index corre-

sponding to the category is set to 1 at the index of the vector and 0 at other positions. The 

overlapping sampling method is shown in Figure 7. The multi-channel failure mode data 

set information is shown in Table 2 

 

Figure 7. Overlapping sampling of samples. 

Table 2. Multichannel fault dataset. 

Sample 

Size 

Total Number of 

Samples 

Number of Samples for Adjusting  

Hyperparameters (Datatset1) 

Number of Samples for k-Fold 

Cross-Validation (Datatset2) 

Fault  

Category 

256 × 16 280,000 140,000 140,000 14 

4.3. Ablation and Alternative Experiment 

The deep learning models presented in this study were implemented in 

pytorch1.11.0+cu113 and python3.9, and the configuration of the server used is NVIDIA 

GeForce RTX 4060-8GB. The model utilized the dataset for the fault dataset obtained from 

the sampling above, with a total of 14 fault types and 20,000 samples per class. The Da-

taset1 was utilized to determine the optimal hyperparameters, whose data were divided 

into a training set and validation set in the ratio of 8:2. Dataset2 was used for cross-vali-

dation by dividing it into 10 folds, arbitrarily taking 9 of them as the training set and the 

other as the test set and repeating the experiment 10 times. 

The training was performed using a minimized cross-entropy loss function; for a 

multiclassification task, this can be expressed as the following: 

1

log( )
M

ic ic

i c

Loss y p
=

= −
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where M denotes the number of categories and icy  is a sign function (0 or 1), taking 1 if 

the true category of sample i is equal to c and 0 otherwise, and icp  is the predicted prob-

ability that observation sample i belongs to category c. 

By obtaining the appropriate hyperparameters at Dataset1, in Dataset2 we made use 

of the Adam optimizer; this optimizer combines the Momentum and RMSprop gradient 

descent methods and proves to be efficiently applicable to different neural networks. Us-

ing the early-stopping mechanism, the epochs were set to 50 in the experiment, and the 

training was terminated when the validation set lost 7 epochs without decreasing. Train-

ing in batches was conducted using mini-batch gradient descent with the batch size set to 

32. The initial learning rate was set to 0.0001, and the Reduce LR On Plateau was employed 

to dynamically adjust the learning rate by multiplying the learning rate by 0.1 times, the 

new learning rate when the validation set lost 2 epochs without degradation. 

4.3.1. AMTC Module Ablation Experiment 

The ablation experiment is for the number of AMTC modules to be ablated. Where 

Model A makes no use of AMTC modules, Model B employs one AMTC module, Model 

C employs three AMTC modules, which is the model used in this study, and Model D 

employs five AMTC modules. Each AMTC module was connected using one residual 

connection to enhance the accuracy and stability of the model. The outcomes of model 

training with different numbers of AMTC module counts are shown in Table 3. 

Table 3. Results for different number of AMTC modules. 

Model 

Number of 

AMTC  

Modules 

Validation Set 

Accuracy  

(Dataset1) 

Test Set Accuracy 

(Dataset2) 

Test Set Precision 

(Dataset2) 

Test Set Recall 

(Dataset2) 

Test Set F1-Score 

(Dataset2) 

A 0 65.99% 66.22% 66.10% 66.18% 66.14% 

B 1 99.21% 99.32% 99.30% 99.30% 99.30% 

C 3 99.59% 99.65% 99.62% 99.61% 99.62% 

D 5 99.52% 99.44% 99.47% 99.44% 99.45% 

The loss and accuracy curves obtained after training on Dataset1 are depicted in the 

Figure 8.  
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Figure 8. Training loss/accuracy curves and validation loss/accuracy curves for different number of 

AMTC modules on Dataset1. 

The experiment data indicate that Model A has significantly low prediction accuracy 

and that the training results do not converge. Model B obtained a significant improvement 

in accuracy by using one AMTC module, indicating that the AMTC module has a strong 

feature extraction capability; however, due to its insufficient network depth, it has limited 

feature extraction ability; ultimately, it performs less efficiently than model C in the vali-

dation set and test set. The performance of Model D in the validation set fluctuates during 

training and does not converge as fast as Model C. Because Model D is overfitted and the 

gradient propagation is unstable, parameter optimization is difficult and it is more diffi-

cult to train. Compared to Models A, B, and D, Model C is found to be more accurate in 

the validation sets and test sets, as well as showing a steadier convergence process on the 

validation sets. 

4.3.2. Network Structure Ablation Experiment 

For the network ablation experiments, the ICA module, the HBTA module, and the 

entire Hybrid Attention module were ablated, and the results after ablation are shown in 

Table 4. 
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Table 4. Results of the Hybrid Attention module ablation experiment. 

Model 
Validation Set  

Accuracy (Dataset1) 

Test Set Accuracy 

(Dataset2) 

Test Set Precision 

(Dataset2) 

Test Set Recall 

(Dataset2) 

Test Set F1-Score 

(Dataset2) 

AMTC 99.30% 99.32% 99.36 99.36 99.36 

AMTC-ICA 99.42% 99.44% 99.43 99.44 99.43 

AMTC-HBTA 99.44% 99.54% 99.52 99.50 99.51 

HAAMTCN 99.59% 99.65% 99.62% 99.61% 99.62% 

The loss curves and accuracy curves for the training set and validation set on Da-

taset1 are shown in the Figure 9. 

 

Figure 9. Training loss/accuracy curves and validation loss/accuracy curves before and after model 

ablation on Dataset1. 

The experimental data demonstrate that the removal of the ICA module and the 

HBTA module leads to a decrease in accuracy, while the convergence process is more 

unstable. The validity of the ICA module and the HBTA module is further illustrated by 

the fact that adding the ICA module allows the model to better focus on critical channel 

information, and the addition of the HBTA module facilitates the model to capture both 

the long-time dependencies as well as the proximity time step relationships. The two at-

tention mechanisms are complementary since they pay attention to vital information from 

the channel dimension and time step dimension, which further optimizes the feature 

maps extracted by the AMTC module and raises the accuracy of the final fault classifica-

tion. 

4.3.3. Network Module Replacement Experiment 

Alternative experiments were conducted by replacing the attention module in this 

study with the SE Attention Block (Squeeze-and-Excitation Block), MulAtt (Multi-head 

Attention mechanism module), Cross-attention mechanism module, Gate module, and 

GCnet module (Global Correlation Network) for experimental comparison. The batch size 

and initial learning rate are also the same as in the above experiments, and the Adam 

optimizer was chosen to dynamically adjust the learning rate using ReduceLROnPlateau. 
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The results of the experiment, after replacing it with other attention mechanisms, are 

shown in Table 5. 

Table 5. Results of the attention mechanism ablation experiment. 

Attention  

Mechanism 

Validation Set  

Accuracy 

(Dataset1) 

Test Set Accuracy 

(Dataset2) 

Test Set Precision 

(Dataset2) 

Test Set Recall 

(Dataset2) 

Test Set F1-Score 

(Dataset2) 

SE 99.32% 99.30% 99.30% 99.32% 99.31% 

MulAtt 99.33% 99.37% 99.35% 99.36% 99.35% 

Gate 99.35% 99.28% 99.30% 99.28% 99.29% 

GCnet 99.40% 99.40% 99.38% 99.38% 99.38% 

FFT-CrossAttention 99.40% 99.42% 99.42% 99.45% 99.43% 

ICA-HBTA 99.59% 99.65% 99.62% 99.61% 99.62% 

As shown by the experimental data, applying the SE bottleneck structure restricts the free 

flow of information in the network and is prone to overfitting. The Gate attention mechanism 

simply computes the attention weights and gating signals directly from the inputs without 

considering the interactions between the features. The multi-attention mechanism is hard to 

parameterize and it is difficult to capture the relationship between time steps through this 

mechanism. GCnet’s attention coefficients, computed by linear transformation and activation 

function, are fixed and have limited ability to model long-distance dependencies. The above 

attention mechanisms struggle to increase accuracy. The cross-attention mechanism that com-

bines time-domain and frequency domain information shows some improvements in terms 

of model accuracy; however, the effect is relatively limited since avionics fault data do not 

have highly pronounced cyclic characteristics. Comparing the performance of the validation 

set and test set shows that the Hybrid Attention module adopted in this study achieves com-

plementarity in the channel dimension and time step dimension. Thus, it is effective for avi-

onics module fault diagnosis classification tasks by capturing inter-channel linkages in the 

channel dimension and long-time dependencies in the time step dimension. 

4.4. Comparison Experiment 

To conduct a comparison, a one-dimensional convolutional neural network was se-

lected as the benchmark model in this paper, and DTW-KNN, SVM, TCN [23], MRes-FCN 

[24], MACNN [25], MLSTM-FCN [17], Inception-Resnet [26], and Inception-FCN [27] 

were selected as the comparison variables. The Adam optimizer was chosen for gradient 

descent, and ReduceLROnPlateau was employed to dynamically adjust the learning rate; 

the experimental results of this comparison are shown in Table 6. 

Table 6. Results of different mainstream models. 

Module 

Validation Set  

Accuracy 

(Dataset1) 

Test Set Accuracy 

(Dataset2) 

Test Set Precision 

(Dataset2) 

Test Set Recall 

(Dataset2) 

Test Set F1-Score 

(Dataset2) 

DTW-KNN 73.10% 71.36% 71.32% 70.55% 70.93% 

TCN 78.96% 78.55% 77.88% 78.70% 78.29% 

SVM 85.36% 84.20% 83.22% 82.85% 83.03% 

1D-CNN 93.81% 93.65% 93.58% 93.58% 93.58% 

MRes-FCN 97.19% 97.10% 96.81% 96.60% 96.70% 

MACNN 97.40% 97.62% 97.55% 97.54% 97.53% 

MLSTM-FCN 98.07% 98.26% 98.23% 98.04% 98.03% 

Inception-Resnet 98.34% 98.50% 98.58% 98.58% 98.58% 

Inception-FCN 99.33% 99.38% 99.39% 99.39% 99.39% 

HAAMTCN 99.59% 99.65% 99.62% 99.61% 99.62% 
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The accuracy curves obtained after training on Dataset1 are shown in the Figures 10 

and 11. 

 

Figure 10. Training accuracy curves for different models on Dataset1. 

 

Figure 11. Validation accuracy curves for different models on Dataset1. 

The experimental data indicate that the HAAMTCN achieves state-of-the-art results 

on avionics fault diagnosis tasks. The HAAMTCN achieves the highest accuracy on both 

the validation and test sets; it also achieves a fast convergence rate, relative to the bench-

mark model and other mainstream models for fault classification of temporal data. Thus, 

the results demonstrate that the HAAMTCN efficiently identifies the type of faults in avi-

onics modules. 

It is hard to set null rates of Temporal Convolutional Networks (TCN), which can 

lead to information loss or difficulty in training. A one-dimensional convolutional neural 

network as a baseline model, due to its limited feature extraction capability, is fast to train 

but falls short in terms of accuracy. Multi-scale residual full convolutional neural network 

(MRes-FCN) utilizes full convolutional block and residual block serial multi-scale convo-

lutional kernel to extract multi-scale features; however, the network is deeper and slower 

to train, and feature extraction is not sufficiently adequate. Multi-scale Attention Convo-

lutional Neural Network (MACNN) captures information at various scales along the time-

line using only convolutional kernels of different sizes. Multivariate Long Short-Term 

Memory Fully Convolutional Network (MLSTM-FCN) consists of LSTM with convolu-

tional blocks to extract features; however, its introduction of the SE module limits the cor-

relation between channels and is prone to overfitting. The Inception module in Inception-
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Resnet has a simple structure with fewer layers and restricted feature extraction capabil-

ity. The Inception-FCN combines multi-scale convolution as well as FCN to favorably cap-

ture temporal dependencies and sequence features in the data; however, the lack of an 

attentional mechanism makes it difficult to further improve accuracy. The HAAMTCN 

combines the advantages of Inception-Resnet and MACNN in extracting features from 

multiple scales while incorporating an attention mechanism to place greater emphasis on 

the vital information that contributes significantly to the improved accuracy rate. This 

demonstrates that the AMTC module has a stronger feature extraction capability, and that 

the attention mechanism enhances the model accuracy even further. 

5. Conclusions 

In this study, to address the lack of avionics module data acquisition difficulties and 

other issues, the fault injection method is adopted to simulate the different fault types of 

avionics modules. An overlapping sampling operation is adopted for the simulated avi-

onics faults to construct the dataset for data augmentation, which facilitates the network 

model to extract features more adequately. The HAAMTCN for the integrated functional 

circuit module of the avionics module is proposed and is presented to diagnose different 

faults, which adaptively construct the optimal size of the convolutional kernel to effi-

ciently extract features; further, the combined use of the Interaction Channel Attention 

(ICA) module and the Hierarchical Block Temporal Attention (HBTA) module results in 

the HAAMTCN to pay more attention to the critical information in the channel dimension 

and time step dimension. The advantages of HAAMTCN are verified through ablation 

experiments and comparative tests, which illustrate its effectiveness in avionics module 

fault diagnosis tasks and reflect its better ability to handle avionics module fault signals 

with large information entropy. 
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