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Abstract: Partial discharge (PD) fault diagnosis is of great importance for ensuring the safe and 

stable operation of power transformers. To address the issues of low accuracy in traditional PD fault 

diagnostic methods, this paper proposes a novel method for the power transformer PD fault diag-

nosis. It incorporates the approximate entropy (ApEn) of symplectic geometry mode decomposition 

(SGMD) into the optimized bidirectional long short-term memory (BILSTM) neural network. This 

method extracts dominant PD features employing SGMD and ApEn. Meanwhile, it improves the 

diagnostic accuracy with the optimized BILSTM by introducing the golden jackal optimization 

(GJO). Simulation studies evaluate the performance of FFT, EMD, VMD, and SGMD. The results 

show that SGMD–ApEn outperforms other methods in extracting dominant PD features. Experi-

mental results verify the effectiveness and superiority of the proposed method by comparing differ-

ent traditional methods. The proposed method improves PD fault recognition accuracy and pro-

vides a diagnostic rate of 98.6%, with lower noise sensitivity. 

Keywords: partial discharge; power transformer; symplectic geometry mode decomposition;  

approximate entropy; bidirectional long short-term memory 

 

1. Introduction 

Electric power transformers play a pivotal role in the power system [1]. They are 

responsible for transmitting high voltage over long distances and stepping it down to a 

suitable low voltage for distribution. This conversion not only reduces energy losses dur-

ing long-distance transmission but also ensures the fulfillment of various electricity de-

mands for households, industries, and commercial facilities [2]. As a result, the efficient 

operation of power transformers is crucial for maintaining the stability and reliability of 

the power system. 

Partial discharge (PD) is a phenomenon that occurs in the insulation system of the 

power transformers, which may pose serious risks to the insulation performance [3]. This 

phenomenon can lead to the damage of insulation materials, resulting in a decline in in-

sulation performance and an increased risk of equipment failure. The arcs and thermal 

effects generated by PD may cause insulation breakdown. The prolonged existence of PD 

can gradually damage the insulation system of the transformer, reducing its operational 

stability and reliability [4]. Therefore, the timely monitoring of PD is of vital significance 

to ensure the normal operation and prolong the lifespan of power transformers. 

Analyzing the correlation between PD patterns and specific faults can facilitate the 

early detection of potential issues [5]. This aids in implementing targeted maintenance 

measures, thus enhancing the maintenance efficiency. Feature extraction enables the anal-

ysis of characteristics within the PD signals, constituting a crucial step in the diagnosis of 

insulation faults in transformers. It directly influences diagnostic effectiveness [6]. 
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In the field of PD fault diagnosis, various feature extraction methods have emerged, 

including time-frequency domain analysis [7], wavelet transform [8], empirical mode de-

composition (EMD) [9], variational mode decomposition (VMD) [10], and so on. Time-

domain feature extraction focuses on waveform morphology, amplitude, etc., suitable for 

capturing transient characteristics. However, for complex non-stationary PD signals, there 

may be significant information loss. Frequency-domain feature extraction is based on the 

spectral properties of PD signals, such as spectral peak and bandwidth, revealing the fre-

quency distribution of discharge signals [11]. Yet, it disregards the temporal information 

of the signals. wavelet transform decomposes signals into different frequency compo-

nents, analyzing signals in both time and frequency domains, suitable for multi-scale fea-

ture extraction. It excels at describing changes in different frequency components but se-

lecting appropriate wavelet basis functions can be challenging [12]. EMD is an adaptive 

decomposition method that separates signals into intrinsic mode functions (IMFs), each 

with specific frequency characteristics [13]. EMD is suitable for nonlinear and non-station-

ary signals, effectively capturing the transient features of signals; however, EMD may suf-

fer from mode mixing when dealing with high-frequency noise. It involves substantial 

computation and has stability issues. VMD decomposes signals into modulation compo-

nents, overcoming the mode-mixing limitations in EMD [14]. VMD is also applicable to 

nonlinear and non-stationary signals. It can effectively distinguish different frequency 

components. Nevertheless, the parameter selection for VMD can be relatively complex, 

involving significant computation. 

Symplectic geometry mode decomposition (SGMD) is based on the theory of 

symplectic geometry and represents multi-mode data as points on a symplectic manifold 

[15]. The symplectic manifold represents a unique geometric structure that preserves the 

nonlinear properties and manifold structure of data. SGMD conducts decomposition on 

the symplectic manifold, breaking down multi-mode data into a set of modes and captur-

ing distinct features of the data. It retains the nonlinear structures and mode relationships 

through symplectic manifold representation, thus overcoming the traditional modal ali-

asing issues in EEMD and pre-set parameters in VMD. Pan et al. [16] introduced the 

SGMD algorithm and applied it to rotating machinery compound fault diagnosis. Com-

pared with EEMD, LCD, and wavelet methods, the results of the simulation and experi-

mental signals indicate that SGMD provides enhanced diagnostic effectiveness for com-

pound faults in rotating machinery. A novel signal decomposition method based on 

SGMD has been proposed for extracting features of lubricating oil debris [17]. SGMD of-

fers the capability to adaptively reconstruct signals. Simulation results demonstrate its 

effective extraction of debris features, surpassing the decomposition abilities of EMD or 

wavelet. In summary, a large amount of existing research indicates that SGMD has been 

widely used in the industrial field. Due to its comprehensive foundation in symplectic 

geometry theory, it exhibits outstanding advantages in problem-solving compared to tra-

ditional decomposition methods. Moreover, the application of SGMD in the field of trans-

former PD diagnosis has not been reported. Therefore, this paper attempts to utilize 

SGMD for the PD signal feature extraction. 

PD signals have non-stationary and nonlinear characteristics. With SGMD decompo-

sition, it is difficult to extract the features representing the complexity and irregularity of 

the signal. In order to further extract comprehensive features, information entropy is cho-

sen to measure the uncertainty of PD signals. Information entropy is a significant concept 

in information theory to measure the uncertainty or disorder of a random variable [18]. It 

finds widespread applications across various domains. Among these applications, ap-

proximate entropy (ApEn) is a metric to gauge the complexity and irregularity of time 

series [19]. It yields particularly effective results in analyzing nonlinear dynamic systems, 

revealing their nonlinear characteristics and aiding the exploration of chaotic properties. 

Notably, ApEn exhibits robustness against noise, enabling it to mitigate the impact of 
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noise. Presently, ApEn has demonstrated notable efficacy in fields such as biomedical re-

search [20], mechanical engineering [21], aviation [22], and more. This study attempts to 

utilize ApEn for quantifying the extracted features from the PD signals in transformers. 

As the second step of transformer PD fault diagnosis, pattern recognition directly 

influences diagnostic outcomes [23]. The SGMD ApEn feature extraction method pro-

posed in this article needs to be combined with a suitable classifier to achieve the goal of 

improving diagnostic accuracy. The theory of deep learning holds immense potential in 

the field of pattern recognition [24,25]. By constructing multi-layer neural network struc-

tures, deep learning can autonomously learn abstract features from data, facilitating effi-

cient feature representation and pattern classification [26]. In domains such as images [27], 

speech [28], and natural language processing [29], deep learning has achieved remarkable 

success. This signifies the substantial scope for deep learning to revolutionize pattern 

recognition, thereby contributing to enhanced accuracy in classification, detection, and 

prediction, offering innovative solutions across various domains. The different PD signals 

of transformers have similar characteristics, which may have an important impact on the 

faults’ identification. As a novel type of machine learning method, deep learning can ob-

tain the separability representation of various types of samples adaptively; therefore, this 

article attempts to use deep learning theory for PD recognition. Recurrent Neural Net-

works (RNN) [30] in deep learning have been widely applied to fault recognition in vari-

ous domains such as meteorology [31], computer science [32], and medicine [33]. Long 

short-term memory (LSTM) [34], a variant of RNN, addresses the vanishing gradient is-

sue. Bidirectional long short-term memory (BILSTM) [35], an improvement of LSTM, in-

troduces a bidirectional time structure to capture information at each node in a time series. 

BILSTM achieves higher prediction accuracy by extracting information comprehensively. 

In this paper, on the foundation of BILSTM, Adaboost ensemble learning technology is 

introduced to enhance recognition capability. The golden jackal optimization (GJO) is em-

ployed for the parameter configuration in BILSTM. The optimized model is applied for 

transformer PD fault diagnosis. A performance comparison of different diagnostic meth-

ods is shown in Table 1. 

Table 1. Comparison of different diagnostic methods. 

Methods Advantages Disadvantages 

Feature extrac-

tion 

Time-frequency domain 

analysis 

Comprehensive and detailed infor-

mation 

Computational complexity, high re-

liance on experience 

Wavelet transform 
Superior multi-scale analytical perfor-

mance, strong adaptability 

High resource demand, complex 

selection of basis functions 

EMD Strong nonlinear processing ability 
Endpoint effects and modal alias-

ing 

VMD 
Clarity of modal functions, high com-

putational efficiency 
Lack of adaptability 

Pattern recog-

nition 

DBN (Deep Belief Network) High training efficiency Computational complexity 

CNN (Convolutional Neural 

Networks) 

High transfer learning ability, con-

venient parameter sharing 

High memory demand, easy to 

overfit 

RNN  
Strong ability to process sequential 

data  
 Multiple variants configuration 

This work proposes a novel approach for transformer PD fault diagnosis, combining 

feature extraction and pattern recognition. Firstly, PD signals are collected in an experi-

mental setup. Afterward, the signals are decomposed using SGMD to obtain SGCs. Effec-

tive SGCs are selected using similarity theory, and their ApEn values are calculated as PD 

features. Finally, the PD features are sent into an optimized BILSTM for fault diagnosis. 
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The effectiveness and practicality of the proposed method are validated through the sim-

ulation and experimental data. 

The organizational structure of this paper is as follows. The principles of the relevant 

algorithms are detailed in Section 2. Section 3 validates the effectiveness and superiority 

of the algorithms using simulated signals. Section 4 presents a transformer PD fault diag-

nosis model based on SGMD and BILSTM. Section 5 concludes the paper. 

2. Algorithm and Principles 

The BILSTM model consists of an input layer, a forward LSTM, a backward LSTM, 

and an output layer [36]. This model gives each output node complete bidirectional tem-

poral information. 

However, the individual BILSTM network is found to be difficult to simultaneously 

model the multiple faults. In order to improve the model’s ability to represent complex 

multi-class data features, the ensemble learning technology is introduced. 

In this paper, the Adaboost algorithm trains the BILSTM network in an iterative man-

ner. After iterations, the BILSTM models that focus on different data features are obtained. 

In each iteration, the training data are generated by probabilistic random sampling. After 

training, the weight β is generated according to the error rate of each model [37]. The sam-

ple probability weight of the training data is adjusted to change the next round of distri-

bution. Finally, all BILSTM models are combined according to the weights [38]. 

In recent research, the parameters in neural networks are commonly selected by var-

ious optimization methods, which may suffer from the problems of slow convergence 

speed and numerous iterations [39]. In this work, the GJO algorithm is introduced for 

parameter optimization, with a good global search ability and high convergence speed. 

The minimum envelope entropy is selected as the fitness function for the GJO algorithm. 

The flowchart of GJO-BILSTM-Adaboost is shown in Figure 1. 

Put the training set into the BILSTM Adaboost 

model for training, calculate fitness (with the goal 

of minimum envelope entropy)

Select the two golden jackals with the smallest 

envelope entropy and update the population 

position information

End

GJO parameters  
initialization

Reach the maximum 

number of iterations?

Y

N

Start

BILSTM-Adaboost 

parameter Settings
Parameter initialization

Output the position vector of the optimal solution

Parameter optimization

Parameter output

Use the obtained optimal hyperparameters for 

BILSTM Adaboost model prediction

 

Figure 1. The flowchart of GJO-BILSTM-Adaboost. 
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3. Simulation Analysis 

This article utilizes simulated signals to validate the effectiveness and practicality of 

the SGMD decomposition algorithm. PD signals from power transformers can be repre-

sented using an exponential damped oscillation model, as shown in Equations (1) and (2) 

[40]. 

1 2/ /

1( ) ( ) sin( )
t t

cS t K e e f t
   − −

= −  (1) 

1 /

2 ( ) sin( )
t

cS t Ke f t
 −

=  (2) 

where K represents the signal amplitude, measured in V; α1 and α2 are the attenuation 

parameters; τ is the attenuation period, measured in ms; fc is the oscillation decay fre-

quency, measured in MHz. 

The simulation is performed on a PC using MATLAB 2020a with the following spec-

ifications—CPU: AMD Ryzen 7 5800 H, RAM: 16GB. Based on the parameter settings in 

Table 2, two PD pulses form the original simulated signal S(t). There is a large amount of 

noise interference in the operation site of transformers, among which random white noise 

interference is the most common type, mainly caused by the thermal noise of transformer 

windings and relay protection lines. It has similar time and frequency domain character-

istics to PD signals. In order to simulate a more realistic transformer PD signal, this paper 

attempts to add random white noise to the original signal. Considering the real-world 

circumstances of signals immersed in noise and noise immersed in signals, the white noise 

with a signal-to-noise ratio of 30 dB is added to S(t), resulting in a noisy PD signal Y(t), 

depicted in Figure 2. It can be seen that the first PD pulse is interfered with by the noise 

obviously and the second one is completely immersed into the noise and unable to recog-

nize. 

Table 2. PD pulse parameters. 

Pulse Number K α1 α2 τ fc 

1 1.0 −1.3 −2.2 0.1 0.2 

2 0.05 −1 - 0.05 0.1 
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Figure 2. Simulated PD signal. 
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To validate the effectiveness of the proposed algorithm, this paper employs EMD, 

VMD, and SGMD to decompose the noisy signals separately. The results are illustrated in 

Figure 3. 

0 1 2 3 4 5

Times/ms

 0.2

0

0.2

A
m

p
lit

u
d
e
/V IMF1

0 1 2 3 4 5

Times/ms

 0.1

0

0.1

A
m

p
lit

u
d
e
/V IMF2

0 1 2 3 4 5

Times/ms

 0.05

0

0.05

A
m

p
lit

u
d
e
/V IMF3

0 1 2 3 4 5

Times/ms

 0.05

0

0.05

A
m

p
lit

u
d
e
/V IMF4

0 1 2 3 4 5

Times/ms

 0.02

0

0.02

A
m

p
lit

u
d
e
/V IMF5

0 1 2 3 4 5

Times/ms

 0.02

0

0.02

A
m

p
lit

u
d
e
/V IMF6

0 1 2 3 4 5

Times/ms

 0.01

0

0.01

A
m

p
li
tu

d
e
/V IMF7

0 1 2 3 4 5

Times/ms

 0.01

0

0.01

A
m

p
li
tu

d
e
/V IMF8

0 1 2 3 4 5

Times/ms

 5

0

5

A
m

p
lit

u
d
e
/V 10-3 IMF9

0 1 2 3 4 5

Times/ms

 5

0

5

A
m

p
lit

u
d
e
/V 10-3 res

 
(a) EMD 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.1

0

0.1

A
m

p
lit

ud
e
/V

VMF1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.1

0

0.1

A
m

p
lit

u
d
e
/V

VMF2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.5

0

0.5

A
m

p
lit

u
d
e
/V

res

 
(b) VMD 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.2

0

0.2

A
m

p
lit

ud
e
/V

SGC1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.05

0

0.05

A
m

p
lit

u
d
e
/V

SGC2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Times/ms

 0.02

0

0.02

A
m

p
lit

u
d
e
/V

res

 
(c) SGMD 

Figure 3. Signal decomposition. 
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From Figure 3a, it can be observed that the original simulated signal is adaptively 

decomposed into nine IMF components and residuals using EMD. IMF1 exhibits a signif-

icant amplitude, indicating that it is a component of a high-frequency PD signal. IMF2-

IMF3 can be determined as the background white noise from their amplitudes. However, 

the remaining IMF components expose the shortcomings of EMD, revealing a clear mode-

mixing phenomenon leading to signal distortion. Due to the requirement of presetting the 

number of decomposition layers in VMD, this study selects the same number of decom-

position layers as SGMD. As seen in Figure 3b, after three layers of VMD decomposition, 

the noise component can be effectively extracted, and the first pulse with a larger ampli-

tude can be successfully identified. VMD overcomes the mode-mixing issue in EMD; how-

ever, it fails to identify the second pulse with a smaller amplitude, leading to information 

loss. Figure 3c illustrates the time-domain diagram using SGMD. It can be observed that 

SGMD decomposition results in three components, among which SGC1 and SGC2 exhibit 

higher frequencies and amplitudes. By comparing the period similarity, it can be indicated 

that the residual represents the random noise components, effectively overcoming the 

mode-mixing problems. 

4. Power Transformer PD Fault Diagnosis Based on SGMD ApEn and Optimized 

BILSTM 

The proposed PD fault diagnostic process for the power transformer is as follows. 

(1) Firstly, under laboratory conditions, collect experimental PD signals, including bub-

ble discharge (BD), corona discharge (CD), surface discharge (SD), and floating dis-

charge (FD); 

(2) Next, apply SGMD to these PD signals for decomposition. This process breaks down 

the intricate PD signals into various SGC components, effectively extracting infor-

mation pertaining to different frequency components; 

(3) Subsequently, employ the principle of similarity to select relevant SGC components, 

and compute their approximate entropy (ApEn) values to serve as quantified features 

of PD signals; 

(4) Finally, utilize the obtained ApEn values as inputs to construct the BILSTM model. 

Through learning and training, this model can discern distinct characteristic patterns 

of various PD types, thereby accomplishing the diagnosis of PD signals in transformers. 

The diagnostic flowchart is illustrated in Figure 4. 
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Figure 4. PD fault diagnosis based on SGMD and optimized BILSTM. 

4.1. PD Data Acquisition 

In the laboratory, four types of PD models are designed, as shown in Figure 5. All 

circular electrodes have a diameter of 80 mm and a thickness of 10 mm. All PD models are 

placed in the tank containing transformer oil. 
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Figure 5. PD physical models. 

PD measurements are conducted in a laboratory-simulated transformer oil tank, and 

the experimental wiring is shown in Figure 6. The sampling frequency is 15 MHz. The 

execution standard for PD measurement is IEC 60270. 

AC 1

2 3

4

5

6

8

7

9

 

Figure 6. Schematic of PD experiment connections. 

In Figure 6, 1 represents the AC power source, 2 is the boosting transformer, 3 is the 

protective resistor, 4 is the coupling capacitor, 5 is the high-voltage bushing, 6 is the small 

bushing, 7 is the PD model, 8 is the current sensor, and 9 is the control console. The cou-

pling capacitor is a 500 pF high-voltage coupling capacitor with a withstand voltage of 

100 kV, used to couple the PD pulse current generated by the discharge model. The step-

up transformer consists of an auto-transformer and a corona-free test transformer. In this 

experiment, the PD model is placed in a tank filled with oil and grounded through a low-

voltage bushing. The pulse current generated on the grounding wire is measured by a 

current sensor with a detection frequency band of 500 kHz to 16 MHz. The signal was 

input to the TWPD-2E PD analyzer through a cable for display and storage. The indicators 

of the analyzer are shown in Table 3. The test conditions for the PD models are shown in 

Table 4. In this article, four different PD types, BD, CD, SD, and FD, are collected in a 

laboratory environment as shown in Figure 7. 

After applying AC voltage externally, the PD model may experience PD within a 

positive and negative half cycle period, with positive amplitude occurring during the pos-

itive half cycle and negative amplitude occurring during the negative half cycle. There are 
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significant differences in the positive and negative half cycle amplitudes of different PD 

types. The collected PD signals are depicted in Figure 8. 

Table 3. Performance specifications of the analyzer. 

Items Description 

Measurement channel Two independent channels 

Detection sensitivity 0.1 pC 

Sampling accuracy 12 Bit 

Maximum sampling rate 20 MHz 

Measurement range 0.1 pC–10,000 nC 

Non-linearity error within the full scale 5% 

Measurement bandwidth 10 kHz–1 MHz 

Test power supply frequency range 50–500 Hz 

Power supply AC 220 V; frequency 50 Hz; power 300 W 

Table 4. Test conditions of PD models. 

Discharge Type Inception Voltage/kV Breakdown Voltage/kV Testing Voltage/kV Sample Number 

BD 5 10 6/7/8 15/20/15 

CD 8.8 12 9/10/11 15/20/15 

SD 3 10 5/6/7 15/20/15 

FD 2 7 3/4/5 15/20/15 

 

Figure 7. PD models. 
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Figure 8. PD experimental signals. 

4.2. SGMD Decomposition 

In this article, the SGMD decomposition is performed on the experimental PD sig-

nals. The results are shown in Figure 9. 
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Figure 9. SGMD decomposition. 

From Figure 9, it is evident that the SGMD decomposition yields distinct SGC com-

ponents for different PD types. For instance, a BD signal generates five SGC components, 

while a CD signal produces twelve SGC components, with four SGC components for SD, 

and six SGC components and a residual component for FD. The selection of relevant SGC 

components for subsequent analysis becomes necessary. 

4.3. Effective SGC Components Selection 

To extract the effective components of the PD signals, this study employs a correla-

tion coefficient (CC) analysis method [41]. CC is computed between each SGC and the 

original PD signal consisting of 4096 data points. The definition of CC is as follows. 

1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

x x SGC SGC

CC

x x SGC SGC

=

= =

− −

=

− −



 

 (3) 

where xi represents the original signal, x represents the average value of x, and n repre-

sents the number of components of SGC. 

The CC value for each SGC is obtained using Equation (3), as shown in Figure 10. The 

CC value can effectively quantify the similarity between two different time series. Figure 

10 displays the similarity between the SGCs and the original PD signals. 
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Figure 10. CC values. 
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In order to eliminate the SGCs with lower similarity, a threshold θ can be preset. If 

the CC value is greater than θ, those SGCs will be retained as useful components. Other-

wise, they will be considered invalid components and removed. The threshold definition 

in this article is as follows [42]. 

2

1

( )
n

i

i

CC CC

n
 =

−

=


 
(4) 

After multiple trials, θ is set to 0.6. CC values in SGC components of different PD 

types are present in Figure 11. 

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

 BD

 CD

 SD

 FD

SGC components

C
or

re
la

ti
on

 c
oe

ff
ic

ie
nt

 

Figure 11. Correlation coefficients varying with different SGC components. 

As shown in Figure 11, the SGCs calculated from different PD types exhibit distinct 

variations in their CC values. For FD, the CC of the first four SGC components exceeds 

0.6, indicating the higher ability to represent prominent signal features. Therefore, the first 

four SGC components are selected as the main characteristics for FD. Similarly, for CD, 

the first four SGC components are chosen, while for BD, the first three components are 

selected, and for SD, the first and third components are kept. 

4.4. ApEn Calculation 

As described in Section 4.3, different SGC components are selected as the significant 

characteristics for different PD types. To further quantify PD features, this study intro-

duces the approximate entropy for uncertainty analysis of the extracted SGC components. 

By computing the entropy values of each component, it becomes possible to assess the 

complexity and irregularity of PD signals. Higher ApEn values indicate a higher level of 

complexity in the SGC component, suggesting a greater complexity and severity in PD 

signals. The ApEn values for each SGC component are presented in Figure 12. 
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Figure 12. ApEn values for different PD types. 

As shown in Figure 12, the effective SGC components of different PD types yield 

distinct ApEn values. ApEn is able to quantify the complexity of various SGC components; 

therefore, it can serve as a characteristic parameter for PD signals. By calculating the ApEn 

values, information about the PD type can be obtained, facilitating subsequent diagnostic 

analysis. This work collects 50 sets of experimental data for each PD type. The effective 

SGCs are selected for ApEn calculations. The partial entropy values obtained are shown 

in Figure 13. 
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Figure 13. Partial approximate entropy values. 

4.5. Pattern Recognition 

This paper utilizes the entropy values obtained in Section 4.4 as the final PD charac-

teristic parameters. These parameters are fed into the optimized BILSTM model for recog-

nition, thereby achieving the diagnostic results. For each type of PD signal, 15 sets are 

selected for training and 35 sets for testing. 
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4.5.1. Selection of BILSTM-Adaboost Parameters 

Initially, BILSTM-Adaboost hyper-parameters are initiated through manual experi-

ence. By limiting the maximum number of training iterations to 10 and allocating 30% of 

the population to the explorers, optimized BILSTM hyper-parameters are obtained 

through GJO optimization, as shown in Table 5. 

Table 5. BILSTM-Adaboost hyper-parameters. 

Hyper-Parameters Range 
Initial Manual Configura-

tion 
GJO Optimized Configuration 

the learning rate 0.001~0.01 0.01 0.0035 

L2 regularization parameter 0.001~0.01 0.01 0.00013 

BILSTM layer 1~50 6 13 

the maximum training times 200–1000 500 300 

the learning rate decline factor 0.1~1 0.1 0.5 

Using the minimum envelope entropy as the objective function, the population size 

is set to 20 and the number of iterations is set to 10. Figure 14 shows the fitness curves for 

optimizing BILSTM hyper-parameters using Particle swarm optimization (PSO), the 

Whale Optimization Algorithm (WOA), Stochastic Simulated Annealing (SSA), and GJO, 

separately. The accuracy and loss function obtained from PD diagnosis are shown in Fig-

ure 15. 
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Figure 14. Fitness curves. 
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Figure 15. Accuracy and loss. 

The comparative results in Figure 14 indicate that the optimized BILSTM parameters 

using GJO leads to faster convergence and requires fewer iterations to stabilize fitness 

values than other methods. This suggests that GJO exhibits a higher search capability in 

parameter optimization, making it more efficient at finding optimal solutions. 

Figure 15a,b show that the accuracy of GJO-BILSTM-Adaboost is significantly higher 

than that of the other three optimized classifiers both in training and testing. Figure 15c,d 

indicate that the GJO-BILSTM-Adaboost has an obvious decrease in both training and 

testing loss. 

4.5.2. Results Analysis 

Based on Section 4.5.1, this paper obtains a BILSTM model that has been optimized. 

The test data are fed into the trained BILSTM model. Additionally, a comparative analysis 

is conducted with SVM, LSTM, and BILSTM. Parameters of LSTM and SVM are preset in 

Table 6, where σ is the kernel parameter of RBF and C is the penalty factor in SVM. The 

diagnostic results are shown in Figure 16. 

Table 6. Parameters of SVM and LSTM. 

Algorithms Parameter Type Values 

SVM σ 0.28 

 C 9.36 

LSTM Input 11 
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(c) BILSTM (d) Optimized BILSTM-Adaboost 

Figure 16. Diagnostic results of different classifiers. 

As shown in Figure 16, the diagnostic results are presented in the form of a confusion 

matrix. The main diagonal represents the probability of the model correctly classifying in 

the classification task, while the rest of the positions represent the misjudgment rate. In 

Figure 16a, the recognition rate of SVM for FD is extremely low, only 25.4%. In particular, 

distinguishing between SD and FD is challenging. This suggests that SVM has high data 

requirements and may suffer from overfitting, leading to poor generalization perfor-

mance. In Figure 16b, LSTM has improved the overall diagnostic recognition rate; how-

ever, misclassification still occurs, especially in the cases of SD and FD. This indicates that 

LSTM’s performance is sensitive to parameter selection. Figure 16c demonstrates that 

BILSTM achieves a recognition accuracy of over 85% for each type of PD fault. It correctly 

identifies BD and SD faults and outperforms traditional SVM and LSTM. Figure 16d re-

veals that after optimization with GJO, BILSTM achieves better recognition accuracy for 
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all PD faults. This illustrates that GJO, through adaptive search strategies, further en-

hances the network’s generalization performance. 

In order to validate the superiority of the feature extraction method proposed in this 

paper, the article introduces EMD, EEMD, and VMD methods for PD signal decomposi-

tion, after which the ApEn values are calculated. Parameters of EMD, EEMD, VMD, and 

SGMD are present in Table 7. Nstd is the regularization parameter in EMD and EEMD, 

and NE is the maximum number of IMFs in EEMD. In VMD, k is the number of decom-

position layers, alpha is used to control the stability and convergence of the mode, and tol 

is the calculated tolerance. In SGMD, threshold_corr is the threshold for mode selection 

and threshold_ne is the threshold for noise evaluation. As PD features, the ApEn values 

are sent into the optimized BILSTM. The diagnostic accuracy and the algorithm runtime 

are illustrated in Figure 17. 

Table 7. Parameters of EMD, EEMD, VMD, and SGMD. 

Algorithms Parameter Type Values 

EMD Nstd 0.1 

EEMD Nstd 0.1 

 NE 100 

VMD K 8 

 Alpha 2000 

 Tol 1 × 10−7 

SGMD threshold_corr 0.95 

 threshold_ne 0.01 
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(a) Diagnostic accuracy (b) Running time 

Figure 17. Comparative results. 

From Figure 17a, it can be concluded that the results based on EMD-ApEn have ob-

vious misjudgments in SD and FD. This is attributed to the mode-mixing problem in EMD 

decomposition, where some modes may interfere with each other during PD signal de-

composition. The EEMD-ApEn method shows some improvement in the recognition of 

FD; however, the overall diagnostic performance for SD and FD faults is not satisfying. 

This is caused by the remaining modal aliasing issues in EEMD, along with the sensitivity 

to initial conditions. In VMD, a higher diagnostic correctness rate is obtained, indicating 

that the modal aliasing effect has been suppressed; however, VMD requires manual set-

ting of decomposition layers or modal quantities, relying on a high degree of manual ex-

pertise. Improper settings can adversely impact the final diagnostic results. The feature 

extraction based on SGMD-ApEn achieves a satisfactory diagnostic result with smaller 

accuracy fluctuations, indicating that SGMD offers high-resolution modal components, 
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aiding in capturing signal details and variations accurately. Figure 17b shows that the 

SGMD-ApEn method takes the shortest running time with smaller time fluctuations for 

each PD type. The above results prove that the feature extraction method based on SGMD-

ApEn can accurately represent the PD information and shows better performance com-

pared with other methods. 

4.5.3. Imbalanced Data Validation 

Due to the imbalance problem of different PD types in practical engineering applica-

tions, it is necessary to verify the performance of the method proposed in this article in 

handling imbalanced data. Based on the current statistical analysis of the number of PD 

faults in transformers, this article sets the data ratios for different PD types as follows: 70 

BD faults, 88 CD faults, 25 SD faults, and 17 FD faults. The diagnostic results obtained 

using different classifiers are shown in Figure 18. 
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Figure 18. Diagnostic results of different classifiers on imbalanced datasets. 

As shown in Figure 18, the GJO-BILSTM-Adaboost classifier introduced in this article 

demonstrates significant advantages in handling imbalanced data, with a recognition ac-

curacy of up to 97.16% and a decrease of only 1.41% compared to balanced data. Combin-

ing BILSTM and Adaboost, the optimized model shows better performance than other 
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methods. Adaboost can improve the diagnostic accuracy of the model with imbalanced 

data. 

4.5.4. Noise Sensitivity Analysis 

This article conducts a noise sensitivity analysis for the proposed method. The results 

of different methods before and after wavelet denoising are compared in Table 8. 

Table 8. Noise sensitivity analysis. 

Methods 

Before Denoising After Denoising 

Running 

Memory 

Running 

Time 

Diagnostic 

Accuracy 

Running 

Memory 

Running 

Time 

Diagnostic 

Accuracy 

EMD-SVM 8472 MB 45.30 s 60.71% 8510 MB 48.72 s 70.00% 

EEMD-SVM 8391 MB 40.82 s 64.29% 8436 MB 44.67 s 72.86% 

VMD-SVM 8652 MB 50.35 s 69.28% 8720 MB 53.16 s 76.43% 

SGMD-SVM 7752 MB 38.96 s 77.86% 7889 MB 40.15 s 77.86% 

EMD-LSTM 8348 MB 53.21 s 65.71% 8350 MB 57.34 s 80.00% 

EEMD-LSTM 8283 MB 48.73 s 69.28% 8306 MB 56.92 s 80.71% 

VMD-LSTM 8963 MB 58.26 s 75.00% 8995 MB 65.00 s 81.43% 

SGMD-LSTM 7945 MB 46.87 s 82.14% 7990 MB 49.54 s 81.43% 

EMD-BILSTM 8408 MB 54.80 s 70.07% 8435 MB 58.30 s 87.86% 

EEMD-BILSTM 8390 MB 50.32 s 77.85% 8419 MB 51.00 s 91.43% 

VMD-BILSTM 8896 MB 59.85 s 85.71% 9042 MB 62.52 s 93.57% 

SGMD-BILSTM 7889 MB 48.46 s 94.29% 8003 MB 51.25 s 95.00% 

EMD-GJO-BILSTM-Adaboost 8584 MB 60.74 s 91.43% 8672 MB 61.35 s 95.71% 

EEMD-GJO-BILSTM-Adaboost 8332 MB 63.23 s 94.29% 8499 MB 63.86 s 96.43% 

VMD-GJO-BILSTM-Adaboost 8944 MB 65.85 s 96.43% 9076 MB 66.81 s 97.56% 

SGMD-GJO-BILSTM-Adaboost 7992 MB 54.46 s 98.57% 8139 MB 55.59 s 98.57% 

It can be concluded from Table 8 that among different signal decomposition methods 

before and after denoising, SGMD has the smallest running memory and the highest 

recognition accuracy. The diagnostic accuracy of EMD, EEMD, VMD, and EMD-VMD has 

been significantly improved after wavelet denoising. It demonstrates that these methods 

have poor noise-suppression effects. The diagnostic accuracy of SGMD remains nearly 

unchanged before and after noise reduction, with less noise sensitivity. Moreover, the pro-

posed PD diagnostic model based on SGMD-GJO-BILSTM-Adaboost shows outstanding 

performance in PD fault diagnosis with a recognition accuracy of 98.57%, obviously su-

perior to other methods. 

5. Conclusions 

This paper proposes a novel method for diagnosing PD faults in power transformers 

based on SGMD and an optimized bidirectional long short-term memory neural network 

to improve PD fault diagnostic accuracy. The feature extraction based on SGMD and ap-

proximate entropy can quantify the complexity and randomness of PD features and re-

duce the need for manual parameter tuning, enhancing the computational efficiency. In 

this study, the GJO optimization algorithm is employed to fine-tune BILSTM hyper-pa-

rameters, improving the generalization performance and enhancing the model’s robust-

ness. The extracted PD features are sent into the optimized BILSTM, establishing a novel 

PD fault diagnostic model. Compared with different feature extraction methods including 

EMD-ApEn, EEMD-ApEn, and VMD-ApEn, the SGMD-ApEn method takes the shortest 

running time with smaller time fluctuations and achieves better diagnostic performance. 

Meanwhile, the optimized BILSTM improves the recognition accuracy of PD faults and 

outperforms other traditional methods. In addition, the proposed method is also effective 
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for imbalanced data and has lower sensitivity to noise. In the future, the authors will at-

tempt to use more on site data to verify the effectiveness of this method in handling the 

PD of different transformer models. 
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List of Acronyms and Symbols 

PD Partial discharge GJO Golden jackal optimization 

SGMD 
Symplectic geometry mode decomposi-

tion 
FD Floating discharge 

CD Corona discharge BD Bubble discharge 

SD Surface discharge IMFs Intrinsic mode functions 

SGC Symplectic geometric components  ApEn Approximate entropy 

EMD Empirical mode decomposition VMD Variational mode decomposition 

RNN Recurrent Neural Networks LSTM Long short-term memory  

BILSTM Bidirectional long short-term memory  β The model weight in BILSTM 

WOA Whale Optimization Algorithm  SSA Stochastic Simulated Annealing 
PSO  Particle swarm optimization  K The signal amplitude 

S(t) Original simulated PD signal  Y(t) Noisy PD signal  

α1, α2
 The attenuation parameters fc  The oscillation decay frequency 

CC Correlation coefficient SGCi 
The ith symplectic geometry mode compo-

nent 
xi The original signal n The number of components of SGC 

θ The threshold for CC selection σ The kernel parameter of RBF 

C The penalty factor in SVM Nstd The regularization parameter 

NE The maximum number of IMFs k The number of decomposition layers 

tol The calculated tolerance threshold_corr
 

The threshold parameter used for mode se-

lection  

threshold_ne
 

The threshold parameter for noise evalu-

ation 
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