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Abstract: The intricate relationship between electrons and the crystal lattice is a linchpin in condensed
matter, traditionally described by the Fröhlich model encompassing the lowest-order lattice-electron
coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations,
hasenabled the exploration of previously uncharted territories of electron–lattice interaction not
accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-
fold. First, we showcase the application of machine learning methods to categorize various interaction
regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed
light on a nebulous region of electron dynamics identified by the machine learning approach and then
attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson
prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall,
our research illuminates the spectrum of dynamics within the Fröhlich model, such as transient
localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding
strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine
learning techniques for designing materials with tailored electron–lattice properties.

Keywords: lattice vibrations; coherent states; dynamical disorder; Anderson localization; transient
localization; machine learning

1. Introduction

Anderson localization refers to the cessation of diffusive wave propagation in disor-
dered systems [1]. On the historical front, Thouless theoretically posited [2] that at low
temperatures, where inelastic processes are minimal, localization would result in higher
resistance compared to that expected from ordinary elastic scattering. This insight later
spurred the development of the scaling theory of Anderson localization for non-interacting
electrons [3]. On the other hand, the conditions facilitating Anderson localization within
an interacting system have been found to rely on several factors, including the strength
of disorder, the dimensionality of the system [4], the range and type of interactions [5–7],
and the time scales of the disorder potential dynamics [8,9].

The conundrum of whether systems localize or not was recognized early on by re-
searchers like Gogolin [10,11], Thouless [2], and also Anderson [1,12]. For instance, the com-
plex interplay between Anderson localization and lattice vibrations is observed in various
random metal alloys and other disordered systems, such as crystalline organic semicon-
ductors [13,14] and halide perovskites [15]. The random fluctuations caused by lattice
motion gradually disrupt the quantum interference necessary for electronic state localiza-
tion, leading to what has been coined transient localization (for capturing the essential
aspects, see, e.g., Ref. [9]). This phenomenon combines aspects of both Anderson localized
and itinerant electron systems: Electronic transport is characterized by the successive cycles
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of localization and delocalization à la Anderson stemming from lattice vibrations that
eventually result in reduced diffusion.

Whereas Anderson localization is typically explored within the framework of a tight-
binding scheme featuring random on-site energies, the standard model for lattice vibrations
is established by Fröhlich, which features linear coupling between an electron and the
lattice. Conventionally, lattice vibrations are viewed through a number state perspective,
but the coherent state representation introduced in Ref. [16], known as quantum acoustics,
treats lattice vibrations as waves rather than individual phonons. This picture utilizing the
coherent state basis is a valid way to treat the lattice vibrations fully quantum-mechanically,
of equal, unassailable stature to the conventional Fock (number) state approach. A quantum
lattice field in a number state has a well-defined amplitude, i.e., the number of quanta,
but lacks knowledge of phase. On the other hand, the field defined by a coherent state has
an equal amount of uncertainty in both amplitude and phase (a more detailed discussion
on the coherent states can be found, e.g., in Refs. [17–20]). However, even though these two
pictures are equivalent at the most fundamental level, this duality is normally hidden by
the approximations the two limits encourage. For example, a virtue of coherent states is
that they are the closest quantum mechanical states to a classical description allowed by
the uncertainty principle.

The quantum-acoustical perspective unveils a duality between particle and wave
pictures akin to quantum optics [17–20]) established by Glauber [21]. Moreover, it allows
for the electron–lattice interactions to be described in terms of a quasi-classical internal
field, reminiscent of Bardeen and Shockley’s concept regarding dynamical lattice distor-
tions in nonpolar semiconductors [22,23]. In particular, the deformation potential arising
from lattice vibrations enables a quantum-coherent, nonperturbative treatment of charge
carriers in coordinate space. In addition to recovering the results of the conventional
Bloch-Grüneisen thory [16], the program of quantum acoustics has illuminated mysteries
surrounding strange metals where transient localization plays a central role, such as T-linear
resistivity at the Planckian limit surpassing the Mott–Ioffe–Regel threshold [24] and a shift
in the Drude peak in the optical conductivity towards the infrared range [25]. Motivated
by these advancements, we aim to identify various classes of dynamics hidden within the
venerable Fröhlich model, which we express in the coherent state representation.

The quantum acoustical approach above enables the generation of large amounts
of time-dependent charge carrier wavefunctions as a function of the system parameters.
Clustering, a common unsupervised learning technique, provides an effective means to
explore the spectrum of carrier behavior by grouping similar dynamical profiles into
clusters. In general, unsupervised machine learning (ML) methods have been established
as a powerful tool to identify complex patterns in large unstructured data sets [26–28].

In the broader landscape of ML applications in physics, our approach aligns with the
recent uses of machine learning to understand and categorize complex physical phenomena,
such as many-body localization and phase transitions [28–33]. However, it is important to
distinguish our work from the common narrative of “using ML to do physics”. Instead,
our method uses ML as a tool that complements traditional analytical and numerical meth-
ods. This distinction underscores a shift from merely applying ML techniques to physics
problems towards a more integrated approach where ML assists in how we conceptualize
and explore physical systems.

To the authors’ knowledge, this study is the first to apply ML techniques for analyzing
the dynamics of condensed matter systems through a time-dependent lens. Moreover, our
approach not only goes beyond the established focus on eigenstates but also extends the
application of ML to condensed matter systems outside of tight-binding models, such as
spin chains.

Our program is as follows. In Section 2, we delineate the theoretical framework
across three stages. We first put forward the concept of deformation potential (Section 2.1),
highlighting its significance as a palpable nonperturbative internal field for electrons
(Section 2.2). To facilitate the analysis of electron–lattice dynamics, we introduce a ma-
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chine learning methodology in Section 2.3. In Section 3, we present our classification of
wavepacket dynamics leveraging the ML approach, exploring variations in the strength of
the electron–lattice interaction and illustrating a resulting “phase diagram”. Additionally,
we conduct a detailed examination of one of the identified sectors connected to transient
localization. Finally, we conclude our findings and discussions in Section 4.

2. Theory and Methods

More explicitly, we investigate the diversity of physics contained by the following
Hamiltonian:

HF = ∑
p

εpcpc†
p + ∑

q
h̄ωqa†

qaq + ∑
pq

gqc†
p+qcp

(
aq + a†

−q

)
(1)

where cp (c†
p) is the creation (annihilation) operator for electrons with momentum p

and energy εp whereas aq (a†
q) is the creation (annihilation) operator for longitudinal

acoustic phonons of wave vector q and energy h̄ωq, respectively. The electron–phonon
interaction is defined by its Fourier components gq. This Hamiltonian embodies the lattice
q, the electrons p, and their lowest-order (linear) interaction that we next cast into the
multimode coherent state basis of lattice degrees of freedom |χ⟩.

2.1. Deformation Potential

The coherent state picture developed in Ref. [16] is the dual partner of the traditional
number state description of electron–lattice dynamics. In this framework, each normal
mode of lattice vibration with a wave vector q is associated with a coherent state |q⟩.
At thermal equilibrium, each mode can be considered to be equilibrated with a heat bath at
temperature T, giving thermal ensembles of coherent states where the average occupation of
the mode ⟨nq⟩th is given by the Bose–Einstein distribution. Employing the independence of
normal modes, entire lattice vibrations can be described as the product state of the coherent
states of the normal modes, in other words, as a multimode coherent state |χ⟩ = ⊗

q |q⟩,
as studied in Ref. [34].

Even though the Fock state perspective focusing on the particle characteristics of lattice
vibrations and the coherent state viewpoint emphasizing the wave nature are formally
equivalent, the approximations they inspire are vastly different. For instance, a common
approach is to assume a direct product state |p⟩ ⊗ |χ⟩, combining the electronic state |p⟩
and the lattice state |χ⟩ while neglecting entanglement effects; this approach is equivalent
to employing the time-dependent Hartree approximation. Moreover, we only consider the
longitudinal acoustic branch of lattice vibrations. Then, as detailed in Ref. [16], the quasi-
classical limit of quantum acoustics unveils a real-space, time-dependent description of
electron–lattice interaction in terms of the deformation potential.

VD(r, t) = ⟨χ|∑
q

gq

(
aq + a†

−q

)
|χ⟩ =

|q|≤qD

∑
q

2gq

√
⟨nq⟩th cos(q · r − ωqt + φq), (2)

where φq is the phase of the coherent state |q⟩. Furthermore, we assume the phases φq to be
uniformly distributed random variables and employ the Debye model, assuming the linear
dispersion ωq = vs|q|, where vs is the speed of sound. Therefore, the time dependence of
the deformation potential is governed by the following wave equation:

∂2

∂t2 VD(r, t) = v2
s∇2VD(r, t). (3)

The acoustic lattice disorder field above appears as a chaotic sea of roaming sound
waves, which can be loosely viewed as a dynamic, multi-wavelength adaptation of the
Berry potential examined in Ref. [35], named for its association with the random wave
conjecture [36] in the field of quantum chaos. On the other hand, the deformation potential
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stemming from lattice vibrations has a close resemblance to the vector potential of a
blackbody field as first identified by Hanbury Brown and Twiss [37], except for the existence
of the ultraviolet cutoff given by the Debye wavevector qD originating from the minimal
lattice spacing a.

The deformation potential in itself is a peculiar object. For instance, it is homoge-
neously random, meaning that the probability distribution of potential values VD does
not depend on a position r or time t (with the assumption of random phases). Therefore,
each spatio-temporal patch of the potential is statistically indistinguishable from another.
The typical length scale of the spatial correlations is determined by its largest wavenumber
components ∼ qD. Similarly, the typical timescale of the potential change is determined by
its largest frequency components ∼ ωD. This special type of spatial-temporal correlation
sets the deformation potential apart from other types of lattice distortions, as commonly
investigated in the context of Anderson localization [1].

Even though the deformation potential overall averages to zero, its root mean square
characterizing the strength of lattice disorder fluctuations grows in temperature as

V2
rms =

2E2
d h̄

πρvs

∫ qD

0

q2dq
eh̄vsq/kBT − 1

∼
{
(kBT)1/2, when T ≫ TD

(kBT)3/2, when T ≪ TD
,

where Ed is the deformation potential constant related to the coupling gq, and ρ is the mass
density of the underlying crystal lattice. As the temperature nears the Debye temperature
Td, previously dormant vibrational modes start to awaken from their Bose–Einstein slumber.
This activation not only enhances the peaks and valleys as ∼T3/2 but also brings forth finer
wavelength details in the deformation potential, as depicted in the left and middle panels
of Figure 1. At a temperature T ∼ TD, all the possible lattice modes are in play, after which
no new wave characteristics emerge. The existing potential bumps and dips simply become
more pronounced as ∼

√
T, as illustrated via the middle and right panels of Figure 1.

T� TD T ∼ TD T� Td

Figure 1. Snapshots of the deformation potential at three different example temperatures. The left and
middle panels demonstrate the awakening of new vibrational modes with increasing temperature,
giving rise to finer details in the potential. At the same time, the bumps (red) and dips (blue) of the
potential become higher and deeper. On the other hand, when the Debye temperature is reached, all
the modes are active, and the potential features grow as ∼

√
T, as shown in the right panel. For the

sake of illustration, the left panel has a different color scale than the middle and right panels.

2.2. Electron Dynamics

The time-varying deformation potential virtually demands quantum wavepacket
propagation techniques for the electron. Here, we focus on the time-dependent Hamiltonian

H0 =
|p|2
2m∗ + VD(r, t),

where m∗ is the effective (band) mass of the electron and VD(r, t) is the deformation
potential given by Equation (2). This effective Hamiltonian H0 represents the electron
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component of the Fröhlich model defined previously in Equation (1) within the framework
of the effective mass approximation.

Our investigation of electron dynamics under the defined effective Hamilton H0
approaches the issue from the point of view of Gaussian wavepackets that are a common
tool for analyzing time-dependent aspects of a quantum system [38,39], for instance in the
studies of quantum optics [17,18], scarring [40–42], and branched flow [43–45]. Here, we
choose the following test Gaussian for representing the charge carrier:

Ψ(r, 0) = N exp
(

1
4
|r · σ|2 − ik · r

)
, (4)

where N is the normalization factor, and σ = (σ−1
x , σ−1

y ) describes the initial width of
the wavepacket. Without loss of generality, we can choose to launch the test wavepacket
into the x direction with the Fermi momentum, thus k = (kF, 0), where kF is the Fermi
wavevector. The memory of the initial form of the wavepacket is quickly lost in the chaotic
potential and its exact form is unimportant.

To propagate the wavepacket in time, we utilize the third-order split operator
method [38,39,46,47] applied to the time-dependent Schrödinger equation:

ih̄
∂

∂t
Ψ(r, t) = H0Ψ(r, t). (5)

Figure 2 illustrates the charge carrier wave, originally a Gaussian as described in Equation (4),
evolving under the influence of the dynamic lattice wave field, which converts the always-
accessible wave nature of lattice vibrations into something valuable, a point where the
quantum-acoustical perspective becomes tangible. Within this kind of Wave-on-Wave
(WoW) approach, as detailed in Refs. [24,25], one winds up solving two interacting equa-
tions of motions simultaneously: one for the lattice and one for the electron (i.e., the
time-dependent Schrödinger equation for the charge carrier and the wave equation for the
lattice vibrations).

Figure 2. The quantum acoustical Wave-on-Wave (WoW) approach to charge carrier dynamics.
An electron wavepacket propagates atop a deformation potential, which itself evolves according to
the wave equation. As it traverses this shifting acoustic landscape shaped by acoustic deformations,
the electron undergoes quasi-elastic scattering akin to impurity scattering.

In general, we can crudely characterize the WoW dynamics based on two criteria:

K̄ =
h̄2k2

F
2m∗Vrms

{
≫ 1 → Perturbative
≲ 1 → Nonperturbative,

and λ̄ =
π

kFa

{
≪ 1 → Incoherent
≲ 1 → Coherent.
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Here, we want to point out that the term “coherence” is reserved to describe the spatial
phase coherence of the electron wavefunction, not to be conflated with the “coherent versus
incoherent metals” nomenclature, which pertains to the breakdown of the quasi-particle
paradigm. Rather, this criterion refers to the quantum coherence of electrons that becomes
important in scattering when the wavelength of the electrons (Fermi wavelength) is not
much less than twice the lattice constant a. The WoW approach presented here adeptly
captures the persistence of coherence between successive collisions, a facet commonly
overlooked by conventional Boltzmann transport methods. Indeed, the preservation of
coherence beyond the first scattering event can wield significant influence, as evidenced by
Refs. [16,24].

On the other hand, the comparison of the kinetic energy of the electron (a fair ap-
proximation is given by the Fermi energy) with the root mean square of the deformation
potential determines whether the lattice vibration and its resultant electron scattering can
be treated perturbatively or not. In essence, the deformation potential cannot be merely
considered a minor perturbation to the free-electron model Hamiltonian. Instead, it can
result in a substantial effect on the electronic density of states, as shown in Refs. [16,48].

2.3. Clustering

In addition to this classification based on the static properties of the electron–lattice
interaction, we here explore the dynamical aspects of this relationship by examining two
distinct measures, namely the mean squared displacement (MSD) and inverse participation
ratio (IPR). The spread of the wavepacket over time is measured by the MSD:

α(t) =
∫

Ψ∗(r, t)[⟨r⟩ − r]2Ψ(r, t)dr. (6)

Moreover, we assess the level of wavepacket localization by considering the IPR

β(t) =
∫

|Ψ(r, t)|4 dr, (7)

a widely used method for analyzing scarred states or Anderson localized states in a
disordered medium [49]. Here, it is important to note that the measures discussed here
deviate from their conventional definition by being determined as a function of time rather
than time-independent, as typically seen in the studies of eigenfunctions. Furthermore, we
can combine the time-evolving quantities into one two-dimensional times series, denoted as

F(t) =
(

α(t)
β(t)

)
,

which paves the way to leveraging ML methods for time series to discern various trans-
port regimes.

Specifically, we apply k-means [50] clustering using dynamic time warping [51] to the
mean-variance normalized set of series {F(t)}, which consist of 50 timesteps with each
timestep representing 2 fs of evolution, across different system variable settings. At its
core, k-means is an algorithm to solve the optimization problem of partitioning a given set
into k clusters such that the in-cluster variance is minimized (for a detailed explanation
of k-means and our method, we refer the reader to Appendix A). It is important to stress
that this optimization is performed in a fully unsupervised manner, meaning that it only
processes the raw time series {F(t)} and is blind to the system variables used to generate
the data. To ensure robustness and to mitigate the effect of statistical fluctuations, we
average the clustering results of an ensemble of 10 time series data sets, each generated
using randomly initialized deformation potentials. This method allows us to objectively
identify unique clusters corresponding to diverse dynamical regimes hidden within the
Fröhlich Hamiltonian.
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3. Results

As a real-world example of electron–lattice dynamics, at least within the Fröhlich
Hamiltonian, we investigate the prototypical strange metal lanthanum strontium copper
oxide (LSCO), renowned for its diverse physics [52]. This canonical cuprate, discovered by
Bednorz and Muller [53], is characterized by an orthorhombic space group [54]. The main
electrical transport occurs between the CuO2 layers, making it effectively two-dimensional
in nature [52]. Furthermore, LSCO has a large electron–lattice coupling, and its Fermi
energy is adjustable through doping. The material parameters for optimal doping are given
in Table 1 based on experimental values derived from Refs. [55–59]. These serve as the
basis for constructing an associated deformation potential. These parameters align with
previous investigations on strange metals [24,25] using a quantum-acoustical perspective.
Here, we explore electron–lattice dynamics in a broader scope, rather than focusing on
specific attributes like electrical conductivity.

To enable this analysis, we introduce two scaled variables that we vary in our sim-
ulations: dimensionless temperature T̃ = T/TD and effective electron–lattice coupling
G̃ = 2kF/qD. The coupling is adjusted by varying the Fermi wavevector kF (energy) of the
electron while maintaining the underlying lattice structure constant (with a fixed Debye
wavevector qD). This ensures that our variables T̃ and G̃ are independent, a premise
supported by the evidence from our simulations.

Table 1. Material parameters for LSCO that are used in the simulations for constructing the deforma-
tion potential.

Parameter n m∗ vs Ed ρ EF a TD
[1027 m−3] [(me)] [m/s] [eV] [10−6 kg/m2] [eV] [Å] [K]

LSCO 7.8 9.8 6000 20 3.6 0.12 3.8 379

3.1. Phase Diagram

Our central finding is presented in Figure 3 showing the dynamical data classified
using the ML-based clustering algorithm explained above and as detailed in Appendix A as
the temperature T̃ and coupling strength G̃ are varied. Three distinct phases are identified
as labeled by the differently colored regions. We want to emphasize that the term “phase”
is used here to refer to regimes of different dynamical behavior, not in the thermodynamical
sense. There are no sharp boundaries between these phases; the changes are gradual rather
than true phase transitions. This fact is highlighted in Figure 3 by the different sizes of the
points, representing the level of agreement within the ensemble of studied wavepackets for
the given parameters.

We interpret the distinct regions as follows: refractive scattering phase (I), diffrac-
tion behavior phase (II), and transient localization phase (III). We present three zones of
characteristic wavepacket evolution, selected to represent the dynamical behavior of each
phase. The snapshots in Figure 4 depicts the real part of the evolution of a common initial
Gaussian wavepacket at times of 20 fs, 60 fs and 100 fs under three different conditions of
temperature T̃ and coupling strength G̃.

Phase I (green) is characterized by an almost linear phase boundary starting at
T̃ ≈ 0.45 rising across the range of G̃ explored. This phase is perturbative in the sense
of K̃ ≫ 1. As seen in the left column of Figure 4, the scattering of the wavepacket is
mainly refractive. This trend will lead to branched flow behavior [43] at longer times; a
propagating wave forms tree-like branches under a weakly disordered medium, due to
small-angle refraction [60]. Moreover, there is a partial transparency of the electrons to any
shorter wavelength modes (q > 2kF) present in the underlying deformation potential, as is
further explained in Ref. [16].
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Figure 3. Phase diagram of LSCO in the dynamic potential field. The phase diagram was derived
using a machine learning-based clustering algorithm to analyze time series data of the wavefunction
evolution within systematically varied deformation potentials. This analysis involved variations
in temperature T̃ and effective coupling G̃; every point corresponds to one unique configuration.
The following three clusters were identified: (I) refractive scattering region (green), (II) diffraction
behavior (blue), and (III) short-time localization at high temperatures (red). The size of the points
indicates the level of agreement across an ensemble of different wavefunction data sets.

Phase II (blue) covers the upper right section of the phase diagram with high values of
temperature variability (T̃) and effective coupling(G̃) and is separated by an exponential-
like phase boundary from Phase III (red), which is characterized by high temperatures but
lower G̃ levels. Like Regime I, the second phase is characterized by relatively adiabatic
lattice dynamics. In other words, the deformation landscape appears as if it is stationary
for an electron, at least for short times of ∼2π/ωD. This fact is further confirmed by our
IPR results below. Furthermore, this regime is perturbative but also classical-like, meaning
that the wavelength of the electron is shorter than the effective shortest length scale of
the deformation potential. As thoroughly discussed in Ref. [16], the perturbation theory
pathway, particularly Fermi’s golden rule, is proven to be highly successful in this phase.

The final phase (Phase III) identified by the ML-clustering is associated with highly
nonperturbative (K̃ ≲ 1) electron–lattice interaction, primarily existing in the parameter
space where electron dynamics can be considered as coherent (λ̃ ≲ 1). Therefore, wave
interference and diffraction effects are important because the electron wavelength is larger
than the shortest length scale of the deformation potential. Notably, this phase begins at
low temperature as T̃ ≈ 0.5 while extending to very high temperatures across the range of
T̃ investigated.

In Phase III, as depicted in the right column of Figure 4, an initial wavepacket encoun-
ters significant scattering from a strong deformation potential, initially causing diffusive
behavior akin to that seen in Phase II. However, wavepacket spreading eventually ceases
due to quantum interference effects, signifying an onset of localization. Nevertheless,
the random fluctuations introduced by the motion of the lattice slowly but surely scramble
the quantum interference required for the long-term confinement of the wavepacket, re-
sulting in the transient nature of this localization (for capturing the essential aspects of this
phenomenon, see, e.g., Ref. [9]).
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Figure 4. Evolution of electronic wavefunctions in dynamic deformation potentials. This chart
displays the real part of the wavefunction in two-dimensional coordinate space, where red and blue
colors indicate positive and negative amplitudes, respectively. Each column represents parameters
selected as examples from the identified clusters I, II, and III. For each cluster, the panels arranged
vertically from top to bottom show snapshots of the wavefunction at increasing times of 20 fs, 60 fs,
and 100 fs.

To achieve a more comprehensive understanding, we adopt a static potential approx-
imation, wherein the temporal aspect of the lattice deformation field of Equation (2) is
neglected, effectively frozen into its original configuration. Within this frozen potential
framework, we carry out an analysis analogous to that of the evolving deformation poten-
tial as above. This is outlined in Appendix B. Employing the same cluster classification,
we categorize the data of an electron wavepacket evolution under a static deformation
potential, yielding a phase diagram similar to its dynamic counterpart in Figure 3, albeit
with slightly sharper phase boundaries. This comparison validates treating the deformation
potential as predominantly static, particularly in Phases I and II. On the contrary, in Phase
III, the static deformation potential results in full Anderson localization of the wavepacket
that proves transient when the deformation potential undergoes morphing and undulation
over time, as further elucidated in the subsequent analysis.

3.2. Transient Localization

In this section, we delve deeper into the nature of transient localization induced by
lattice vibrations taking place within Phase III. At timescales shorter than the characteristic
timescale of 2π/ωD ∼ 100 fs, lattice vibrations mimic a static, internal disorder field,
triggering the onset of Anderson localization. Therefore, in reference to the dynamical
field where the motion of the lattice disrupts the process of Anderson localization, we
are also exploring the localization behavior of a wavepacket within a frozen potential
approximation. In both cases, we quantify the level of localization by studying the time-
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dependent IPR, denoted as α(t) in Equation (7), and introducing a subsidiary product of
the MSD, called the instantaneous diffusivity

D(t) =
1
4

dβ(t)
dt

, (8)

where β(t) is defined in Equation (6).
We begin by examining the instantaneous diffusivity, which then determines the

diffusion constant D as its long-term value, i.e., D = limt→∞ D(t). In the spirit of the
Einstein and Drude models, we can convert this diffusion constant into an inverse scattering
rate as

1
τ
=

kBT
m∗D

,

consistent with the definition used in Ref. [24]. Figure 5 shows the inverse scattering rate
1/τ for both the cases of frozen (left panel (right panel) deformation potential. Overall,
the analysis of the scattering rate supports the ML classification underlying the phase
diagram shown in Figure 4. Both scenarios exhibit a notably high inverse scattering
rate within Phase III of the phase diagram (upper right corner), indicating significant
constraints on carrier mobility, as expected in the context of Anderson localization. This
effect is more prominent in the frozen potential approximation than in the case of the
morphing deformation potential, underlining the fact that the dynamics of the deformation
potential continuously disrupt short-lived localization attempts. Moreover, we observe
that the contour lines of the inverse scattering time in Figure 5 closely resemble the phase
boundaries seen in Figure 4.

Figure 5. Inverse scattering rate 1/τ for electrons in LSCO in a (a) frozen and (b) dynamic deformation
potential on a normalized scale. Both scenarios exhibit a high inverse scattering rate region in the
upper left corner (Phase III), suggesting strong constraints on carrier mobility. This region is markedly
more prominent in the frozen potential scenario, as the lattice vibrations in the dynamic potential
continuously disrupt short-lived attempts at localization. The shape of counter lines closely resembles
the dynamical phase transition lines depicted in Figure 4.

A deeper insight into the emergence of transient localization is obtained by investigat-
ing the IPR of the wavepacket evolving over time. In the left panel of Figure 6, we show
the evolution of the IPR in Phase III for both static (blue) and dynamic (green) deformation
potentials. In the approximation where the deformation potential remains static at its initial
state, the IPR stabilizes at a certain value (β ∼ 0.3) after an initial decrease, heralding the
Anderson localization of the wavepacket. Similarly, when the wavepacket is subject to a
dynamic deformation potential, a form of Anderson localization occurs. This localized state
is eventually disrupted by lattice motion, leading to a temporary delocalization followed by
a brief relocalization before being disintegrated again by potential evolution. This cyclical
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process of plateauing IPR seen in the left panel of Figure 6 epitomizes the birth and demise
of the Anderson localization due to lattice vibrations.

We would like to point out that the dynamics of short wavelength components of the
deformation potential can significantly influence localization within a time window shorter
than the characteristic time ωD/2π. For example, the left panel of Figure 6 demonstrates
an instance of dynamically enhanced localization: the random initial configuration of the
potential creates valleys (mountains) that quickly move towards (away) the wavefunction,
causing boosted localization. Vice versa, these types of small potential variations in time can
also lead to weaker localization compared to the static potential case in the first localization
plateau seen in the left panel of Figure 6.

To provide a full picture, we also present the evolution of the IPR measure for Phase
I and II in the right and left panels of Figure 6, respectively. Neither phase exhibits any
signs of localization, contrasting with the behavior observed in Phase III. Moreover, the
overlapping curves of the static and dynamic potentials further support the earlier assertion
that the deformation potential can be effectively approximated as a static entity in Phase I
and II. In Phase II, the IPR shows rapid exponential decay, quickly approaching the ergodic
(fully delocalized) limit of β ∼ 0. This behavior resembles that of a system with a high
density of impurities characterized by Gaussian statistics. Similarly, in Phase I, the IPR
decreases towards the ergodic limit, albeit at a slower rate, displaying subtle oscillation.
The slower, non-exponential decay can be attributed to the weak, refractive nature of
wavepacket scattering, in conjunction with quantum coherence and interference effects.

Figure 6. Normalized inverse participation ratio β(t) of the wavepacket as a function of time across
three distinct dynamical regions identified in the machine learning-based phase diagram shown in
Figure 4. Figure contrasts the behaviors under static (blue line) and dynamic (green line) deformation
potentials. In Phase III (left), brief localization periods (indicated by dashed lines) are broken by
lattice motion (indicated by arrows), while full localization, indicated by the saturation of β(t), occurs
within the frozen potential approximation. In Phase II (middle) and Phase I (right), the decay of β(t)
follows a relatively exponential trend without signs of localization as observed in Phase III. Notably,
the decay is faster in Phase I when compared to Phase II, where small oscillations linked to quantum
interference are present.

4. Conclusions and Future Directions

Quantum acoustics opens up an unexplored pathway to investigating the intricate
Fröhlichian electron–lattice interaction inaccessible with the standard methods of perturba-
tion theory. We take the concept further by treating it not just as a dual perspective on lattice
vibrations, but as a versatile tool in ascendance: a time-dependent, nonperturbative ap-
proach for electron–lattice interaction in coordinate space. Moreover, in the quasi-classical
limit of the coherent state formalism, the quantum-acoustical way unveils the dynamics of
electrons navigating through an internal lattice disorder field undulating and propagating
in time.

In particular, we have here demonstrated the efficacy of unsupervised machine learn-
ing techniques in categorizing and analyzing the intricate aspects of electron dynamics
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stemming from lattice vibrations. Specifically, we have unraveled three distinct phases
of behavior: refractive scattering, diffraction, and transient localization. Subsequently,
we have assayed the latter phase, where the Anderson localization attempts of electron
wavepackets are periodically disrupted by lattice movement, further enlightening an enig-
matic phenomenon suggested to underpin the mysteries surrounding strange metals.

Our study, supported by machine learning, explores the parameter space characterized
by temperature and effective coupling, focusing on the paradigmatic strange metal LSCO,
known for its two-dimensional transport behavior. However, the presented method can be
readily extended to variations in any set of material parameters—potentially augmented by
density functional simulations as they are not necessarily independent—and generalized
to electron–lattice dynamics in three dimensions. Therefore, our work not only lays the
groundwork for uncovering hidden realms in electron–lattice interaction but is also a
testament to designing materials with customized features by employing machine learning
techniques from a dynamics perspective.
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Appendix A. Clustering Analysis

For all cluster analyses in this work, the k-means implementation in the TimeSeriesKMeans
module of the tslearn package [61] was used. We give a brief overview of the method here.

Appendix A.1. k-Means

The goal of the k-means algorithm, which is attributed to Lloyd [50], is to divide
X = {x1, x2, . . . , xN} with xi ∈ Rn into disjoint sets (clusters) S = {S1, S2, . . . , Sk}, Si ⊆ X,
while minimizing the in-set variance. More concretely, one aims to find

arg min
S

L(S) ≡ arg min
S

k

∑
i=1

∑
xj∈Si

∥xj − µi∥2 = arg min
S

k

∑
i=1

|Si|Var[Si], (A1)

where ∥·∥ is the Euclidean norm, |Si| denotes the cardinality of Si, i.e., the size of cluster Si,
and µi is the cluster center (centroid) of the ith cluster, defined as follows:

µi =
1
|Si| ∑

xj∈Si

xj (A2)

After some initialization scheme places the initial centroids, the algorithm alternates be-
tween two steps:
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1. Assignment Step: Assign all xi to their closest centroid, as measured by the squared
Euclidean distance. This defines the cluster memberships S .

2. Update Step: Update the centroids using S according to Equation (A2).

It is easy to see that these steps cannot increase the in-set variance; the algorithm
is guaranteed to converge. However, there is an important caveat in that the objective
function L(S) defined in Equation (A1) is non-convex and the algorithm can therefore
converge to a local optimum that is not the global minimum. This problem can be mitigated
by an intelligent choice of initialization scheme, most commonly k-means++ [62], and by
running the algorithm multiple times and taking the clustering with the minimal L(S)
post-convergence [27]. An example run of k-means on toy data in R2 is shown in Figure A1.
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Figure A1. Toy example to illustrate a run of the k-means algorithm with hyperparameter k = 3 on
example data in R2 (black dots). (a) Initial centroids are chosen by an initialization scheme (here:
random initialization). (b) Assignment step of the first iteration. (c) Update step of the first iteration.
(d) Final result. The algorithm converges after two consequent iterations yield sufficiently similar
clusters (here the 10th iteration).

Appendix A.2. Dynamic Time Warping

When working with time series data x(t) = (xt1 , xt2 , . . . , xtM ), xti ∈ Rd, one could
naively embed x(t) in the space RM×d (here, M = 50 and d = 2) equipped with the
Euclidean metric and run k-means exactly as described above. However, this approach
has significant limitations. It only works for sequences of equal length, and more criti-
cally, the Euclidean metric is unable to account for the temporal nature of the sequences.
By operating solely on elements with the same time indices, it ignores potential temporal
misalignment between sequences. Consequently, even time series with similar features
can result in a large metric distance if their phases differ. This makes it an ineffective
measure for determining similarity. Dynamic time warping (DTW), introduced by Sakoe
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and Chiba [51], has been employed to overcome these challenges by identifying the most
temporally appropriate pairs of time indices for comparison [63]. Formally,

DTW(x(t), y(t)) = min
π

√
∑

(ti ,tj)∈π

∥xti − ytj∥2 (A3)

where the time index pairs π = {π0, π1, . . . , πK} satisfy certain (boundary) conditions
that we will not elaborate on for brevity (for an extensive introduction to the topic, see,
e.g., Ref. [64]). One thus ends up with a new, warped time path for the comparison of the
time series, as is illustrated in Figure A2.
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(t

)
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Figure A2. Illustration of the difference between the Euclidean distance and Dynamic Time Warping
(DTW) distance for two example MSD sequences from our data set. While the Euclidean distance
compares values at corresponding time steps, DTW temporally aligns the sequences, providing a
more robust distance measure for time series data.

DTW is not a metric, because DTW(x(t), y(t)) = 0 does not imply x(t) = y(t) and it
does not obey the triangle inequality. Nevertheless, the Fréchet mean, which generalizes
Equation (A2) to any metric space, is used to compute a centroid-like representation,
commonly referred to as barycenter:

µi(t) = arg min
z(t)

∑
xj(t)∈Si

DTW(z(t), xj(t))2 (A4)

This problem is computationally NP-hard [65]. DTW Barycenter Averaging (DBA), pro-
posed by Petitjean et al. [66], is a widely used algorithm to approximate the barycenters.

Appendix A.3. Feature Scaling

Since k-means depends on distances, it is important to scale the features before per-
forming the optimization. In this analysis, we normalize the features to zero mean and unit
variance in the time dimension:

x̃(t) =
x(t)− µt

σt
,

where µt =
1
T
∫ T

0 x(t)dt and σt =
√

1
T
∫ T

0 (x(t)− µt)
2 dt.

Appendix A.4. Choosing k

The parameter k, i.e., the number of clusters, has to be set before performing the opti-
mization Equation (A1). To find a suitable k for our analysis, we run the k-means algorithm
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multiple times with varying values of k ranging from 1 to 10. Figure A3 shows a plot of
the sum of squared distances of samples to their nearest cluster center (inertia) against
different values of k. The point where the curve bends or forms an elbow is considered an
indicator of the natural number of clusters in the underlying data [27]; additional clusters
beyond this point do not substantially improve the model’s representation of the different
dynamical regimes of the system.

Figure A3. Elbow plot depicting the sum of squared distances of samples to their nearest cluster
center for varying values of k for the (a) frozen and (b) dynamic lattice vibration field scenario.
The elbow point (indicated by a red star), where the curve shows a distinct bend, suggests the optimal
number of clusters for our analysis, as increasing the number of clusters beyond this value yields
diminishing returns in terms of model improvement.

Appendix A.5. Ensemble Averaging

To mitigate the effect of statistical fluctuations of the lattice vibration field on the
clustering of the electron dynamics, we perform the optimization independently on an
ensemble of 10 wavefunction data sets, each generated using deformation potentials with
different random initializations. The different clustering results are then consolidated into
one phase diagram by taking the consensus of the ensemble, with the size of the dots in
Figure 3 indicating the degree of consensus.

Appendix B. Clustering in the Frozen Approximation

This appendix presents the clustering analysis results using the frozen field approxi-
mation, where the deformation potential is treated as static. This simplifies the system by
ignoring the temporal evolution of lattice vibrations, allowing for a direct comparison with
the dynamic scenario discussed in the main text.

Using the same k-means clustering technique as described in Appendix A, we simulate
wavepacket evolution under static deformation potentials. These potentials are generated
with identical parameters to those used for the dynamic scenario. We then analyze the
resulting time-dependent wavefunctions using mean squared displacement (MSD) and
inverse participation ratio (IPR) as features.

Figure A4 shows the phase diagram for LSCO derived from clustering in the frozen
approximation. As in the dynamic case, three phases are identified. Supported by the
arguments presented in the main text and especially Figure 6, Phases I and II are very
similar to the dynamic case as the electron dynamics are highly adiabatic in these regimes.
The key difference emerges in Phase III, the Anderson localization phase. Here, strong
localization due to quantum interference in the static potential field leads to complete
Anderson localization, contrasting sharply with the transient localization observed in the
dynamic case.
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Figure A4. Phase diagram of LSCO in the frozen potential field. The phase diagram was derived
using a machine learning-based clustering algorithm to analyze time series data of the wavefunction
evolution within systematically varied deformation potentials. This analysis involved variations
in temperature T̃ and effective coupling G̃; every point corresponds to one unique configuration.
The following three clusters were identified: (I) refractive scattering region (green), (II) diffraction
behavior (blue), and (III) Anderson localization (red). The size of the points indicates the level of
agreement across an ensemble of different wavefunction data sets.
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