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Abstract: We study the statistical interdependence between daily precipitation and daily extreme
temperature for regions of Mexico (14 climatic stations, period 1960–2020) and Colombia (7 climatic
stations, period 1973–2020) using linear (cross-correlation and coherence) and nonlinear (global phase
synchronization index, mutual information, and cross-sample entropy) synchronization metrics. The
information shared between these variables is relevant and exhibits changes when comparing regions
with different climatic conditions. We show that precipitation and temperature records from La
Mojana are characterized by high persistence, while data from Mexico City exhibit lower persistence
(less memory). We find that the information exchange and the level of coupling between the pre-
cipitation and temperature are higher for the case of the La Mojana region (Colombia) compared to
Mexico City (Mexico), revealing that regions where seasonal changes are almost null and with low
temperature gradients (less local variability) tend to display higher synchrony compared to regions
where seasonal changes are very pronounced. The interdependence characterization between precipi-
tation and temperature represents a robust option to characterize and analyze the collective dynamics
of the system, applicable in climate change studies, as well as in changes not easily identifiable in
future scenarios.

Keywords: time series; precipitation; temperature; entropy; synchronization

1. Introduction

Statistical interdependency can quantify interactions between systems’ elements when
they evolve synchronously [1–3]. It focuses on assertively quantifying the coupling re-
sponsible for collective behavior. One of the most fruitful approaches to understand this
phenomenon is Kuramoto’s pioneering study in the 1970s on the phase synchronization
analysis of coupled oscillators [4]. A number of studies have applied these notions to
synchronization analysis between irregular signals, identifying different coupling levels
in several fields, including physical and biological systems [5–7]. However, despite its
usefulness in studying different systems [8], the complex nature of systems has given rise
to mathematical complications in this task [9].

From a practical point of view, the evaluation of the coupling level between complex
signals requires the incorporation of different approaches. A group of methods which
have proved to be very useful in measuring coupling between irregular signals are those
derived from information theory or that are entropy based, whose principal applications
have focused on physiological signal analysis [10–27] but are also applied in other fields
such as finance [28–31], Earth sciences [32–34], and engineering [35], among others.
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On the other hand, climate is a complex system whose behavior requires an integrated
approach to describe its dynamics [36,37] and especially the characterization of coupling
levels between representative variables. In past years, a great variety of coupling measures
have been applied in the context of the climate study. For instance, Duane [38] studied
meteorological teleconnections, using synchronized chaos, and reported the tendency of
two hemispheric subsystems that simultaneously occupy the same regime. Berg et al. [39]
analyzed seasonal characteristics of the relationship between daily precipitation intensity
and surface temperature in Europe, distinguishing separate precipitation types and stating
the dependence between temperature and precipitation. Donges et al. [40] compared
measures to analyze climatic teleconnections using a complex network approach. Feliks
et al. [41] studied the synchronization between the North Atlantic Oscillation and Oscilla-
tory Climate Modes in the Eastern Mediterranean, identifying a significant synchronization.
On the other hand, Gennaretti et al. [42] used the correlation coefficient to evaluate the in-
terdependence of average temperature and precipitation for Canadian Arctic coastal zones,
highlighting the importance of including interdependence analysis on climate change
scenarios, and Jajcay et al. [43] analyzed the causality and synchronization of the El Niño
Southern Oscillation, ENSO, and stated that the understanding of founded discrepancies
may be the key to improving the ENSO prediction.

Two of the most important and representative climatic variables are precipitation and
temperature because they play a key role in the hydrological behavior of a territory with
an impact on events such as floods and droughts, among others [44–46]. These variables
(as physical phenomena) exchange nontrivial information in their (joint) evolution and
are indispensable in the climate characterization. Quantifying the coupling level between
climatic variables such as precipitation and temperature represents valuable information to
robustly characterize their collective behavior, which is relevant in studies of climate change
scenarios. However, as mentioned above, the description and characterization of climate
variables have mainly focused on analyzing teleconnections and seasonal relationships.
Nonetheless, there is a gap in the interdependence study to quantify shared information
between climate variables such as precipitation and daily extreme temperature using
robust techniques of synchronization measures, which is covered in this paper. In this work,
the interdependence between precipitation and extreme daily temperature (maximum
and minimum) is studied by measuring their synchronization level. We start with a
statistical description of the time series by exploratory data analysis. The initial approach
to the synchronization is studied using the cross-correlation and coherence functions,
whereas the deeper analysis is carried out using the mutual information, the global phase
synchronization index and the cross-sample entropy.

The remainder of this paper is outlined as follows: Section 2 contains the material
and methods, which describe the study area, data, and data treatment for applying the
techniques of synchronization measures. Section 3 presents the results and discussions of
the obtained values from the applied techniques and their dissertation. Finally, Section 4
includes the conclusions.

2. Materials and Methods
2.1. Study Area and Data

We studied climatic data from two regions. The first one is the metropolitan area
of Mexico City (Mexico), one of the most populated cities in the world, where urban
expansion has introduced modifications in the atmospheric energy exchange [47]. Daily
records of precipitation, and maximum and minimum temperatures of 14 climatic sta-
tions from 1960 to 2020 were studied, i.e., 42 time series each with about 20,000 records
obtained from Servicio Meteorológico Nacional (SMN) of the Comisión Nacional del Agua
(CONAGUA, https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/
informacion-estadistica-climatologica, last accessed date: 8 May 2024). The second region
refers to La Mojana (Colombia), which serves as a hydraulic damping system for the Cauca,
San Jorge, and Brazo Loba (a bifurcation of Magdalena River) rivers that convert it in a
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great interest area due to its natural diversity, hydrological and hydraulic functions, and
agricultural importance with particular climate characteristics and social dynamic [48,49].
For this region, the precipitation and maximum temperature daily records of seven (07)
climatic stations between 1973 and 2020 were studied, i.e., 14 time series of about 13,500
records each, obtained upon request to the Instituto de Hidrología, Meteorología y Estudios
Ambientales (IDEAM, http://dhime.ideam.gov.co/atencionciudadano/, last accessed date:
8 May 2024). In total, 56 time series were studied. The records period for each region was
taken according to the data availability. Because of the information’s lack of minimum
temperature, it was not possible to study this variable for La Mojana. The general relevant
information on climatic stations is shown in Table 1. To visualize the study area, see detailed
online information on the geographical location of the stations at this link: https://colab.
research.google.com/drive/1ZWVi9hpvi_Q3ZeR4BOhgTat3sR7l_kbN?usp=sharing, last
accessed date: 8 May 2024.

Table 1. General information of climatic stations.

Station Station Code Latitude Longitude Altitude (msnm)

Mexico City

MCS1 9010 19.4125 −99.2017 2271
MCS2 9014 19.3033 −99.1481 2256
MCS3 9071 19.3339 −99.1322 2250
MCS4 9020 19.2969 −99.1822 2296
MCS5 9029 19.4767 −99.0914 2239
MCS6 9022 19.1344 −99.1731 2990
MCS7 9032 19.1906 −99.0219 2420
MCS8 9036 19.3953 −99.0978 2235
MCS9 9068 19.4292 −99.0528 2240

MCS10 9041 19.1967 −99.1286 2620
MCS11 9043 19.4653 −99.0792 2620
MCS12 9045 19.1789 −99.0028 2240
MCS13 9048 19.4036 −99.1961 2595
MCS14 9051 19.2628 −99.0036 2309

La Mojana

LMS1 25025100 9.28194 −74.84528 18
LMS2 25025150 8.29519 −75.16450 20
LMS3 25015010 8.18078 −75.63228 170
LMS4 25025170 8.74086 −75.49883 125
LMS5 25025240 8.54283 −74.63556 20
LMS6 25025210 8.92075 −74.47425 10
LMS7 25025190 8.39933 −75.58372 90

2.2. Exploratory and Fractal Data Analysis

This aspect was addressed through descriptive statistics, involving position and
central tendency measures and dispersion measures, among other statistics measures,
following [50–53]. The missing data were input using reanalysis data obtained from ERA
database (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?
tab=form, last accessed date: 8 May 2024). Also, through visual inspection, we identified
outliers, and if any existed, we compared them with nearby stations searching for similar
records at the occurrence date. If such an event was an extreme one, we validated it, and
we replaced it with the ERA register otherwise. In addition, to characterize the temporal
organization of the individual (univariate) series, persistence and fractality were analyzed
using rescaled range analysis [54] and Higuchi’s fractal dimension [55]. Details of the
procedures for calculating the Hurst exponent (H) and the Higuchi fractal dimension (D)
can be found in [56] and [55,57], respectively. Values of 0.5 < H ≤ 1.0 indicate persistence
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(long-term memory), while 0.0 ≤ H < 0.5 indicates anti-persistence, and if H = 0.5, the
fluctuations are neither persistent nor anti-persistent. Similarly, signals with D < 1.5
exhibit long-range correlations, while D > 1.5 indicates anti-correlations. There is a direct
relationship between H and D that is applicable to self-affine series given by H = 2 − D,
where 1 < D < 2 [58].

2.3. Synchronization Measures

Let P, Tmax, and Tmin be the precipitation, and maximum and minimum temperatures,
respectively. We compute the following measures.

2.3.1. Cross-Correlation Function

The cross-correlation f unction cP,T(τ) between P and T (Tmax or Tmin as appropriate)
gives a linear synchronization measure between P and T at a lag τ, expressed as [59,60]:

cP,T(τ) =
1

N − τ

N−τ

∑
i=1

(Pi − P̄)(Ti+τ − T̄)
sPsT

, (1)

where N is the time series size, and P̄ and T̄ represent the mean values. sP and sT denote
the standard deviation of P and T, respectively.

2.3.2. Coherence Function

The coherence f unction ΓP,T( f ) gives a linear synchronization measure in the fre-
quency domain, involving the Fourier transform of the cross-correlation function of P and
T, modulated with its self-spectral [61,62], that is:

ΓP,T( f ) =
GP,T( f )√

GP,P( f )GT,T( f )
, (2)

where GP,T( f ) =
∫ ∞
−∞ cP,T(τ)ej2π f τdτ is the crossed spectral of P and T, and cP,T(τ) is

the mathematical expectation cross-correlation function. GP,P( f ) and GT,T( f ) are the
self-spectrals of the mathematical expectation of the autocorrelation function of P and T,
respectively.

2.3.3. Mutual Information

Mutual in f ormation MI(P, T) is an entropy-based measure that quantifies the infor-
mation amount shared between the random variables P and T with marginal distributions
p(P), p(T) and joint distribution p(P, T) computed as [63–65]:

MI(P, T) = ∑
x∈P

∑
y∈T

p(x, y)log
p(x, y)

p(x)p(y)
, (3)

The MI(P, T) also gives a stable measure of the information flow of the variables in
terms of its synchronization.

2.3.4. Global-Phase Synchronization Index Using Hilbert Transform

This measure is based on analyzing the instantaneous phases ∆ϕP,T(t) of the signals P
and T, whose remarkable characteristics are the signal phase analysis, irrespective of their
frequency and nonparametric condition, and are defined as [5,15,24,62]:

γP,T(t) =
√
⟨cos(∆ϕP,T(t))⟩2 + ⟨sin(∆ϕP,T(t))⟩2,

∆ϕP,T(t) = arctan
[

S̃P(t)ST(t)− S̃T(t)SP(t)
SP(t)ST(t) + S̃P(t)S̃T(t)

]
,

S̃·(t) = H(P(t)) = PV
1
π

∫ ∞

−∞

S·(t)
t − τ

dτ,

(4)
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where S̃·(t) is the Hilbert transform of the signal (P(t) or T(t) as appropriate), and PV is
Cauchy’s principal value.

2.3.5. Cross-Sample Entropy

Cross − sample entropy, here denoted as CSE, is an entropy-based asynchrony mea-
surement that compares the similarity between two time series. CSE depends on three
parameters: m is the model vector’s length, r is the distance tolerance, and N is the
time series size. To compute CSE, we proceed as follows [13,14,17]: given the time
series (signals) u(t) = P(1), P(2), · · · , P(N) and v(t) = T(1), T(2), · · · , T(N) (just P,
Tmax or Tmin as appropriate), we compute Bm(r)(P||T) = 1

N−m ∑N−m
i=1 Bm

i (r)(P||T), where
Bm

i (r)(P||T) = 1
N−m−1 ∑N−m

i,j=1;i ̸=j Θ(r − ||um
i − vm

j ||), Θ(·) is the Heaviside step function,
||um

i − vm
j || is the Euclidean distance between um

i = P(i), P(i + 1), · · · , P(i + m − 1) and
vm

j = T(j), T(j + 1), · · · , T(j + m − 1); 1 ≤ i, j ≤ N − m − 1. Similarly, we calculate

Am(r)(P||T) = 1
N−m ∑N−m

i=1 Am
i (r)(P||T), where Am

i (r)(P||T) = 1
N−m−1 ∑N−m

i,j=1;i ̸=j Θ(r −
||um+1

i − vm+1
j ||). Finally, the CSE is defined as:

CSE(m, r, N) = − ln
(

Am(r)(P||T)
Bm(r)(P||T)

)
. (5)

CSE is zero when the time series are perfectly synchronized, whereas higher values of
CSE indicate asynchrony.

2.4. Statistical Significance Test for the Synchronization Metrics

To investigate differences in the metrics obtained between the two regions, using
the Scipy stats module (https://docs.scipy.org/doc/scipy/reference/stats.html, last
accessed date: 8 May 2024), we computed the t-Student test, which is a statistic test that,
with a defined significance level (or its equivalent confidence level), compares if two
independent samples are similar regarding their mean values [66], and the Mann–Whitney
test [67], a nonparametric statistic test that compares if two independent variables are
dissimilar.

The set of coupling measures described above allows us to quantify the synchroniza-
tion degree between precipitation and temperature covering both linear (cross-correlation
and coherency function) and nonlinear (mutual information, phase synchronization, and
cross-sample entropy) information aspects by studying them in the time (cross-correlation
function and entropy-based measures), frequency (coherence function), and phase (phase
synchronization index) domains. These metrics provide us with valuable information
on the joint evolution to characterize and analyze the relationship between these cli-
matic variables further than conventional statistical analysis. All data processing and
metrics computations were carried out in Python (https://www.python.org/, last ac-
cessed date: 8 May 2024) language, using libraries such as Numpy (https://numpy.org/,
last accessed date: 8 May 2024), Scipy (https://scipy.org/, last accessed date: 8 May
2024), EntropyHub (https://www.entropyhub.xyz/, last accessed date: 8 May 2024) and
Matplotlib (https://matplotlib.org/, last accessed date: 8 May 2024) for graphical visual-
ization. The results are described below.

3. Results and Discussion
3.1. Exploratory Data Analysis

Figure 1 illustrates representative time series under analysis for both regions. For the
analyzed period in Mexico City (1960–2020), the maximum temperature recorded values
between 3.5 ◦C and 38.5 ◦C, with a mean value of 23.3◦C, the minimum temperature
registered values ranging from −10.5 °C to 26.0 ◦C with a mean value of 8.3 °C, while the
precipitation presented the maximum value of 117 mm in 24 h. The maximum temperature
exhibits dispersion below the first quartile and above the third quartile, showing higher

https://docs.scipy.org/doc/scipy/reference/stats.html
https://www.python.org/
https://numpy.org/
https://scipy.org/
https://www.entropyhub.xyz/
https://matplotlib.org/


Entropy 2024, 26, 558 6 of 16

variability in the extremes. On the other hand, the minimum temperature shows less
variability in the extreme values. In La Mojana, for the analyzed period (1973–2020), the
maximum temperature ranges from 22.6 ◦C to 46.9 ◦C, whose mean value oscillates around
31.6 ◦C. The highest precipitation event reported has a magnitude of 301.3 mm. In general,
the maximum temperature in the Mojana is less dispersed than in Mexico City, with a
concentration between the first and third quartiles. Figure 2 shows the boxplot of the
analyzed climatic variables.

Figure 1. Representative time series of (a) precipitation P and (b) maximum and minimum tempera-
tures T (Tmax, red line; Tmin, blue line, respectively) for Mexico City (station MCS13). (c) Precipitation
P and (d) maximum temperature T (Tmax) for La Mojana (station LMS4).

The data structure was studied through its persistence and fractality. The persistence
was analyzed using Hurst exponent H obtained with the rescaled range method, which
indicates the presence of long-term correlations among the records. For all variables under
study and both regions, Mexico City and La Mojana, Hurst values fall within the interval
0.5 < H ≤ 1.0 (see Table 2). For precipitation, the magnitude of certain rainfall events has
a long-term relationship, and the same applies for the temperature as well. For Mexico
City, it is observed that HTmin > HTmax > HP and for La Mojana, HTmax > HP. These
results indicate that these climatic variables have different levels of long-term correlations,
i.e., “process memory”. Moreover, these results agree with other studies in terms of the
persistence values for the scaling indexes in different climate analysis [56,68–75].

Table 2. Hurst exponent values H for P (HP), Tmax (HTmax ) and Tmin (HTmin ).

Mexico City
Station HP HTmax HTmin Station HP HTmax HTmin

MCS1 0.78 0.83 0.85 MCS8 0.78 0.83 0.85
MCS2 0.78 0.83 0.85 MCS9 0.78 0.83 0.85
MCS3 0.78 0.83 0.85 MCS10 0.78 0.83 0.84
MCS4 0.81 0.83 0.84 MCS11 0.78 0.83 0.84
MCS5 0.77 0.83 0.84 MCS12 0.78 0.83 0.85
MCS6 0.78 0.83 0.82 MCS13 0.77 0.77 0.83
MCS7 0.84 0.83 0.83 MCS14 0.78 0.83 0.84

La Mojana
Station HP HTmax Station HP HTmax

LMS1 0.83 0.87 LMS5 0.75 0.78
LMS2 0.76 0.82 LMS6 0.77 0.79
LMS3 0.77 0.84 LMS7 0.77 0.81
LMS4 0.74 0.86 —- —- —-
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Figure 2. Boxplot of raw data. (a,b) correspond to the precipitation and maximum temperature,
respectively, for La Mojana. (c–e) correspond to the minimum temperature, precipitation and
maximum temperature for Mexico City, respectively. In general, the temperature exhibits more
dispersion in Mexico City than in La Mojana, whereas for precipitation, it shows a similar behavior.
In all variables, higher event values are observed for La Mojana, which shows important differences
in the fluctuations between the two climatic regions.

On the other hand, Table 3 shows the results of the Higuchi fractal dimension (D).
We find that, in general, DP > DTmax > DTmin , preserving the same hierarchy in the
irregularity of the structure in the variables from both regions. When the fractal dimension
associated with precipitation is compared between regions, we observe that, in most cases,
the one corresponding to Mexico City is larger than the one corresponding to La Mojana,
confirming that there is a greater irregularity in the former. Thus, precipitation tends to be
a very irregular phenomenon and therefore difficult to predict, while the relative regularity
of temperature makes it somewhat more predictable. In addition, the results shown in
Table 3 are consistent with the long-term self-correlations presented in Table 2 for the Hurst
exponent, and the values satisfy the known H = 2 − D relationship.

Table 3. Higuchi fractal dimension D values for P, Tmax and Tmin.

Mexico City
Station DP DTmax DTmin Station DP DTmax DTmin

MCS1 1.26 1.21 1.15 MCS8 1.28 1.21 1.15
MCS2 1.26 1.23 1.15 MCS9 1.25 1.21 1.14
MCS3 1.25 1.22 1.14 MCS10 1.27 1.21 1.16
MCS4 1.25 1.22 1.16 MCS11 1.31 1.23 1.15
MCS5 1.30 1.23 1.15 MCS12 1.25 1.23 1.15
MCS6 1.23 1.23 1.27 MCS13 1.28 1.23 1.17
MCS7 1.27 1.23 1.16 MCS14 1.29 1.22 1.14

La Mojana
Station DP DTmax Station DP DTmax

LMS1 1.22 1.13 LMS5 1.21 1.15
LMS2 1.19 1.15 LMS6 1.24 1.16
LMS3 1.24 1.17 LMS7 1.23 1.17
LMS4 1.25 1.14 —- —- —-
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As a general approach of linear correspondence, the global Pearson correlation (which,
roughly speaking, is a linear correspondence relationship between two independent vari-
ables) between the precipitation and temperature (maximum Tmax and minimum Tmin as
appropriate) is computed for all the variables for each region (Mexico City an La Mojana),
and the results are illustrated in Figure 3. It can be seen from the correlation matrix in
Figure 3 that there is a high global relationship between the variables as the climatic zone
correspondence.

In general, according to Figure 3, La Mojana exhibits higher values of Pearson correla-
tions than Mexico City. This effect is possibly due to the higher relative stability of climatic
variables in La Mojana, which has a stretched interval of occurrence values compared with
those from Mexico City.

Figure 3. Global Pearson correlation coefficient matrix between precipitation and maximum tempera-
ture of empirical data in (a) Mexico City and (b) La Mojana.

3.2. Synchronization Measures

To reduce the effects of spurious correlations that can affect the applied techniques
and lead to misleading results, we normalized the time series before computing the syn-
chronization measures by extracting its mean and dividing by the standard deviation such
that the time series are normalized to have zero mean and unitary variance.

3.2.1. Cross-Correlation Function

After exploring the Pearson correlation comparing all the variables between them for
each regions, we evaluated the linear synchronization as time dependence through cross-
correlation involving the variables (precipitation and temperature) in the same station. The
results of the calculations are shown in Table 4. For Mexico City, the highest values of cross-
correlation between P and T occur at lag τ = 0 (with global average c(P, Tmax) = 0.228 ±
0.064 between precipitation and maximum temperature, and c(P, Tmin) = 0.096 ± 0.031
between precipitation and minimum temperature), meaning that once a rainfall event
occurred, the closest-related temperature event occurred on the same day. In contrast, for
La Mojana, the highest values occur at lag τ = 1 (with global mean value of c(P, Tmax) =
0.256 ± 0.044 between precipitation and maximum temperature), i.e., once a precipitation
event has occurred, the temperature with which it is most closely related occurred on the
last day. This result is reasonable when considering the variability of the magnitude of the
events in the different regions, being more stable in La Mojana.
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Table 4. Cross-correlation values c(P, T) between precipitation P and temperature T (Tmax or Tmin as
appropriate) for Mexico City and La Mojana.

Mexico City La Mojana

Station c(P, Tmax) c(P, Tmin) Station c(P, Tmax) c(P, Tmin) Station c(P, Tmax)

MCS1 0.173 0.096 MCS8 0.245 0.063 LMS1 0.307

MCS2 0.254 0.078 MCS9 0.260 0.059 LMS2 0.265

MCS3 0.279 0.102 MCS10 0.187 0.129 LMS3 0.176

MCS4 0.291 0.070 MCS11 0.280 0.080 LMS4 0.266

MCS5 0.259 0.079 MCS12 0.261 0.136 LMS5 0.214

MCS6 0.039 0.169 MCS13 0.215 0.081 LMS6 0.308

MCS7 0.231 0.115 MCS14 0.211 0.087 LMS7 0.255

3.2.2. Coherence Function

The coherence function shows several bands of high synchronization at different
frequencies for Mexico City (See Figure 4a and Figure 4b corresponding to P vs. Tmax and
P vs. Tmin, respectively), while La Mojana (Figure 4c for P vs. Tmax) has only one frequency
band where the synchronization is high. It is reasonable to attribute this behavior to the
seasonality effect for Mexico City, i.e., the coherence values are related to its seasonal condi-
tion, giving several bands of synchronization in terms of their frequencies. Indeed, because
of its lack of seasonality, La Mojana exhibits only one frequency band, suggesting that using
specific frequency bands to analyze climate records will lead to a better characterization
of climate records. In general, for Mexico City, the global average coherence between P
and Tmax is 0.061 ± 0.018 (average ± standard deviation), while between P and Tmin, it
is slightly higher with a mean value of 0.064 ± 0.026. On the other hand, for La Mojana,
the average coherence between P and Tmax has a global mean value of 0.088 ± 0.017.
Regardless of the seasonality effect, note that La Mojana exhibits higher global average
coherence than Mexico City, meaning more synchronization of the analyzed variables for
the former.

Figure 4. Coherence function heatmap of (a) P vs. Tmax, (b) P vs. Tmin for Mexico City and (c) P vs.
Tmax for La Mojana.

3.2.3. Mutual Information

As shown in Table 5, for Mexico City, MI has greater values for P and Tmax than P and
Tmin. The average values are the following: MI(P, Tmax) = 1.14 ± 0.29 and MI(P, Tmin) =
1.08 ± 0.26 (clearly MI(P, Tmax) > MI(P, Tmin)). These results indicate that precipitation
shares more information with the maximum temperature than with the minimum one.
For La Mojana, the mean value is MI(P, Tmax) = 1.67 ± 0.20, and, in general, MI exhibits
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higher values compared to those observed in Mexico City, confirming that both variables
share more information for this region.

Table 5. Mutual information MI(P, T) for P and T (Tmax and Tmin) in Mexico City and La Mojana.

Mexico City La Mojana
Station MI(P, Tmax) MI(P, Tmin) Station MI(P, Tmax) MI(P, Tmin) Station MI(P, Tmax)

MCS1 1.65 1.47 MCS8 1.48 1.37 LMS1 1.73
MCS2 1.21 1.13 MCS9 1.40 1.27 LMS2 1.93
MCS3 1.60 1.48 MCS10 1.64 1.47 LMS3 1.45
MCS4 1.20 1.09 MCS11 1.20 1.08 LMS4 1.69
MCS5 1.16 1.09 MCS12 1.18 1.14 LMS5 1.57
MCS6 0.99 0.90 MCS13 2.00 1.83 LMS6 1.44
MCS7 1.36 1.22 MCS14 1.03 0.98 LMS7 1.91

3.2.4. Phase Synchronization Index of Hilbert Transform

The calculations of the γ-index are shown in Table 6 for both regions. For Mexico
City data, similar γ-values are observed when they come from either P and Tmax or P and
Tmin. We find that La Mojana leads to higher vales compared to Mexico City. In general,
according to Table 6, values of γP,T are above 0.72 for Mexico City, whereas for La Mojana,
the values are above 0.92.

Table 6. Phase synchronization index γ(P, T) using Hilbert transform between precipitation P and
temperature T (Tmax or Tmin) for Mexico City and La Mojana.

Mexico City La Mojana
Station γ(P, Tmax) γ(P, Tmin) Station γ(P, Tmax) γ(P, Tmin) Station γ(P, Tmax)

MCS1 0.739 0.741 MCS8 0.743 0.733 LMS1 0.927
MCS2 0.742 0.733 MCS9 0.740 0.735 LMS2 0.926
MCS3 0.739 0.736 MCS10 0.747 0.736 LMS3 0.925
MCS4 0.744 0.739 MCS11 0.748 0.742 LMS4 0.929
MCS5 0.739 0.736 MCS12 0.745 0.739 LMS5 0.925
MCS6 0.728 0.739 MCS13 0.743 0.738 LMS6 0.926
MCS7 0.745 0.737 MCS14 0.742 0.732 LMS7 0.926

3.2.5. Cross Sample Entropy CSE

As a synchronic measure, CSE values close to zero mean synchrony, while higher
values mean asynchrony. Table 7 shows the obtained results for this measure. In addition,
to ensure that the information obtained by this metric comes from the behavior of the
time series and not from spurious correlations, we also calculate the CSE for the random
(shuffled) version of the time series.

The average CSEE between precipitation and maximum temperature for Mexico City
is 1.059 ± 0.276, whereas the average CSER for randomized time series is 3.491 ± 0.592.
There is a similar occurrence between the precipitation and minimum temperature (for
Mexico City), where the average values satisfy CSER > CSEE. For La Mojana, the average
CSEE between precipitation and maximum temperature is 0.960 ± 0.404, and CSER has
a value of 3.409 ± 0.327. In general, the average CSEE from Mexico City is (about 10%)
greater compared with the values obtained from La Mojana, which is in agreement with
the results obtained with all previously explored metrics, i.e., a higher synchronization is
observed in the latter region.
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Table 7. Cross-sample entropy CSE (CSEE for experimental and CSER for randomized time series)
for P and T (Tmax and Tmin as appropriate) in Mexico City and La Mojana, setting m = 6 and r = 0.20.

Mexico City

Station
(P, Tmax) (P, Tmin)

Station
(P, Tmax) (P, Tmin)

CSEE CSER CSEE CSER CSEE CSER CSEE CSER

MCS1 1.385 3.288 0.837 2.010 MCS8 0.894 3.823 0.791 2.093
MCS2 0.657 3.950 0.421 1.901 MCS9 0.791 3.474 0.668 3.051
MCS3 0.797 3.150 0.664 2.802 MCS10 0.824 3.548 1.059 3.298
MCS4 1.744 2.552 0.987 2.792 MCS11 1.062 3.567 1.065 3.164
MCS5 1.089 3.779 0.602 4.562 MCS12 1.048 4.025 1.192 3.535
MCS6 1.170 2.944 1.411 2.315 MCS13 1.169 3.407 1.315 3.703
MCS7 1.058 2.583 1.030 3.075 MCS14 1.136 4.790 0.779 2.849

La Mojana

Station
(P, Tmax)

CSEE CSER

LMS1 0.437 3.675
LMS2 0.966 3.602
LMS3 1.337 3.751
LMS4 1.590 3.564
LMS5 0.435 3.105
LMS6 0.813 3.394
LMS7 1.142 2.772

3.3. Statistical Significance Test for the Synchronization Metrics

To distinguish if the synchronization measures are different between the two studied
regions, we test the statistical significance of our results for the coupling measures involving
precipitation and maximum temperature using t-Student and Mann–Whitney tests, stating
as a null hypothesis that, with 95% confidence level, the metrics are the same for both
regions. The results are presented in Table 8.

Table 8. List of p-values to compare the statistical differences between the synchronization measures
from the two regions (Mexico City and La Mojana), for precipitation and maximum temperature at a
confidence level of 95%.

Coupling Measure p-Value (t-Student) p-Value (Mann–Whitney)

Cross-Correlation 0.3182 0.2872
Coherence 0.0019 0.0056

Global Phase Synchronization
Index 4.62E-27 0.0003

Mutual Information 0.0050 0.0100
Cross-Sample Entropy 3.25E-11 0.0003

Note from Table 8 that, except for cross-correlation, the explored metrics are different
between the regions (p-value << 0.05) for both t-student and Mann–Whitney tests. The
cross-correlation is able to measure relationships between two random variables that follow
a linear behavior; however, as they do not show to be different between the two regions,
this is most likely due to the nonlinearity of the variables studied, which can be considered
a manifestation of the higher complexity that characterizes their joint evolution.

4. Discussion and Conclusions

We have presented a study, based on linear and nonlinear synchronization measures,
to identify the level of coupling between daily precipitation and extreme daily temperature
records of climate stations from two regions. We find that the degree of coupling is
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approximately similar for stations in the same region, while when comparing the two
regions analyzed, which have dissimilar climatic characteristics, there is a significant
difference (at a confidence level of 95%) in the degree of coupling.

The information presented is consistent and is in agreement with those reported in
the literature regarding spatial behavior and complexity [38–42,76–79]. There is evidence
that, in a climatic station, precipitation and daily extreme temperatures share information
on its dynamics. At first, the results obtained confirm that precipitation data from the two
regions exhibit a persistent behavior and temperature records display even more persistent
features. When comparing the records from both regions, it is observed that the persistence
is greater in the case of La Mojana, indicating that both precipitation and temperature from
Mexico City display higher variability that resembles more erratic variations (less memory).

The global information shared between these variables is evidenced by metrics such
as those used in this work; however, due to the nonlinear nature of these relationships,
it was found that linear metrics such as cross correlation and coherence do not measure
interdependence in a robust way, although they provide some characteristics that allow
making analysis decisions such as the selection of bands for the detailed study of the
time series in the frequency domain as evidenced by coherence. It was also corroborated
that metrics such as mutual information quantify the flow of information between the
variables studied, being very significant in this case. Our results show different levels
of interdependence between precipitation and temperature, demonstrating that these
intensities in the associations between the variables depend strongly on the geographic
region and local effects that significantly impact the dynamics of these climatic variables.
Particularly, our results have indicated that data from Mexico City exhibit a lower synchrony
compared to data from La Mojana. This has been verified in the five metrics used to
characterize the interdependence between the signals.

The differences in the level of coupling between the regions studied can be explained
in the context of greater variability in the case of Mexico City, where seasonality is very
important, while in the Mojana area, this component is almost absent. Further studies that
include a number of regions with diverse local conditions are needed to better characterize
the zones by the levels of coupling achieved and to determine general patterns that will
help to better understand these climatic variables.

Future directions for this type of studies could include the identification of possible
precursor patterns of extreme values in the variables that could be linked to a greater
coupling between the signals or to a lower synchrony, as well as causality, including the
use of strategies of topological data analysis to study the synchronization phenomena as
used in [80,81]. In summary, the interdependence between temperature and precipitation
is of vital importance for a better understanding of climate dynamics, with implications
ranging from the environmental impacts already evidenced by climate change to economic
and social consequences.
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