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Abstract— Acceleration of the method of moments (MoM)
solution of the volume integral equation (VIE) on unstructured
meshes is performed using a precorrected tensor train (P-TT)
algorithm. The elements of the MoM’s unstructured mesh are
projected onto a regular Cartesian grid. This enables represen-
tation of the MoM matrix as the Toeplitz matrix of point-to-
point interactions pre- and post-multiplied by sparse matrices
projecting MoM’s basis and testing functions on the Carte-
sian grid. The Toeplitz matrix is subsequently cast into the
form of a multidimensional tensor. The latter is decomposed
into the product of smaller dimensional matrices also known
as tensor train (TT). TT allows to store Toeplitz matrix in
O(log N) memory for VIE with the Laplace kernel and in
O(N log N) memory for VIE with the Helmholtz kernel. Unlike
the FFT-based fast algorithms, the P-TT method enables fur-
ther memory reduction due to the sparsity of sources on the
Cartesian grid. This sparsity pattern can be accounted for
in construction of TT cores. It further reduces memory use
as well as CPU time required for the multiplication of the
Toeplitz matrix with a vector. It is shown that upon sufficient
sparsity in representation of the sources on the grid, the P-TT
algorithm can outperform both in CPU time and memory
its FFT-based counterpart known as the precorrected FFT
algorithm.

Index Terms— Fast algorithms, scattering, tensor train (TT)
decomposition.
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I. INTRODUCTION

FAST algorithms of computational electromagnet-
ics (CEM) have become essential in the design cycles

of complex microwave circuits, analysis of electrically
large photonic and optical devices, solution of radiation
problems for vehicle-mounted antennas, and many other
important areas. These algorithms allow drastic reduction of
computational time and memory in the solution of boundary
value problems of electromagnetics through the use of
efficient data structures and optimal representation of the
matrix operators resulting from discretization of the pertinent
integral or differential equations. Fast algorithms of CEM
allow to perform analysis of larger and/or more complex
structures, more accurately predict the scattering and radiation
phenomena, and, ultimately, enable better designs of various
devices and systems.

First debut of the fast algorithms into CEM was made
in 1971 [1] by what later became known as the conjugate-
gradient fast Fourier transform (CG-FFT) algorithm. The
method used FFT for the acceleration of scattered field
computations produced by given volumetric currents, which
were cast into the form of convolutions through the Method
of Moments (MoM) discretization of the volume integral
equation (VIE) on the regular rectangular grids. The CG-FFT
method, however, remained largely unnoticed until mid-
1980s [2] when static tree-based algorithms, such as the
Appel algorithm [3], Barnes–Hut algorithm [4], and fast
multiplole method (FMM) [5], were introduced into compu-
tational physics at large and CEM in particular. While the
FMM became the method of choice for the solution of large-
scale radiation and scattering problems by mid-90s due to its
generalization to full-wave kernel [6] and three dimensions [7],
the FFT methods remained popular due to the simplicity
of FFT use, its efficiency, suitability of FFT acceleration
schemes to solution of problems in complex media [8], [9], and
their generalization to handle discretizations on unstructured
meshes [10]–[13]. The FFT methods and FMM have dom-
inated the landscape of fast algorithms in CEM throughout
the 90s and most of 2000s until the theory and applications
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of hierarchical matrices (H-matrices) had matured to offer
principally new capabilities of fast direct solution for both
dense and sparse matrix equations [14]. Iterative nature of the
FFT and FMM methods made their application to solutions of
the multiscale problems and/or problems with large disparity
in material properties difficult and often impossible. The
poor conditioning of the pertinent matrix equations prevents
iterative matrix solvers [15], [16] from converging to a solu-
tion, and construction of effective preconditioners becomes as
computationally expensive as the direct naive solution of the
original matrix equation. The ability of the H-matrix-based
methods to solve ill-conditioned equations directly and with
comparable use of computational resources to those of iterative
methods made them widely popular for the solution of prob-
lems defying FMM- and FFT-based iterative solvers [17], [18].

Tensor train (TT) decomposition of the Toeplitz matrices
introduced by Oseledets [19] in 2009 took reduction of
computational resources required for the solution of bound-
ary problems of CEM to a principally new level. While
FFT-based algorithms required O(N log N) memory to store
Toeplitz matrices, their decomposition into a product of
smaller dimensional matrices could be performed in unprece-
dented O(log N) operations and stored in O(log N) memory
for the problems of electrically moderate sizes. Such drastic
reduction in operations required to factor the Toeplitz matrix
and memory needed for its storage may result from the
compression of the generating matrix, i.e., the matrix of
unique elements in the Toeplitz matrix. The latter is computed
in O(N) operations and stored in O(N) memory in the
FFT-based fast methods. The TT-decomposed N × N matrix
occupying O(log N) storage can also be directly inverted in
O(log N) operations [20], [21] and applied to the N element
vector of excitation provided the latter allows for O(log N)
representation and so does the solution of the matrix equation.
In case of MoM discretized VIE and its Toeplitz matrices,
such efficient solutions of the TT-decomposed matrix equation
are currently only available for discretizations of exactly
rectangular geometries with exactly rectangular grids.

The TT-decomposed matrix can also be multiplied with an
arbitrary vector of length N and used for construction of iter-
ative fast solvers. However, the matrix-vector-product (MVM)
of TT is performed with an arbitrary vector in O(N log N)
operations. When it comes to MoM solution of the VIE,
it also requires that MoM discretization to be performed
on ideal square grids. The object must also be voxelized.
In our previous work [22], we accelerated MoM solution
of VIE utilizing square grids by decomposing its pertinent
4-D Toeplitz matrix into TT and performing MVMs with it
within iterative matrix equation solvers, such as the conjugate-
gradient (CG) method [15] and others [16]. We called devel-
oped fast algorithm “CG-TT” [22] by analogy with the popular
CG-FFT method [8], [23], [24] as it has all the attributes of
the latter while offering additional memory savings stemming
from O(log N) Toeplitz matrix representation in TT format
and utilization of sparsity in the occupancy of the grid by the
sources.

In order to decouple the MoM discretization from the
square-grid representation of the currents and scattered fields

required by TT decomposition, we subsequently introduced the
concept of precorrection used in FFT-based fast algorithms,
such as the precorrected FFT (P-FFT) [10], [11] and the
adaptive integral method (AIM) [12], [13], to effect such
decoupling into construction of a TT-based fast iterative
solver [25]. We termed this approach the precorrected TT
(P-TT) algorithm due to the similarity of its attributes to the
well-known P-FFT algorithm [10]–[13].

Both CG-TT [22] and P-TT [25] fast iterative solvers were
shown to easily outperform CG-FFT [2] and P-FFT [11]
algorithms in terms of memory usage. However, they exhib-
ited notably inferior performance compared to the FFT-based
algorithms in terms of CPU time required for computations
of the MVMs. This inferior CPU time performance of TT
compared to FFT acceleration is partially due to the maturity
of the latter and novelty of the former. However, despite highly
optimized implementation of FFTs, evaluation of MVM with
the TT-decomposed Toeplitz matrix can be made more efficient
if the geometry of interest exhibits substantial sparsity. Such
sparsity is commonly observed in the case of surface integral
equation solutions with rectangular-grid-methods (FFT- or
TT-based) when only the grid point near the surface of the
object attains nonzero current values. Substantial sparsity in
the representation of the currents on the regular grids also
occurs in the VIE solutions when scatterers are well separated.
The FFT-based methods cannot exploit this sparsity of the
grid and are forced to perform operation on the zero-valued
currents. This is the reason for their O(N1.5 log N) scaling in
the case of 3-D surface integral equation solutions. The TT
decomposition, however, can take advantage of such sparsity.
The higher is the sparsity in the object’s representation on
the regular grid, the more drastic is the reduction in time
and memory required for performing multiplication of the
tensor cores in the TT with a vector. Contribution of this
article and its nontrivial extension compared to the original
P-TT algorithm introduced in [25] is in the utilization of
sparsity to increase the performance of the TT decomposition
and computation of MVMs with TT-decomposed Toeplitz
matrices. In order to enable sparsity-aware TT core con-
struction, the TT decomposition of the Toeplitz matrix is
done at the level of the binary trees corresponding to the
partitioned source and observation domains as opposed to the
TT decomposition in [22] and [25] performed according to
the quad-tree representing the 4-D Toeplitz matrix itself. The
advantages of the sparsity-aware P-TT algorithm compared
to the classical P-FFT [11] fast algorithm are demonstrated
via the solution of both full-wave 2-D scattering problems
and magneto-quasi-static problems of inductance extractions in
2-D multiconductor transmission lines (MTLs).

II. VOXILIZATION OF MOM ON UNSTRUCTURED

MESHES FOR VIE

The magneto-quasi-statics VIE in 2-D case is

Ez(ρ) + ιωμ0σ

∫
S
G(ρ,ρ′)Ez(ρ

′)ds′ = V p.u.l., ρ ∈ S (1)

where σ is the conductivity of wire, μ0 is the vacuum
permeability, G(ρ,ρ ′) = g(|ρ−ρ′|) = −1/(2π) ln(|ρ−ρ′|) is
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the 2-D free space Green’s function, and V p.u.l is the voltage
drop along the wire, ι being

√−1.
To solve VIE numerically, the MoM expands the unknown

current density of conductivity jz = σ Ez over N pulse basis
functions bs as

jz(ρ) =
N∑

s=1

jsbs(ρ) (2)

and tests the resulting equation with the same set of the test
function. This produces the following SLAE Z · j = vp.u.l.:

(σ−1I + iωL) · j = vp.u.l. (3)

where

Ls,s ′ = 〈bs , 〈G, bs ′ 〉〉 = μ0

∫
Ss

∫
Ss′
G(ρ,ρ′)ds′ds (4)

where s, s′ = 1, . . . , N , N is the number of triangles discretiz-
ing the cross section of the transmission line, I is the idem-
factor, Ss ′ and Ss are the areas of the source and observation
triangles, respectively, and j = [j1,j2, . . . ,jN ] is the vector
of unknown coefficients in current expansion.

In order to TT accelerate the MVM in the fast itera-
tive solution of matrix equation in unstructured mesh MoM,
the interactions of N source triangles with each observation
triangle are partitioned into near and far analogously with the
P-FFT algorithm [10], yielding SLAE (3) in the form

(σ−1I + ιωLnear + ιωLfar) · j = vp.u.l. (5)

where Lnear is the matrix of MoM near interactions, i.e., the
matrix of MoM test basis functions interacting with their
near neighbors, and computed directly according to (4). For a
given observation test function bs , the near interacting source
functions bs ′ are partially or fully situated within a circle
of given radius Rnear centered at the centroid of triangle
supporting bs .

The matrix Lfar in (5) is the matrix of MoM far interactions,
such that L = Lnear + Lfar . Each element Ls,s ′ of matrix Lfar

can be approximated with controlled precision if the original
basis and test functions bs ′ and bs are replaced with their
equivalent representations b̃s ′ and b̃s formed by the point
sources snapped to the nodes of the regular (Qx × Qy) grid as

b̃s(ρ) =
Qx∑

q ′
x =1

Q y∑
q ′

y=1

�s
q ′

x q ′
y
δ(ρ − ρq ′

x q ′
y
). (6)

In (6), only Q2 point source coefficients out of Qx × Qy are
nonzero.

They can be determined using so-called multipole-
reproduction-criteria [13] producing the following Vander-
monde system of linear equations:

Q∑
q1=1

Q∑
q2=1

�s
q1q2

(
xs

q1q2
− xs

0

)μ(
ys

q1q2
− ys

0

)ν
=

∫
Ss

(
x − xs

0

)μ(
y − ys

0

)ν
dxdy. (7)

Fig. 1. Stencil of nine point sources Q2 = 9 corresponding to the projection
of the highlighted triangle mesh element onto the regular Cartesian grid. The
center point of the stencil is the closest grid point to the centroid of its
corresponding triangle element. The magnitudes of the points sources are
calculated in the same way as it is done in the P-FFT method [10].

The elements Ls,s ′ of the matrix of far interactions Lfar in (5)
are approximated with matrix elements

Ls,s ′ = 〈b̃s, 〈G, b̃s ′ 〉〉
= μ0

∫
Ss

b̃s(ρ)

∫
Ss′
G(ρ,ρ ′)b̃s ′(ρ′)ds′ds

=
Qx∑

q ′
x=1

Q y∑
q ′

y=1

Qx∑
qx =1

Q y∑
qy=1

�s
qx qy

G(ρqx qy
,ρq ′

x q ′
y
)�s ′

q ′
x q ′

y
(8)

where b̃s and b̃s ′ are sth test and s′th basis obtained by replac-
ing original test and basis functions bs and bs ′ , respectively,
with Q2 points sources located at the nodes of the Qx × Qy

regular grid enclosing the conductor (analogously with P-FFT
algorithm [10]) [see Fig. 1 and (13)]. The approximate matrix
of far interactions Lfar � Lfar with its elements calculated
according to (8) can then be stated as the following difference
of the matrices of near interactions and all interactions,
respectively, each formed by the interactions of the point-
source-based basis and test function representations (8):

Lfar = Lall − Lnear . (9)

Substitution of the approximation (9) for the matrix of far
interactions into the SLAE (5) produces the following matrix
equation amenable to fast iterative solution:

(σ−1I + ιωLnear − ιωLnear + ιωLall) · j = vp.u.l.. (10)

In SLAE (10), matrix L̂near = Lnear − Lnear is the difference
between the near interactions’ matrix Lnear computed using the
original MoM basis and test functions and the near interactions
matrix Lnear computed using point-source representations of
the basis and test functions (8).

The matrix of all interactions Lall in (10) can be written as
the following product:

Lall = �t · G · � (11)
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where 4-D Toeplitz matrix G of point-to-point interactions

G =
⎡
⎢⎣

G1111 · · · G11Qx Q y

...
. . .

...
GQx Q y11 · · · GQx Q y Qx Q y

⎤
⎥⎦. (12)

Elements Gqx qyq ′
x q ′

y
of 4-D matrix G in (12) are defined as

the field produced at observation locations ρqx qy
by the point

sources located at ρ′
q ′

x q ′
y

Gqx qyq ′
x q ′

y
= G(ρqx qy

,ρq ′
x q ′

y
)

= g(|ρqx qy
− ρq ′

x q ′
y
|)

= −1/(2π) ln

[√
	x2

(
qx −q ′

x

)2+	y2
(
qy −q ′

y

)2
]

(13)

where qx , q ′
x = 1, . . . , Qx , qy, q ′

y = 1, . . . , Qy , and 	x , 	y
are the steps of the regular grid over x- and y-coordinates.
Due to translational invariance of the Green’s function G
which manifests itself in dependence of G on difference of
the position vectors ρqx qy

− ρq ′
x q ′

y
all Q2

x Q2
y , the elements of

the 4-D matrix G can be produced by only Qx Qy elements
of 2-D generator matrix g as Gqx qyq ′

x q ′
y

= gqx−q ′
x ,qy−q ′

y
.

The sparse matrix � pre- and post-multiplying Toeplitz
matrix G in (11) has the meaning of converter of N weights
of the MoM basis functions j to Qx Qy coefficients of the
point sources on the regular Cartesian grid; hence, it has the
following structure with Qx Qy rows and N columns:

� =
⎡
⎢⎣

�1
11 · · · �N

11
...

. . .
...

�1
Qx Q y

· · · �N
Qx Q y

⎤
⎥⎦. (14)

Each of the N columns in � has only Q2 nonzero elements.
The product G·�·j has the physical meaning of the magnetic

vector potential ˜A at the locations ρqx qy
on the grid by the

basis functions b̃ projected onto the same grid

Ãqx qy = Ã(ρ̄qx qy
) =

N∑
s=1

js

Qx∑
q ′

x=1

Q y∑
q ′

y=1

�s
q ′

x q ′
y
G
(
ρqx qy

,ρ′
q ′

x q ′
y

)
(15)

where qx = 1, . . . , Qx and qy = 1, . . . , Qy . Summing
magnitudes of all point source basis functions on the grid and
denoting it as Jq ′

x q ′
y
, that is

Jq ′
x q ′

y
=

N∑
s ′=1

js ′�s ′
q ′

x q ′
y

(16)

we rewrite the scattered field in the form of 2-D convolution

Ãqx ,qy =
Qx∑

q ′
x =1

Q y∑
q ′

y=1

Gqx qyq ′
x q ′

y

N∑
s ′=1

js ′�s ′
q ′

x q ′
y

=
Qx∑

q ′
x =1

Q y∑
q ′

y=1

g|qx−q ′
x |,|qy−q ′

y |Jq ′
x q ′

y
(17)

where Gqx qyq ′
x q ′

y
= g|qx−q ′

y |,|qx −q ′
y | = G(ρqx qy

,ρ ′
q ′

x q ′
y
) is

the 4-D Toeplitz matrix and g is its 2-D generating matrix
(generator). Introducing single index n to identify each obser-
vation point ρqx qy

and index m to identify each source
point ρ′

q ′
x q ′

y
such that G2-D

n,m = Gqx qyq ′
x q ′

y
, we can represent

the 4-D Toeplitz matrix G = Gqx qyq ′
x q ′

y
as the 2-D matrix

G2-D = Gn,m , where n = 1, . . . , Qx Qy and m =
1, . . . , Qx Qy .

III. TT PRELIMINARIES AND NOTATIONS

In the description of the TT-related algebra, we use a
lowercase letter (e.g., a) to represent a scalar, a bold lowercase
letter (e.g., a) to represent a vector, a bold uppercase letter
(e.g., G) to represent a matrix, and a calligraphic letter
(e.g., G) to represent a high-dimensional tensor. The i th
element in g is a scalar denoted as gi . The scalar g represents
the number of elements in g. In the sequel, such scalars will
be determining the number of elements in multidimensional
matrices (tensors) along particular dimensions.

Given a vector g, the binary conversion of all elements in
g is represented as g̃ (e.g., for g = [1; 3; 4])

g̃ =
⎡
⎣1 0 0

1 1 0
0 0 1

⎤
⎦ (18)

and the third binary index of the second element can be
extracted as g̃2,3, which is 0.1

A TT representation of d-dimensional tensor
G(i1, i2, i3, . . . , id) has the following format [19], [22]:

G(i1, i2, . . . , id)

=
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2)

. . . Gd−1(αd−2, id−1, αd−1)Gd (αd−1, id) (19)

where ik is the kth level index (dimension) of the tensor,
and TT factor index k being 1, 2, . . . , d . Each 2-D or 3-D
carriage Gk is known as a TT factor (or TT core), and the
auxiliary index αk determines the kth TT rank. The TT rank
rk is related to the kth unfolding matrix Gk , which is defined
as the following:

Gk(i1i2 . . . ik, ik+1 . . . id) = G(i1, i2, . . . , id). (20)

In the subsequent description, the TT array will be
denoting the original 4-D Toeplitz matrix G = {Gqx qyq ′

x q ′
y
} =

G(i1, i2, . . . , id) represented at the TT compressed vector
format (19) in quad-based indexing of the elements
(analogously with four-level quad-tree representation of
matrix ¯̄A in [22, eq. (8)] and [22, Fig. 2]). On the other hand,
the TT-matrix term will be used to denote the TT-compressed
matrix in the form G(n1m1, n2m2, n3m3, . . . , nd md),
which contains two modes in each TT factor (denoted
as Abin(n1, n2, n3, . . . , nd , m1, m2, m3, . . . , md ) in [22]).
That is, the source and observer binary-tree-based indexes
are used to identify the elements in the TT matrix. For
example, mk is the kth bit in the hierarchical binary

1Bits from left to right represent low-to-high dimensions.
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representation (binary-tree-based) of the original 2-D
matrix G2-D columns. For brevity, we use ĝ to represent
a vector consisting of all elements gk and denote elements
G(n1m1, n2m2, n3m3, . . . , nd md ) as Gn̂,m̂ .

Quantized TT (QTT) decomposition [29] attempts to
maximize the number of dimensions in the representation of
a given matrix and, as a result, to minimize the size of tensor
factors over each of those respective dimensions. Hence,
QTT produces such tensor factors (also known as cores) with
minimum size over each of their dimensions, which are equal
to the minimum possible prime number (conventionally 2,
i.e., binary variation (mode) over each dimension). In this
article, we use mode size 2 for each bit nk and mk in binary
indexing of 4-D Toeplitz matrix elements G over observer
and source points as further explained in Section IV.

IV. REPRESENTATION OF 4-D TOEPLITZ MATRIX FOR

BINARY MODE QTT DECOMPOSITION
Conventionally, the Qx × Qy 2-D generator matrix g of the

4-D Toeplitz matrix G is stored in O(Qx Qy) memory. It is
known as circulant matrix (tensor) in the CG-FFT and P-FFT
methods [1], [2], [10], [11]. In the hierarchically partitioned
4-D Toeplitz matrix, QTT explores the low-rank relationship
between each level of the hierarchy and stores the least
possible number of elements required at each level [20], [22].
Due to the special structure of the Toeplitz matrix, the number
of required elements from each level (also known as tensor
ranks) is bounded by a low constant (also known as TT
rank) in the low-frequency and static regimes and the group
electrical size at the given level in the full-wave regime.
Therefore, under the assumption of constant TT ranks,
QTT can compress the 4-D matrix G into a d-dimensional
TT matrix G(n1m1, n2m2, n3m3, . . . , nd md) or Gn̂,m̂ with
time and memory complexities of O(log(Qx Qy)), where
nk and mk are the kth level tensor dimension size, k being
1, 2, . . . , d . Note that since there are Qx Qy points on the grid,
Qx Qy = 2d . Due to the intrinsic characteristic of low-rank
QTT demanding the same number of elements along each
dimension, the computational domain must be square-shaped
with an equal number of points introduced over x- and
y-coordinates, i.e., Qx = Qy . The 2-D grid of points is then
recursively bisected to represent each point on the 2-D uniform
grid as a leaf in the binary tree. Therefore, each grid point can
be addressed as a binary number n̂, where n̂ = (n1n2 . . . nd)
(see [22, Fig. 2] for details).

The Q2
x Q2

y elements Gqx qyq ′
x q ′

y
of the 4-D matrix G can

be represented as Gn̂,m̂ . Interaction of each observation
point n̂ with source point m̂ forming an element Gn̂,m̂ can
be equivalently indexed as Gbin(n1n2 . . . nd , m1m2 . . . md)
according to the grid bisectioning-based indexing. Observation
grid point location can be identified by its index n according to
the bits of binary ID n̂ as n = n120 +n221 +· · ·+nd2d−1 +1.
Likewise, source point location can be identified by its
index m according to the bits of the binary ID m̂ as m =
m120+m221+· · ·+md2d−1+1. Subsequently, Gbin can be cast
into the TT form G using the SVD-based TT decomposition
algorithm [22, Fig. 4]. Such an approach is inefficient as it
requires construction and storage of full Gbin beforehand,

followed by successively reshaping Gbin into unfolding matrix
Gk

bin(n1m1n2m2 . . . nkmk, nk+1mk+1 . . . nd md), storing the
multiplication of Uk and Sk as TT core Gk , and updating
Gk+1

bin with V ′
k , where Uk , Sk , and Vk are the matrix factors

generated by applying SVD on the kth unfolding matrix.
A more practical method to obtain such tensor representation
is by the alternating minimum energy normalization (AMEN)
cross algorithm (also known as TT-cross algorithm) [20],
[22], [27]. The latter makes initial guess for all TT cores
and passes those randomly generated elements through all
TT cores successively, while using the quasi-maximum
volume algorithm (QMVA) [20] to search for the best
quality submatrices for all the TT cores. Either method can
convert Gbin into the following d-dimensional TT matrix
G of products of 3-D or 4-D tensors (TT carriages) within
predefined tolerance, which is used as the criteria for their
low-rank definition:
G(n1m1, n2m2, . . . , nd md)

=
∑

α1,...,αd−1

G1(n1, m1, α1)

×G2(α1, n2, m2, α2) . . .Gd−1(αd−2, nd−1, md−1, αd−1)

×Gd (αd−1, nd , md ). (21)

In (19), each 3-D or 4-D matrix term Gk is a TT carriage (core),
k is the core index, nk and mk are the kth modes (dimensions)
of the Gk tensor core, and αk being 0, 1, . . . , rk − 1 and is
the intermediate dimension defined by the kth TT rank.

V. TT-VECTOR MULTIPLICATION FORMULATION

A. Conventional TT-Vector Multiplication

One way to interpret matrix-vector multiplication (MVM)
of G with the vector of point-source magnitudes � = J is to
consider it as 2-D discrete convolution of the signal � with
the signal g. When the vector of sources (which is a 2-D
matrix reshaped into a 1-D vector) convolves with each row
of the 4-D Toeplitz matrix (each row is 2-D slice of the 4-D
matrix reshaped into a 1-D vector), it results in a 1-D vector
of the scattered field (reshaped from 2-D matrix into 1-D),
which consists of the sum of elementwise multiplications
between the vector of sources and each row of the Toeplitz
matrix. This generates the same vector as the conventional
MVM. Instead of input vector convolving through each row
of the matrix, TT-vector multiplication (TTVM) [29] can be
viewed as the process of input vector convolving through d
TT factors successively. The TT decomposition compresses
the original Toeplitz-structured matrix that contains the row
dimension n and the column dimension m by folding its both
dimensions into a hierarchical format. Consequently, the i th
TT core has four dimensions and contains ri × ni × mi × ri+1
elements, where ri and ri+1 are the current and next core
ranks, and row and column dimensions at the i th level of
hierarchy are ni and mi (in our case, ni = mi = 2). TT ranks
r1 and rd−1 are 1. Therefore, the first and last TT factors are
3-D tensors.

In TTVM, the input vector convolves through all TT fac-
tors successively. A TTVM process with d = 4 is shown
in Fig. 2. The method starts with matrix–matrix multiplication
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Fig. 2. Multiplication of 4-D TT with vector b0 in conventional (sparsity-
unaware) TTVM. The lengths of TT rank indices α1 and α5 are assumed to
be 1 (not shown). Each arrow represents an individual mode (dimension) of a
tensor, and 1-arrow and 2-arrow cells represent vector and matrix, respectively.
3-arrow and 4-arrow cells represent 3-D and 4-D tensors, respectively.
(a) Original 4-D TT and input vector b0 [m4 ⊗ m3 ⊗ m2 ⊗ m1, 1]. Steps
(b)–(d) illustrate multiplications of the TT cores with appropriately reshaped
matrices according to Algorithm 1. (e) Procedure that produces output B4
[n4⊗n3⊗n2⊗n1, 1] after four multiplications with all TT factors successively
according to Algorithm 1. The sought output vector b5 = G · b0 is obtained
by directly reshaping B4.

of reshaped first TT core G1 and matrix format of input
vector b0, which results in a 2-D matrix B1 of dimensions
r2n1 × m4m3m2 with the exclusion of mutual dimension m1
[see Fig. 2(b)]. Therefore, the intrinsic concept of TTVM is
to perform d inner products each over dimensions mi and
ri , i = 1, . . . , d . In Fig. 2(d), B4 contains only TT matrix
row indices ni , where i = 1, 2, 3, 4. Reshape on B4 casts
it into vector format b5, which is the same as the result of
conventional MVM, provided TT cores exactly represent the
original matrix.

Algorithm 1 [21] presents a complete implementation for
TTVM focusing on the illustration of dimensional indices’
variation throughout all d multiplications. For clarity, all
TT factors are reshaped into matrix format (line 6 in
Algorithm 1). This can be alternatively done with maintained

Algorithm 1 TTVM per Fig. 2
1: Inputs: TT factors G (as in (19)), and input vector b0.
2: Outputs: A vector bd+1 as the result of TT compressed

matrix multiplied with the input vector, bd+1 = G · b0.
3: Reshape vector b0 into d dimensional array of correspond-

ing mode side at each dimension, and save it as B0.
4: Reshape B0 into B(1)

0 [m1, md . . . m2].
5: for k = 1 : d do
6: Reshape Gk into Gk [rk+1nk, mkrk].

7: Update Bk = Gk · B(k)
k−1.

8: Reshape Bk to B(k+1)
k [nk, nk−1 . . . n1md . . . mk+1rk+1].

9: Transpose B(k+1)
k to B(k+1)

k
[nk−1 . . . n1md . . . mk+1rk+1, nk].

10: Reshape B(k+1)
k to B(k+1)

k
[mk+1rk+1, nknk−1 . . . n1md . . . mk+2].

11: end for
12: Reshape Bd into bd+1.
13: return

high-dimensional tensor. Reshapes and transpositions are nec-
essary in order to adjust the dimensions of the successively
obtained matrices and perform their multiplications.

B. Sparsity-Aware TTVM

MVM is required by the iterative matrix solvers, such as
CG and GMRES. In the P-TT algorithms, the currents in the
object of interest are projected on the regular grid. In the
vicinity of each element, the grid points assume nonzero
magnitudes of the point sources. TT stores Toeplitz-structured
matrix corresponding to the interactions between point sources
located at the nodes of the regular grid in O(log(N)) memory
at low frequencies and in O(r2

max log N) memory at high
frequencies, rmax ≈ √

N when N is the number of grid points
in 2-D. The important property of the TT is that it allows
access to a particular portion of compressed data without
recovering the full matrix from it. Furthermore, the way TT
accesses data can be exploited to account for the sparsity
of the grid population by the sources (nonzero magnitude
point sources in the proposed P-TT method) when TTVM
is evaluated. Here, we show how a portion of compressed
data pertinent to evaluation of the TTVM can be effectively
accessed in the sparsity-aware manner in order to reduce the
computational cost.

We choose QTT as a compression scheme of the 4-D
Toeplitz matrix G formatted according to the binary addressing
of its elements, which describes point-to-point interactions
on the regular grid. In Fig. 2, the behavior of dimensional
indices is illustrated through each multiplication stage of
TTVM. We will show in the following that the element indices
from matrix factors Bk at every successive kth multiplica-
tion step can be predicted beforehand in accord with the
sparsity pattern. If the input vector b0 (see Fig. 2) includes
empty (zero) elements due to the sparsity in grid population
instead being a full vector, it is important to exclude this
nonessential information from it in order to speed up the
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Fig. 3. Forward filtering (steps 1©– 5©) and backward filtering (steps 6©– 14©)
of the matrices in four-level TTVM (Fig. 2) according to input and output
vector sparsities. All TT ranks are assumed as 1 for simplicity.

evaluation of the TTVM. If the empty elements are not
eliminated, unnecessary operations of multiplications by zeros
persist throughout the successive multiplication process. Also,
the output vector elements are of interest only at the grid
points where the scattered field needs to be evaluated to
compute its reaction with the discrete representation of the
test functions, i.e., in the vicinity of the object. In other
words, the sparsity pattern in the output vector is the same
as that of the input vector. This sparsity pattern in the output
vector can also be accounted for in the construction of the
TT cores to eliminate unnecessary operations and memory
use. Therefore, the optimal indices’ selection consists of two
subprocesses, namely forward filtering and backward filtering,
for the processes starting from the input and output vectors,
respectively.

Fig. 3 provides a detailed illustration of how data permuta-
tions are performed according to the sparsity pattern. Such per-
mutations eliminate unnecessary operations from the TTVM.

Due to the fact that an iterative solver requires repetitive
evaluation of the MVMs (or TTVMs in the P-TT algorithm),
it is necessary to preprocess sparsity-related information prior
to the initiation of the iterative process rather than repeatedly
reevaluating it during the iterations. This preprocessing is also
important for the purpose of memory saving.

Given all nonzero entries in the input vector b0 (see
Fig. 3 and corresponding steps of the TTVM in Fig. 2 and
Algorithm 1), the sparsity pattern in matrix B(1)

0 in Fig. 2 can
be predicted by arranging given nonzero values according to
the reshape transforming vector b0 into matrix B(1)

0 . However,
noncontributing zero elements must be introduced when the
matrix columns have missing elements (gaps) that are not
provided by the preceding array (for example, blue cell “13”
is introduced into matrix B(1)

0 in Fig. 3). These zero values
are padded into the matrix structure to ensure completeness
of its columns, since the matrix is stored in the column-
by-column manner. Matrix B(1)

0 is subsequently multiplied
with the first core G1 of TT decomposed matrix G (see
Fig. 2). After this multiplication, the zero-padded cell [e.g.,
cell “13” in matrix B(1)

0 ] will acquire nonzero values from
their adjacent column neighbor values [e.g., cell “12” in
matrix B(1)

0 ]. Noncontributing (zero) elements are consistently
introduced both due to multiplication with the corresponding
core as well as the reshaping [see blue elements in matrix
B(2)

1 ]. In the example of Fig. 3, this leads to the matrix B(3)
2 to

include the elements from all the grid points. Multiplication of
matrix B(3)

2 with the matrix G3 of the reshaped core G3 (see
Fig. 3) results in matrix B(4)

3 , which has no zero elements.
Subsequently, matrix B(4)

3 is multiplied with last reshaped
core G4 to produce vector b5 of scattered field values on the
entire grid. Notice, however, in the output vector b5, which
represents scattered field, 13 values (white cells in Fig. 3) can
be removed in accord with its sparsity pattern corresponding
to the needed values of the scattered field on the grid. The
fact that we can remove the unnecessary 13 values from
the output vector b5 allows us to perform another filtering
based on the output vector (scattered field) sparsity. Indeed,
the first filtering (forward filtering) was done using only the
information about input vector sparsity (i.e., sparsity of the
sources on the grid), which lacks the information about the
sparsity of the output vector (i.e., sparsity of the required
scattered field on the grid). In order to propagate this output
vector sparsity in the TTVM process, “backward filtering”
is introduced.

The idea of this “backward filtering” is to perform the
above-described “forward filtering,” with the awareness of
which output vector values will be required rather than
computing all of them (to avoid unnecessary computations
of the scattered field on the entire grid). Since there exists
a significant number of elements in matrix factors B(k+1)

k
that after multiplying with the TT factors do not contribute
to the elements of interest in the final output vector b5,
we first reshape sparsity mask of the output vector b5 into
the format of matrix B(4)

3 to produce the mask denoted as
c(4) = b5@4 in Fig. 3. Orange elements in c(4) indicate
nonzero elements coming directly from pattern b5 while blue
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elements denote elements forced into c(4) pattern by the need
to complete the columns.

Next, we find the intersection of the nonzero elements’
pattern in matrix B(4)

3 and output vector sparsity pattern c(4).
This intersection of the sparsity patterns is labeled as B(4)

3 ∩c(4)

in Fig. 3. Note that since the matrix B(4)
3 is full, the sparsity

in intersection B(4)
3 ∩ c(4) is dictated by the sparsity of c(4).

The combined sparsity pattern B(4)
3 ∩ c(4) produced at level

4 by the input and output vector sparsities is then reshaped to
level 3 (denoted as pattern c(3) = (B(4)

3 ∩ c(4))@3 in Fig. 3).
Once again, the orange elements in this reshaped sparsity
pattern at level 3 signify the nonzero elements coming directly
from B(4)

3 ∩c(4), while the blue elements result from completion
of the columns (padding them with zeros). This pattern is then
intersected with the sparsity pattern of matrix B(3)

2 , yielding
the resultant pattern at level 3 denoted as B(3)

2 ∩ c(3).
The process of reshaping resultant sparsity pattern to the

lower level and its intersection with the sparsity pattern
induced by the sources in matrices B(k+1)

k continues to levels
2 and 1 producing sought sparsity patterns B(2)

1 ∩ c(2) and
B(1)

0 ∩ c(1) at these levels, respectively (see Fig. 3).
After the resultant sparsity patterns B(k+1)

k ∩ c(k),
k = 1, . . . , d are found according to the above-described
forward and backward filtering steps, they are stored and
reused at each TTVM for the construction of matrices B(k+1)

k
in order to avoid operations involving sparsity-induced zero.

VI. NUMERICAL RESULTS

All numerical experiments with up to 200 000 MoM
unknowns are conducted on a 2.2-GHz Intel Core i7 proces-
sor with 8-GB RAM machine. Larger scale simulations are
conducted on a server with 384 Gb of RAM. All CG-TT [22]
and P-FFT [10] experiments were single-threaded simulations.
It is important to mention that the TTVM can be processed
in parallel by splitting the multiplication between each mode
of the TT core with the vector into separate processors. The
results from different nodes can then be assembled from
the nodes responsible for the computation of a part of the
resultant vector. Parallelization is out of the scope of this
article, however. This simple modification is only mentioned
to indicate a simple approach to further improvement of
performance reported in this article.

We examine naïve and sparsity-aware P-TT algorithms
by comparing them against the P-FFT [10] algorithm.
For the MVM of the Toeplitz matrix with a given vector,
the P-FFT [10] performs elementwise multiplication between
the FFT of the 2-D generator g and the FFT of the source
vector �, the latter being zero padded to reach the full period
of the discrete Fourier transform (DFT) dictated by g. As the
problem size grows, computation and storage of the generator
g, source matrix �, and their FFTs can become prohibitively
expensive. The O(log(N)) complexity of TT (at low and
moderate frequencies) in both forming and storing the
Toeplitz matrix and its O(rmax N) and O((rmax)

2 N log N) for
TTVM complexities allow to dramatically reduce resources
required for solution of a given large-scale problem.

In all the P-TT numerical experiments, we take two layers
of the near neighbor elements that are considered to be in
the region of near-field interactions with a given observation
triangle. The first layer of neighbors for a given observation
triangle is formed by all the triangles sharing at least one
vertex with it. The second layer of near neighbors is formed
by all the triangles sharing at least one vertex with the triangles
of the first layer. Indeed, this connectivity-based definition of
the near neighbors is proper only in the case of simple convex
objects considered in this article. More sophisticated quad-
tree-based near neighbor selection methods are required in the
general cases.

In all full-wave experiments for the near-field integrals,
a six-point third-order quadrature rule is used after the ln-
singularity is extracted from it and integrated analytically.
The tolerances in constructing TT and termination of the
GMRES [16] iterations are fixed as 10−6 and 10−8, respec-
tively, unless specified otherwise.

In Sections VI-A–VI-C, we examine the performance of
the P-TT and its sparsity-aware formulation through a series
of experiments on current flow problems in the cases of single
and multiple conductors (Sections VI-A and VI-B) as well as
full-wave scattering problems (Section VI-C).

A. QTT Scheme for Current Flow in Single Conductor

To investigate the performance of the proposed P-TT itera-
tive solver, we consider the current flow problem in a single
conductor of the circular cross section with a radius of 0.022 m
and the conductivity of 3.57 × 107 S/m. To examine the accu-
racy of the P-TT algorithm, in Fig. 4(a) and (b), we demon-
strate the results of seven experiments for frequencies 1 Hz,
10 Hz, 60 Hz, 100 Hz, 500 Hz, 10 kHz, and 100 kHz and
compare them against the analytic solution. Both unstructured
mesh of MoM and the structured grid are adjusted for each
frequency point to account for the skin depth. To prove the
accuracy of using triangle-based mesh over the voxel-based
mesh, both CG-TT [22] and P-TT are used for all seven exper-
iments. The voxel-based mesh cannot accurately describe the
curvature of circular conductors, when the number of voxels is
small. Hence, in low-frequency regimes, if the mesh element
size is governed by the skin depth, the P-TT shows higher
accuracy than CG-TT [22]. As the number of both triangle and
voxel elements’ increases, the relative error in both methods
becomes comparable. In high-frequency regimes, P-TT shows
accurate performance resulting in the relative error of 0.002
and 0.007 compared to the analytic solution at frequencies of
10 and 100 kHz, respectively. In Fig. 4(b), the 60-Hz current
distribution of circular conductor discretized into 260 096
triangles is shown.

We use GMRES [16] as an iterative solving scheme for the
proposed P-TT. As shown in Fig. 5, at low-frequency regime,
P-TT converges at eight iterations and consumes 139.22 s of
the total online time (time of GMRES iterations). At a fre-
quency of 100 kHz, convergence is reached after 89 iterations
with diagonal preconditioner and takes 1692.97 s in total.

In order to perform a systematic analysis of
P-TT performance, we consider a regular grid with
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Fig. 4. Results of P-TT current flow simulations performed on a circular
cross section conductor with a conductivity of 3.57 · 107 S/m. The conductor
has a radius of 0.022 m and is centered at the origin. (a) and (b) Relative errors
compared against analytic solution for extracted resistances and inductances
at the frequencies of 1 Hz, 10 Hz, 60 Hz, 100 Hz, 500, 10 kHz, and 100 kHz
are shown for both CG-TT [22] (blue) and P-TT [25] (red). Current flow
distribution at 60 Hz obtained by P-TT [25] is shown.

45, 46, 47, 48, 49, and 410 points and use an approximate
ratio of 4 to 1 in relation to the number of triangles2 taken
in the case of 60-Hz excitation. We show that the proposed
P-TT has the memory complexity of O(rmax N) and the
timing complexity of O(r2

max N log(N)). Due to the fact that
frequency variation only affects the number of iterations
to achieve convergence, different frequencies result in the
same demonstrations of both peak memory consumption and
timing consumption per iteration. Therefore, we only choose
the representative 60-Hz results for the complexity study.
As shown in Fig. 6 (top), the memory usage of storing TT
operator (blue curve) increases linearly, as the number of grid
elements increases exponentially. Peak memory consumption
during P-TT solving process occurs when the TT core

2The ratio between the number of grid points and the number of triangles
is approximately 4.

Fig. 5. Convergence rate pattern of P-TT at frequencies of 60 Hz, 1000 Hz,
and 100 kHz.

Fig. 6. Top: memory consumptions of both storing TT operator (blue curve)
and peak memory usage during TTVM (red curve) for the number of grid

elements 45, 46, 47, 48, 49, and 410. Bottom: timing consumptions of both
TTVM time per iteration (blue curve) and total time (red curve) for the same
discretized number of grid elements.

containing the maximum TT rank is being multiplied with the
successively obtained vector. Due to the TT tolerance being
fixed throughout all experiments, one can observe that the
peak memory usage (red curve) increases in accord with the
exponentially increased number of grid elements. The timing
growth can be observed in Fig. 6 (bottom). When the number
of elements grows exponentially, both TT-vector online (red
curve) and per iteration time (blue curve) follow the same
trend as the elements grow. This is due to the fact that TTVM
has the complexity of O(r2

max N log(N)), and the maximum
TT rank is maintained to be the same for all experiments
as the tolerance of constructing TT operators is fixed
as 10−6.

B. Sparsity-Aware P-TT Algorithm in Analysis of MTL

To demonstrate the impact of sparsity in grid population
on P-TT performance, we use three-cable MTL with the
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Fig. 7. (a) Current at 10-kHz study and the separation distance of 0.06 m between the centroids of each of the two adjacent conductors. (b) Current at
1-kHz study and the separation distance of 0.1 m between the centroids of each of the two adjacent conductors. (c) Current at 60-Hz study and the separation
distance of 1 m between the centroids of each of the two adjacent conductors. All plots are in logarithmic scale.

separation distance between the centroids of adjacent two
cables being 0.06, 0.1, and 1 m. Each bundled cable has
three sectors with outer and inner radii of the sheath being
0.027 and 0.019 m (see Fig. 7). Conductivity of all conductors
is taken to be 3.57 · 107 S/m. A regular grid consisted of
1 048 576 points is introduced over the computational domain.
For closely located cables (6-cm separation), the correspond-
ing sparsity ratio3 is 0.126. The 1 048 576-point grid sup-
ports mesh discretizations, which allow for high-frequency
simulations including 10 kHz. As a result, for the 3-cable

3Sparsity ratio is defined as the ratio between the number of nonempty grid
point and the total number of grid points.

MTL with 0.06-m separation between the cables, we consider
three frequencies: 60 Hz, 1000 Hz, and 10 kHz. With the
increase in the separation between the cables, the sparsity of
the grid population increases. Under the condition of the fixed
1 048 576-point grid, the minimum size of the triangle mesh
elements, however, increases with the increased separation
between the cables. This limits the maximum frequency of
simulations, as the minimum of two triangles is required to
sample one skin depth. As a result, only 60- and 1000-Hz
frequencies are considered in the 0.1-m separation case (spar-
sity ratio being 0.064) and only 60-Hz frequency is consid-
ered in the 1-m separation case (sparsity ratio being 0.002).
Fig. 7(a)–(c) show the current flow distributions computed
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Fig. 8. (a) Peak memory consumption in sparsity-aware P-TT and P-FFT [10]
at 60 Hz over the sparsity ratio of 0.126, 0.064, and 0.002. The peak
memory consumptions are divided into two parts. Top: memory usages of
P-FFT [10] and P-TT performing only elementwise multiplication and TTVM,
respectively. Bottom: total memory usages of the right-hand side vector
multiplying with Lnear , L̂near , and storing �, which have the same magnitude
for the same frequency, denoted as base memory consumptions. The bars in
(b) represent the result of subtraction between P-FFT [10] time consumption
and P-TT time consumption. Positive values mean that P-FFT [10] time
consumption is less than P-TT time consumption. Sparsity ratio of 0.126
contains 60-Hz, 1000-Hz, and 10-kHz studies, sparsity ratio of 0.064 contains
60-Hz and 1000-Hz studies, and sparsity ratio of 0.002 only contains 60-Hz
study. All values in (a) and (b) are plotted in logarithmic scale.

using sparsity-aware P-TT algorithm at 10 kHz, 1000 Hz, and
60 Hz for 0.06-, 0.1-, and 1-m separations, respectively. The
extracted admittance matrices are compared against the direct
VIE solution [32], [33]. The maximum relative error in the
case of 6- and 10-cm separations does not exceed 1% and
remains under 5% in the 1-m separation case.

In the three-cable experiments, we investigated various
sparsity scenarios with the goal of identifying when the pro-
posed sparsity-aware P-TT algorithm outperforms P-FFT [10].
The three selected meshes in the cases of 6-, 10-, and 1-m
separation distances result in grid sparsities of 0.126, 0.064,
and 0.002. The memory usage for the two methods is
shown in Fig. 8(a) for the frequency of 60 Hz. The peak
memory usage is divided into two parts, Fig. 8(a) (top)
shows the memory consumptions during MVMs that involves

only P-FFT [10] matrices and P-TT matrices (TT cores).
Fig. 8(a) (bottom) shows the total memory usage during the
MVM with Lnear, L̂near, and �, which all remain the same
in both P-FFT and P-TT methods under the condition that
three layers of near-neighbor elements are taken for each
observation triangle. The memory usage in Fig. 8(a) (bottom)
is the same for both methods. Therefore, we consider the
memory usage by the P-FFT and P-TT algorithms accord-
ing to the values shown in Fig. 8(a) (top). The memory
usage of P-FFT [10] is fixed as 128 MB and P-FFT [10]
outperforms P-TT at the sparsity ratios of 12% and 6%.
In these cases, the P-TT consumes 400 MB. As sparsity ratio
becomes smaller (less than 1%), sparsity-aware P-TT uses less
memory (30 MB in the case of 0.002 sparsity ratio) due to
elimination of unnecessary information from matrices in the
TTVM process. The same trend is shown in Fig. 8(b) for time
consumption. In Fig. 8(b), each bar represents the result of
subtraction between P-FFT [10] and P-TT time consumptions.
A positive value of the difference indicates that P-FFT [10]
outperforms P-TT, while the negative values indicate that P-TT
outperforms P-FFT. At the sparsity ratios of 0.126 and 0.064,
P-FFT [10] outperforms P-TT for all considered frequencies.
At the sparsity ratio of 0.126, for example, P-FFT [10]
only requires 79 and 445 s in 60- and 1000-Hz cases, while
P-TT consumes 197 and 1482 s, respectively, at the same
frequencies. When the sparsity ratio becomes less than 1%
[the third bar in Fig. 8(b)], P-TT uses less time compared
with P-FFT [10] without introducing any additional error other
than prescribed tolerance during the TT construction. At the
sparsity of 0.002, sparsity-aware P-TT converges under 40 s,
while P-FFT [10] consumes 77 s.

The observed impact of grid population sparsity on the
performance of the proposed sparsity-aware P-TT indicates
that the proposed novel algorithm can be advantageous for
simulations that include multiple well-separated conductors
in 2-D MTLs, solution of the surface integral equations
exhibiting high sparsity in grid population, 3-D magne-
tostatic interconnect analysis problems [23], and various
other practically interesting cases. Meanwhile, as the sparsity
ratio becomes smaller, the number of projected elements
decreases, which shows the limitation of using FFT-based
algorithms.

C. Sparsity-Aware P-TT Algorithm in Solution
of Scattering Problems

Performance of the proposed P-TT algorithm is analyzed
in the case of full-wave scattering on a cylinder of circu-
lar cross section having relative permittivity εr = 4 and
radius of 0.45 m, and situated in free space. The cylinder
is centered at the origin. The scatterer is projected onto a
square grid with a side length of 1 m. The incident plane
wave of 1-V/m magnitude is impinging from the 0◦ direction.
The scatterer is discretized with 100 498 triangles and the
MoM basis functions are projected onto the 1 048 576-point
Cartesian grid. We conducted three experiments with the
frequencies of 0.3, 1, and 2.5. To maintain the same level
of accuracy for the increased frequency, we use two, three,
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Fig. 9. Magnitude of electric field in circular cylinder of relative permit-
tivity εr = 4 computed with CG-TT at 2 GHz due to plane wave incident
at 0◦.

and five layers of connected elements in near interactions for
0.3, 1, and 2.5 GHz experiments, respectively. In low-
frequency regime at 0.3 GHz, P-TT converges at 24 itera-
tions after 255.19 s. In high-frequency regime at 2.5 GHz,
however, 1988 iterations are required to convergence to pre-
scribed tolerance with the diagonal preconditioner, which takes
36 953.57 s.4 Fields computed with the P-TT algorithm at
frequencies of 0.3, 1, and 2.5 GHz are compared against the
Mie series [31]. The average absolute error of 5.74 · 10−6,
5.83 · 10−5, and 0.07 V/m was reached at these frequencies,
respectively. The field distribution at 2 GHz for a circular
cylinder is shown in Fig. 9.

To study the complexity growth of P-TT in case of full-
wave scattering problems, the regular grids with 46, 47, 48, 49,
and 410 points and corresponding triangle meshes with 1096,
2872, 4322, 7820, and 100 498 elements were considered.
All the grid cases were considered at 0.3 and 1 GHz, and
only 49 and 410 grid cases were considered at 2.5 GHz. The
performance of P-TT was observed to significantly depend
on the number of grid elements rather than the number of
triangles. Therefore, we exponentially increased the num-
ber of grid points to analyze the CPU time and memory
complexity. As shown in Fig. 10(a), as the number of grid
elements increases exponentially, the memory used to store
TT (solid line) largely increases as O(log(N)) with slight
deviation from it at the high frequencies due to the increase
in TT ranks. According to the TTVM process described in
Section V-A, the peak memory use is observed at the stage
of multiplication between the TT core having highest TT
rank and the successively obtained vector. With O(rmax N)
complexity, the peak memory use grows exponentially with
the exponential increase in the number of grid points. A slight
deviation is observed again due to the increased TT ranks at
high frequencies. In Fig. 10(b), the total online timing (solid
line) shows exponential growth, as the number of grid elements
increases exponentially. However, the deviation due to increase

4The number of iterations can be substantially reduced by using more
effective preconditioners, which will be addressed in the future work.

Fig. 10. Memory and CPU time consumption for an exponentially increased
number of grid elements at different frequencies. The numbers of triangles
in MoM mesh are selected as 1096, 2872, 4322, 7820, and 100 498 for
the number of grid points being 46, 47, 48, 49, and 410, respectively, for
frequencies of 0.3, 1, and 2.5 GHz. (a) Both memory of storing TT operator
(solid line) and peak memory usage (dashed line). (b) Total time of iterative
solution (solid line) and the time of TTVM per iteration (dashed line). Both
(a) and (b) are presented in logarithmic scale.

in ranks with growing frequency appears to be more significant
in the timing complexity, which scales as O(r2

max N log(N)).
The time per iteration (dashed line) is obtained by dividing
total online time by the number of iterations and shows similar
behavior as the total time.

The performance of sparsity-aware P-TT in the case of full-
wave scattering problems is studied on the mock-up example
of two lenses shown in Fig. 11. The case of lenses separated
with 15-m distance is considered. Both lenses have relative
permittivity εr = 4. Excitations with the plane wave of
1-V/m magnitude impinging from 0◦ direction is modeled at
0.6 GHz. The number of unstructured triangle mesh elements
and regular grid points are fixed at 1 106 000 and 268 435 456,
respectively. In order to get more accurate results in P-TT,
five layers of near neighbors were taken in this experiment.
The simulated field is shown in Fig. 11(a). The absolute error
distribution compared to the finite-element solution of the
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Fig. 11. (a) Magnitude of electric field in a 2-lens mock up scatterer under
0.6 GHz incident field, and the lenses have 15-m separation distance between
their centers. (b) Distribution of absolute error compared with COMSOL.

commercial COMSOL solver is shown in Fig. 11(b). In this
case, the maximum absolute error is 0.086 V/m.

To study the sparsity effect, both P-TT and P-FFT [10]
solutions were obtained in the cases of separations increasing
from 12 to 17 m, which produced sparsity ratios ranging from
0.0037 down to 0.0019. The experiments were conducted at
the frequencies of 0.3, 0.45, and 0.6 GHz. Fig. 12(a) (top)
shows the total memory usage for P-FFT and P-TT algo-
rithms, including storage of Lnear, L̂near , and � matrices.
The number of iterations in the three cases’ sparsity remained
the same. Therefore, in the case of P-FFT algorithm [10]
[black in Fig. 12(a)] for which the memory use does not
depend on either increase in frequency or sparsity of grid
occupation, the same peak memory is observed. On the other
hand, the sparsity-aware P-TT [blue, red, and cyan curves
in Fig. 12(a)] shows strong dependence on the sparsity ratio.
At all considered sparsity ratios, the P-TT is observed to
consume less memory compared with P-FFT [10] in 0.3, 0.45,
and 0.6 GHz experiments with 395 800 element meshes. In all
the experiments, P-TT consumed about 2.3 GB of memory at
the sparsity ratio of 0.0019 and 4.5 GB at the sparsity ratio
of 0.0037. This signifies near linear scaling with sparsity as
the memory approximately doubles upon doubling in of the
sparsity ratio.

Fig. 12. (a) Peak memory consumptions between sparsity-aware P-TT for
0.3 GHz (blue), 0.45 GHz (red), and 0.6 GHz (cyan) over the sparsity ratios
ranging from 0.0019 to 0.0037. P-FFT [10] (black) shows the same memory
use for all frequencies and sparsity ratios as expected. The peak total memory
usages include storage of Lnear , L̂near , and �. (b) CPU time use in P-
FFT [10] and P-TT algorithms for the same sparsity ratio values and the
same frequencies of 0.3, 0.45, and 0.6 GHz.

Fig. 12(b) shows scaling of CPU time in P-FFT [10] and
P-TT algorithms with sparsity ratio and the frequency. As one
can see, at 0.3 GHz, the crossover point in the sparsity ratio
where P-TT starts outperforming P-FFT is approximately at
0.0022. This crossover point is shifted to the right as frequency
increases (0.45 GHz), which shows that for P-TT to outper-
form P-FFT at a higher frequency, it requires a higher sparsity.
The crossover point continues to shift to the right (toward
higher sparsity) as frequency increases, hence demonstrating
faster increase in CPU time cost in P-TT than P-FFT as
frequency grows and higher sparsity required to compensate
for it. This is due to the fact that the maximum rank rmax
of the TT cores enters into the CPU time of TTVM and
memory use as r2

max O(N log N) and rmax O(N), respectively.
Since maximum rank rmax scales as O(

√
N ), when frequency

grows and N grows respectively, the CPU time and memory
complexities for electrically large problems in P-TT scale as
O(N2 log N) and O(N1.5). At the same time, CPU time and
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memory complexities for P-FFT scale only as O(N log N).
However, while P-FFT cannot account for sparsity of the
scatterer, the P-TT can. As a result, the proposed P-TT
algorithm is more favorable for the solution of geometrically
complex but electrically moderate in size problems (up to
several wavelengths) where it can outperform classical P-FFT
when sufficient sparsity is present in the model.

VII. CONCLUSION

A sparsity-aware P-TT iterative fast algorithm is proposed
for the solution of static and full-wave problems in 2-D. The
method enables the use of TT decomposition of the Toeplitz
matrices for the acceleration of MoM solution on unstructured
meshes of VIE. Surface integral equations of electromagnetics
can be analogously handled by the proposed P-TT algorithm.
The concept of projection of the sources from unstructured
meshes onto point sources of regular Cartesian grids is utilized
by analogy with the well-established P-FFT [10] algorithm to
decouple the MoM mesh from the regular grid required for
organizing the MoM interactions into a Toeplitz matrix. The
TT decomposition compresses the generator of the Toeplitz
matrix, which leads to substantial memory reduction in the
P-TT approach compared to the P-FFT [10] algorithm. Also,
unlike the P-FFT [10] method, the P-TT allows for further
reduction of CPU time and memory by accounting for the
sparsity pattern in the occupation of the regular Cartesian grid
by the object of interest. In this article, we demonstrate how
such sparsity can be accounted for in multiplication of the
cores of the TT-decomposed Toeplitz matrix with a vector.
It is shown that upon sufficient sparsity, the P-TT algorithm
can outperform P-FFT [10] in CPU time as well as memory
use. Presented ideas will be more beneficial in the future 3-D
extensions of this article as the sparsity ratios are significantly
larger in realistic 3-D structures, especially when acceleration
of 3-D surface integral equations is considered.
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