A Data Stream Mining System

Hetal Thakkar Barzan Mozafari Carlo Zaniolo
University of California at Los Angeles
{ hthakkar, barzan, zanioj@cs.ucla.edu

Abstract necessity. Building such a system raises difficult research
On-line data stream mining has attracted much research issues, which SMM solves through an architecture based
interest, but systems that can be used as a workbench foon three main technical advances, as follows.

online mining have not been researched, since they pose e Extending recently developed DSMSs, which are cur-
many difficult research challenges. The proposed system rently designed to only support simple queries, to ex-
addresses these challenges by an architecture based on press complex mining queries,

three main technical advances, (i) introduction of new con-
structs and synoptic data structures whereby complex KDD
gueries can be easily expressed and efficiently supported,
(ii) an integrated library of mining algorithms that are fas

& light enough to be effective on data streams, and (iii) sup-
port for Mining Model Definition Language (MMDL) that
allows users to define new mining algorithms as a set of
tasks and flows. Thus, the proposed system provides an ex-

tensible workbench for online mining, which is beyond the ~_ Thus, SMM extends an existing DSMS, namely Stream
existing proposals for even static mining. Mill, with user-friendly, high-level mining models thater

. implemented with a powerful SQL-based continuous query
1 Introduction language, namely Expressive Stream Language (ESL). ESL
On-line data stream mining plays a key role in growing is an extension of SQL based on User Defined Aggregates
number of real-world applications, including network traf (UDAs). Therefore, this demo presents the following key
fic monitoring, intrusion detection, web click-stream anal features and methods of SMM.
ysis, and credit card fraud detection. Thus, many research
projects have recently focused on designing fast mining al-
gorithms, whereby massive data streams can be mined with }]
real-time response [10, 4, 13, 7]. Similarly, many research ® G€neric support for advanced meta concepts to im-
projects have also focused on managing the data streams Prove accuracy of classifiers, e.g. ensembles, and
generated from these applications [9, 1, 6]. However, the e Definition of mining algorithms consisting of multiple
problem of supporting mining algorithms in such systems processing steps as mining flows in MMDL.
has, so far, not received much research attention [12]. This . o
situation seems unusual, since the need for a mining sys2 High-Level Mining Models
tem for static data mining, was immediately recognized [8] An on-line data stream mining system should allow the
and has lead to systems such as, Weka [5] and OLE DB foruser to (i) define new mining models and (ii) uniformly in-
DM [11]. Furthermore, static mining algorithms can also voke diverse set of built-in and user-defined mining algo-
be written in procedural language using a cache mining ap-rithms. Existing solutions for static data mining, do net al
proach that makes little use of DBMS essentials. However, low (i) and simply focus on (i), which results in a close sys-
online mining tasks cannot be deployed as stand-alone altem. However, online mining systems must provide an open
gorithms, since they require many DSMS essentials, suchframework, since new on-line mining algorithms are con-
as 1/0O buffering, windows, synopses, load shedding, etc.stantly being proposed [10]. SMM achieves both of these
Clearly, KDD researchers and practitioners would rather goals via supporting MMDL as we discuss next.
concentrate on the complexities of data mining tasks and SMM allows the user to define new mining models by
avoid the complexities of managing data streams, by let- specifying the tasks that are associated with the model. For
ting the mining system handle them. In short, while mining instance, most classifiers will consist of two tasks, learn-
systems are a matter of convenience for stored data, theyng and predicting, whereas association rule mining cessis
are a matter of critical necessity for data streams. Thus,of finding frequent patterns and deriving rules from them,
this demo presents the SMM system, namely Stream Mill and so on. Furthermore, data cleaning and post-analysis
Miner, which is specifically designed to address this ailtic steps can also be specified as tasks. Finally, the analyst

¢ Integrating a library of mining algorithms that are fast
& light enough to be effective on data streams, and

e Supporting a higher level mining language, namely
Mining Model Definition Language (MMDL), which
allows definition of mining models that encapsulate re-
lated mining tasks and mining flows for ease-of-use
and extensibility.

e Mining models and their use for online classification,
clustering, and association rule mining,

can specify mining flows that connect these tasks to im-

. RID | Outlook | Temp | Humidity Wind Play
plement complex mining process, such as ensemble based 1 Sunny | Hot High Weak T No
methods [13, 4, 7]. The model definition specifies the tables 2 Sunny | Hot High Strong | Yes
that are shared by different tasks of the model. Thus, differ 3

Overcast| Hot High Weak | Yes

ent instances of the model will work on separate instances
of these tables, but the tasks of the same model instance Table 1. The relation PlayTennis
share these tables. Additionally, the model definition as-
sociates a UDA with each individual task of the model as

discussed in Section 3. R'lD CO':”‘” \s/ﬁl:r? ?\f(’)c
Example 1 defines a simple Naive Bayesian Classifier 1 2 Hoty No
(NBC) and creates an instance of this model type in MMDL. 1 3 High | No
In Example 1, the UDAs associated with thearn and 1 4 Weak | No
Classify tasks areé.earnNaiveBayesian(omitted due to space g % Sﬂg?y iz
constraints) andlassifyNaiveBayesiar(Example 3), respec- 2 3 High | Yes
tively. Thus, MMDL allows the users to create arbitrary 2 4 Strong | Yes
mining models and instantiate them uniformly. Once a min-

ing model instance is created, the user can then invoke dif- Table 2. Verticalized PlayTennisRelation
ferent tasks of the model with a consistent syntax. For in-
stance, Example 2 invokes thearn task of the NBC in-
stance created in Example 1. Note, we omit the discussion
of the formal syntax here, due to space constraints.

of tuples, (ii) the number of tuples belonging to each class,
and (iii) the number of tuples belonging to each class for
each (column, value) pair. This is also known as the de-

Example 1 Defining A ModelType for an NBC scriptive phase. These counts can be obtained with a set
CREATE MODEL TYPE NaiveBayesianClassifief of SQL queries, one for each attribute, and they are stored
SHAREDTABLES (DescriptorTbl), in a table, whereby the probability of the ‘Yes’ and ‘No’

Learn (UDA LearnNaiveBayesian,

WINDOW TRUE, PARTABLES(), deC|_S|0n fora new tuple, is then obtalne_d via simple matr_le-
PARAMETERS() matical computations. However, repeating the computation

) of counts for each attribute is inefficient and requires-writ

Classify (UDA ClassifyNaiveBayesian, ing different queries for tables having different number of

WINDOW TRUE, PARTABLES(), | Thi blem is add db 3 icit
PARAMETERS() columns. This problem is addressed by assugegericity

) in SMM.

dREATE MODEL INSTANCE NaiveBayesianInstance 3.1 Genericity

AS NaiveBayesianClassifier; L . .
Genericityis an important property provided by systems

Example 2 Invoking the Learn task of the NBC Instance such as Weka and OLE DB for DM, which allow their
RUN NaiveBayesianinstance.LearWITH TrainingSet; mining algorithms to be applied over arbitrary tables [12].
Thus, SMM also supportgenericityvia an approach simi-

In Example 2, theTrainingSet is assumed to have the lar to Weka, namelyerticalization SMM verticalizesnput
same schema as expected by the UDA associated withtuples into column/value pairs, e.g., the first two tuples in
the Learn task—the system checks this automatically. Fur- Table 1 are represented by the eight tuples shown in Table 2.
thermore, the RUN statement allows an additional US- This verticalizationis realized in SMM by user-defined ta-
ING clause to specify the parameters required by the min-ble functions. Therefore, tuples of any arbitrary schenea ar
ing task. The USING clause is omitted in Example 2, converted into this vertical format and processed through
since there are no additional parameters. However, ad-UDAs, which specify arbitrarily complex tasks. Thus, we
vanced mining algorithms can be customized with the US- next discuss the support for these UDAs.

ING clause as seen in Section 4. Next, we dis@eszeric
implementation of UDAs that are associated with these min-3.2 UDAs

ing tasks. Let's assume that instead of a static table, we want to
. L classify a stream of tuples. In this case a continuous query
3 On'“ne__ Mining !n SMM_ . would be required to classify the incoming tuples. How-
We use Nave Bayesian Classifier (NBC) as an example ever, simple continuous queries are not enough to express
to explaingenericimplementation of on-line mining algo- many complex mining tasks. Thus, SMM supports UDAs
rithgsl ding MM B feoire aneiRdaikataRireamilehgsiiest and windows/slides over UDAs, to express these complex

faNFEE tupRsSUGHN ¥isres @ WATHIQ iR taNREerBVer queries efficiently. Therefore, thelassifyNaiveBayesian
a static table, such as that of Table 1.

UDA, given in Example 3, classifies test tuples based on
the DescriptorThbl, built in the descriptive phase.

Example 3 NB Classification Aggregate

DescriptorThl(Col INT, Val INT, DecINT, Count REAL)
AGGREGATE ClassifyNaiveBayesian(coINT,
val CHAR(10)): CHAR(3) {
TABLE pred(decINT, tot REAL);
INITIALIZE: {
INSERT INTO pred SELECT Dec, abs(log(Count+1))
FROM DescriptorThl;
} ITERATE: {
UPDATE pred p SET tot = tot +
(SELECT abs(log(Count+1))
FROM DescriptorThl WHERE Val = val
AND Col = col AND Dec = p.dec);
} TERMINATE: {
INSERT INTO RETURN
SELECT p.decFROM pred p
WHERE NOT EXIST (
SELECT * FROM pred pl
WHERE p1l.tot > p.tot
OR (p1.tot = p.tot AND pl.dec< p.dec));

The ClassifyNaiveBayesianUDA (Example 3) sums up
the probabilities of each outcome, up on arrival of each ver-
tical tuple in the INITIALIZE and ITERATE states. These
states essentially maintain a sum for eaglie-deccombi-
nation. The TERMINATE state determines the most likely
outcome based on the maintainedms We note that
the computation presented @lassifyNaiveBayesianUDA
is blocking, since it only returns the outcome up on see-
ing the end of the stream in the TERMINATE state. There-
fore, this UDA cannot be applied directly over data streams.

from the next tuple since slide sizewindow size. There-
fore, UDAs along with windows and slides naturally inte-
grate online prediction.

Now, we consider the case where the training set is also
streaming. A similar solution, based on UDAs, can be ap-
plied in this case, which will enable the classifier to con-
tinuously learn new concepts that appear in the training
stream. However, the classifier should also ‘forget’ the old
concepts, which may reduce the accuracy of the classifier.
Therefore, a windowed approach is more suitable, i.e. a
classifier should be differentially maintained over a win-
dow of the training stream. Indeed, in data streams, many
functions similarly need to be computed differentially. i.
without recomputing everything upon arrival/expiratioin o
a tuple. Therefore, SMM allows the users to define win-
dowed version of their UDAs, where differential compu-
tation is declaratively specified via an additional EXPIRE
state, which is invoked once for each tuple expiring out of
the window. Due to space constraints we omit the detailed
discussion of the windowed UDA that differentially main-
tains the statistics for an NBC, using the EXPIRE clause.

Indeed, UDAs along with different kinds of windows
over them provide a great source of power and flexibility
to SMM. Therefore, the user can define arbitrarily complex
mining models and support them with UDAs.

4 New algorithms and methods

While many on-line mining algorithms are integrated in
SMM, we only discuss Association Rule Mining (ARM)
and ensemble based methods here, due to space constraints.

Therefore, SMM extends standard SQL:2003 windows over4.1 Association Rule Mining (ARM)

UDAs, as opposed to just built-in aggregates, to convert the

blocking UDAs to non-blocking ones. Thus, tlassify-
NaiveBayesianUDA is invoked as follows.

SELECT ClassifyNaiveBayesian(Col, Val)

OVER (ROWS 4 PRECEDING SLIDE 5)
FROM VerticalStream
The ROWS 4 PRECEDING clause represents a window

of 5 tuples (including the current tuple). Furthermore, the
SLIDE 5 clause instructs SMM to return results every 5 tu-
ples. In general, such windows allow invocation of block-

The first major task for ARM is the identification of fre-
qguent patterns, which has been the focus of many research
efforts. For instance, the SWIM algorithm [10] differen-
tially maintains frequent patterns over a large sliding-win
dow. SWIM uses FP-tree data structure to compute/store
frequent patterns, whose frequencies are monitored with a
fast verifier (i.e., an algorithm based on conditional ceunt
ing, see [10] for definition o¥erificatior). An on-line min-
ing system must integrate such new and advanced mining
algorithms. For instance, Calders et al. [3], proposed an ap

ing UDAs over streams, since the execution is constrainedproach to incorporate ARM in relational databases through
over the specified window. The queries like the one above virtual mining views. This approach proposed that a mining

are called tumbling window queries, since the slide size is
greater than or equal to the window size [2]. In such cases
SMM repeats the following computation over each tum-
bling window, uniformly across arbitrary UDAs. SMM exe-
cutes INITIALIZE for the first tuple, ITERATE for the next
(window size - 1) tuples and then TERMINATE, since we

system should provide a set of mining views for ARM and

;that the system executes appropriate mining methods when

these views are queried.

SMM adopts a similar approach that defines a built-in
mining model for ARM, as shown in Example 4. The model
is again composed of two tasks, one for frequent patterns

reached the end of the window. This processing is repeatednining and another for determining association rules from

from the next (slide size - window size) tuples. Thus, in
this case, after INITIALIZE, ITERATE is executed 4 times
followed by TERMINATE. The processing is then repeated

the set of frequent patterns. Therefore, these tasks repre-
sent a mining flow, which can also be defined in the mining
model, e.gARMFlow in Example 4. Each mining flow has

an input stream and an output streadR§TREAM andOUT-

STREAM, respectively. The analyst specifies how the tasks
of a mining model interconnect via intermediate streams,
e.g. FrequentPatterns stream. Other tasks, such as cleaning ,
and post-analysis, can also be added to such flows. Thus| e i =
naive users do not require in-depth knowledge of each task : ‘ DataTn
and can simply invoke a mining flow that represents the :

complete mining process.

Example 4 ModelType for Association Rule Mining

CREATE MODEL TYPE AssociationRuleMiner {

SHAREDTABLES (Sets),

Frequentltemsets (UDA FindFrequentltemsets,
WINDOW TRUE, PARTABLES(FreqParams),
PARAMETERS(support Int)

)

AssociationRule (UDA FindAssociationRules,
WINDOW TRUE, PARTABLES(AssocParams),
PARAMETERS(confidenceReal)

)
Flow ARMFlow (
CREATE STREAM FrequentPatternsAS
RUN FrequentitemsetsON INSTREAM,;
INSERT INTO OUTSTREAM RUN AssociationRules
ON FrequentPatternsUSING confidence> 0.60;
)

CREATE MODEL INSTANCE AssociationRuleMinerInst
AS AssociationRuleMiner;

Commands

Response

Scheduler Scheduler

Results

Figure 1. SMM Architecture

6 Conclusion

In this demo, we will show a data stream mining sys-
tem that goes beyond the existing solutions for even static
mining, by providing an extensible mining workbench. We
will also demonstrate integration of user defined mining al-
gorithms, including advanced algorithms, such as SWIM,
ensemble based methods, etc., in SMM using MMDL.

References

[1] A. Arasu, S. Babu, and J. Widom. CQL: A language for con-
tinuous queries over streams and relationdDBPL, 2003.

In this case, the UDAs associated with these tasks are (3] v, Baj, H. Thakkar, C. Luo, H. Wang, and C. Zaniolo. A data

implemented externally in C/C++, which enables integra-
tion of advanced algorithms, such as SWIM. The overhead

of this integration is negligible based on our experiments.

4.2 Ensemble Based Methods

A core issue in online data mining is concept drift/shifts,
which are caused by the changes in the data distribution or

stream language and system designed for power and extensi-
bility. In CIKM, 2006.

[3] T. Calders, B. Goethals, and A. Prado. Integrating pattern
mining in relational databases. RKDD, 2006.

[4] F. Chu and C. Zaniolo. Fast and light boosting for adaptive
mining of data streams. IRAKDD, volume 3056, 2004.

underlying concept. The problem has been studied in detail [°] Weka 3: data mining with open source machine learning

by [13, 4, 7] and ensemble based methods are proposed as

an effective solution. These techniques essentially laarn

software in java. http://www.cs.waikato.ac.nz.
[6] D. Abadi et al. Aurora: A new model and architecture for

ensemble of classifiers and use their accuracy on the train- data stream managemeRt. DB Journa) 2003.
ing stream to improve the accuracy of final classification [7] George Forman. Tackling concept drift by temporal induc-

over the testing stream. Thus, it is imperative that sudi-tec

tive transfer. INSIGIR pages 252-259, 2006.

nigues are integrated in an on-line mining system. SMM [8] Tomasz Imielinski and Heikki Mannila. A database perspec-

generically supports such techniques, i.e. these techgiqu

tive on knowledge discoveryCommun. ACM1996.

can be applied over any arbitrary classifier such as NBC, [9] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data mod-

decision tree classifier, etc. Analysts can essentiallyndefi
mining flows similar to the one defined in Example 4.

5 SMM Architecture

SMM employs a client-server architecture, where multi- [11]
ple clients may be connected to a single server. The client
simply sends user commands to the server. The sever con
sists of 3 main components, I/O scheduler (I0S), Query
Scheduler (QS), and the compiler. The I0OS communicates
with the clients and the data sources. The QS is responsibl

for concurrently executing the queries. Finally, the cdepi

compiles user defined entities, such as UDAs, queries, run

task statements, etc., to C/C++ code that is executable.

els and query language for data streamsVILDB, 2004.

[10] B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and min-
ing frequent patterns from large windows over data streams.
In ICDE, 2008.

Z. Tang and et al. Building data mining solutions with OLE
DB for DM and XML analysis.SIGMOD Record2005.

[12] H. Thakkar, B. Mozafari, and C. Zaniolo. Designing an in-

ductive data stream management system: the stream mill ex-
periences. Irscalable Stream Processing SysteR@8.

%13] H. Wang and et al. Mining concept-drifting data streams

using ensemble classifiers. $iGKDD, 2003.

