
Stochastic Queuing Simulation for Data Center Workloads

David Meisner Thomas F. Wenisch
meisner@umich.edu twenisch@umich.edu

Advanced Computer Architecture Lab
The University of Michigan

Abstract
Data center systems and workloads are increasing in im-
portance, yet there are few methods for evaluating poten-
tial changes to these systems. We introduce a new methodol-
ogy for exascale evaluation, called Statistical Queuing Sim-
ulation (SQS). At its heart, SQS is a parallel, large-scale
stochastic discrete time simulation of generalized queue-
ing models that are driven by empirically-observed arrival
and service distributions. SQS provides numerous practi-
cal advantages over alternative large-scale simulation tech-
niques (e.g., trace-driven simulation), including statistical
rigor and reduced turnaround time. We detail our methodol-
ogy, workload suite, and practical concerns associated with
them. To demonstrate our technique, we carry out a case-
study of data center power capping for 1000 servers. Finally,
we discuss open research challenges for making SQS more
robust.

1. Introduction
Data center workloads are increasing in importance. With
time, more computation is moving into Warehouse-Scale
Computers (WSCs, or, “The Cloud”). Despite this trend, the
systems community is only beginning to understand these
workloads and their implications. Furthermore, because of
their infancy, there are few, if any, established methods for
monitoring, designing, and evaluating these systems.

Evaluating a proposed exascale system is challenging. The
research community has achieved many successes in engi-
neering and benchmarking individual servers. However, the
challenge of exascale research lies in scaling to many thou-
sands of servers. While prototyping or implementing novel
systems might be most appealing, the cost and scale of data
centers makes such deployments impractical. Instead, mod-
eling and simulation are both promising avenues for quanti-
tative evaluation at scale. The research literature includes a
wealth of theoretical and statistical modeling methods, how-
ever these analytic solutions often fail to handle the com-
plexity of real systems. Simulation offers greater flexibility
and fidelity than analytic models, but care must be taken to
maintain statistical accuracy and limit simulation time.

Our evaluation solution is a hybrid of implementation,
benchmarking, modeling and simulation that we call Stochas-
tic Queuing Simulation (SQS). SQS is based on a stochastic
discrete-time simulation of a generalized system of queue-
ing models driven by empirical profiles of a target workload.
We present a case for our methodology, detail its theoretic
foundations and provide our workload suite used to drive it.
Finally, we demonstrate the utility of SQS through a case
study of cluster level power capping.

1.1 Simulation and Modeling Challenges

Where possible, the use of closed-form analytic equations
for system performance is preferable; these equations lend
insight into the nature of the systems and require no simu-
lation time. Most analytic solutions available in the queu-
ing theory community rely on independence assumptions
and Poisson processes [11]. Unfortunately, many important
server workloads exhibit bursty behavior and/or long tail dis-
tributions which break these assumptions [10]. The most
general and applicable queuing model for which numer-
ous performance measures have been derived is the M/G/1
queue. This model accounts for arbitrary job lengths, but
is not general enough to model bursty arrivals, many-core
servers or novel power management modes.

Ideally, one would like to model real workloads from ob-
servations on actual systems (i.e., using empirical character-
izations of arrival and service processes). To model arrival
or service processes with arbitrary distributions (i.e. ‘G’ in
queuing notation for ‘general’) one must analyze a G/G/1
or G/G/k queue (General interarrival and service distribu-
tions and 1 or k servers). Unfortunately, such models have
to-date remained analytically intractable within the queuing
theory community [7, 8]. To handle complex systems, ana-
lytic models must relax assumptions and make approxima-
tions to conform to analytically-tractable queues; the more
of these relaxation that are made, the further from the real
system the model becomes.

In contrast, trace driven simulation, where a sequence of
events captured on a real system is replayed on a model
of an alternative system, allows for analysis of arbitrarily



complex systems with good fidelity. Traces are valuable be-
cause they represent the exact behavior of the target system.
Without statistical reasoning however, it is unclear how large
these traces must be, or what fraction must be replayed dur-
ing simulation. Moreover, when captured over thousands of
servers, traces can become unwieldy (gigabytes to terabytes
in size) and require long simulation runs. Moreover, most
trace-driven simulations are inherently serial.

1.2 Advantages of Stochastic Queuing Simulation

Compared to trace-driven simulation or analytic modeling,
SQS provides a number of advantages.

Statistical rigor. SQS uses statistics to give probabilistic
guarantees for its outputs. We build upon the large collection
of methods in sampling and statistics. By rigorously defining
convergence criteria for our simulations, we save on simula-
tion time while achieving desired levels of prediction accu-
racy.

Compact representation. Compared with methods such
as trace-drive simulation, the data needed to characterize
a workload for SQS is small. Collecting fine-grain traces at
sub-second scale (which is needed for many Internet services
[13]) requires significant storage for observations over long
time periods. We have collected over 60GB of trace data;
using such large data sets is burdensome. Instead, we can
represent the same set of workloads with SQS distributions
in well under 1MB.

Free of confidential information. Concerns about privacy
and competitive advantage have made it difficult for the re-
search community to gain access to a set of workloads that
represent data center services. The inner workings of data
center operations are tightly guarded trade secrets. It is no
surprise that data, such as workload traces, have not been
forthcoming from industry. Business and legal ramifications
may prevent such data sets from ever being released [1]. In
contrast, SQS needs only interarrival and service time distri-
butions and power-performance models, which reveal only
a specific and limited set of information about a particular
service.

2. Stochastic Queuing Simulation
Stochastic Queuing Simulation (SQS) is a methodology for
characterizing and simulating large-scale workloads (e.g.,
to evaluate new server configurations, scheduling policies,
etc.). The technique builds upon analytic foundations, but
adds simulation to account for data center workload prop-
erties that make closed-form solutions intractable. While
pieces of these methods may be well known to queuing the-
orists or statisticians, they have not been presented in a cohe-
sive manner, or widely adopted by the systems community.

2.1 Simulation

SQS is based on discrete-event simulation. This technique
is well understood and we leverage the wealth of statistical
techniques for computer system simulations [20]. Because
of the relative simplicity of our simulator (e.g., compared to
timing accurate microarchitecure simulators), we are able to
gather large samples with reasonable simulation time. The
high speed of discrete-event simulation is fortuitous; the
large degree of variability in the performance metrics used
to assess large-scale systems require large samples to yield
estimates with high confidence.

2.2 Queuing Models

We briefly review the important highlights of queuing mod-
els. Detailed tutorials on queuing models may be found
in [11]. A queuing model is composed of a collection of
“servers” which process jobs. We model each data cen-
ter server as a single queuing system; this queuing system
may have multiple “servers” which correspond to individual
cores in a multicore processor. Jobs arrive into the system
according to an interarrival time distribution and their size
(measured in time) is distributed according to a service time
distribution. A queuing discipline must be chosen to deter-
mine how queued jobs are scheduled and processed; we limit
our study to the first in first out (FIFO) discipline.

There are two reasons why designers must resort to queu-
ing models instead of simpler per-job power-performance
models. First, increasing the latency of a single job can have
compounding effects on other jobs’ latency. A job’s average
response time, E[R], is dependent on its expected service
time, E[S], which represents the relative size of the job, and
also on the time spent in a queue waiting for other jobs to
finish, E[TQ]. We can express this as:

E[R] = E[TQ] + E[S] (1)

Accordingly, simply understanding how job length is changed
under various configurations is not sufficient; we must also
understand how jobs interact. A salient example is a bursty
workload where many jobs arrive at once, possibly incurring
large queuing delays.

The second reason queuing models are necessary is to un-
derstand the timing of how concurrent jobs overlap. Model-
ing resource constraints of multiple simultaneous jobs (e.g.,
power, memory bandwidth, etc.) is critical to understanding
how to design systems with concurrency. Many properties,
such as full-system idleness, require observing the interac-
tion of multiple jobs on the same system [13].

We can characterize a workload for queueing analysis by
capturing its interarrival time distribution and service time
distribution.

Interarrival Time Distribution. The interarrival distribu-
tion reflects the probabilities that job arrivals are separated

2



Discrete Event 
SImulation

System Log

Statistical 
Analysis

Distributions

Observation Prediction

Power
Response Time

etc.

Power-Performance 
Model

Online Instrumentation

Offline Benchmarking Iterate 
to convergence

Figure 1: Stochastic Queuing Simulation

by given intervals. The rate parameter λ, provides the effec-
tive throughput of the system (job/s) and 1/λ is the average
interarrival time.

Service Time Distribution. The service time distribution
describes the probability of jobs of given sizes arriving at
a server. µ is the rate parameter (job/s) for a server and 1/µ
is its average service time. Note that in statistics, µ typically
denotes the average of a distribution, however, in queuing
systems, it is 1/µ.

Coefficient of Variation. A useful statistic to characterize a
distribution is its coefficient of variation, Cv .

Cv =
σ

1/µ
(2)

Where σ is the distribution’s standard deviation. Unlike vari-
ance, this is a normalized statistic that can be compared
across distributions. The service time distribution of com-
mercial server applications tend to have high variance [10].
Furthermore, Cv roughly describes the burstiness of a distri-
bution relative to an exponential (memoryless) distribution,
which has a Cv = 1. Typical values of Cv for server appli-
cations range from one to 20.

2.3 Instrumentation

To characterize a workload’s arrival and service distribu-
tions, a running server must be instrumented. The most
straightforward method for collecting these distributions is
to create an application-level log that records a timestamp
of every job arrival and departure. This data can then be
post-processed to find interarrival and service times.

Handling imperfect information. Often, it is infeasible
to instrument an application’s code (e.g., if the applica-
tion is closed source or if a production system cannot be
taken down for modification). We present two approxima-
tion techniques which allow researchers to infer interarrival
and service times without application-level instrumentation.
Though these approximations are imperfect, they nonethe-

less allow SQS to enable reasoning about performance
changes for workloads that cannot otherwise be analyzed.

M/G/1 inference. If a service is user-facing (i.e., users inter-
act with a server directly), with a relatively large user pop-
ulation, one can reasonably assume that arrival process is
Poisson [11]. For a multi-processor server – M/G/k in queu-
ing notation – we can leverage the Poisson assumption to
break the system into k M/G/1 queues using Poisson split-
ting [11]. In this case, we can use parametric inference to
fit the exponential distribution and use non-parametric infer-
ence to determine the service time distribution from idle and
busy periods [14].

Light Utilization. Another approximation is possible for
lightly utilized services – the most common case for data
center applications. Under light utilization, queuing is prob-
abilistically unlikely. So as U → 0,

E[R] ≈ E[S] (3)

Furthermore, if there are a large number of servers and
aggregate utilization is low, the probability that a job arrives
and no server is available is low. So as k →∞, again,

E[R] ≈ E[S] (4)

Since the servers we monitored had 1-4 cores and low uti-
lization (≈ 20%), we use the latter technique to approximate
their interarrival and service time distribution from their idle
and busy patterns.

2.4 Power-Performance Models

One particularly important application of SQS is evalua-
tion of various low-power modes. Idle low-power modes for
CPUs are easily modeled in queuing systems; the transition
penalties simply are added before jobs can begin/continue
[13]. However, active low-power modes and non-CPU low-
power modes require more complex models. For example, if
a low-power mode degraded memory system response time,

3



the performance impact might vary across workloads. Pre-
dicting how much a given power-performance setting slows
a given workload remains an open research challenge. Prior
work [16] discusses modeling techniques for the physical in-
frastructure (power and cooling systems) in data centers.

3. Methodology
The flow of SQS is outlined in Figure 1. Two classes of mod-
els must be constructed for each server and workload to be
studied: power-performance models and interarrival/service
distributions. Power-performance models are constructed for
various power mode or configuration tradeoffs through off-
line experiments (e.g., by measuring mean throughput and
power demand under each power mode). Interarrival and ser-
vice times must be collected from live systems (the real-
world user behavior is a key aspect of the arrival distribu-
tion, making it critical to collect data from production envi-
ronments where possible). This data collection can be quite
challenging; the instrumentation must affect of the work-
load’s performance minimally. Once these models are in
place, various metrics can be extracted through queuing-
based discrete even simulation.

3.1 Outputs

Extracting various performance metrics from SQS requires
a number of statistical techniques to insure accuracy. These
outputs may be derived from any performance metric cap-
tured in the discrete event simulator.

Simulations continue until target performance metrics meet
a pre-specified statistical confidence, which we call sim-
ulation convergence. We describe a step-by-step process
for achieving convergence. Simulations can output multi-
ple metrics, but simulation length may increase as a result,
as all metrics must reach convergence before the simulation
completes.

Before detailing our simulation procedure, we recap the fun-
damental sampling mechanisms for mean and quantile per-
formance estimates underlying our convergence criteria.

Means. To determine the confidence interval of average val-
ues (e.g., mean response time), we leverage standard tech-
niques for large-sample analysis. According to the central
limit theorem, the sampling distribution of a mean value es-
timate tends towards the normal distribution as sample size
increases. Hence, we can determine the sample size needed
for a given confidence by:

nm =
Z2

1−α/2 · σ
2

ε2
(5)

Where Z1−α comes from the standard normal: it is the value
of the standard normal distribution at the (1−α/2)th quantile
and is 1.96 for 95% confidence. σ is the sample standard
deviation and ε is the half-width of the confidence interval.

Quantiles. Confidence intervals for quantile (e.g., the 95th-
percentile latency) can also be derived using the central limit
theorem [4].

nq =
Z2

1−α/2 · p(1− p)
ε2

(6)

The variables are the same as for mean estimates with the
addition of p as the desired quantile. To find an exact quan-
tile, one would need to record and sort all observations in
the sample. However, space-efficient approximations using
online algorithms are described in [3, 4].

Convergence. We consider a simulation to have converged
when all target metrics have reached their predetermined
confidence intervals. From these confidence intervals, we
can derive statistically rigorous probabilistic claims regard-
ing mean and quantile estimates. The interval ε gives the
bounds of a confidence interval in terms of the target-
metric’s units (e.g., response time with ±5ms). We normal-
ize these value by the mean estimate such that we can report
mean confidence across multiple output variables.

E = ε/X̄ (7)

The steps to simulate to convergence are:

1. Warm to Steady State - A simulation begins in an ini-
tial transient phase, where observations are biased by the
initial simulation state (e.g., assuming that all queues are
empty) and cannot be used. To avoid this cold-start effect,
the simulation must be exercised for nw observations un-
til it reaches a steady-state where the performance met-
rics of a random observation are uncorrelated to the ini-
tial state. Unfortunately, a method for determining nw has
been the subject of years of debate [15]. To date, no rig-
orous method for automatically detecting steady-state is
available. We conservatively choose large values for nw
(much larger than any busy interval we have observed in
simulation).

2. Find Lag Spacing - Using successive observations from
a queuing system simulation introduces bias into sample
estimates because observations tend to be autocorrelated
(i.e., nearby observations are not independent).
However, it has been shown that if observations are suf-
ficiently spaced apart, they are effectively independent.
Determining this minimum spacing, l, is accomplished
with the runs-up test detailed in [4]. The major conse-
quence of this approach is that simulation length is in-
flated by a factor of l. Though a sample size of N = n
observations may be sufficient to achieve a given confi-
dence in an i.i.d. draw, since l − 1 observations are dis-
carded for every l taken, a total of N = ln events must
be simulated to achieve the target sample size. Further-

4



more, it has been shown that this method can increase the
sampling variability, further increasing n [5].

3. Choose Acceptable Confidence - For each output per-
formance metric, an acceptableE must be chosen. For out
simulations, we use E = .05 with a confidence level of
95%. This confidence interval can be interpreted to mean
that, in 95% of simulation experiments, the true value of
a performance metric will be within 5% of the reported
estimate.

4. Collect Sufficient Observations - Finally, the simulation
proceeds according to conventional methods for discrete
event simulation. Each event generates a new observa-
tion, is fed to the runs-up test, and the simulation contin-
ues until a sufficiently-large sample has been observed to
achieve convergence for all output variables.

4. Workloads
We present data that we have collected on the University
of Michigan campus to drive SQS simulations. We include
three distinct workloads: web mail (Mail), interactive login
(Shell), and an Apache based web server (Web). In the next
section, we will utilize these traces to evaluate simulation of
the effect of power capping on a hypothetical cluster.

Figures 2-13 present empirical Probability Density Func-
tions (PDFs) and Cumulative Distribution Functions (CDFs)
of six instrumented production servers. Note that the left (for
PDFs) and right (for CDFs) vertical scales differ drastically
for a given workload and the horizontal scales vary greatly
across workloads. The presented data demonstrate how it is
useful to visualize both the PDF and CDF of each distribu-
tion.

Mail. We monitored a departmental mail server to pro-
duce the Mail workload. It exhibits slightly higher-than-
exponential variation in its service distribution (Cv = 3.6).
Most jobs for this system are short; typically email clients
download a few emails from the server at a time.

Shell. The Shell workload monitors an interactive Linux lo-
gin server, which are generally used to access files and run
various jobs. Because users can run arbitrary software on
these systems, the service distribution has a high Cv of 15
(although most of the density is below 20 ms indicating these
jobs are generally short). Furthermore, the interarrival dis-
tribution does not follow the shape of an exponential. We
conjecture that relatively few users access a single machine;
arrival processes tend toward Poisson only under the aggre-
gate behavior of a large population of users.

Web. A departmental web server’s behavior is depicted in
the Web workload. Both the interarrival and service distri-
bution are fairly smooth; the service distribution has more
variation than the arrivals. Because a large number of users
access the web server, its interarrival distribution is quite

close to exponential (Cv = 2), while the size of each web
request has more variance (Cv = 3.4).

5. Case Study: Power Capping
We demonstrate SQS as an exascale evaluation method with
a case study of power capping for a 1000 server cluster.
Power capping is a data center power provisioning technique
which enforces maximum power budgets over individual
servers, racks and clusters [6, 12]. By making the observa-
tion that correlated power peaks are uncommon (i.e. the peak
of the sum of power draws for servers is typically much less
than the sum of maximum power draws of servers), power
capping allows for under-provisioning of power delivery in-
frastructure by imposing hard limits on server power. We
demonstrate the utility of SQS by simulating a hypotheti-
cal data center power capping deployment. From this sim-
ulation, we extract the level of power capping required and
latency effect for our workloads.

Our case study uses a relatively simple power capping con-
figuration; we wish to demonstrate the utility of our method-
ology rather than a sophisticated power capping strategy.
Servers are assigned a power budget, the maximum power
they may draw over a given interval. We use a fair, propor-
tional budgeting mechanism such that every server gets a
budget in proportion to its current utilization at each budget-
ing inteval. Budgets are calculated every 30 seconds. We use
idealized dynamic voltage and frequency scaling (DVFS) as
the power-performance throttling mechanism.

5.1 DVFS Power-Performance

To simulate power capping, we require a baseline server
power model and a model for power savings and perfor-
mance loss under DVFS. We use the linear model validated
by [6] and [18]:

PTotal = PDynamic · U + PIdle (8)

WhereU is the average server utilization,PDynamic represents
the dynamic range of the server’s power, and PIdle the idle
power. We assume PDynamic = 100 W and PIdle = 150 W
(the maximum server power is 250W). For simplicity, we
assume that the CPU is the only component with a dynamic
power range such that:

PDynamic = PCPUDynamic

(
f

fMax

)3

(9)

Where f is the operating clock frequency of the CPU. We
assume that this frequency can be continuously scaled from
f = 1.0 to f = 0.4, even though in practice these setting are
discrete.

Next, we require a performance model to understand the
slowdown imposed by various DVFS settings. The slow-

5



Figure 2: Mail Interarrival Distribution Figure 3: Mail Service Distribution

Figure 4: Shell Interarrival Distribution Figure 5: Shell Service Distribution

Figure 6: Web Interarrival Distribution Figure 7: Web Service Distribution6



10 100 1000
0

20

40

60

80

100

120

Cluster Size (Servers)

S
im

ul
at

ed
 E

ve
nt

s 
(M

ill
io

ns
)

 

 
Mail
Shell
Web

Figure 8: Simulation length depends on cluster size.

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

Events (Millions)

ǫ/
X̄

 

 
Throttling, C

v
 = 10

Throttling, C
v
 = 20

Response Time, C
v
 = 10

Response Time, C
v
 = 20

Figure 9: Simulation length depends on output variables.

down in service rate due to DVFS can be modeled as:

µ′ = µ · α ·
(

f

fMax

)
+ µ · (1− α) (10)

For some α, which represents how “CPU-bound” an appli-
cation is. We assume an α of 0.9, which would be typical of
a CPU-bound application (e.g., LINPACK).

The power model given here is a simple example of the kind
of model that can be used with SQS; the particular details of
this model are not critical to the simulation approach.

5.2 Evaluation

We now show how the number events that must be simu-
lated is affected by the size of the cluster, the output metric
and the variability of the underlying distributions. Note that,
because of the run-up test to avoid autocorrelation, each ob-
servation added to our sample requires the simulation of nu-
merous events in the discrete-event simulation as previously
described. The number of events is roughly proportional to
simulation time and gives an implementation-independent
measure of simulation performance.

Figure 8 shows how many events are simulated to achieve
convergence for each workload across several cluster sizes.
We find that increasing the cluster size increases the number
of events sub-linearly. In other words, simulating a cluster
of 1000 servers instead of 100 does not increase the number
of events by 10x. This property is fortuitous and bodes well
for scaling to larger simulations. It is also apparent that
the properties of the individual workloads can substantially
impact the simulation length, due to varying sample size
requirements and lag spacing. For example, it takes nearly
five times as many events to simulate web than mail for a
1000 server cluster.

We demonstrate how simulations approach convergence in
Figure 9 in terms of the convergence quantity ε/X̄ . A simu-

lation will continue to run until all output metrics converge;
for simplicity we only show the slowest for each configura-
tion.

To illustrate the effect of variability on convergence time,
we use synthetic workload distributions instead of our ob-
served workloads for interarrival and service times. Using
the gamma distribution, we are able to keep the mean value
of a distribution constant, while changing Cv . First, we
demonstrate the convergence of response time in a homoge-
neous cluster without power capping for two different values
of Cv for the service time distribution. Clearly, Cv greatly
impacts convergence; Cv = 20 requires over 8 times more
events than Cv = 10. In wall-clock time, overall simulation
length is relatively short; these simulations can be completed
on the order of a minute.

Adding modeling of power capping (“Throttling”) to the
simulation substantially increases simulation length. In these
simulations, the output metric is the average difference be-
tween requested and allocated power budget over all servers.
This disparity in simulation length arises largely due to the
long time scale over which power budgets are assigned
(thirty seconds). Thousands of events must be simulated
per observation to sample power budgets. Because the time
scale of power capping is the limiting factor in simulation
length, the variability of the service time distribution has
little effect.

6. Future Challenges
We briefly describe a number of challenges for SQS we
would like to address in future work.

6.1 Scaling Up

Unlike microarchitecure simulators, there are many opportu-
nities for parallelization with SQS for low-complexity con-
figurations. We briefly discuss various levels of parallelism

7



available and the challenges faced with additional complex-
ity.

Server-Level Simulations. Statistical simulation of a sin-
gle server provides ample parallelism. Each unique simula-
tion can be considered a sample path. While a single sample
path is not easily made parallel, we can run multiple sim-
ulations with different random seeds to achieve statistical
convergence faster than along a single path. Each simula-
tion may require a period of “warm-up”, in which the system
reaches steady state. As long as the warm-up time is signif-
icantly less costly than the rest of a sample path simulation,
this technique will work well (alternatively these warm-up
phases may be memoized and reused [19]). Furthermore, in
practice we have found that to be useful a large parameter
space must be simulated (e.g., how does the mean response
time change with various DVFS settings and different work-
loads). We find that exploring parameter spaces alone can
exhaust CPU resources.

Cluster- and Rack-Level Simulations. An important goal
is to be able to provide accurate predictions for whole racks
or clusters of servers. Making general statements about the
complexity of such simulations is surprisingly non-trivial
and dependant on the configuration. For example, if one
wishes to evaluate the performance of web server front-ends,
it is likely sufficient to simulate a single box in detail and
safely assume that the results will hold across a rack with a
good load balancer. On the other hand, simulation of a power
capping technique for an entire cluster may require thou-
sands of servers to be simulated with fine coordination. If
one only wishes to determine the level of capping per server,
all servers may be simulated independently and their power
draws recorded.The capping levels may then be determined
in a final reduce phase. However, if the servers need to adjust
their power-performance state in response to other server, for
example, the simulation may no longer parallel and servers
must communicate at each time step. Therefore, developing
a rigorous methodology for determining independence as-
sumption is an important step towards simulating large sys-
tems and we leave this technique to future work.

6.2 Server-Independent Representation

A current limitation of SQS is that service time distributions
are valid only for the machine on which they are measured.
In other words, they represent the amount of time the ob-
served server will spend on a job, rather than an indepen-
dent notion of “work” to complete the job. This notion of
job size limits our ability to observe service distributions on
one system and report results for another. For example, one
would not be able to accurately predict the service distribu-
tion when modifying an existing enterprise-class server to
replace its processor with an energy-efficient, yet slower, al-
ternative. Transforming an observed distribution from one
server to another is non-trivial and we pose this transforma-
tion as an open research problem.

6.3 Non-Stationary Distributions

Many data center workoads show time varying utilization.
Most services are heavily utilized during the afternoon, and
show a significant decrease in traffic at night. One simple
way to model this behavior is to modulate the mean of
the interarrival distribution with time. However, a workload
characterization will be necessary to insure that the shape of
the distribution does not change with time.

7. Conclusion
We have presented Stochastic Queuing Simulation, our
methodology for evaluation of data center systems. This
technique enables researchers to rapidly evaluate the power-
performance tradeoffs of new designs with statistical bounds.
Our preliminary investigations of SQS scaling behavior sug-
gest that it can scale to evaluate larger systems as we move
forward into the exascale era.

References
[1] M. Barbaro and T. Zeller, “A Face Is Exposed for AOL

Searcher No. 4417749,” New York Times, 2006.
[2] R. Bellman, Dynamic Programming. Princeton University

Press, 1957.
[3] E. J. Chen and W. D. Kelton, “Simulation-based estimation of

quantiles,” WSC: Conference on Winter simulation, 1999.
[4] Chen, E. Jack and Kelton, W. David, “Quantile and histogram

estimation,” WSC: Conference on Winter simulation, 2001.
[5] R. W. Conway, “Some Tactical Problems in Digital Simula-

tion,” MANAGEMENT SCIENCE, vol. 10, no. 1, pp. 47–61,
1963.

[6] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning
for a warehouse-sized computer,” in ISCA: International
Symposium on Computer Architecture, 2007.

[7] A. Gandhi and M. Harchol-Balter, “M/G/k with Exponential
Setup,” Carnegie Mellon University, Tech. Rep. CMU-CS-09-
166, September 2009.

[8] V. Gupta, M. Harchol-Balter, J. Dai, and B. Zwart, “On the
inapproximability of M/G/K: whytwomoments of job size
distribution arenotenough,” Queueing Systems, 2009.

[9] M. Harchol-Balter, “Sample paths, convergence, and aver-
ages,” 2005. [Online]. Available: http://courseweb.sp.cs.cmu.edu/ cs849/notes/

[10] M. Harchol-Balter and A. B. Downey, “Exploiting process
lifetime distributions for dynamic load balancing,” ACM
Trans. Comput. Syst., vol. 15, no. 3, pp. 253–285, 1997.

[11] R. K. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley, 1991.

[12] C. Lefurgy, X. Wang, and M. Ware, “Power capping: a prelude
to power shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–
195, 2008.

[13] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap:
Eliminating server idle power,” in ASPLOS: Architectural
support for programming languages and operating systems,
2009.

[14] N.H. Bingham and Susan M. Pitts, “Nonparametric inference
from m/g/1 busy periods,” Stochastic Models, vol. 15, no. 2,
pp. 247–272, 1999.

8



[15] K. Pawlikowski, “Steady-state simulation of queueing pro-
cesses: survey of problems and solutions,” ACM Computing
Surveys, vol. 22, no. 2, pp. 123–170, 1990.

[16] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder,
“Understanding and absracting total data center power,” in
WEED: Workshop on Energy Efficienct Design, 2009.

[17] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and
J. Underwood, “Power routing: Dynamic power provisioning
in the data center,” ASPLOS: Architectural support for
programming languages and operating systems, 2010.

[18] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison
of high-level full-system power models.” HotPower, 2008.

[19] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe,
“Simulation sampling with live-points,” 2006.

[20] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe, “Simflex: Statistical sampling of
computer system simulation,” IEEE Micro, vol. 26, pp. 18–31,
2006.

9


