
Understanding Automatically-Generated Patches
Through Symbolic Invariant Differences

Padraic Cashin∗, Carianne Martinez†, Westley Weimer‡, Stephanie Forrest∗
∗ Arizona State University, Tempe, AZ

† University of New Mexico, Albuquerque, NM
‡ University of Michigan, Ann Arbor, MI

Abstract—Developer trust is a major barrier to the deployment
of automatically-generated patches. Understanding the effect of
a patch is a key element of that trust. We find that differences
in sets of formal invariants characterize patch differences and
that implication-based distances in invariant space characterize
patch similarities. When one patch is similar to another it often
contains the same changes as well as additional behavior; this
pattern is well-captured by logical implication. We can measure
differences using a theorem prover to verify implications between
invariants implied by separate programs. Although effective,
theorem provers are computationally intensive; we find that
string distance is an efficient heuristic for implication-based
distance measurements. We propose to use distances between
patches to construct a hierarchy highlighting patch similarities.
We evaluated this approach on over 300 patches and found that it
correctly categorizes programs into semantically similar clusters.
Clustering programs reduces human effort by reducing the
number of semantically distinct patches that must be considered
by over 50%, thus reducing the time required to establish trust
in automatically generated repairs.

I. INTRODUCTION

Overview. Developer trust is a major barrier to the deploy-
ment of automatically-generated patches. Understanding the
effect of a patch is a key element of that trust. We propose to
explain patches in terms of how they change formal program
invariants. We find that changes in invariants characterize
patch differences and that implication-based distances in in-
variant space can quantify patch similarity. We also present a
scalable string-based approximation to implication distance.

Automated Patching. Many tools have been developed to
improve the efficiency of software engineering, but the process
of patching code to repair bugs remains a dominant cost.
To address this issue, many methods have been proposed to
automate the patching process, e.g., [7], [11], [13], [14], [16],
[19], and over the past decade automated software repair has
been an active area of research. Generally, these methods fall
into two classes: semantically-sound methods that produce
patches that are correct by construction, and methods that
generate random mutations and test them for correctness using
a supplied test suite. Search-based methods can be applied to
legacy software even when they lack a formal specification,
they perform well on large code bases, and they generalize
across many classes of bugs.

However, these methods have been criticized because they
produce multiple patches that are correct only with respect
to available tests. Patches that are not trusted are not de-

ployed [1], [20]. Initial industrial deployments have focused
on aspects of automatic patching that are simple and easy for
developers to assess and trust [9], [15]. These issues suggest
the need for methods that can reduce the cost of evaluating
automatically-generated patches as produced by search-based
methods.

Our Approach. We propose to address this issue by incor-
porating formal methods into the repair process, using them
to show that automatically-generated patches preserve certain
aspects of required functionality and to highlight the key
semantic changes implied by a proposed patch. Conceptually,
we achieve this by generating and comparing relevant program
invariants for the original program and the proposed repair.
This comparison determines if the patched program violates
an important known property of the original program, and
it identifies invariants that describe the repair’s corrected
functionality. We thus avoid an impediment to using formal
methods in search-based program repair—a buggy program is
incorrect in at least some of its behavior, and therefore does
not (currently) represent a correct specification.

We use dynamic invariant generation to create a set of
invariants (logical formulae over program variables encoding
relationships that are true on indicative runs), one for the
buggy program and one for each proposed repair. Since most
software bugs are revealed through a failing input, we use
the failing tests, together with the supplied test suite, to
generate invariants that are most relevant to the repair. We
group repairs into quasi-equivalence classes using one of two
distance metrics, one based on logical implication and one
based on syntactic comparison of the invariant sets. Each class
is made up of invariant sets that are distance zero from each
other under the chosen metric. We use hierarchical clustering
to highlight how the classes are related.

In addition, we explicitly compare the invariants of each
patch to those of the original buggy program. This approach
highlights the key semantic differences between the original
program and each patch, and it allows a developer to quickly
consider multiple possible patches by evaluating only one
element from each semantic class.

Preliminary Findings. We hypothesize that dynamic in-
variants can detect changes within a program. Invariants are
effective because functional correctness relates to the final
result of a function rather than any specific implementation.
We propose the use of implication relationships between



1 + ssize = ((a->_mp_size) >= 0 ? (asize != 0) : -1;
2 ---
3 - ssize = ((a->_mp_size) >= 0 ? 1 : -1;

(a) Tool 1 Patch

1 + ssize = SIZ (a) >= 0 ? (asize != 0) : -1;
2 ---
3 - ssize = SIZ (a) >= 0 ? 1 : -1;

(b) Official Patch

1 + if (1) return (-1);
2 ...
3 + _gmpn_cmp (ap, bp, asize) < 0
4 ---
5 - mpn_cmp (ap, bp, asize) < 0

(c) Tool 2 Patch (Fragment)

Fig. 1: Three patches for GMP-14166-14167 [12], which
returns an incorrect answer from the gmp_ext function.

sets of invariants to measure pairwise patch similarity and
group invariant sets into quasi-equivalence classes according
to similarities between their implication relationships. Because
it is expensive to compute implication distance, we propose
string distance as an effective approximation for implication
distance. A formulation involving Levenshtein edit distance
is significantly more scalable than a formal approach based
on Satisfiability Modulo Theories (SMT) decision procedures.
We hypothesize this approach, which we call PATCHPART, to
be efficient and effective.

II. MOTIVATING EXAMPLE

This section considers candidate patches produced by two
different program repair tools and shows how PATCHPART
identifies semantically-meaningful clusters of patches and re-
ports their semantic differences. Results of earlier studies of
search-based repair tool quality [6], [11], [20], [21] have been
mixed. Some papers have identified flaws in particular exam-
ples of automatically-generated patches [20]. We consider one
of these latter cases here.

We take as an example one defect in the GNU Multiple
Precision Arithmetic Library [12], and two tool repairs (re-
ferred to as Tool 1 [13] and Tool 2 [20] respectively). The
defect is located in the gcdext function and involves the
incorrect resolution of gcd(0,0). An incorrectly-constructed
conditional causes the return value to be 1. We apply PATCH-
PART to four versions of GMP: the original buggy version
and three patches (from Tool 1, Tool 2, and the official human
GMP developers). In this instance, the Tool 1-generated patch
matches the developer version more closely than Tool 2. We
used Daikon [5] to generate invariant sets for each variant.

Figure 1 shows the three different patches. Tool 2 inserts a
conditional in a helper function, which causes it to always re-
turn −1, bypassing most subsequent calculations (including a
later comparison predicate). Although this is sufficient to pass
the given test suite, the modified conditionals cause gcd()
to return incorrect results on other inputs. The modification
to the helper function could have additional consequences

not immediately apparent to developers only considering the
effects on the main gcd function.

Tool 1 and the official patch each update a conditional
expression involving size comparisons. This change causes
ssize to be set to 0 in the case where asize = 0.
Although, these patches caused the smallest modifications to
the program syntax, it is not clear if they are ideal.

We used PATCHPART with Daikon-produced invariant sets
to partition the repaired program variants, which produced
three semantic classes. PATCHPART correctly isolates the
buggy version in its own cluster and finds two semantically-
distinct clusters for the repairs: one containing Tool 2, and
the other containing Tool 1 and official patch. PATCHPART
highlights key differences between the clusters. For example,
in this case, the invariant temp2.mp_d != a.mp_d is a
property of the Tool 2 patch but not the others. The invariant
indicates that the values of mp_d members for temp2 and a
always remain different, formalizing the effects of that patch’s
return.

Although the patches are syntactically distinct, Tool 1 and
the official maintainer patches generate identical sets of invari-
ants. A developer need only inspect two patches—one from
the { Tool 2 } cluster and one from the { Tool 1, Official }
cluster—rather than all three. Note that non-functional quality
properties, such as readability, are not considered here: the
developer patch makes use of the SIZ macro while the
tool patch uses its definition. Various approaches have been
proposed for improving readability in search-based methods;
we view readability concerns as orthogonal and focus on
functional aspects of patch inspection and trust.

This example shows how PATCHPART identifies semantic
clusters of patches, detects important differences between the
original program and different repairs, and reduces the number
of candidate patches a developer must manually review.

III. TECHNICAL APPROACH

We require an approach that is accurate enough to distin-
guish between different patches, fast enough to be applied
as part of a patch cycle, and that requires minimal human
intervention. We present PATCHPART, a method for partition-
ing programs into semantic clusters, which addresses these
requirements.

A. Patch Partitioning (PATCHPART)

PATCHPART takes as input a set of programs. It then
computes the pairwise semantic distance between them (in
invariant space) and clusters the programs into semantically-
similar classes based on those distances. More specifically,
PATCHPART constructs a set of pre-conditions and post-
conditions for each function in each considered program,
uses off-the-shelf methods (such as Daikon [5]) to produce
dynamically-generated program invariants, and then calculates
the invariant distance between each program pair. The dynamic
invariants are generated from the test suite and the bug-
inducing test case.



We consider two methods for computing the pairwise dis-
tance between sets of invariants: formal implication between
logical formulae [3] and Levenshtein edit distance [18] be-
tween their string representations. Theorem proving, using
an SMT solver, determines whether one invariant is logically
implied by another, while Levenshtein distance compares two
sets of invariants syntactically. Finally, we use hierarchical
clustering to group programs based on a distance calculation.

B. Implication Distance

Semantic similarity between two programs can be captured
by computing the logical similarity between their correspond-
ing sets of program invariants. We thus lift a comparison on
sets of invariants to a comparison on programs.

We define the implication distance (ID) between two pro-
grams, A and B, to be the cardinality of Inv(B, T ) −
ImpInv(A,B), where Inv(X, T ) is the set of dynamic in-
variants generated from tracing program X on test suite
T and ImpInv(A,B) = {b | b ∈ Inv(B, T ) ∧ ∃a ∈
MinTerms(Inv(A), T ). a ⇒ b} where Inv is a function
mapping programs to generated invariants (e.g., such as via
Daikon) and MinTerms is a function mapping sets of predi-
cates to all subsets of a particular size. We restrict minterms
to a maximum size of three to minimize computation time fol-
lowing established best practices from predicate abstraction [2,
p. 112]; this size is known to be efficient while retaining
enough information to prove program correctness.

Our definition of ID relaxes the standard notion of set
difference from requiring logical equivalence to requiring only
an implication relation. Intuitively, the implication distance
represents a measure of the number of invariants in program
B that are not implied by the invariants of program A.

As a simple example of why we propose implication (not
equivalence) to capture program relationships, consider two
programs, each with a loop which increments a value x:
for(i=0; i<N; ++i) { x++; }. If, for program A,
x = 0 at the start of the loop, then we should find the invariant
x ≥ 0 at the end of the loop. However, if x = 1 initially in
program B, then we will find x ≥ 1 post-loop for B instead.
Such programs are not strictly equivalent, but the implication
(x ≥ 1) ⇒ (x ≥ 0) holds. This definition allows us to use
hierarchical clustering to partially order programs.

Given the restriction to minterms, we can directly compute
ID from its definition. We consider all minterms of a given size
and interate, querying a prover to check implications. We use
the usual conjunction interpretation when determining if a set
of predicates implies another predicate. Our implementation
uses the Z3 theorem prover [3] to determine satisfiability; our
approach is thus sound with respect to that tool.

C. Levenshtein Edit Distance

A direct calculation of ID requires many queries to an
expensive external SMT solver. As an efficient approximation
for ID, we propose a string distance measure between invariant
sets. Levenshtein edit distance (LD) [18] measures the number
of character swaps, additions, and deletions needed to convert

one string into another. We map each invariant to a single
logical alphabet symbol, representing syntactically-identical
invariants with the same symbol. For example, x = 2 and
x = 2 both map to the same symbol, but x = 1 + 1
maps to a different symbol even though it is semantically
equivalent—not determining semantic equivalence is the heart
of our efficient approximation. We then compute the distance
between the two induced strings of symbols.

The intuition behind this approximation follows from our
use case of comparing multiple automated program repair
patches. Most program repair patches are small and thus
they leave the majority of the original program textually
unchanged [12], [19]. Textually identical program fragments
often yield invariants that are not just semantically equivalent
but are directly syntactically equivalent (cf. [22]). Thus, an
approximation based on syntactic equivalence has the potential
to be more accurate in this use case than it would be in general.

D. Hierarchical Clustering

We propose the use of the Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) clustering algorithm [8].
UPGMA takes as input a distance matrix and identifies clusters
that minimize the average cluster diameter. Critically, since the
UPGMA algorithm does not require the distance matrix to be
symmetric, we can use either LD or ID measurements to group
programs. A cluster of identical patches can be inspected for a
functional trust assessment by inspecting any representative of
it. On the other hand, the distances between clusters and the
invariants on which they differ can communicate the effects
of a patch to developers.

IV. PRELIMINARY RESULTS

We evaluated a prototype of PATCHPART on a set of 5
programs from the ManyBugs [13] and 7 programs from the
Defects4J [10] benchmarks. We used 50 GenProg [13] patches
for each C defect and 20 ARJA [23] patches for each Java de-
fect (repair tools are often language-specific but our approach
is agnostic). Daikon was used to find dynamic invariants. By
computing the pairwise distances between individuals we are
able to place patches into a hierarchy based on functional
similarities.

For each program we studied, candidate patches were
easily distinguished from the original program and relatively
few invariants differentiated the repairs from the original,
supporting our hypothesis that PATCHPART can provide a
concise assessment of the key semantic elements of a proposed
repair, allowing a developer to quickly check that a repair
retains required functionality. When a human-generated repair
is not available, the intended use case for automated bug
repair, PATCHPART can provide the developer with a small
set of semantically-distinct patches, highlighting the semantic
differences between them.

We found that Levenshtein Distance performs almost as well
as Implication Distance for our use case. However, we do not
attribute a measure of importance to each invariant, and instead



assume each invariant is equally meaningful. An investigation
of this assumption in this context is left to future work.

These preliminary results suggest that PATCHPART can suc-
cessfully categorise patches based on the invariants detected
by Daikon. For each group of patches we can determine
a hierarchy relationships, with each layer of the hierarchy
containing more patches and representing a broader, more
abstract set of features. For most defect scenarios this led
to a reduction of patch classification effort by approximately
50% (i.e., even when requiring distance-zero invariant sets,
the clusters were large enough to save developer inspection
effort). Although these results are preliminary, we expect this
approach to find useful groupings among other patches.

V. RELATED WORK

The two most relevant areas of related work are, broadly,
invariant detection and automated program repair. For reasons
of space we elide the rich literature on invariant detection (our
approach is agnostic; our preliminary evaluation uses Daikon)
and program repair (our approach is agnostic; the reader is
directed to Monperrus [17] for a survey).

We focus on one particular related paper to place this work
in context. Recent work by Ding et al. [4] explored the use
of invariants to measure diversity among patched programs
in the context of a multi-objective genetic algorithm. Their
work uses invariants as part of the repair process to generate
a wider diversity of repairs than those typically found by
search-based methods. Similar to PATCHPART, they rely on
dynamically-generated invariants. In contrast, however, they
measure the frequency with which invariants appear across
different test cases and use that information to guide the
repair. Our approach takes already-produced repairs, uses
invariant information to guide human understanding, does not
rely on frequencies, and proposes the Levenshtein Distance
approximation to improve scalability.

VI. CONCLUSION

Automated testing and repair methods are advancing rapidly
and transitioning to industrial practice. Search-based repair
methods often produce many candidate patches which must
be manually inspected and understood before being deployed.
By focusing on differences, both among candidate patches and
between patches and the original program, our PATCHPART
approach offers an intermediate path that supports the use of
formal invariants in settings without formal specifications.

By using an efficient string-based distance measures on
dynamic invariant sets, PATCHPART can detect and enumerate
the relevant semantic differences between programs. In our
preliminary results, the detected invariants correctly separated
the original buggy program from patched programs that pass
the failing test suite, and in most cases, semantically-identical
program variants were correctly placed in clusters. Providing
the developer with this additional information should simplify
the task of inspecting candidate repairs, reducing that burden
by about 50% in our preliminary investigation.

VII. ACKNOWLEDGMENTS

The work reported here was partially supported by
NSF (CCF1908633,CCF1763674), AFRL (FA8750-19-2-
0006, AFRL), and DARPA (FA8750-19C-0003).

REFERENCES

[1] G. M. Alarcon, L. G. Militello, P. Ryan, S. A. Jessup, C. S. Calhoun,
and J. B. Lyons. A descriptive model of computer code trustworthiness.
J. of Cognitive Engineering and Decision Making, 11(2):107–121, 2017.

[2] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In Wksp. on Model Checking Software (SPIN),
pp. 103–122, 2001.

[3] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Intl.
conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 337–340. Springer, 2008.

[4] Z. Y. Ding, Y. Lyu, C. S. Timperley, and C. L. Goues. Leveraging
program invariants to promote population diversity in search-based
automatic program repair. In Genetic Improvement, 2019.

[5] M. D. Ernst, et al. The daikon system for dynamic detection of likely
invariants. Sci. of Computer Programming, 69(1-3):35–45, 2007.

[6] Z. P. Fry, B. Landau, and W. Weimer. A human study of patch
maintainability. In Proc. of the 2012 Intl. Symp. on Software Testing
and Analysis, pp. 177–187. ACM, 2012.

[7] D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program
repair using sat. In Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 173–188. Springer, 2011.

[8] I. Gronau and S. Moran. Optimal implementations of upgma and other
common clustering algorithms. Inf. Proc. Ltrs., 104(6):205–210, 2007.

[9] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirs-
dottir. Fixing bugs in your sleep: How genetic improvement became an
overnight success. In Proc. of the Genetic and Evolutionary Computation
Conf. Companion, pp. 1513–1520, 2017.

[10] R. Just, D. Jalali, and M. D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proc. of
the 2014 Intl. Symp. on Software Testing and Anal., pp. 437–440. 2014.

[11] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proc. of the 2013 Intl. Conf. on
Software Engineering, ICSE ’13, pp. 802–811, 2013.

[12] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer. The manybugs and introclass benchmarks
for automated repair of c programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, 2015.

[13] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A genetic
method for automatic software repair. IEEE Transactions on Software
Engineering, 38(1):54–72, Jan 2012.

[14] F. Long and M. Rinard. Automatic patch generation by learning correct
code. ACM SIGPLAN Notices, 51(1):298–312, 2016.

[15] A. Marginean, et al. Sapfix: Automated end-to-end repair at scale. In
Intl. Conf. on Software Engineering (ICSE), 2019.

[16] M. Martinez and M. Monperrus. Astor: A program repair library for
java. In Proc. of the 25th Intl. Symp. on Software Testing and Analysis,
pp. 441–444. ACM, 2016.

[17] M. Monperrus. Automatic software repair: a bibliography. ACM
Computing Surveys (CSUR), 51(1):17, 2018.

[18] G. Navarro. A guided tour to approximate string matching. ACM
computing surveys (CSUR), 33(1):31–88, 2001.

[19] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
Program repair via semantic analysis. In Proc. of the 2013 Intl. Conf.¡
on Software Engineering, pp. 772–781. IEEE Press, 2013.

[20] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In Proc. of the 2015 Intl. Symp. on Software Testing and
Analysis, pp. 24–36. ACM, 2015.

[21] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proc. of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
pp. 532–543. ACM, 2015.

[22] X. Yin, J. C. Knight, E. A. Nguyen, and W. Weimer. Formal verification
by reverse synthesis. In Computer Safety, Reliability, and Security, pp.
305–319, 2008.

[23] Y. Yuan and W. Banzhaf. ARJA: automated repair of java programs via
multi-objective genetic programming. CoRR, abs/1712.07804, 2017.


