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A Class of C2 Interpolating Splines

CEM YUKSEL, University of Utah

Fig. 1. Example curves generated from the same control points using our formulation with (a) Bézier interpolation function, (b) circular interpolation
function, (c) elliptical interpolation function, and (d) hybrid (circular-elliptical) interpolation function. All curves have guaranteed C2 continuity and local
support, but they produce different shapes from the same control points. The purple lines indicate the curvature of the curves.

We present a class of non-polynomial parametric splines that interpolate
the given control points and show that some curve types in this class have
a set of highly desirable properties that were not previously demonstrated
for interpolating curves before. In particular, the formulation of this class
guarantees that the resulting curves have C2 continuity everywhere and
local support, such that only four control points define each curve segment
between consecutive control points. These properties are achieved directly
due to the mathematical formulation used for defining this class, without
the need for a global numerical optimization step. We also provide four
example spline types within this class. These examples show how guaran-
teed self-intersection-free curve segments can be achieved, regardless of
the placement of control points, which has been a limitation of prior inter-
polating curve formulations. In addition, they present how perfect circular
arcs and linear segments can be formed by splines within this class, which
also have been challenging for prior methods of interpolating curves.
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1 INTRODUCTION

Polynomial parametric splines have served us well in computer
graphics. Among them, approximating splines (such as B-splines
and NURBS) have been particularly popular, as they can pro-
vide important properties like C2 continuity and local support,
and they are not prone to producing unintended cusps and self-
intersections. However, approximating splines do not go through
the control points, which is a highly desirable property for some
applications, and it is completely essential for others, such as the
interpolation of animation keyframes.

Interpolating polynomial parametric splines, however, do go
through the control points and thereby allow specifying exact po-
sitions on the curve. Yet, most interpolating splines are notoriously
difficult to control, because the curve segments that connect con-
secutive control points can include unintended features like cusps
and self-intersections that can be hard to avoid in practice. These
problems are often exacerbated withC2 continuous interpolation,
which typically requires higher-order polynomials with each con-
trol point affecting a larger portion of the curve. Recent work ad-
dressed these long-standing problems that plagued interpolating
splines by introducing costly numerical optimizations [Yan et al.
2017] with control points having global support (i.e., each con-
trol point affects the entire curve). Unfortunately, this approach
not only leads to complex formulations for curves but also can be
computationally expensive for some applications, and it is entirely
impractical when a large number of curves are involved, such as
hair modeling applications. Also, it makes it difficult to form linear
segments, and, since these curves provide onlyG2 continuity, they
are not applicable when C2 continuity is needed.

In this article, we present a class of interpolating splines with
a different mathematical foundation. The splines in this class are
formed by a trigonometric interpolation of an arbitrarily chosen
interpolation function that connects three consecutive control
points. The underlying formulation of this class provides a simple
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mechanism for constructing custom curve types that can inherit
the properties a given application needs by simply picking a
suitable interpolation function. Most importantly, regardless of
the chosen interpolation function, all curves in this class satisfy
the following crucial properties:

• Guaranteed C2 (thereby curvature) continuity everywhere,
• Local support with each curve segment being controlled by

only four nearby control points, and
• Direct evaluation from control points without solving a

global optimization problem.

We demonstrate the effectiveness of this formulation by pre-
senting example interpolation functions (Figure 1). We show that
by appropriately choosing the interpolation function, we can guar-
antee cusp-free and self-intersection-free curve segments between
control points. Note that the only type of interpolating polynomial
splines that can provide such a guarantee are the ones with onlyC1

continuity or with global numerical optimizations (achieving G2

continuity). We also show that it is possible to define an interpola-
tion function such that the resulting curves can represent perfect
circular (and elliptical) arcs, which has been a challenge for most
interpolating splines. In addition, unlike polynomial curves with
global support, it is easy to form perfectly linear segments with
all example interpolation functions we present, since all curves
in this class have local support. Furthermore, as the interpolation
functions we present are continuous and do not involve solving an
optimization problem that can lead to numerical instability, con-
tinuous control point motion leads to continuous curve deforma-
tion. Moreover, we show that it is possible to design an interpola-
tion function with well-defined bounds (i.e., distance to the control
polygon) and, while the convex hull property does not apply to in-
terpolating splines,1 we explain that bounds of the curve segments
between control points can be defined using the bounds of the in-
terpolation function.

Contributions: Unlike similar curve formulations in prior work,
we show that our formulation can lead to curve types with im-
portant properties, such as guaranteed self-intersection-free seg-
ments, in addition to having local support, C2 continuity every-
where, bounded distance to the control polygon, and the ability to
form perfectly linear and circular/elliptical segments, all of which
are satisfied in higher dimensions as well. To our knowledge, no
prior curve formulation can satisfy this set of properties. As such,
two of the curve types we represent in this article are strong alter-
natives to replace existing curve formulations for various graphics
applications, providing interpolating curves with the set of prop-
erties mentioned above. Though the significance of some of these
properties can be application-dependent, we do not specifically
target a particular application for our evaluations in this article.

2 RELATED WORK

There is a large body of work in computer graphics on interpo-
lating curve constructions [Hoschek and Lasser 1993]. Here we
briefly discuss some of the more common representations.

1Any formulation for interpolating splines must produce curves that are not bounded
by the convex hull of the control polygon, unless the curve has only C0 continuity.

Catmull–Rom splines [Barry and Goldman 1988; Catmull and
Rom 1974], combining Lagrange interpolation with B-spline basis
functions, are one of the most popular formulations for interpolat-
ing curves. Subdivision curves [Deslauriers and Dubuc 1989; Dyn
et al. 1987] can be used for representing interpolating curves as
well, and it is possible to approximate circles [Sabin and Dodgson
2005]. Interpolating B-splines can be formed by solving a tridi-
agonal system of equations [Farin 2002]. None of these formu-
lations, however, can guarantee cusp-free curves with C2 conti-
nuity, and cusps and self-intersections appear when the distances
between control points have a significant-enough variation. In the
case of C1 Catmull–Rom curves, however, centripetal parameter-
ization can uniquely guarantee no self-intersections within curve
segments between consecutive control points [Yuksel et al. 2009a,
2011].

Due to the difficulties of avoiding unintended self-intersections
with interpolating curves, Bézier curves, which only interpolate
the first and the last control points, are more commonly used in
practice. In particular, cubic Bézier curves with four control points
are ubiquitous in computer graphics applications. While most ap-
plications allow the user to specify all Bézier control points, C2

splines with monotonic curvature can be formed by restricting the
locations of internal control points [Higashi et al. 1988]. Class A
Bézier curves [Farin 2006; Mineur et al. 1998] achieve monotonic
curvature by limiting the degree of freedom. Log-aesthetic curves
[Miura and Gobithaasan 2014; Miura et al. 2013; Yoshida et al. 2009;
Yoshida and Saito 2017] and clothoids [Havemann et al. 2013; Mc-
Crae and Singh 2009; Schneider and Kobbelt 2000] produce curves
with monotonic curvature, which is desirable in some design ap-
plications, but their generation involves iterative optimization pro-
cesses for placing the internal Bézier control points. Moreover, de-
pending on the configuration of the interpolated control points,
minor variations in control point positions can lead to discontinu-
ous changes in the generated curve. Recently, κ-curves [Yan et al.
2017] were introduced for generating piecewise-quadratic Bézier
curves with automatically-placed Bézier control points using an it-
erative global optimization process.κ-curves haveG1 continuity at
inflection points and G2 continuity everywhere else, and the local
curvature maxima are at control points. While control points have
global support with κ-curves, they tend to have more significant
influence in a smaller region. Nonetheless, global support makes
it difficult to form perfectly linear segments with these curves.
Though κ-curves appear to be effective in simple two-dimensional
(2D) drawing applications, they are not as suitable for some other
applications, since they cannot provide C2 continuity and require
a relatively expensive global optimization. An extension of this ap-
proach uses a rational quadratic Bézier formulation to form circu-
lar segments [Yan et al. 2019]. In comparison, the curve formula-
tion we present in this article ensures C2 continuity everywhere,
provides local support, and allows direct evaluation from the con-
trol points without solving a global optimization problem. Other
properties of the curves in this new class depend on the chosen
interpolation function.

Our curve construction is similar in spirit to the formulation
of Overhauser [1968] that linearly blends two parabolas with
G1 continuity. This approach was also used for blending circu-
lar arcs and lines [Pobegailo 1992; Wenz 1996] and higher-degree
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polynomial curves to achieve C2 continuity [Wiltsche 2005]. An
alternative formulation uses B-spline basis functions for blend-
ing Lagrange [Röschel 1997] or Hermite [Gfrerrer and Röschel
2001] interpolants. More recently, Juhász and Róth [2014] extended
the blending formulation for inserting additional control points
to produce a trigonometric curve that interpolates the given con-
trol points with the desired degree of continuity. More similar to
our formulation, Szilvási-Nagy and Vendel [2000] and Séquin et al.
[2005] independently proposed interpolating circular arcs with a
trigonometric blending function, identical to ours, and Sun and
Zhao [2009] presented a similar formulation with rational qua-
dratic Bézier interpolation that can form conic sections. Pobegailo
[2013] proposed an alternative blending formulation using Bern-
stein polynomials. Unfortunately, none of these curve types that
provide C2 continuity prevent self-intersecting curve segments.
Thus, they inherit this crucial limitation that plagued interpolat-
ing curve formulations and hindered their use in practice. The
curve types we present in this article show that these ideas can be
extended to form interpolating curves with self-intersection-free
segment by carefully choosing an interpolation function.

3 THE SPLINE FORMULATION

The interpolating spline formulation we describe in this article re-
lies on interpolation functions. The role of an interpolation function
is to define a curve that goes through three consecutive control
points. Let Fi be an interpolation function defining a curve that
goes through control points pi−1, pi , and pi+1. The interpolation
functions are constrained so that

Fi (0) = pi−1, Fi ( π
2 ) = pi , Fi (π ) = pi+1. (1)

The curve segment Ci that interpolates the control points pi and
pi+1 is constructed by blending these two interpolation functions
Fi and Fi+1. We use trigonometric interpolation for our blending
function, such that

Ci (θ ) = cos2θ Fi (θ + π
2 ) + sin2θ Fi+1 (θ ), (2)

where θ ∈ [0, π
2 ] is a normalized parameter value.

We show that this curve formulation guarantees C2 continuity
regardless of the chosen interpolation function, starting with C0.
By definition, Fi+1 interpolates control points pi and pi+1 as well.
Therefore, Ci provides an interpolating curve formulation withC0

continuity, since Ci ( π
2 ) = Ci+1 (0) = pi+1.

For C1 continuity, we must test the derivative of this curve

C′i (θ ) = 2 cosθ sinθ
(
Fi+1 (θ ) − Fi (θ + π

2 )
)

+ cos2θ F′i (θ + π
2 ) + sin2θ F′i+1 (θ ), (3)

where C′i = dCi/dθ and F′i = dFi/dθ denote the first derivatives.
Note that the first term is zero at the end points of the curve seg-
ment and the derivatives at the control points only depend on the
derivative of one interpolation function, such that C′i (0) = F′i ( π

2 )
and C′i ( π

2 ) = F′i+1 ( π
2 ). Thus, C′i ( π

2 ) = C′i+1 (0) = F′i+1 ( π
2 ).

For C2 continuity, we must also check the second derivative of
the curve,

C′′i (θ ) = 2
(
cos2θ − sin2θ

) (
Fi+1 (θ ) − Fi (θ + π

2 )
)

+ 4 cosθ sinθ
(
F′i+1 (θ ) − F′i (θ + π

2 )
)

+ cos2θ F′′i (θ + π
2 ) + sin2θ F′′i+1 (θ ). (4)

At the control points the first term of this equation is zero by def-
inition (since Fi ( π

2 ) = Fi+1 (0) and Fi (π ) = Fi+1 ( π
2 )), and the sec-

ond term is zero as well. Therefore, the second derivative at the
ends of the curve segment depends on only one of the interpolation
functions, such that C′′i (0) = F′′i ( π

2 ) and C′′i ( π
2 ) = F′′i+1 ( π

2 ). Thus,
as long as the interpolation functions within the range θ ∈ [0, π

2 ]
have C2 continuity, the resulting curve is also C2 continuous.

WhileC2 continuity is important in practice for defining smooth
curves, a higher degree of continuity is seldom needed. Nonethe-
less, it is possible to extend this formulation to achieveC3 continu-
ity if desired, but this requires additional restrictions on how the
interpolation functions can be defined. The third derivative of the
curve can be written as

C′′′i (θ ) = 8 cosθ sinθ
(
Fi (θ + π

2 ) − Fi+1 (θ )
)

+ 6
(
cos2θ − sin2θ

) (
F′i+1 (θ ) − F′i (θ + π

2 )
)

+ 6 cosθ sinθ
(
F′′i+1 (θ ) − F′′i (θ + π

2 )
)

+ cos2θ F′′′i (θ + π
2 ) + sin2θ F′′′i+1 (θ ), (5)

The first and the third terms of this equation are zero at the ends
of the curve segment. However, for the second term to be zero, the
first derivatives of the interpolation functions must align at the two
ends of the curve. The interpolation function examples we discuss
in the next section do not enforce this additional condition, so they
do not provide C3 continuity.

Note that the blending formulation in Equation (2) is simply
a linear interpolation (using trigonometric weights) of two func-
tions. Therefore, if the representation of the interpolation function
is affine invariant, then the resulting curve is affine invariant as
well. Furthermore, if the functions Fi and Fi+1 have well-defined
bounds, then Ci is bounded by their combination (i.e., the bound-
ing box of the two bounding boxes, the convex hull of the two
convex hulls, or the maximum of the two distances to the control
polygon). The bounds for Ci can also be computed for a specific
θ value by simply interpolating the bounds of the interpolation
functions using Equation (2).

This formulation leads to a class of interpolating splines with
each spline formulation in this class using a different interpolation
function. Regardless of the chosen interpolation function, the re-
sulting curves are guaranteed to beC2 continuous. Since the inter-
polation functions only consider three consecutive control points,
the curves have local support, and they do not require a global
optimization step. Other properties of the curve types within this
class depend on the chosen interpolation function.

4 EXAMPLE INTERPOLATION FUNCTIONS

It is easy to imagine various types of interpolation functions that
can be used with the formulation described above. Indeed, since
the only requirement on the interpolation function is that it goes
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Fig. 2. The construction of the Bézier interpolation function.

Fig. 3. The curve generated with Bézier interpolation function remains
between two control points (the shaded region).

through three consecutive control points, unusual formulations
that have not been previously used for defining splines can be uti-
lized as interpolation functions. In this section, we provide some
examples that demonstrate the effectiveness of our spline formu-
lation. Note that since three points in space define a plane, the
interpolation functions can be formulated in 2D, but the control
points and the curve segments formed by Equation (2) can have
any dimensions.

4.1 Bézier Interpolation Function

The first interpolation function Fi we present is a typical spline
formulation, using a quadratic Bézier curve that interpolates three
consecutive control points pi−1, pi , and pi+1. A quadratic Bézier
is defined by three control points bi,0, bi,1, and bi,2, and it goes
through the first and the last one. Therefore, the placement of these
two control points is trivial, such that bi,0 = pi−1 and bi,2 = pi+1,
as shown in Figure 2. The middle control point bi,1 must be cho-
sen such that the curve goes through pi . Let ti ∈ [0, 1] be the nor-
malized parameter value for the Bézier curve at pi . Then, using
quadratic Bézier formulation, we can write

bi,1 =
pi − (1 − ti )2 bi,0 − t2

i bi,2

2(1 − ti )ti
. (6)

Note that any choice for ti forms a valid interpolation function;
therefore, ti can be chosen arbitrarily.

We favor picking the ti that places the local maximum of curva-
ture at pi . The corresponding ti value can be calculated by solving
the cubic equation

�
�pi+1 − pi−1��

2 t3
i + 3 (pi+1 − pi−1) · (pi−1 − pi ) t2

i

+ (3pi−1 − 2pi − pi+1) · (pi−1 − pi ) ti − ��pi−1 − pi
�
�

2 = 0, (7)

which has a single root in [0, 1] for any placement of the control
point positions pi−1, pi , and pi+1 [Yan et al. 2017].

This particular choice for ti bounds the distance between the
curve and the control polygon, such that the distance between
curve segment Ci and the line that connects its end points hi is

Fig. 4. An example curve generated with Bézier interpolation function,
showing that the local curvature maxima appear near control points. The
purple lines indicate the curvature of the curve.

bounded by hi/di ≤ 1/8, where di = �
�pi+1 − pi

�
�. A proof of this

property is provided under Theorem A.1 in the appendix.
This choice for ti also ensures that the two parts of the Bézier

curve that interpolate consecutive control points remain between
the control points, as shown in Figure 3. Consider the shaded area
between two parallel lines that are perpendicular to the line that
connects the two consecutive control points pi and pi+1 and each
passing through one of the control points. The curve segment be-
tween these control points is contained within this area (see Theo-
rem A.2 in the appendix for a proof). This property holds in higher
dimensions as well, where Ci is bounded by two planes or hyper-
planes that are perpendicular to pi pi+1.

Furthermore, this particular choice for ti also guarantees that
the resulting curve segment Ci cannot contain self-intersections.
We provide a proof of this property in the appendix under Theo-
rem A.3. Cusps can appear only at control points and only in the
singular case when three consecutive control points are colinear
and out of order (i.e., the one in the middle is not between the
other two).

Note that while we pick the ti value that places pi at the lo-
cal maximum of curvature for the interpolation function, the final
curve Ci that combines two interpolation functions can have its
maximum local curvature at a slightly different position. Our ex-
periments with this particular interpolation function revealed that
the local curvature maxima appear very close to control points
(Figure 4).

Constructing a global parameterization s with this interpolation
function can be achieved by assigning global parameter values si
to each control point, such that

si = αi ti + si−1, and (8)

si+1 = αi+1ti+1 + si = αi + si−1, (9)

where αi = si+1 − si−1 is a scaling factor for the normalized local
parameter of Fi . The first values of this recursive definition can
be chosen arbitrarily, such as s0 = 0 and α0 = 1. For each curve
segment, where s ∈ [si , si+1], the local parameter θ can be defined
as θ = (π/2) (s − si )/(si+1 − si ). Note that constructing a global pa-
rameterization is not required for evaluating Ci , and it can be com-
puted directly using the local parameters.

Bézier curves remain within the convex hull of their control
points. Therefore, regardless of the choice for ti , the convex hull
of the curve segment Ci can be defined using the convex hulls
of the parts of the two interpolation functions between control
points pi and pi+1. Since these two points are shared by the in-
terpolation functions, the convex hull of Ci is formed by four
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Fig. 5. Interpolating splines generated using circular interpolation func-
tions (a) can be far from the control polygon and (b) lead to cusps and
self-intersections within curve segments.

Fig. 6. The affine-invariant representation of the circular interpolation
function.

points in total, two of which are pi and pi+1, and the other two are
(1 − ti )bi,1 + ti pi+1 and (1 − ti+1)pi + ti+1bi+1,1 (see Figure 2).

Overall, this quadratic Bézier interpolation function leads toC2

curves with each segment defined by only four control points,
guarantees no self-intersections within curve segments, and en-
sures that the resulting curve always moves toward the next con-
trol point. However, just like polynomial interpolating curves, it
cannot represent perfect circular arcs.

4.2 Circular Interpolation Function

The second interpolation function we present is a circle that goes
through three consecutive control points. This is not a typical for-
mulation for splines, as a circle cannot handle more than three
control points. Nonetheless, a circle can be used as an interpola-
tion function with our spline formulation. Indeed, this particular
interpolation function also appears in prior blending curve formu-
lations [Séquin et al. 2005; Szilvási-Nagy and Vendel 2000; Wenz
1996]. Regardless of dimensions and control points positions, there
is always a circular arc that goes from pi−1 to pi+1 and passes
through pi . In the singular case when control points are colinear,
leading to a circle with infinite radius, we simply use a line seg-
ment instead.

This interpolation function produces perfect circular arcs when-
ever four consecutive control points are on the same circle. The
resulting curves address a fundamental limitation of polynomial
spline formulations.

Yet, other properties of splines formed by this circular interpola-
tion function are not as desirable. First, curves can be substantially
far from the control polygon, as shown in Figure 5(a). Furthermore,
it is possible to get cusps and self-intersections with this interpo-
lation function, as shown in Figure 5(b).

Fig. 7. Elliptical interpolation function: (a) The construction of the ellipse
and (b) the resulting curves contained in the shaded area.

Another difficulty with this interpolation function is handling
affine transformations. Translation, rotation, and uniform scale
applied to the control points or the resulting curve produces the
same result, but this is not true for non-uniform scale (and thereby
shear). This comes as no surprise, because circles that undergo
non-uniform scale are no longer circles, they are ellipses. Yet, sup-
porting non-uniform scale is particularly important for rendering
operations with rasterization. We can achieve this by converting
our circle function to a representation that can handle all affine
transformations. The representation we use for Fi consists of the
center of the circle qi and two perpendicular vectors ui and vi

that are on the same plane as the circle and have the same length
as the radius of the circle, as shown in Figure 6. We arbitrarily pick
vi = pi − qi and the resulting interpolation function F̃i represent-
ing the circular arc using a normalized local parameter t ∈ [0, 1]
can be written as

F̃i (t ) = cos(αi t + δi ) ui + sin(αi t + δi ) vi + qi , (10)

where αi and δi are chosen such that F̃i (0) = pi−1 and
F̃i (1) = pi+1. A global parameterization can be formed simi-
lar to the Bézier interpolation function described above, using
ti = −δi/αi that leads to F̃i (ti ) = pi . Obviously, this representa-
tion must be computed prior to applying non-uniform scale. Note
that this representation can properly handle perspective transfor-
mations as well.

4.3 Elliptical Interpolation Function

A significantly better formulation can be achieved using el-
lipses, instead of circles. However, three points are not enough to
uniquely define an ellipse. To narrow down the solution space into
a unique ellipse, we introduce additional constraints, resulting in
a novel formulation for constructing splines with ellipses.

First, we make sure that pi is along one of the two major axes of
the ellipse, as shown in Figure 7(a). We refer to this axis as the pri-

mary axis. Second, we pick one of the other control points, either
pi−1 or pi+1, whichever one is further away from pi , and place it
along the other major axis, referred to as the secondary axis. We im-
pose no restrictions on which axis would be the shorter one (i.e.,
the semi-major axis). Finally, we pick the ellipse that places the
third control point on the other side of the primary axis. Since it is
closer to pi than the other control point, it resides somewhere be-
tween two the vertices of the ellipse (i.e., the points on the ellipse
that intersect with one of the axes). These restrictions uniquely de-
fine an ellipse. Let pi+1 be further away from pi than pi−1 (as in
Figure 7). The set of ellipses that have pi and pi+1 as vertices on
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Fig. 8. Control points along a circle: (a) The Bézier interpolation function cannot produce circular arcs, though (b) adding more control points on a circle
brings the resulting curve closer to a circle; (c) circular interpolation function can easily form perfect circles, (d) even when control points are not regularly
placed; (e) elliptical interpolation function can form perfect circular arcs in special cases, but (f) more than four control points on a circle leads to a non-
circular curve with curvature spikes away from control points. The purple lines indicate the curvature of the curves.

the primary and secondary axes have centers along the circle with
diameter pi pi+1. In our implementation, we find the center of the
ellipse that passes through pi−1 using bisection and formulate Fi

as in Equation (10).
The resulting splines with this interpolation function have some

interesting properties that are highly desirable for an interpolating
spline formulation. First, the curves generated with this formula-
tion are close to the control polygon. Let di be the distance be-
tween pi and pi+1 and hi be the maximum distance between the
curve segment Ci and the line that connects its end points. hi/di

is maximized when the curve forms a circular arc of angle π
2 and

h/di becomes (
√

2 − 1)/2, which is less than 21% (see the proof of
Theorem B.1 in the appendix).

Second, since we constrain the pair of consecutive control points
with the largest separation to lie on the two major axes of the el-
lipse, the tangent of the curve segment between two control points
is always pointed toward the next control point, except for the sin-
gular case when the control points are colinear and the secondary
axis collapses to a point. In the case of this singularity, the deriv-
ative at pi becomes zero, but the rest of the curve segment still
maintains tangents toward the next control point, as shown in the
proof of Theorem B.2 in the appendix.

Consequently, the curve is contained between the two consec-
utive control points, as shown in Figure 7(b) (see Theorem B.3 in
the appendix). Like our Bézier interpolation function, this property
holds in higher dimensions as well.

Another consequence of this is that the curve segments can-
not contain self-intersections (see Theorem B.4 in the appendix).
Cusps can only appear at control points in the singular case when
the secondary axis collapses.

Similarly to the circular interpolation function, this formulation
can also represent perfect circles (in addition to perfect elliptical
arcs). However, perfect circular (and elliptical) arcs only appear in
special cases,2 such as the example in Figure 8(e). Also, the maxi-
mum curvature of the interpolation function Fi is at pi if the pri-
mary axis is longer than the secondary axis of the ellipse; other-
wise, it is at one of the other two control points (the one on the sec-
ondary axis). Therefore, the resulting curve segments Ci can have

2The elliptical interpolation function produces a circular arc of π /2 when four con-
secutive control points are on a circle, the middle two have π /2 separation, and the
others have π /2 or less separation.

Fig. 9. An example curve generated with hybrid interpolation function,
showing that the local curvature maxima appear near control points. The
purple lines indicate the curvature of the curve.

sharp curvature peaks close to their centers, such as the example
in Figure 8(f), which can be undesirable for some applications.

4.4 Hybrid (Circular-Elliptical) Interpolation Function

The class of splines we present in this article does not require us-
ing the same formulation for Fi and Fi+1. Therefore, each inter-
polation function of the curve can be defined independently. We
demonstrate this feature with a hybrid interpolation function that
alternates between circular and elliptical interpolation functions.

The hybrid interpolation function we describe here combines
the benefits of circular and elliptical interpolation functions and
avoids their undesirable properties. The advantage of the circu-
lar interpolation function is that it makes it easy to define cir-
cular arcs, but when the angle of the arc between two consecu-
tive control points is larger than π , the tangents of the interpola-
tion function on control points no longer point toward the next
control point, resulting in curves that can be arbitrarily far from
the control polygon (Figure 5(a)) and can contain self-intersections
(Figure 5(b)). The elliptical interpolation function guarantees that
the tangent is always toward the next control point (thereby avoid-
ing self-intersections), but when the primary axis is shorter than
the secondary axis, the maximum curvature of the curve segment
appears near its center (Figure 8(f)), which might be undesirable
for some applications. Therefore, our hybrid interpolation function
uses circular interpolation when the angle of the arc is small and
switches to elliptical interpolation for larger arcs, which produce
ellipses with longer primary axes.

The threshold we set for switching between the two functions
is π

2 . If the angle of the arc that corresponds to one of the two
circular arcs �pi−1pi and �pi pi+1 is above this threshold, then we
use the elliptical interpolation function. If both angles are smaller
than the threshold, then we use the circular interpolation function.
The reason behind the choice of this particular threshold is that in
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Fig. 10. A comparison of curves generated with our formulation using our example interpolation functions from the same control points.

Table 1. Comparison of Curvature-continuous Spline Formulations

the case when one of the angles is exactly π
2 , and the other one is

equal or smaller, the two interpolation functions become identical
(i.e., elliptical interpolation function produces a circle). Therefore,
using π

2 as the threshold, we can seamlessly transition between the
two functions. Thus, continuous motion of control points leads to
continuous changes in the shapes of the resulting curves.

This simple combination of the two interpolation functions in-
herits all benefits of the elliptical interpolation function. Also, it
makes it easier to form circular arcs and avoids the high-curvature
peaks of the elliptical interpolation near the center of curve seg-
ments. Fi either has constant curvature (forming a circle) or its
maximum curvature is at pi (forming an ellipse with a longer pri-
mary axis). Our experiments revealed that, just like our Bézier in-
terpolation function, the resulting curves Ci have local curvature
maxima close to control points, as shown in Figure 9.

5 RESULTS AND DISCUSSION

We include a self-contained example implementation of our curve
formulations (with full source code) in a single-file webpage (us-
ing HTML, JavaScript, and WebGL) as a supplementary document,
including all four example interpolation functions.

5.1 Comparison of Interpolation Functions

Obviously, the example interpolation functions we describe pro-
duce different curves from the same control points. Still, we pro-
vide comparisons using the same set of control points for dis-
cussing their similarities and differences.

Two simple examples comparing the four example interpola-
tion functions are provided in Figure 1 and Figure 10, and more
complex examples are shown in Figure 11. The curves with hybrid
(circular-elliptical) interpolation function are colored to indicate
which function is used for which curve segment (red indicates

circular and blue indicate elliptical). The one that visually stands
out among these four functions is the circular interpolation func-
tion, forming curves with no sharp features. More importantly,
curves with circular interpolation function can significantly
deviate from the control polygon (Figure 10(b)). In fact, other
than producing perfect circles, the curves with the circular inter-
polation function do not have many desirable features, besides
the common features of this class of curves (i.e., C2 continuity
and local support). The elliptical interpolation function can
produce sharper features near isolated control points, but curve
segments can contain curvature peaks away from control points
(Figure 11(c)). The curves with both Bézier and hybrid interpola-
tion functions can produce sharper features near isolated control
points and avoid curvature spikes away from control points. The
resulting curves are also remarkably close to the control polygon.

The main advantage of the hybrid interpolation function
(Figure 11(d)) over Bézier (Figure 11(a)) is its ability to easily pro-
duce perfect circular arcs. This is presented in Figure 8, showing
curves generated with control points on a circle. Notice that Bézier
interpolation function produces relatively sharp features near con-
trol points (Figure 8(a) and (b)). While this might be desirable in
some cases, approximating a circle with these curves becomes dif-
ficult. Circular interpolation function produces a circle regardless
of how the control points are oriented around the circle (Figure 8(c)
and (d)). Elliptical interpolation function can produce perfect cir-
cular arcs (Figure 8(e)) but can deviate from a circle when repre-
senting smaller arcs (Figure 8(f)), which is avoided by the hybrid
interpolation function.

5.2 Curve Properties

Table 1 provides a comparison of the four example curve
types we present in this article to popular interpolating spline
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Fig. 11. A comparison of curves generated with our formulation using different interpolation functions. The arrows highlight parts of the curves that
exhibit the characteristics of the interpolation functions: (a) Bézier interpolation function can have difficulty forming near-circular segments, (b) circular
interpolation function can deviate from the control polygon and always forms circular shapes, and (c) elliptical interpolation function can form high-
curvature peaks between control points, negatively impacting the visual smoothness of the curve segments. (d) Hybrid interpolation functions avoids these
problems. Artwork by Ozum Yuksel.

formulations that provide curvature-continuity. All curve types
within the class of splines we present in this article have C2 con-
tinuity, which is essential for defining smooth curves. When the
curves are used for representing hair or cloth fibers,C2 continuity
provides smoothly varying specular reflections. When interpolat-
ing animation keyframes, C2 continuity means continuous accel-
eration.G2 continuity of κ-curves [Yan et al. 2017] is sufficient for
curvature continuity. Though G2 does not mean continuous sec-
ond derivative, it is possible to define a globalC2 parameterization
for aG2 curve. Yet, κ-curves are onlyG1 at infliction points, due to
the underlying limitation of the quadratic polynomial representa-
tion they use.

Note that constructing a global parameterization with our for-
mulation is no different than parameterizing Catmull–Rom curves.
However, unlike the Catmull–Rom formulation, we cannot achieve
C2 continuity with user-specified parameter values per control
point.

Local support is important to make sure that modifying a sin-
gle control point does not have a global effect on the curve. Nei-
ther interpolating B-Splines [Farin 2002] nor κ-curves [Yan et al.
2017] provide local support. While the effect of a single con-
trol point is mostly local with κ-curves, they require a global
optimization step for recomputing the entire curve whenever
a control point is modified. C2 Catmull–Rom splines [Catmull
and Rom 1974] do provide local support, but they form piece-
wise fourth-degree polynomials defined by six control points
each. In comparison, all curve formulations in the class of splines
we present need only four control points to define each curve
segment.

Three of the example interpolation functions we describe (all
but circular interpolation function) guarantee self-intersection-
free curve segments. This property is also supported by κ-curves
[Yan et al. 2017]. This is a crucial property, and the unpopularity
of prior interpolating C2 curve formulations in practice can be at-
tributed to the fact that they are prone to producing unintended
self-intersections.

The same three interpolation functions (all but circular interpo-
lation function) also produce curves that are close to the control
polygon. However, C2 Catmull–Rom splines [Catmull and Rom
1974] and interpolating B-Splines [Farin 2002] can form curve seg-
ments that are arbitrarily far from the control polygon, and their
distance is not bounded as a function of the distance between the
two control points they interpolate. Indeed, this has been another
important flaw of earlier interpolating spline formulations that
certainly contributes to their unpopularity in practice.
κ-curves [Yan et al. 2017] place the local curvature maxima at

control points. Arguably, this property can make the resulting
curves easier to control for design applications. Curves with our
Bézier and hybrid interpolation functions place the local curva-
ture maxima in close proximity of the control points. This is be-
cause these two interpolation functions guarantee that the maxi-
mum curvature of Fi is at pi . Blending the interpolation functions
Fi and Fi+1 using the trigonometric interpolation in Equation (2),
however, can slightly shift the locations of the curvature maxima.

However, forming linear curve segments with κ-curves [Yan
et al. 2017] and interpolating B-splines [Farin 2002] can be chal-
lenging, due to global support. Even when multiple control points
are placed on a line, the resulting curve can bend because of the
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Fig. 12. Comparison of curves generated from the same set of control points using different curve formulations. The top row shows our example interpolation
function; the middle row shows the formulation of Sun and Zhao [2009], which is similar to our curve construction, with different weight parameters w ;
and the bottom row shows other curve types. Though in this example C2 Catmull–Rom curve with centripetal parameterization does not present self-
intersections, only three of our example interpolation functions and κ-curves guarantee self-intersection-free curves.

other control points. Also, linear segments conflict with the goal
of placing local curvature maxima at control points that κ-curves
enforce, as line segments have zero curvature. C2 Catmull–Rom
splines [Catmull and Rom 1974] can produce linear segments, but
they require six consecutive control points to be on a line. In
comparison, all of our interpolation functions can produce perfect
linear segments when four consecutive control points are placed
linearly.

Circular and hybrid interpolation functions form perfect circu-
lar arcs whenever any four consecutive control points are on a
circle. Our elliptical interpolation function produces circular arcs
only in special cases. Neither our Bézier interpolation function, nor
any polynomial interpolating curve formulation can form perfect
circles. However, a recent extension ofκ-curves can produce circu-
lar an elliptical arcs by using a rational Bézier formulation with a
more complicated global optimization procedure [Yan et al. 2019].

5.3 Comparisons to Prior Methods

Figure 12 shows a comparison of curvature-continuous curves
generated from the same set of control points using different curve

formulations. The top row shows our formulation with our ex-
ample interpolation functions. Notice that circular interpolation
function (Figure 12(c)), which produces identical curves to Szilvási-
Nagy and Vendel [2000] and Séquin et al. [2005], highly devi-
ates from the control points and forms a self-intersecting seg-
ment. The novel interpolation functions we introduced in this
article (Figure 12(a), (c), and (d)) form reasonable interpolations
and they guarantee self-intersection-free segments. The middle
row shows curves generated using the rational quadratic Bézier
formulation of Sun and Zhao [2009] with different weight pa-
rameters w (Figure 12(e)–(h)), ranging from conics to hyperbola,
all of which lead to self-intersecting segments (and notable de-
viations from the control polygon for shorter segments). Indeed,
this self-intersection problem is common with other prior inter-
polating C2 curves as well, such as interpolating B-Splines [Farin
2002] (Figure 12(i)) and Catmull–Rom curves [Catmull and Rom
1974] (Figure 12(j)) with uniform parameterization. Using this
particular set of control points, C2 Catmull–Rom curves with
chordal and centripetal parameterizations do not produce self-
intersections (Figure 12(k)), but they are also prone to forming
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Fig. 13. Comparison of ((a)–(d)) curves generated using our method with four example interpolation functions and (e) κ-curves [Yan et al. 2017] from the
same control points. The bottom row shows the control point positions and the curvature of the curves. The inset on the right bottom provides a zoomed-out
view, showing the entire curvature visualization of κ-curves. The red arrows highlight the extremely sharp corners generated by κ-curves, and the blue
arrows show the curve segments that are bent due to the global support of κ-curves.

self-intersecting segments with different control point positions
[Yuksel et al. 2009b]. The κ-curves method [Yan et al. 2017] in this
example leads to a reasonable interpolation (Figure 12(l)), similarly
to our curves with Bézier, elliptical, and hybrid interpolation func-
tions. However, the resultingκ-curve is mostlyG2 withG1 at inflic-
tion points (where the curvature changes sign), unlike the curves
with our formulation that have C2 continuity everywhere.

Of the similar curve formulations in prior work, the method of
Szilvási-Nagy and Vendel [2000] and Séquin et al. [2005] are identi-
cal to our curves with circular interpolation function (Figure 12(b)),
and the rational Bézier formulation of Sun and Zhao [2009] forms
curves within the class we present in this article (Figure 12(e)–
(h)). Rational Béziers allow elliptical (with 0 < w < 1), parabolic
(withw = 1), and hyperbolic (withw > 1) interpolation. However,
these curves cannot address the problems of typical interpolat-
ing curves with cusps and self-intersecting segments, unbounded
distance to the control polygon, and curvature maxima appearing
anywhere. In fact, besides their ability to form conics and some-
what improved local-support, they are not qualitatively superior to
the popular alternative of Catmull–Rom curves [Catmull and Rom
1974] (Figure 12(j)), producing a visually similar interpolation. The
advantages of our Bézier interpolation function stem from placing
pi at the local curvature maxima. The formulation of Sun and Zhao
[2009], however, places pi at the parametric center of a rational
Bézier curve, which leads to the undesirable properties mentioned
above that are common with prior interpolating curves. Note that
it is possible to replace our Bézier interpolation function with ra-
tional Béziers, solving a different equation to find the curvature
maxima [Yan et al. 2019].

We provide another comparison to κ-curves [Yan et al. 2017]
in Figure 13. As compared to our curves, κ-curves (Figure 13(e))
can produce extremely sharp corners (highlighted with red

arrows). More importantly, κ-curves fail to produce linear seg-
ments (highlighted with blue arrows in Figure 13(e)). Notice that all
of our interpolation functions are able to produce linear segments
(Figure 13(a)–(d)). Since κ-curves are quadratic polynomials, they
cannot represent perfect circular arcs either. Indeed, the objective
of placing the maximum curvature exactly at control points con-
flicts with lines and circles, which have constant curvature (i.e.,
no maximum point of curvature). That is why the implementation
of κ-curves in Adobe Illustrator differs from the original formu-
lation to address some of its shortcomings. Obviously, since these
are different curve formulations, producing a similar curve shape
would require a different set of control points. Nonetheless, all
curve types within our class provide C2 curves and local support
without a global optimization step, while κ-curves are mostly G2

(and G1 at infliction points), have global support, and are gener-
ated through a costly numerical optimization process. The only ar-
guable advantage κ-curves have over our curves with Bézier and
hybrid interpolation functions is that the curvature maxima are
exactly at the control points, instead of having them near control
points. Yet, this strict policy also prevents κ-curves from forming
linear curve segments. Also, κ-curves and their recent extension
[Yan et al. 2019] are only shown to work in 2D and it is unclear
if κ-curves can be easily extended to 3D (or higher dimensions).
In comparison, our formulation naturally supports higher dimen-
sions, even though interpolation functions are conveniently de-
fined in 2D.

5.4 Three-dimensional Curves

Note that while most examples in this article are 2D curves, the
properties of our formulation are maintained in higher dimen-
sions as well. An example featuring 3D hair modeling is shown in
Figure 14. The hair strands are generated from a hair mesh [Yuksel
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Fig. 14. An example hair model generated using our curves with the hy-
brid interpolation function for both representing the hair strands and the
edges of the hair mesh along the hair direction. The control points of
the final hair curves are placed using procedural styling operations. The
hair model consists of over 100,000 strands and 8.5 million curve seg-
ments. The character and hair mesh models by Lee Perry-Smith. Designed
and rendered using Hair Farm, the ultimate hair plugin for Autodesk
3ds Max.

et al. 2009a]. All hair strands and the edges of the hair mesh along
the hair direction are formed by our spline formulation with the
hybrid interpolation function. Using an interpolating curve for-
mulation (as opposed to an approximating curve) for representing
the hair mesh allows the user to directly control the hair mesh sur-
face. TheC2 continuity provided by our curves leads to continuous
changes in specular reflections, and our hybrid interpolation func-
tion connects most control points with circular arcs, which can
be desirable for this application. Most importantly, our formula-
tion is computationally efficient enough for such applications that
involve a vast amount of curves, since the curves are generated
without global optimization.

5.5 Sharp Features

When sharp features are needed, our curves can provide them by
placing control points in close proximity. Some examples including
sharp features are shown in Figure 15. Still, the curves maintainC2

continuity everywhere. When extremely sharp corners are needed,
placing two consecutive control points exactly on top of each other
(by collapsing the curve segment between them to a point) leads
to a curve with only C0 continuity at that point.

Fig. 15. Examples curves generated using the hybrid interpolation func-
tion, showing sharp features achieved by placing control points in close
proximity. Artwork by Ozum Yuksel.

6 CONCLUSION AND FUTURE WORK

We have presented a class of splines that interpolate the con-
trol points, guaranteeC2 continuity everywhere, and provide local
support with only four control points defining each curve segment.
This formulation of splines allows defining novel curve types by
simply specifying a custom interpolation function. Since our inter-
polation functions only consider three consecutive control points,
unconventional formulations can be utilized. Furthermore, there
is no need for a costly global optimization step with any spline
formulation within this class, as the interpolation functions are
defined locally.

We have also presented four example interpolation functions
within this class, producing curves with different properties.
Among them, Bézier and hybrid interpolation functions produce
curves with guaranteed self-intersection-free segments, bounded
distances to the control polygon, and local curvature maxima close
to the control points. Furthermore, these curves also have local-
support and C2 continuity everywhere and they require no global
optimization (as any other curve formulation within this class). To
our knowledge, no prior spline formulation can provide all of these
properties. Moreover, they can easily produce linear segments, and
curves with hybrid interpolation function can also represent per-
fect circular arcs, a feature not supported by any polynomial in-
terpolating spline.

Note that our formulation with the circular interpolation func-
tion example also appears in prior work [Séquin et al. 2005;
Szilvási-Nagy and Vendel 2000]. This interpolation function leads
to curves with undesirable properties and it is included mainly for
aiding the descriptions of our elliptical and hybrid interpolation
functions.
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Nonetheless, the interpolation functions we describe in this ar-
ticle are merely examples within this class and other interpolation
functions with different properties can be developed with future
research. For example, cubic Bézier curves would be an interest-
ing alternative to explore, as they provide more flexibility than the
quadratic ones we use. Another one would be using a helix, which
can be defined by three points in 3D [Goriely et al. 2012]. Yet, not
all possible interpolation functions lead to curves with desirable
properties, such as our circular interpolation function and the ra-
tional quadratic Bézier formulation of Sun and Zhao [2009].

Note that the compatibility of circular and elliptical interpola-
tion functions, such that they form the same curve under certain
conditions, makes it easy to combine them for defining our hybrid
interpolation function, but a hybrid interpolation function can be
defined using two (or more) incompatible interpolation functions
as well. Instead of using a single threshold to switch between dif-
ferent interpolation types, a weighted average of different interpo-
lations can be used to ensure continuous transitions between dif-
ferent interpolation types. Thus, the space of spline formulations
within the class we present in this article also includes combina-
tions of arbitrary interpolation functions.

Another interesting future research direction would be explor-
ing interpolation functions that consider more than three control
points for achieving a higher degree of continuity or other curve
properties.

It has been argued that it would be a good idea to have local
curvature maxima at the control points because of the sensitivity
of human visual system to curvature maxima and minima [Levien
and Séquin 2009]. In particular, for 2D artistic design applications,
having control points strictly at the local curvature maxima might
allow the user to “guess” the location of a control point just by
looking at the curve, which might be considered a desirable prop-
erty. However, for the purpose of making the curve formulation
easier to use in practice, it is unclear how important it is to strictly
enforce this property and whether having curvature maxima close
to control points, like our curves, would provide a similar benefit.
A user-study investigating this topic is out of the scope of this ar-
ticle, since we do not narrowly target this particular application,
but it would be an interesting direction for future work.

APPENDIX

A BÉZIER INTERPOLATION FUNCTION PROPERTIES

Below we provide proofs for the properties of the Bézier interpo-
lation function described in Section 4.1. Since Bézier curves are
affinely invariant, without loss of generality, in the following we
assume that pi is at the origin and pi+1 is along the x-axis at x = 1.

Theorem A.1. The distance of a curve segments with the Bézier

interpolation function to the line that connects its end points is

bounded by the distance between the interpolated control points.

Proof. Let b0, b1, and b2 be the three control points of the qua-
dratic Bézier curve that represents Fi between the interpolated
control points. The Bézier curve parameter value tmc for the point
of maximal curvature can be written as [Yan et al. 2017]

tmc =
(b0 − b1) · (b0 − 2b1 + b2)

‖b0 − 2b1 + b2‖2
. (11)

Let bx be the x-component of b1, such that b1 = [bx by ]T , where
by represents the remaining components. Since tmc = 0 by the con-
struction of Fi , using b0 = pi and b2 = pi+1, Equation (11) becomes

bx = 2b2
x + 2(by · by ). (12)

Thus, the distance of b1 to the x-axis is ‖by ‖ = (bx /2 − b2
x )

1
2 . This

distance is maximized when bx = 1/4 and thereby the distance of
Fi is bounded by 1/8. The same bound also applies to Fi+1 due to
symmetry. Therefore, the ratio of the distance of Ci to the line that
connects its end points hi and the distance between the interpo-
lated control points di is bounded by hi/di ≤ 1/8. �

Theorem A.2. Curve segments with the Bézier interpolation func-

tion remain between the interpolated control points.

Proof. If both Fi and Fi+1 remain between the interpolated
control points, then Ci must remain between them as well. It is suf-
ficient to show this for Fi , and Fi+1 follows due to symmetry. Based
on Equation (12), bx ≥ 0 and bx − 2b2

x ≥ 0, thereby bx ∈ [0, 1
2 ].

Due to the convex hull property of Bézier curves, Fi is guaran-
teed to remain between the interpolated control points. There-
fore, Ci remains between the two lines (in 2D), two planes (in 3D),
or two hyperplanes (in higher dimensions) defined by x = 0 and
x = 1. �

Theorem A.3. Curve segments with the Bézier interpolation func-

tion cannot contain cusps or self-intersections.

Proof. The curve segment cannot contain cusps or self-
intersections if its derivative along the x-axis is positive between
the interpolated control points. Using a local parameter t ∈ [0, 1],
the derivative with respect to t along the x-axis can be written as

C ′x,i (t ) = cos2
(π

2
t
)
F ′x,i (t ) + sin2

(π
2
t
)
F ′x,i+1 (t )

+ π cos
(π

2
t
)

sin
(π

2
t
)

(Fx,i+1 (t ) − Fx,i (t )), (13)

where the x-components of the interpolation functions can be
written in polynomial form using constants xi and xi+1 as

Fx,i (t ) = xi t
2 + (1 − xi ) t , (14)

Fx,i+1 (t ) = xi+1 t
2 + (1 − xi+1) t , (15)

Since Fi and Fi+1 are quadratic curves that remain between the
interpolated control points, F ′x,i (t ) ≥ 0 and F ′x,i+1 (t ) ≥ 0. Thus,
−1 ≤ xi ≤ 1 and −1 ≤ xi+1 ≤ 1. Using these bounds, we can write
Fx,i+1 (t ) − Fx,i (t ) ≥ −2t (1 − t ). Similarly, the first two terms of
Equation (13) interpolate between possible Fx,i and Fx,i+1 values
and they are bounded by 2t and 2(1 − t ). Since the last term is
bounded by

π cos
(π

2
t
)

sin
(π

2
t
)

(2t (1 − t )) ≤ 2t and (16)

π cos
(π

2
t
)

sin
(π

2
t
)

(2t (1 − t )) ≤ 2(1 − t ), (17)

C ′x,i (t ) cannot be negative within t ∈ [0, 1], and it can be zero only
at t = 0 and t = 1. Therefore, the curve segment cannot have cusps
or self-intersections. �
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B ELLIPTICAL INTERPOLATION FUNCTION
PROPERTIES

Below we provide proofs for the properties of the elliptical inter-
polation function described in Section 4.3. These properties also
apply to the hybrid (circular-elliptical) interpolation function (Sec-
tion 4.4). Using our affine invariant representation, without loss of
generality, in the following we assume that pi is at the origin and
pi+1 is along the x-axis at x = 1. Note that transforming a given
curve to this frame does not require non-uniform scale.

Theorem B.1. The distance of a curve segment with the ellipti-

cal interpolation function to the line that connects its end points is

bounded by the distance between the interpolated control points.

Proof. Let θ ∈ [0, π
2 ] represent the local parameter for the

curve segment Ci . The distance of Ci to the line pi pi+1 is bounded
by the distance of Fi and Fi+1 to this line for θ ∈ [0, π

2 ]. It is suf-
ficient to show the bound for Fi and Fi+1 follows due to symme-
try. The distance is maximized when the elliptical arc Fi corre-
sponds to the largest possible angle, which is π

2 by construction.

Let ui = [ux uy ]T and vi = [vx vy ]T represent the primary axes
of the ellipse, whereuy = vy andux −vx = 1. Using Equation (10),
we can write the maximum distance hi to the line as

hi = |uy |(cosθ + sinθ − 1), (18)

where hi is maximized when Fi is a circular arc, such that |uy | = 1
2

and θ = π
4 . Thus, Ci is bounded by hi/di = (

√
2 − 1)/2, where di

is the distance between the interpolated control points. �

Theorem B.2. The tangent of a curve segment between control

points with the elliptical interpolation function points toward the

next control point, i.e., C′i (θ ) · (pi+1 − pi ) > 0 for θ ∈ (0, π
2 ).

Proof. Consider the scalar portion of the curve derivative C′i in
Equation (3) along the x-axis. Only the first term of this equation
can be negative and it is minimized when αi = αi+1 = 1 and δi =

δi+1 = 0, such that both pi and pi+1 are on primary and secondary
axes of both ellipses Fi and Fi+1. The scalar equations for the two
ellipses along the x-axis can be written as

Fi (θ ) = ui sinθ +vi cosθ + qi , (19)

Fi+1 (θ ) = ui+1 cosθ +vi+1 sinθ + qi+1, (20)

where ui ,vi ,qi ,ui+1,vi+1,qi+1 ∈ [0, 1] are the scalar components
of the affine-invariant representation in Equation (10). Using prop-
ertiesui −vi = 1, −ui+1 +vi+1 = 1,ui = 1 − qi , andui+1 = −qi+1,
Equation (3) can be written as

C ′i (θ ) = c + (qi+1 − qi ) (2cs (c + s − 1)) + (c − s ) (qi+1s
2 − qic

2),

where c = cosθ and s = sinθ . This equation is minimized when
qi = 1 and qi+1 = 0, and C ′i (θ ) remains positive within the range
θ ∈ (0, π

2 ). �

Theorem B.3. Curve segments with the elliptical interpolation

function remain between the interpolated control points.

Proof. By construction, both ellipse pieces forming the curve
remain between the interpolated control points. Therefore, the re-
sulting curve that combines the two interpolation functions using
Equation (2) must remain within this rage for θ ∈ [0, π

2 ]. �

Theorem B.4. Curve segments with the elliptical interpolation

function cannot contain cusps or self-intersections.

Proof. Based on Theorem B.2 the derivative of the curve seg-
ments are positive along the direction that connects the two end
points of the curve segment within range θ ∈ (0, π

2 ). Thus, the re-
sulting curve segment cannot contain cusps or self-intersections
within this rage. Cusps withC ′i = 0 can only appear at the control
points (where θ = 0 or θ = π

2 ) in special cases. �
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