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Abstract. In this article, we consider various arithmetic properties of the function po(n) which
denotes the number of overpartitions of n using only odd parts. This function has arisen in a
number of recent papers, but in contexts which are very different from overpartitions. We prove
a number of arithmetic results including several Ramanujan-like congruences satisfied by po(n)
and some easily-stated characterizations of po(n) modulo small powers of two. For example, it is
proven that, for n ≥ 1, po(n) ≡ 0 (mod 4) if and only if n is neither a square nor twice a square.
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1. Introduction

Throughout this work, we let p(n) be the number of overpartitions of the nonnegative
integer n and po(n) be the number of overpartitions of n in which only odd parts are
used. Here an overpartition of the nonnegative integer n is a nonincreasing sequence of
natural numbers whose sum is n where the first occurrence of parts of each size may be
overlined. For example, the overpartitions of 3 are

3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1, 1+1+1.

Thus, from this example, we see that p(3) = 8 and po(3) = 4.
The function p(n) has been considered recently by a number of mathematicians

including Corteel, Lovejoy, Mahlburg, Yee, and the authors. See [4, 5] and [8–12].
In [8] and [12], several Ramanujan-like congruences modulo small powers of two were
proven for p(n). Indeed, all of these (and many more) congruences modulo small pow-
ers of two follow from a functional equation satisfied by the generating function for
p(n).

Our goal in this note is to focus on similar results which hold for po(n). Interestingly
enough, the generating function for po(n), which we will denote by Po(q), has appeared
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quite recently in the works of Ardonne, Kedem, and Stone [2], Bessenrodt [3], Santos
and Sills [13]. However, in none of these cases do the authors connect their work
to overpartitions into odd parts. Moreover, they do not consider arithmetic properties
satisfied by po(n); this was simply not their focus. But given the wealth of results now
known for p(n), it is natural to consider whether po(n) satisfies similar properties.

In Section 2, we prove functional equations involving the generating functions for
p(n) and po(n), respectively. We then utilize these to develop characterizations of po(n)
modulo small powers of 2. In particular, we prove the following two theorems:

Theorem 1.1. For all n ≥ 1,

po(n) ≡







2 (mod 4), if n is a square or n is twice a square,

0 (mod 4), otherwise.

Theorem 1.2. Assume the prime factorization of n is given by

n = 2α ∏ pαi
i qβi

i rγ i
i sδi

i ,

where each

pi ≡ 1 (mod 8), qi ≡ 3 (mod 8), ri ≡ 5 (mod 8), si ≡ 7 (mod 8).

Then po(n) ≡ 0 (mod 8) if and only if one of the following holds:

• at least one δi is odd,
• all δi are even and at least one γ i is odd,
• all δi are even, all γ i are even, at least one βi is odd, and

∏(αi +1)(βi +1)≡ 0 (mod 4),

• all δi are even, all γ i are even, all βi are even, and

∏(αi +1)≡ 0 (mod 4).

We then state a number of corollaries of Theorems 1.1 and 1.2 which yield nice
Ramanujan-like congruence results modulo powers of 2. We close Section 2 by proving
a number of generating function identities for po(n) for specific arithmetic progressions.

In Section 3, we consider two infinite families of results culminating in the proof of
the following theorem:

Theorem 1.3. For all n ≥ 0 and all α ≥ 0,

po(9α(9n+6))≡ 0 (mod 12), and

po(9α(27n+9))≡ 0 (mod 6).
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The techniques employed below are elementary and involve a number of generating
function manipulations. Moreover, Jacobi’s Triple Product Identity [1, Theorem 2.8] is
used often, so we state it here:

∞

∑
n=−∞

znqn2
=
(

−zq; q2)

∞
(

−z−1q; q2)

∞
(

q2; q2)

∞ , (1.1)

where (a; q)∞ := (1− a)(1− aq)(1− aq2) · · · . We will, at times, shorten (q; q)∞ by
simply writing (q)∞.

2. Results Modulo Powers of Two

We begin with the generating function for p(n) which is given by

P(q) = ∑
n≥0

p(n)qn = ∏
n≥1

1+qn

1−qn =
(−q; q)∞

(q; q)∞
=

(

q2; q2)

∞
(q; q)2

∞
.

Our first goal is to prove a functional equation for P(q) which involves

φ(q) :=
∞

∑
n=−∞

qn2
= 1+2 ∑

n≥1
qn2

.

Theorem 2.1.
P(q) = φ(q)P

(

q2)2
.

Proof. From (1.1), it is clear that

φ(q) =
(

−q; q2)2
∞
(

q2; q2)

∞ =

(

q2; q2)5
∞

(q; q)2
∞ (q4; q4)2

∞
,

after straightforward manipulations. Therefore

φ(q)P
(

q2)2
=

(

q2;q2
)5

∞

(q;q)2
∞ (q4;q4)

2
∞
×

(
(

q4;q4
)

∞

(q2;q2)
2
∞

)2

=
(q2;q2)∞

(q;q)2
∞

= P(q).

Iteration of Theorem 2.1 yields the following theorem.

Theorem 2.2. ∑
n≥0

p(n)qn = φ(q)φ
(

q2)2 φ
(

q4)4 φ
(

q8)8
· · · .

We note that various congruences modulo small powers of two can easily be proved
using Theorem 2.2 and we refer the reader to [8] and [12] for more information. (Note
that the methods employed in [8] are quite different from those used in [12].)

We now obtain a theorem similar to Theorem 2.2 for po(n).
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Theorem 2.3.
Po(q) = φ(q)P(q2).

Proof. We begin with the generating function for po(n) which is

Po(q) = ∑
n≥0

po(n)qn = ∏
n≥1

1+q2n−1

1−q2n−1 =
(−q; q2)∞

(q; q2)∞
=

(

q2; q2)3
∞

(q; q)2
∞ (q4; q4)∞

,

after some manipulations. Therefore

φ(q)P
(

q2)=

(

q2; q2
)5

∞

(q; q)2
∞ (q4; q4)

2
∞
×

(

q4; q4
)

∞

(q2; q2)
2
∞

=

(

q2; q2
)3

∞
(q; q)2

∞ (q4; q4)∞

= Po(q).

We can combine Theorem 2.3 with Theorem 2.1 to obtain the following:

Theorem 2.4. ∑
n≥0

po(n)qn = φ(q)φ
(

q2) φ
(

q4)2 φ
(

q8)4
· · · .

Theorem 2.4 can be utilized to obtain characterizations of po(n) modulo small pow-
ers of two in a very straightforward way. We do this below for the moduli 4 and 8.

For completeness’ sake, we note that for all n > 0, po(n)≡ 0 (mod 2). This follows
since, modulo 2,

∑
n≥0

po(n)qn = ∏
n≥1

1+q2n−1

1−q2n−1 ≡ ∏
n≥1

1−q2n−1

1−q2n−1 = 1.

We turn our attention to a characterization of po(n) modulo 4 by proving Theorem
1.1 mentioned above.

Proof of Theorem 1.1. Note that (φ(q))2k
≡ 1 (mod 4) for k ≥ 1. This is clear when

one writes

φ(q)2k
=

(

1+2 ∑
n≥1

qn2

)2k

,

and then expands via the binomial theorem. Therefore we have

∑
n≥0

po(n)qn = φ(q)φ
(

q2) φ
(

q4)2 φ
(

q8)4
· · ·

≡ φ(q)φ
(

q2) (mod 4)

=

(

1+2 ∑
n≥1

qn2

)(

1+2 ∑
n≥1

q2n2

)

≡ 1+2 ∑
n≥1

qn2
+2 ∑

n≥1
q2n2

(mod 4).

The result follows.



Arithmetic Properties of Overpartitions into Odd Parts 357

From Theorem 1.1, we see that numerous Ramanujan-like congruences modulo 4
are satisfied by po(n). All that is necessary is to find arithmetic progressions which fail
to contain squares and doubles of squares. For example, we know that, for all n ≥ 0,
po(2 jn +(2r + 1)) ≡ 0 (mod 4) for all j ≥ 2 and 1 ≤ r ≤ 2 j−1 − 1 where r is not a
multiple of 4. Many additional examples could be stated.

We next consider a characterization of po(n) modulo 8 by proving Theorem 1.2.
But before we prove Theorem 1.2, we state one important lemma.

Lemma 2.5. Let r{�+�}(n) be the number of ways to represent the nonnegative integer
n as the sum of two (possibly equal) squares and let r{�+2�}(n) be the number of ways
to represent the integer n as the sum of a square and twice a square. Also, assume the
prime factorization of n is given by

n = 2α ∏ pαi
i qβi

i rγ i
i sδi

i ,

where each

pi ≡ 1 (mod 8), qi ≡ 3 (mod 8), ri ≡ 5 (mod 8), si ≡ 7 (mod 8).

Then

r{�+�}(n) =







0, if any βi or δi is odd,

4∏(αi +1)(γ i +1), if all βi, δi are even,

and

r{�+2�}(n) =







0, if any γ i or δi is odd,

2∏(αi +1)(βi +1), if all γ i, δi are even.

Proof. These results follow from the results of Jacobi and Dirichlet. For the proofs of
these see [6].

With Lemma 2.5 in hand, we can now prove Theorem 1.2.

Proof of Theorem 1.2. We consider the following set of equalities and congruences:

∑
n≥0

po(n)qn = φ(q)φ
(

q2)φ
(

q4)2 φ
(

q8)4
· · ·

≡ φ(q)φ
(

q2)φ
(

q4)2
(mod 8)

≡ φ(q)
(

φ
(

q2)+φ
(

q4)2
−1
)

(mod 8)

= φ(q)φ
(

q2)+φ(q)φ
(

q4)2
−φ(q)

≡ φ(q)φ
(

q2)+
(

φ(q)+φ
(

q4)2
−1
)

−φ(q) (mod 8)

= φ(q)φ
(

q2)+φ
(

q4)2
−1

= ∑
n≥0

r{�+2�}(n)qn + ∑
n≥0

r{�+�}(n)q4n −1.
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It follows that, modulo 8,

po(n) ≡







r{�+2�}(n), if 4 - n,

r{�+2�}(n)+ r{�+�}(n), if 4|n.

It is now an easy matter to use Lemma 2.5 to complete the proof of the theorem.

Indeed, we can do better. We can provide a full characterization of po(n) modulo 8
as follows:

Theorem 2.6. For all n ≥ 1, po(n) ≡ 0 (mod 8) if and only if one of the following
holds:

• at least one δi is odd,
• all δi are even and at least one γ i is odd,
• all δi are even, all γ i are even, at least one βi is odd, and

∏(αi +1)(βi +1)≡ 0 (mod 4),

• all δi are even, all γ i are even, all βi are even, and

∏(αi +1)≡ 0 (mod 4);

po(n) ≡ 4 (mod 8) if and only if one of the following holds:

• all δi are even, all γ i are even, any βi is odd, and

∏(αi +1)(βi +1)≡ 2 (mod 4),

• all δi are even, all γ i are even, all βi are even, and

∏(αi +1)≡ 2 (mod 4);

po(n) ≡ 2 (mod 8) if and only if one of the following holds:

• n is an odd square or twice an odd square with

∑(αi +βi) ≡ 0 (mod 4),

• n is an even square or twice an even square with

∑(αi +βi) ≡ 2 (mod 4);

po(n) ≡ 6 (mod 8) if and only if one of the following holds:

• n is an odd square or twice an odd square with

∑(αi +βi) ≡ 2 (mod 4),
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• n is an even square or twice an even square with

∑(αi +βi) ≡ 0 (mod 4).

At this point, it is worthwhile to highlight a number of corollaries of Theorems
1.2 and 2.6, as numerous Ramanujan-like congruences can readily be seen from the
theorems.

Corollary 2.7. For all n ≥ 0,

po(8n+5)≡ 0 (mod 8), and

po(8n+7)≡ 0 (mod 8).

Proof. In the case of numbers of the form 8n+5 or 8n+7, either at least one δi or one
γ i is odd (using the notation employed in Theorem 1.2 and Theorem 2.6). This implies
the result.

Corollary 2.8. For all n ≥ 0,

po(18n+15)≡ 0 (mod 8), and

po(36n+21)≡ 0 (mod 8).

Proof. Note that 18n+15 = 3(6n+5), 3 - 6n+5 and 6n+5 is not a square. It follows
that either at least one δi, γ i or αi is odd, or at least two of the βi are odd. In any case
the result follows. Similarly, we have 36n + 21 = 3(12n + 7), 3 - 12n + 7 and 12n + 7
cannot be a square. The proof proceeds as above.

We next consider a corollary which produces infinitely many congruences modulo
8 for an infinite subset of primes.

Corollary 2.9. Let p be a prime such that p ≡ 5 (mod 8) or p ≡ 7 (mod 8) and let
r ∈ {1, . . . , p−1}. Then, for all n ≥ 0, po(p2n+ pr)≡ 0 (mod 8).

Proof. Note that p2n+ pr = p(pn+ r) and p - pn+ r, so at least one δi or γ i is odd. The
result follows.

Corollary 2.10. For all n ≥ 0,

po(2n) ≡







−po(n) (mod 8), if n is twice an odd square,

po(n) (mod 8), otherwise.

In particular, if po(n) ≡ 0 (mod 8), then po(2n) ≡ 0 (mod 8).

Thus, for example, for all n ≥ 0 and all α ≥ 0, we have

po (2α(8n+5))≡ 0 (mod 8), and

po (2α(8n+7))≡ 0 (mod 8).
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Because the analysis of characterizations of po(n) becomes difficult modulo higher
powers of 2, we now consider a different strategy. Using elementary generating function
manipulation techniques, we can prove a number of generating function identities for
po(n) for certain arithmetic progressions. We first provide a lemma which will prove
useful within the intermediate steps of the proof.

First, we define four functions of q, one of which has already been used above:

φ(q) =
∞

∑
n=−∞

qn2
= ∏

n≥1

(

1+q2n−1)2 (
1−q2n)=

(

q2)5
∞

(q)2
∞ (q4)2

∞
,

ψ(q) =
∞

∑
n=−∞

q2n2−n = ∏
n≥1

(

1+q4n−3)(1+q4n−1)(1−q4n)=

(

q2
)2

∞
(q)∞

,

D(q) =
∞

∑
n=−∞

(−1)nqn2
= ∏

n≥1

(

1−q2n−1)2 (
1−q2n)= ∏

n≥1

1−qn

1+qn =
(q)2

∞
(q2)∞

, and

Y (q) =
∞

∑
n=−∞

(−1)nq3n2−2n = ∏
n≥1

(

1−q6n−5
)(

1−q6n−1
)(

1−q6n
)

=
(q)∞

(

q6)2
∞

(q2)∞ (q3)∞
.

Next, we state without proof a lemma which contains a number of elementary results re-
lating these four functions. The proofs of each of these identities are relatively straight-
forward.

Lemma 2.11.

φ(q) = φ
(

q4)+2qψ
(

q8) ,

φ(q)2 = φ
(

q2)2
+4qψ

(

q4)2
,

1
D(q)

= ∏
n≥1

1+qn

1−qn =

(

q2
)

∞
(q)2

∞
=

φ(q)

D(q2)2 .

With this lemma in hand, we can now proceed to prove a number of generating func-
tion identities for particular arithmetic progressions. We combine these in the statement
of one theorem.

Theorem 2.12.

∑
n≥0

po(2n+1)qn = 2

(

q2)

∞
(

q8)2
∞

(q)2
∞ (q4)∞

,

∑
n≥0

po(4n+3)qn = 4

(

q2
)

∞
(

q4
)

∞
(

q8
)2

∞
(q)4

∞
,

∑
n≥0

po(8n+7)qn = 16

(

q2)3
∞
(

q4)6
∞

(q)9
∞

.
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Proof. The proof follows from generating function manipulations that rely heavily on
the lemmas mentioned above. First, note that

∑
n≥0

po(n)qn = ∏
n≥1

1+q2n−1

1−q2n−1

= ∏
n≥1

1+qn

1−qn

/

∏
n≥1

1+q2n

1−q2n

=
D
(

q2)

D(q)

=
φ(q)

D(q2)
(using Lemma 2.11)

=
φ
(

q4)+2qψ
(

q8)

D(q2)
(using Lemma 2.11).

It follows that

∑
n≥0

po(2n+1)qn = 2
ψ
(

q4)

D(q)
= 2

(

q2)

∞
(

q8)2
∞

(q)2
∞ (q4)∞

.

This proves the first identity in the theorem. Next, we can use Lemma 2.11 once again to
write the generating function for po(2n+1) in a different way to obtain the generating
function result for po(4n+3). Doing so yields

∑
n≥0

po(2n+1)qn = 2
ψ
(

q4)φ(q)

D(q2)2 = 2
ψ
(

q4)(φ
(

q4)+2qψ
(

q8))

D(q2)2 .

Then we see that

∑
n≥0

po(4n+3)qn = 4
ψ
(

q2)ψ
(

q4)

D(q)2 = 4

(

q4
)2

∞
(q2)∞

(

q8
)2

∞
(q4)∞

(

q2
)2

∞
(q)4

∞
= 4

(

q2
)

∞
(

q4
)

∞
(

q8
)2

∞
(q)4

∞
.

We can apply this principle once again to obtain the result for po(8n+7). Notice that

∑
n≥0

po(4n+3)qn = 4
ψ
(

q2)ψ
(

q4)φ(q)2

D(q2)
4 = 4

ψ
(

q2)ψ
(

q4)
(

φ
(

q2)2
+4qψ

(

q4)2
)

D(q2)
4 .

Thus,

∑
n≥0

po(8n+7)qn = 16
ψ(q)ψ

(

q2)3

D(q)4 = 16

(

q2
)2

∞
(q)∞

(

q4
)6

∞

(q2)
3
∞

(

q2
)4

∞
(q)8

∞
= 16

(

q2
)3

∞
(

q4
)6

∞
(q)9

∞
.

This completes the proof.

One immediate corollary of Theorem 2.12 follows:

Corollary 2.13. For all n ≥ 0,

po(8n+7)≡ 0 (mod 16).
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3. Results Modulo Multiples of Three

We now consider a number of results modulo multiples of three. Before proving the
main results of the section, we state a few important lemmas. The first lemma, a series
of three short results, is stated without proof, while outlines of the proofs of the other
lemmas are given.

Lemma 3.1.

D(q) = D
(

q9)−2qY
(

q3) ,

D
(

q3
)4

D(q9)
= D(q)D(ωq)D

(

ω2q
)

, where ω = e2πi/3, and

D(q)4

D(q3)
= D

(

q3)3
−8qY(q)3.

Lemma 3.2.
(

q3)3
∞

(q)∞
−q

(

q12)3
∞

(q4)∞
=

(

q4)3
∞
(

q6)2
∞

(q2)2
∞ (q12)∞

.

Proof. Let

c(q) =
∞

∑
m,n=−∞

qm2+mn+n2+m+n.

In [7], it was shown that

c(q) = 3

(

q3
)3

∞
(q)∞

and c(q)−qc
(

q4)= 3

(

q4
)3

∞
(

q6
)2

∞

(q2)
2
∞ (q12)∞

.

The result follows.

Lemma 3.3.
(

q4)3
∞

(q12)∞
−3q

(

q2)2
∞
(

q12)3
∞

(q4)∞ (q6)
2
∞

=
(q)3

∞
(q3)∞

.

Proof. Let

b(q) =
∞

∑
m,m=−∞

ωm−nqm2+mn+n2
,

where ω = e2πi/3. In [7], it was shown that

b(q) =
(q)3

∞
(q3)∞

and b(q) = b
(

q4)−3q

(

q2)2
∞
(

q12)3
∞

(q4)∞ (q6)
2
∞

.

The result follows.

Lemma 3.4.
(

q3)3
∞

(q)∞
−4q

(

q12)3
∞

(q4)∞
=

(q)3
∞
(

q6)2
∞

(q2)2
∞ (q3)∞

.
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Proof. From Lemmas 3.2 and 3.3, we have

(

q3
)3

∞
(q)∞

−4q

(

q12
)3

∞
(q4)∞

=

(
(

q3
)3

∞
(q)∞

−q

(

q12
)3

∞
(q4)∞

)

−3q

(

q12
)3

∞
(q4)∞

=

(

q4)3
∞
(

q6)2
∞

(q2)2
∞ (q12)∞

−3q

(

q12)3
∞

(q4)∞

=

(

q6)2
∞

(q2)
2
∞

(

(

q4)3
∞

(q12)∞
−3q

(

q2)2
∞
(

q12)3
∞

(q4)∞ (q6)
2
∞

)

=
(q)3

∞
(

q6)2
∞

(q2)2
∞ (q3)∞

.

We now state and prove a theorem in the same vein as Theorem 2.12.

Theorem 3.5.

∑
n≥0

po(3n)qn =

(

q2)2
∞
(

q3)2
∞
(

q6)

∞
(q)4

∞ (q12)∞
, and

∑
n≥0

po(9n+6)qn = 12

(

q2)7
∞
(

q3)6
∞

(q)12
∞ (q4)∞

.

Proof.

∑
n≥0

po(n)qn =
D
(

q2)

D(q)

=
D
(

q2)D(ωq)D
(

ω2q
)

D(q)D(ωq)D(ω2q)

=
D
(

q9)

D(q3)
4

(

D
(

q18)−2q2Y (q6)
)

(

D
(

q9)−2ωqY
(

q3))(D
(

q9)−2ω2qY
(

q3))

(using Lemma 3.1)

=
D(q9)

D(q3)4

(

D(q18)−2q2Y (q6)
)(

D
(

q9)2
+2qD

(

q9)Y
(

q3)+4q2Y
(

q3)2
)

.
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It follows that

∑
n≥0

po(3n)qn =
D
(

q3)

D(q)4

(

D(q6)D
(

q3)2
−4qD

(

q3)Y (q)Y
(

q2)
)

=

(

q2)4
∞
(

q3)2
∞

(q)8
∞ (q6)∞

(

(

q3)4
∞

(q12)∞
−4q

(q)∞
(

q3)

∞
(

q12)2
∞

(q4)∞

)

=

(

q2)4
∞
(

q3)3
∞

(q)7
∞ (q6)∞ (q12)∞

(
(

q3)3
∞

(q)∞
−4q

(

q12)3
∞

(q4)∞

)

=

(

q2)2
∞
(

q3)2
∞
(

q6)

∞
(q)4

∞ (q12)∞
(using Lemma 3.4).

Now we wish to dissect the generating function for po(3n) in order to obtain the gen-
erating function for po(9n + 6) and complete our proof. We do so by the following
manipulations:

∑
n≥0

po(3n)qn =

(

q2)2
∞
(

q3)2
∞
(

q6)

∞
(q)4

∞ (q12)∞

=
D
(

q3
)

D
(

q6
)

D(q)2

= D
(

q3)D
(

q6
)

(

D(ωq)D
(

ω2q
)

D(q3)
4
/D(q9)

)2

=
D
(

q6)D
(

q9)2

D(q3)7

(

D
(

q9)2
+2qD

(

q9)Y
(

q3)+4q2Y
(

q3)2
)2

.

It follows that

∑
n≥0

po(9n+6)qn =
D
(

q2)D
(

q3)2

D(q)7

(

12D
(

q3)2
Y (q)2

)

= 12
D
(

q2)D
(

q3)4 Y (q)2

D(q)7

= 12

(

q2)7
∞
(

q3)6
∞

(q)12
∞ (q4)∞

.

Two corollaries of Theorem 3.5 are worthy of note here.

Corollary 3.6.

po(9n+6)≡







12 (mod 24), if n = 6k2 ±4k for some k ≥ 0,

0 (mod 24), otherwise.
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Proof. Notice that

∑
n≥0

po(9n+6)

12
qn =

(

q2)7
∞
(

q3)6
∞

(q)12
∞ (q4)∞

≡

(

q2)

∞
(

q12)2
∞

(q4)∞ (q6)∞
(mod 2)

= Y
(

q2)

≡ 1+ ∑
k≥1

(

q6k2−4k +q6k2+4k
)

(mod 2).

The result follows.

Corollary 3.7. For all n ≥ 0,

po(72n+15)≡ 0 (mod 48).

Proof. This follows from Corollary 2.13 and Corollary 3.6.

We close this article by proving the two infinite families of congruences stated in
Theorem 1.3. These follow as corollaries of the following theorem:

Theorem 3.8. For all n ≥ 0,

po(27n+9)≡ 0 (mod 6), and

po(27n)≡ po(3n) (mod 12).

Proof. Using what has already been proven above regarding the generating function for
po(3n), we have

∑
n≥0

po(9n)qn =
D
(

q2)D
(

q3)2

D(q)7

(

D
(

q3)4
+16qD

(

q3)Y (q)3
)

=
D
(

q2)D
(

q3)3

D(q)7

(

D
(

q3)3
+16qY(q)3

)

≡
D
(

q2)D
(

q3)3

D(q)7

(

D
(

q3)3
−8qY(q)3

)

(mod 24)

=
D
(

q2)D
(

q3)3

D(q)7

(

D(q)4

D(q3)

)

=
D
(

q2)D
(

q3)2

D(q)3

= D
(

q2)D
(

q3)2
(

D(ωq)D
(

ω2q
)

D(q3)4 /D(q9)

)3
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=
D
(

q9)3

D(q3)10 D
(

q2)
(

D
(

q9)2
+2qD

(

q9)Y
(

q3)+4q2Y
(

q3)2
)3

=
D
(

q9)3

D(q3)10 D
(

q2)
(

D
(

q9)6
+6qD

(

q9)5
Y
(

q3)+24q2D
(

q9)4
Y
(

q3)2

+56q3D
(

q9)3
Y
(

q3)3
+96q4D

(

q9)2
Y
(

q3)4

+96q5D
(

q9)Y
(

q3)5
+64q6Y

(

q3)6
)

≡
D
(

q9)3

D(q3)10 D
(

q2)
(

D
(

q9)6
−16q3D

(

q9)3
Y
(

q3)3

+64q6Y
(

q3)6
+6qD

(

q9)5
Y
(

q3)
)

(mod 24)

=
D
(

q9)3

D(q3)10 D
(

q2)
(

(

D
(

q9)3
−8q3Y

(

q3)3
)2

+6qD
(

q9)5
Y
(

q3)
)

=
D
(

q9)3

D(q3)10 D
(

q2)





(

D
(

q3)4

D(q9)

)2

+6qD
(

q9)5
Y
(

q3)





=
D
(

q9)

D(q3)10 D
(

q2)
(

D
(

q3)8
+6qD

(

q9)7
Y
(

q3)
)

=
D
(

q9
)

D(q3)10

(

D
(

q18)−2q2Y
(

q6
))(

D
(

q3)8
+6qD

(

q9)7
Y
(

q3)
)

.

It follows that, modulo 24,

∑
n≥0

po(27n+9)qn ≡ 6
D
(

q3)8 D
(

q6)Y (q)

D(q)10 = 6

(

q2)9
∞
(

q3)15
∞

(q)19
∞ (q6)

4
∞ (q12)∞

,

and, modulo 12,

∑
n≥0

po(27n)qn ≡
D
(

q3)D
(

q6)

D(q)2 = ∑
n≥0

po(3n)qn.

This completes the proof.
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