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Larvatus prodeo [Masked, I go forward]
Descartes

In the previous two chapters we introduced the transformer and saw how to pre-
train a transformer language model as a causal or left-to-right language model. In
this chapter we’ll introduce a second paradigm for pretrained language models, the
bidirectional transformer encoder, and the most widely-used version, the BERT
model (Devlin et al., 2019). This model is trained via masked language modeling,
where instead of predicting the following word, we mask a word in the middle and
ask the model to guess the word given the words on both sides. This method thus
allows the model to see both the right and left context.

We also introduced finetuning in the prior chapter. Here we describe a new
kind of finetuning, in which we take the transformer network learned by these pre-
trained models, add a neural net classifier after the top layer of the network, and train
it on some additional labeled data to perform some downstream task like named
entity tagging or natural language inference. As before, the intuition is that the
pretraining phase learns a language model that instantiates rich representations of
word meaning, that thus enables the model to more easily learn (‘be finetuned to’)
the requirements of a downstream language understanding task. This aspect of the
pretrain-finetune paradigm is an instance of what is called transfer learning in ma-
chine learning: the method of acquiring knowledge from one task or domain, and
then applying it (transferring it) to solve a new task.

The second idea that we introduce in this chapter is the idea of contextual em-
beddings: representations for words in context. The methods of Chapter 6 like
word2vec or GloVe learned a single vector embedding for each unique word w in
the vocabulary. By contrast, with contextual embeddings, such as those learned by
masked language models like BERT, each word w will be represented by a different
vector each time it appears in a different context. While the causal language models
of Chapter 9 also use contextual embeddings, the embeddings created by masked
language models seem to function particularly well as representations.

11.1 Bidirectional Transformer Encoders

Let’s begin by introducing the bidirectional transformer encoder that underlies mod-
els like BERT and its descendants like ROBERTa (Liu et al., 2019) or SpanBERT
(Joshi et al., 2020). In Chapter 9 we introduced causal (left-to-right) transformers
and in Chapter 10 saw how they can serve as the basis for language models that can
be applied to autoregressive contextual generation problems like question answering
or summarization. But this left-to-right nature of these models is also a limitation,
because there are tasks for which it would be useful, when processing a token, to be
able to peak at future tokens. This is especially true for sequence labeling tasks in
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which we want to tag each token with a label, such as the part-of-speech tagging or
parsing tasks we’ll introduce in future chapters, or tasks like named entity tagging
we’ll introduce later in this chapter.

The bidirectional encoders that we introduce here are a different kind of beast
than causal models. The causal models of Chapter 9 are generative models, de-
signed to easily generate the next token in a sequence. But the focus of bidirec-
tional encoders is instead on computing contextualized representations of the input
tokens. Bidirectional encoders use self-attention to map sequences of input embed-
dings (xi,...,X,) to sequences of output embeddings of the same length (hy,...,h,),
where the output vectors have been contextualized using information from the en-
tire input sequence. These output embeddings are contextualized representations of
each input token that are useful across a range of applications where we need to do
a classification or a decision based on the token in context.

Remember that we said the models of Chapter 9 are sometimes called decoder-
only, because they correspond to the decoder part of the encoder-decoder model we
will introduce in Chapter 13. By contrast, the masked language models of this chap-
ter are sometimes called encoder-only, because they produce an encoding for each
input token but generally aren’t used to produce running text by decoding/sampling.
That’s an important point: masked language models are not used for generation.
They are generally instead used for interpretative tasks.

11.1.1 The architecture for bidirectional masked models

Let’s first discuss the overall architecture. Bidirectional transformer-based language
models differ in two ways from the causal transformers in the previous chapters. The
first is that the attention function isn’t causal; the attention for a token i can look at
following tokens i+ 1 and so on. The second is that the training is slightly different
since we are predicting something in the middle of our text rather than at the end.
We’ll discuss the first here and the second in the following section.

Fig. 11.1a, reproduced here from Chapter 9, shows the information flow in the
left-to-right approach of Chapter 9. The attention computation at each token is based
on the preceding (and current) input tokens, ignoring potentially useful information
located to the right of the token under consideration. Bidirectional encoders over-
come this limitation by allowing the attention mechanism to range over the entire
input, as shown in Fig. 11.1b.
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a) A causal self-attention layer b) A bidirectional self-attention layer
AT UMY (a) The causal transformer from Chapter 9, highlighting the attention computation at token 3. The

attention value at each token is computed using only information seen earlier in the context. (b) Information
flow in a bidirectional attention model. In processing each token, the model attends to all inputs, both before
and after the current one. So attention for token 3 can draw on information from following tokens.

The implementation is very simple! We simply remove the attention masking
step that we introduced in Eq. ??. Recall from Chapter 9 that we had to mask the
QKT matrix for causal transformers so that attention couldn’t look at future tokens
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(repeated from Eq. ??):

QKT
A = softmax | mask A% (11.1)
Vd
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portion of the comparisons matrix zeroed out (set to —oo, which the softmax will turn to
Zero).

Fig. 11.2 shows the masked version of QKT and the unmasked version. For bidi-
rectional attention, we used the unmasked version of Fig. 11.2b. Thus the attention
computation for bidirectional attention is exactly the same as Eq. 11.1 but with the
mask removed:

A = softmax (QKT> A\ (11.2)
Vi

Otherwise, the attention computation is identical to what we saw in Chapter 9, as
is the transformer block architecture (the feedforward layer, layer norm, and so on).
As in Chapter 9, the input is also a series of subword tokens, usually computed by
WordPiece or SentencePiece Unigram LM tokenization (two of the large family of
subword tokenization algorithms that includes the BPE algorithm we saw in Chap-
ter 2). That means every input sentence first has to be tokenized, and all further
processing takes place on subword tokens rather than words. This will require, as
we’ll see in the third part of the textbook, that for some NLP tasks that require no-
tions of words (like parsing) we will occasionally need to map subwords back to
words.

To make this more concrete, the original English-only bidirectional transformer
encoder model, BERT (Devlin et al., 2019), consisted of the following:

* An English-only subword vocabulary consisting of 30,000 tokens generated
using the WordPiece algorithm (Schuster and Nakajima, 2012).
* Hidden layers of dimensionality d = 768,

* 12 layers of transformer blocks, with 12 (bidirectional) multihead attention
layers each.

* The resulting model has about 100M parameters.
The larger multilingual XLM-RoBERTa model, trained on 100 languages, has

* A multilingual subword vocabulary with 250,000 tokens generated using the
SentencePiece Unigram LM algorithm (Kudo and Richardson, 2018).

* 24 layers of transformer blocks, with 16 multihead attention layers each
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* Hidden layers of size 1024

* Input context window of 512 tokens

* The resulting model has about 550M parameters.

Note that 550M parameters is relatively small as large language models go

(Llama 3 has 405B parameters, so is 3 orders of magnitude bigger). Indeed, masked
language models tend to be much smaller than causal language models.

11.2 Training Bidirectional Encoders

cloze task

denoising

Masked
Language
Modeling

We trained causal transformer language models in Chapter 9 by making them it-
eratively predict the next word in a text. But eliminating the causal mask in at-
tention makes the guess-the-next-word language modeling task trivial—the answer
is directly available from the context—so we’re in need of a new training scheme.
Instead of trying to predict the next word, the model learns to perform a fill-in-the-
blank task, technically called the cloze task (Taylor, 1953). To see this, let’s return
to the motivating example from Chapter 3. Instead of predicting which words are
likely to come next in this example:

The water of Walden Pond is so beautifully
we’re asked to predict a missing item given the rest of the sentence.

The of Walden Pond is so beautifully ...

That is, given an input sequence with one or more elements missing, the learning
task is to predict the missing elements. More precisely, during training the model is
deprived of one or more elements of an input sequence and must generate a proba-
bility distribution over the vocabulary for each of the missing items. We then use the
cross-entropy loss from each of the model’s predictions to drive the learning process.

This approach can be generalized to any of a variety of methods that corrupt the
training input and then asks the model to recover the original input. Examples of the
kinds of manipulations that have been used include masks, substitutions, reorder-
ings, deletions, and extraneous insertions into the training text. The general name
for this kind of training is called denoising: we corrupt (add noise to) the input in
some way (by masking a word, or putting in an incorrect word) and the goal of the
system is to remove the noise.

11.2.1 Masking Words

The original approach to training bidirectional encoders is called Masked Language
Modeling (MLM) (Devlin et al., 2019). As with the language model training meth-
ods we’ve already seen, MLM uses unannotated text from a large corpus. Here, the
model is presented with a series of sentences from the training corpus where a ran-
dom sample of tokens from each training sequence is selected for use in the learning
task. Once chosen, a token is used in one of three ways:

* Itis replaced with the special vocabulary token named [MASK].

* It is replaced with another token from the vocabulary, randomly sampled
based on token unigram probabilities.

e Itis left unchanged.
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In BERT, 15% of the input tokens in a training sequence are sampled for learning.
Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected
tokens, and the remaining 10% are left unchanged.

The MLM training objective is to predict the original inputs for each of the
masked tokens using a bidirectional encoder of the kind described in the last section.
The cross-entropy loss from these predictions drives the training process for all the
parameters in the model. Note that all of the input tokens play a role in the self-
attention process, but only the sampled tokens are used for learning.

More specifically, the original input sequence is first tokenized using a subword
model. The sampled items which drive the learning process are chosen among the
input tokens. Word embeddings for all of the tokens in the input are retrieved from
the E embedding matrix and combined with positional embeddings to form the input
to the transformer, passed through the stack of transformer blocks, and then the
language modeling head.

thanks

CE Loss

LM Head with Softmax
over Vocabulary

ZIT Z3 T Zs T Zg T zg T
Bidirectional Transformer Encoder
1 1 1 1 1 1 1 1
v (38) 39) (B8) 69) 38) (09 68 (33
Embeddings fap p2 p3 p4 p5 p6 p7 ps8
So [mask] and [mask] for all apricot fish
So long and thanks for all the fish

IOTICEIM]  Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model to
these three items are used as the training loss. The other 5 tokens don’t play a role in training loss.

Fig. 11.3 illustrates this approach with a simple example. Here, long, thanks and
the have been sampled from the training sequence, with the first two masked and the
replaced with the randomly sampled token apricot. The resulting embeddings are
passed through a stack of bidirectional transformer blocks. Recall from Section ??
in Chapter 9 that to produce a probability distribution over the vocabulary for each
of the masked tokens, the language modeling head takes the output vector hl-L from
the final transformer layer L for each masked token i, multiplies it by the unembed-
ding layer E” to produce the logits u, and then uses softmax to turn the logits into
probabilities y over the vocabulary:

u; = hl" ET (11.3)
y; = softmax(u;) (11.4)
With a predicted probability distribution for each masked item, we can use cross-

entropy to compute the loss for each masked item—the negative log probability
assigned to the actual masked word, as shown in Fig. 11.3. More formally, for a
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Next Sentence
Prediction

given vector of input tokens in a sentence or batch be x, let the set of tokens that are
masked be M, the version of that sentence with some tokens replaced by masks be
x5k and the sequence of output vectors be h. For a given input token x;, such as
the word long in Fig. 11.3, the loss is the probability of the correct word long, given

x4k (a5 summarized in the single output vector hf):
Ly (xi) = —log P(xi[hf)

The gradients that form the basis for the weight updates are based on the average
loss over the sampled learning items from a single training sequence (or batch of
sequences).

1

_M Z]ogP(x,»|h,-L)

ieM

Lyim =

Note that only the tokens in M play a role in learning; the other words play no role
in the loss function, so in that sense BERT and its descendents are inefficient; only
15% of the input samples in the training data are actually used for training weights.
1

11.2.2 Next Sentence Prediction

The focus of mask-based learning is on predicting words from surrounding contexts
with the goal of producing effective word-level representations. However, an im-
portant class of applications involves determining the relationship between pairs of
sentences. These include tasks like paraphrase detection (detecting if two sentences
have similar meanings), entailment (detecting if the meanings of two sentences en-
tail or contradict each other) or discourse coherence (deciding if two neighboring
sentences form a coherent discourse).

To capture the kind of knowledge required for applications such as these, some
models in the BERT family include a second learning objective called Next Sen-
tence Prediction (NSP). In this task, the model is presented with pairs of sentences
and is asked to predict whether each pair consists of an actual pair of adjacent sen-
tences from the training corpus or a pair of unrelated sentences. In BERT, 50% of
the training pairs consisted of positive pairs, and in the other 50% the second sen-
tence of a pair was randomly selected from elsewhere in the corpus. The NSP loss
is based on how well the model can distinguish true pairs from random pairs.

To facilitate NSP training, BERT introduces two special tokens to the input rep-
resentation (tokens that will prove useful for finetuning as well). After tokenizing
the input with the subword model, the token [CLS] is prepended to the input sen-
tence pair, and the token [SEP] is placed between the sentences and after the final
token of the second sentence. Finally, embeddings representing the first and second
segments of the input are added to the word and positional embeddings to allow the
model to more easily distinguish the input sentences.

During training, the output vector h(L:LS from the final layer associated with the
[CLS] token represents the next sentence prediction. As with the MLM objective,
we add a special head, in this case an NSP head, which consists of a learned set of
classification weights Wysp € R?*? that produces a two-class prediction from the
raw [CLS] vector hf q:

yi = softmax(h (Wnsp)

I There are members of the BERT family like ELECTRA that do use all examples for training (Clark
et al., 2020).
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Cross entropy is used to compute the NSP loss for each sentence pair presented
to the model. Fig. 11.4 illustrates the overall NSP training setup. In BERT, the NSP
loss was used in conjunction with the MLM training objective to form final loss.

Token +
Segment +
Positional
Embeddings
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Bidirectional Transformer Encoder
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[CLS] Cancel my flight [SEP] And hotel [SEP]

ISTNCRBRA  An example of the NSP loss calculation.

11.2.3 Training Regimes

BERT and other early transformer-based language models were trained on about
3.3 billion words (a combination of English Wikipedia and a corpus of book texts
called BooksCorpus (Zhu et al., 2015) that is no longer used for intellectual property
reasons). Modern masked language models are now trained on much larger datasets
of web text, filtered a bit, and augmented by higher-quality data like Wikipedia,
the same as those we discussed for the causal large language models of Chapter 9.
Multilingual models similarly use webtext and multilingual Wikipedia. For example
the XLM-R model was trained on about 300 billion tokens in 100 languages, taken
from the web via Common Crawl (https://commoncrawl.org/).

To train the original BERT models, pairs of text segments were selected from
the training corpus according to the next sentence prediction 50/50 scheme. Pairs
were sampled so that their combined length was less than the 512 token input. To-
kens within these sentence pairs were then masked using the MLM approach with
the combined loss from the MLM and NSP objectives used for a final loss. Ap-
proximately 40 passes (epochs) over the training data was required for the model to
converge.

Some models, like the ROBERTa model, drop the next sentence prediction ob-
jective, and therefore change the training regime a bit. Instead of sampling pairs of
sentence, the input is simply a series of contiguous sentences. If the document runs
out before 512 tokens are reached, an extra separator token is added, and sentences
from the next document are packed in, until we reach a total of 512 tokens. Usually
large batch sizes are used, between 8K and 32K tokens.

Multilingual models have an additional decision to make: what data to use to
build the vocabulary? Recall that all language models use subword tokenization
(BPE or SentencePiece Unigram LM are the two most common algorithms). What
text should be used to learn this multilingual tokenization, given that it’s easier to get
much more text in some languages than others? One option would be to create this
vocabulary-learning dataset by sampling sentences from our training data (perhaps
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web text from Common Crawl), randomly. In that case we will choose a lot of sen-
tences from languages like languages with lots of web representation like English,
and the tokens will be biased toward rare English tokens instead of creating frequent
tokens from languages with less data. Instead, it is common to divide the training
data into subcorpora of N different languages, compute the number of sentences n;
of each language i, and readjust these probabilities so as to upweight the probability
of less-represented languages (Lample and Conneau, 2019). The new probability of
selecting a sentence from each of the N languages (whose prior frequency is n;) is
{qi}i=1..n, where:

o
Pi . n;
g=—— With pi=—F—
> =11 D k=1

Recall from (??) in Chapter 6 that an o value between 0 and 1 will give higher
weight to lower probability samples. Conneau et al. (2020) show that o = 0.3 works
well to give rare languages more inclusion in the tokenization, resulting in better
multilingual performance overall.

The result of this pretraining process consists of both learned word embeddings,
as well as all the parameters of the bidirectional encoder that are used to produce
contextual embeddings for novel inputs.

For many purposes, a pretrained multilingual model is more practical than a
monolingual model, since it avoids the need to build many (a hundred!) separate
monolingual models. And multilingual models can improve performance on low-
resourced languages by leveraging linguistic information from a similar language in
the training data that happens to have more resources. Nonetheless, when the num-
ber of languages grows very large, multilingual models exhibit what has been called
the curse of multilinguality (Conneau et al., 2020): the performance on each lan-
guage degrades compared to a model training on fewer languages. Another problem
with multilingual models is that they ‘have an accent’: grammatical structures in
higher-resource languages (often English) bleed into lower-resource languages; the
vast amount of English language in training makes the model’s representations for
low-resource languages slightly more English-like (Papadimitriou et al., 2023).

(11.5)

11.3 Contextual Embeddings

contextual
embeddings

Given a pretrained language model and a novel input sentence, we can think of the
sequence of model outputs as constituting contextual embeddings for each token in
the input. These contextual embeddings are vectors representing some aspect of the
meaning of a token in context, and can be used for any task requiring the meaning of
tokens or words. More formally, given a sequence of input tokens xp,...,X,, we can
use the output vector z; from the final layer of the model as a representation of the
meaning of token x; in the context of sentence xi,...,x,. Or instead of just using the
vector z; from the final layer of the model, it’s common to compute a representation
for x; by averaging the output tokens z; from each of the last four layers of the model.

Just as we used static embeddings like word2vec in Chapter 6 to represent the
meaning of words, we can use contextual embeddings as representations of word
meanings in context for any task that might require a model of word meaning. Where
static embeddings represent the meaning of word types (vocabulary entries), contex-
tual embeddings represent the meaning of word instances: instances of a particular
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IOTICEUR]  The output of a BERT-style model is a contextual embedding vector hiL for
each input token x;.

word type in a particular context. Thus where word2vec had a single vector for each
word type, contextual embeddings provide a single vector for each instance of that
word type in its sentential context. Contextual embeddings can thus be used for
tasks like measuring the semantic similarity of two words in context, and are useful
in linguistic tasks that require models of word meaning.

11.3.1 Contextual Embeddings and Word Sense

Words are ambiguous: the same word can be used to mean different things. In
Chapter 6 we saw that the word “mouse” can mean (1) a small rodent, or (2) a hand-
operated device to control a cursor. The word “bank” can mean: (1) a financial
institution or (2) a sloping mound. We say that the words ‘mouse’ or ‘bank’ are
polysemous (from Greek ‘many senses’, poly- ‘many’ + sema, ‘sign, mark’).”

A sense (or word sense) is a discrete representation of one aspect of the meaning
of a word. We can represent each sense with a superscript: bank! and bank?,
mouse! and mouse?. These senses can be found listed in online thesauruses (or
thesauri) like WordNet (Fellbaum, 1998), which has datasets in many languages
listing the senses of many words. In context, it’s easy to see the different meanings:
mouse : ... a mouse controlling a computer system in 1968.
mouse? : ... a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ..as agriculture burgeons on the east bank, the river ...

This fact that context disambiguates the senses of mouse and bank above can
also be visualized geometrically. Fig. 11.6 shows a two-dimensional projection of
many instances of the BERT embeddings of the word die in English and German.
Each point in the graph represents the use of die in one input sentence. We can
clearly see at least two different English senses of die (the singular of dice and the
verb fo die, as well as the German article, in the BERT embedding space.

2 The word polysemy itself is ambiguous; you may see it used in a different way, to refer only to cases
where a word’s senses are related in some structured way, reserving the word homonymy to mean sense
ambiguities with no relation between the senses (Haber and Poesio, 2020). Here we will use ‘polysemy’
to mean any kind of sense ambiguity, and ‘structured polysemy’ for polysemy with sense relations.
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German article “die
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Was der Fall ist, die Tatsache, Uber die Verhandlungen
ist das Bestehen von Sachverhalten der Konigl
single person dies «———» multiple people die a playing die
0'.".0'5"% ,
L% ? g “';0
Chernenko became the first Soviet )’ . Over 60 people die and over ¢ Players must always move a
leader to die in less than three years 100 are unaccounted for. token according to the die value
Vaughan’s ultimate fantasy was to die in a Many more die from radiation The faces of a die may be placed
head-on collision with movie star Elizabeth Taylor sickness, starvation and cold clockwise or counterclockwise

Each blue dot shows a BERT contextual embedding for the word die from different sentences
in English and German, projected into two dimensions with the UMAP algorithm. The German and English
meanings and the different English senses fall into different clusters. Some sample points are shown with the
contextual sentence they came from. Figure from Coenen et al. (2019).

Thus while thesauruses like WordNet give discrete lists of senses, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning
that, although it can be clustered, doesn’t divide up into fully discrete senses.

Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
disa,flvﬁirgdui‘;‘i‘(fﬁ tion, or WSD. WSD algorithms take as input a word in context and a fixed inventory
wsD  of potential word senses (like the ones in WordNet) and outputs the correct word

sense in context. Fig. 11.7 sketches out the task.

y5 y6
Y3
stand™: side:
Y4 bass': Ya upright relative
low range region
electric™: player": stand®:
using bass*: in game bear side®:
electricity sea fish player?: of body
electric?: musician stand™®:
tense Yo bass’: player®: put side™:
electric®: instrument actor upright slope
thrilling || guitar?
an electric guitar and bass player stand  off to one side

IS The all-words WSD task, mapping from input words (x) to WordNet senses
(y). Figure inspired by Chaplot and Salakhutdinov (2018).

WSD can be a useful analytic tool for text analysis in the humanities and social
sciences, and word senses can play a role in model interpretability for word repre-
sentations. Word senses also have interesting distributional properties. For example
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a word often is used in roughly the same sense through a discourse, an observation
called the one sense per discourse rule (Gale et al., 1992).

The best performing WSD algorithm is a simple 1-nearest-neighbor algorithm
using contextual word embeddings, due to Melamud et al. (2016) and Peters et al.
(2018). At training time we pass each sentence in some sense-labeled dataset (like
the SemCore or SenseEval datasets in various languages) through any contextual
embedding (e.g., BERT) resulting in a contextual embedding for each labeled token.
(There are various ways to compute this contextual embedding v; for a token i; for
BERT it is common to pool multiple layers by summing the vector representations
of i from the last four BERT layers). Then for each sense s of any word in the corpus,
for each of the n tokens of that sense, we average their n contextual representations
v; to produce a contextual sense embedding v; for s:

1
= - E Vi Vv; € tokens(s) (11.6)
n =
1

At test time, given a token of a target word ¢ in context, we compute its contextual
embedding t and choose its nearest neighbor sense from the training set, i.e., the
sense whose sense embedding has the highest cosine with t:

sense(t) = argmax cosine(t, vy) (1.7
sesenses(r)

Fig. 11.8 illustrates the model.
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The nearest-neighbor algorithm for WSD. In green are the contextual embed-
dings precomputed for each sense of each word; here we just show a few of the senses for
find. A contextual embedding is computed for the target word found, and then the nearest
neighbor sense (in this case ﬁnd?) is chosen. Figure inspired by Loureiro and Jorge (2019).

11.3.2 Contextual Embeddings and Word Similarity

In Chapter 6 we introduced the idea that we could measure the similarity of two
words by considering how close they are geometrically, by using the cosine as a
similarity function. The idea of meaning similarity is also clear geometrically in the
meaning clusters in Fig. 11.6; the representation of a word which has a particular
sense in a context is closer to other instances of the same sense of the word. Thus we
often measure the similarity between two instances of two words in context (or two
instances of the same word in two different contexts) by using the cosine between
their contextual embeddings.
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anisotropy

Usually some transformations to the embeddings are required before computing
cosine. This is because contextual embeddings (whether from masked language
models or from autoregressive ones) have the property that the vectors for all words
are extremely similar. If we look at the embeddings from the final layer of BERT
or other models, embeddings for instances of any two randomly chosen words will
have extremely high cosines that can be quite close to 1, meaning all word vectors
tend to point in the same direction. The property of vectors in a system all tending
to point in the same direction is known as anisotropy. Ethayarajh (2019) defines
the anisotropy of a model as the expected cosine similarity of any pair of words in
a corpus. The word ‘isotropy’ means uniformity in all directions, so in an isotropic
model, the collection of vectors should point in all directions and the expected cosine
between a pair of random embeddings would be zero. Timkey and van Schijndel
(2021) show that one cause of anisotropy is that cosine measures are dominated by
a small number of dimensions of the contextual embedding whose values are very
different than the others: these rogue dimensions have very large magnitudes and
very high variance.

Timkey and van Schijndel (2021) shows that we can make the embeddings more
isotropic by standardizing (z-scoring) the vectors, i.e., subtracting the mean and
dividing by the variance. Given a set C of all the embeddings in some corpus, each
with dimensionality d (i.e., x € Rd), the mean vector U € R is:

1
U= —Zx (11.8)
|C| xeC

The standard deviation in each dimension ¢ € R is:

/1
_ 72 : )2
o= |C| XEC(x /.1) (11.9)

Then each word vector x is replaced by a standardized version z:

X_
zZ= H
o

(11.10)

One problem with cosine that is not solved by standardization is that cosine tends
to underestimate human judgments on similarity of word meaning for very frequent
words (Zhou et al., 2022).

In the next section we’ll see the most common use of contextual representations:
as representations of words or even entire sentences that can be the inputs to classi-
fiers in the finetuning process for downstream NLP applications.

11.4 Fine-Tuning for Classification

finetuning

The power of pretrained language models lies in their ability to extract generaliza-
tions from large amounts of text—generalizations that are useful for myriad down-
stream applications. There are two ways to make practical use of the generalizations
to solve downstream tasks. The most common way is to use natural language to
prompt the model, putting it in a state where it contextually generates what we
want. We’ll introduce prompting in Chapter 12.

In this section we explore an alternative way to use pretrained language models
for downstream applications: a version of the finetuning paradigm from Chapter 10.
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In the kind of finetuning used for masked language models, we add application-
specific circuitry (often called a special head) on top of pretrained models, taking
their output as its input. The finetuning process consists of using labeled data about
the application to train these additional application-specific parameters. Typically,
this training will either freeze or make only minimal adjustments to the pretrained
language model parameters.

The following sections introduce finetuning methods for the most common kinds
of applications: sequence classification, sentence-pair classification, and sequence
labeling.

11.4.1 Sequence Classification

The task of sequence classification is to classify an entire sequence of text with a
single label. This set of tasks is commonly called text classification, like sentiment
analysis or spam detection (Chapter 4) in which we classify a text into two or three
classes (like positive or negative), as well as classification tasks with a large number
of categories, like document-level topic classification.

For sequence classification we represent the entire input to be classified by a
single vector. We can represent a sequence in various ways. One way is to take
the sum or the mean of the last output vector from each token int he sequence.
For BERT, we instead add a new unique token to the vocabulary called [CLS], and
prepended it to the start of all input sequences, both during pretraining and encoding.
The output vector in the final layer of the model for the [CLS] input represents
the entire input sequence and serves as the input to a classifier head, a logistic
regression or neural network classifier that makes the relevant decision.

As an example, let’s return to the problem of sentiment classification. to finetun-
ing a classifier for this application involves learning a set of weights, W¢, to map the
output vector for the [CLS] token—hIéLS—to a set of scores over the possible senti-
ment classes. Assuming a three-way sentiment classification task (positive, negative,
neutral) and dimensionality d as the model dimension, W¢ will be of size [d x 3]. To
classify a document, we pass the input text through the pretrained language model to
generate hIéLS, multiply it by W, and pass the resulting vector through a softmax.

y = softmax(h& ¢Wc) (11.11)

Finetuning the values in W¢ requires supervised training data consisting of input
sequences labeled with the appropriate sentiment class. Training proceeds in the
usual way; cross-entropy loss between the softmax output and the correct answer is
used to drive the learning that produces Wc.

A key difference from what we’ve seen earlier with neural classifiers is that this
loss can be used to not only learn the weights of the classifier, but also to update the
weights for the pretrained language model itself. In practice, reasonable classifica-
tion performance is typically achieved with only minimal changes to the language
model parameters, often limited to updates over the final few layers of the trans-
former. Fig. 11.9 illustrates this overall approach to sequence classification.

11.4.2 Sequence-Pair Classification

As mentioned in Section 11.2.2, an important type of problem involves the classifica-
tion of pairs of input sequences. Practical applications that fall into this class include
paraphrase detection (are the two sentences paraphrases of each other?), logical en-
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sentiment

classification
head We

hegs t t t t t

Bidirectional Transformer Encoder

EEOOEO®

[CLS] entirely predictable and lacks energy

IOTICEIR]  Sequence classification with a bidirectional transformer encoder. The output vector for the
[CLS] token serves as input to a simple classifier.

tailment (does sentence A logically entail sentence B?), and discourse coherence

(how coherent is sentence B as a follow-on to sentence A?).
Fine-tuning an application for one of these tasks proceeds just as with pretrain-
ing using the NSP objective. During finetuning, pairs of labeled sentences from a
supervised finetuning set are presented to the model, and run through all the layers
of the model to produce the h outputs for each input token. As with sequence classi-
fication, the output vector associated with the prepended [CLS] token represents the
model’s view of the input pair. And as with NSP training, the two inputs are sepa-
rated by the [SEP] token. To perform classification, the [CLS] vector is multiplied
by a set of learning classification weights and passed through a softmax to generate

label predictions, which are then used to update the weights.
As an example, let’s consider an entailment classification task with the Multi-
natural Genre Natural Language Inference (MultiNLI) dataset (Williams et al., 2018). In
language  the task of natural language inference or NLI, also called recognizing textual
inference entailment, a model is presented with a pair of sentences and must classify the re-
lationship between their meanings. For example in the MultiNLI corpus, pairs of
sentences are given one of 3 labels: entails, contradicts and neutral. These labels
describe a relationship between the meaning of the first sentence (the premise) and
the meaning of the second sentence (the hypothesis). Here are representative exam-

ples of each class from the corpus:

e Neutral

a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.

e Contradicts

a: Tourist Information offices can be very helpful.
b: Tourist Information offices are never of any help.

e Entails

a: I’m confused.
b: Not all of it is very clear to me.
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A relationship of contradicts means that the premise contradicts the hypothesis; en-
tails means that the premise entails the hypothesis; neutral means that neither is
necessarily true. The meaning of these labels is looser than strict logical entailment
or contradiction indicating that a typical human reading the sentences would most
likely interpret the meanings in this way.

To finetune a classifier for the MultiNLI task, we pass the premise/hypothesis
pairs through a bidirectional encoder as described above and use the output vector
for the [CLS] token as the input to the classification head. As with ordinary sequence
classification, this head provides the input to a three-way classifier that can be trained
on the MultiNLI training corpus.

11.5 Fine-Tuning for Sequence Labelling: Named En-
tity Recognition

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each token in the sequence. One of the most common sequence
labeling task is named entity recognition.

11.5.1 Named Entities

named entity A named entity is, roughly speaking, anything that can be referred to with a proper
“*}'&%‘fgﬁﬁﬁ‘(},y, name: a person, a location, an organization. The task of named entity recognition
NER  (NER) is to find spans of text that constitute proper names and tag the type of the
entity. Four entity tags are most common: PER (person), LOC (location), ORG
(organization), or GPE (geo-political entity). However, the term named entity is

commonly extended to include things that aren’t entities per se, including temporal

expressions like dates and times, and even numerical expressions like prices. Here’s

an example of the output of an NER tagger:

Citing high fuel prices, [grg United Airlines] said [Ty Friday] it
has increased fares by [\jongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [grg American Airlines], a
unit of [org AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [org United], a unit of [grg UAL Corp.],
said the increase took effect [Typg Thursday] and applies to most
routes where it competes against discount carriers, such as [ oc Chicago]
to [ oc Dallas] and [} o Denver] to [ oc San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 11.10 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences

People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams  The IPCC warned about the cyclone.
Location LOC regions, mountains, seas  Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

IOTuN BB A list of generic named entity types with the kinds of entities they refer to.
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BIO tagging

BIO

Named entity recognition is a useful step in various natural language processing
tasks, including linking text to information in structured knowledge sources like
Wikipedia, measuring sentiment or attitudes toward a particular entity in text, or
even as part of anonymizing text for privacy. The NER task is is difficult because
of the ambiguity of segmenting NER spans, figuring out which tokens are entities
and which aren’t, since most words in a text will not be named entities. Another
difficulty is caused by type ambiguity. The mention Washington can refer to a
person, a sports team, a city, or the US government, as we see in Fig. 11.11.

[per Washington] was born into slavery on the farm of James Burroughs.
[org Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [[ oc Washington] for what may well be his last state visit.
In June, [gpg Washington] passed a primary seatbelt law.

ISR BINEY  Examples of type ambiguities in the use of the name Washington.

11.5.2 BIO Tagging

One standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[per Jane Villanueva ] of [org United] , a unit of [org United Airlines
Holding] , said the fare applies to the [ oc Chicago ] route.

Figure 11.12 shows the same excerpt represented with BIO tagging, as well as
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an 1, and any tokens outside of any span of interest are labeled 0. While
there is only one O tag, we’ll have distinct B and 1 tags for each named entity class.
The number of tags is thus 2n + 1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label y; to each input word x;:

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of (0] (0] (@)
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O (0]
the O O (0]
Chicago I-LOC B-LOC S-LOC
route O O (0]

(0] (0] (0]

ISR IBNP] NER as a sequence model, showing 10, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: 10 tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag E
for the end of a span, and a span tag S for a span consisting of only one word.
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11.5.3 Sequence Labeling

In sequence labeling, we pass the final output vector corresponding to each input
token to a classifier that produces a softmax distribution over the possible set of
tags. For a single feedforward layer classifier, the set of weights to be learned is
Wk of size [d X k], where k is the number of possible tags for the task. A greedy
approach, where the argmax tag for each token is taken as a likely answer, can be
used to generate the final output tag sequence. Fig. 11.13 illustrates an example of
this approach, where yj is a vector of probabilities over tags, and k indexes the tags.

yi = softmax(h“Wg) (11.12)
t;

argmax, (y;) (11.13)

Alternatively, the distribution over labels provided by the softmax for each input
token can be passed to a conditional random field (CRF) layer which can take global
tag-level transitions into account (see Chapter 17 on CRFs).

argmax  B-PER I-PER B-ORG I-ORG I-ORG 0]
NER (Cal) Gh)) (G (G (G
head \ W/ We/ ) [\ ) L W/ ) \W/

Bidirectional Transformer Encoder

EEOEEOOE®E

[CLS] Jane Villanueva of United Airlines Holding discussed

IILICHINR]  Sequence labeling for named entity recognition with a bidirectional transformer encoder. The
output vector for each input token is passed to a simple k-way classifier.

Tokenization and NER

Note that supervised training data for NER is typically in the form of BIO tags as-
sociated with text segmented at the word level. For example the following sentence
containing two named entities:

[Loc Mt. Sanitas | is in [[ oc Sunshine Canyon] .
would have the following set of per-word BIO tags.

(11.14) M. Sanitas is in Sunshine Canyon .
B-LOC I-LOC O O B-LOC I-LOC O

Unfortunately, the sequence of WordPiece tokens for this sentence doesn’t align
directly with BIO tags in the annotation:
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'Mt’, ’.’, ’'San’, ’##itas’, ’is’, ’in’, ’Sunshine’, ’Canyon’

To deal with this misalignment, we need a way to assign BIO tags to subword
tokens during training and a corresponding way to recover word-level tags from
subwords during decoding. For training, we can just assign the gold-standard tag
associated with each word to all of the subword tokens derived from it.

For decoding, the simplest approach is to use the argmax BIO tag associated with
the first subword token of a word. Thus, in our example, the BIO tag assigned to
“Mt” would be assigned to “Mt.” and the tag assigned to “San” would be assigned
to “Sanitas”, effectively ignoring the information in the tags assigned to “.” and
“#titas”. More complex approaches combine the distribution of tag probabilities
across the subwords in an attempt to find an optimal word-level tag.

11.5.4 Evaluating Named Entity Recognition

Named entity recognizers are evaluated by recall, precision, and F; measure. Re-
call that recall is the ratio of the number of correctly labeled responses to the total
that should have been labeled; precision is the ratio of the number of correctly la-
beled responses to the total labeled; and F-measure is the harmonic mean of the
two.

To know if the difference between the F; scores of two NER systems is a signif-
icant difference, we use the paired bootstrap test, or the similar randomization test
(Section ??).

For named entity tagging, the entity rather than the word is the unit of response.
Thus in the example in Fig. 11.12, the two entities Jane Villanueva and United Air-
lines Holding and the non-entity discussed would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled Jane but not Jane Vil-
lanueva as a person would cause two errors, a false positive for O and a false nega-
tive for I-PER. In addition, using entities as the unit of response but words as the unit
of training means that there is a mismatch between the training and test conditions.

11.6 Summary

This chapter has introduced the bidirectional encoder and the masked language
model. Here’s a summary of the main points that we covered:

* Bidirectional encoders can be used to generate contextualized representations
of input embeddings using the entire input context.

* Pretrained language models based on bidirectional encoders can be learned
using a masked language model objective where a model is trained to guess
the missing information from an input.

* The vector output of each transformer block or component in a particular to-
ken column is a contextual embedding that represents some aspect of the
meaning of a token in context.

* A word sense is a discrete representation of one aspect of the meaning of a
word. Contextual embeddings offer a continuous high-dimensional model of
meaning that is richer than fully discrete senses.
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* The cosine between contextual embeddings can be used as one way to model
the similarity between two words in context, although some transformations
to the embeddings are required first.

* Pretrained language models can be finetuned for specific applications by adding
lightweight classifier layers on top of the outputs of the pretrained model.

» These applications can include sequence classification tasks like sentiment
analysis, sequence-pair classification tasks like natural language inference,
or sequence labeling tasks like named entity recognition.

Bibliographical and Historical Notes
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