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CHAPTER

12 Model Alignment, Prompting,
and In-Context Learning

“Hal,” said Bowman, now speaking with an icy calm. “I am not incapaci-
tated. Unless you obey my instructions, I shall be forced to disconnect you.”

Arthur C. Clarke

In this chapter we show how to get LLMs to do tasks for us simply by talking to
them. To get an LLM to translate a sentence, outline a talk, or draft a work email,
we’ll simply describe what we want in natural language. We call these instructions
we give to language models prompts.prompts

Prompting relies on contextual generation. Given the prompt as context, the lan-
guage model generates the next token based on its token probability, conditioned on
the prompt: P(wi|w<i). A prompt can be a question (like “What is a transformer net-
work?”), possibly in a structured format (like “Q: What is a transformer network?
A:”), or can be an instruction (like “Translate the following sentence into Hindi:
‘Chop the garlic finely’”). A prompt can also contain demonstrations, examples todemonstrations

help make the instructions clearer, (like “Give the sentiment of the following sen-
tence. Example Input: “I really loved Taishan Cuisine.” Output: positive”.) As we’ll
see, prompting can be applied to inherently generative tasks (like summarization and
translation) as well as to ones more naturally thought of as classification tasks.

Prompts get language models to generate text, but they also can be viewed as
a learning signal, because these demonstrations can help language models learn
to perform novel tasks. For this reason we also refer to prompting as in-context-
learning—learning that improves model performance or reduces some loss but doesin-context-

learning
not involve gradient-based updates to the model’s underlying parameters.

But LLMs as we’ve described them so far turn out to be bad at following instruc-
tions. Pretraining isn’t sufficient to make them helpful. We’ll introduce instruction
tuning, a technique that helps LLMs learn to correctly respond to instructions byinstruction

tuning
finetuning them on a corpus of instructions with their corresponding response.

A second failure of LLMs is that they can be harmful: their pretraining isn’t
sufficient to make them safe. Readers who know Arthur C. Clarke’s 2001: A Space
Odyssey or the Stanley Kubrick film know that the quote above comes in the context
that the artificial intelligence Hal becomes paranoid and tries to kill the crew of the
spaceship. Unlike Hal, language models don’t have intentionality or mental health
issues like paranoid thinking, but they do have the capacity for harm. Pretrained lan-
guage models can say things that are dangerous or false (like giving unsafe medical
advice) and they can verbally attack users or say toxic or hateful things.

Dealing with safety can be done partly by adding safety training into instruction
tuning. But an important aspect of safety training is a second technique, preference
alignment (often implemented, as we’ll see, with the RLHF or DPO algorithms) inpreference

alignment
which a separate model is trained to decide how much a candidate response aligns
with human preferences. Together we refer to instructing tuning and preference
alignment as model alignment. The intuition is that we want the learning objectivesmodel

alignment
of models to be aligned with the goals of the humans that use them.
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12.1 Prompting

A prompt is a text string that a user issues to a language model to get the modelprompt

to do something useful. In prompting, the user’s prompt string is passed to the
language model, which iteratively generates tokens conditioned on the prompt. Thus
the prompt creates a context that guides LLMs to generate useful outputs to achieve
some user goal. The process of finding effective prompts for a task is known as
prompt engineering.prompt

engineering
Let’s see how to prompt a language model to solve a simple sentiment classifi-

cation task, Consider this hotel review from the BLT corpus (Salvetti et al., 2016):

Sample Hotel Review

Did not like the service that I was provided, when I entered the hotel. I also
did not like the area, in which the hotel was located. Too much noise and
events going on for me to feel relax.

We can get the model to classify the sentiment of this text by taking the text and
appending an incomplete statement to the review like In short, our stay was:

A prompt consisting of a review plus an incomplete statement

Did not like the service that I was provided, when I entered the hotel. I also
did not like the area, in which the hotel was located. Too much noise and
events going on for me to feel relax. In short, our stay was

We then have an LLM complete the statement by generating a token conditioned
on the prompt so far, and then generating the next token (conditioned on the prompt
plus the new token), and so forth. Here are a few responses from a language model
via continued generation starting with the prompt as context.

Hotel Review Completions

Did not like the service that I was provided, when I entered the hotel. I also
did not like the area, in which the hotel was located. Too much noise and
events going on for me to feel relaxed. In short our stay was

... not a pleasant one. The staff at the front desk

were not welcoming or friendly, and seemed disinterested

in providing good customer service.

... uncomfortable and not worth the price we paid. We

will not be returning to this hotel.

As we can see, the overall negative context of the review results in negative
completions. We could easily map these completions to the class we are trying
to predict, perhaps via some predefined mappings, like {excellent → positive},
{did not like→ negative}, and so on.

The power of this approach is that with suitable additions to the context a single
LLM can produce outputs appropriate for many different tasks. For example, given
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a review we might want any of the following:

• A summary,
• Whether the review was truthful or likely to have been fabricated,
• A translation to another language.

LLMs have a striking ability to perform tasks like these, needing just the appro-
priate contextual nudge to get the LLM to generate the desired output.

If we want to solve general tasks like summarization or translation, we don’t
want to have to create a new prompt each time we do the task. Instead the first step
in prompting is to design one or more templates: task-specific prompting text alongtemplates

with slots for the particular input that is being processed.
Consider the following templates for a variety of tasks:

Basic Prompt Templates

Summarization {input} ; tldr;
Translation {input} ; translate to French:

Sentiment {input}; Overall, it was

Fine-Grained- {input}; What aspects were important in this review?

Sentiment

Each template consists of an input text, designated as {input}, followed by a
verbatim prompt to be passed to an LLM. These templates are applied to inputs to
create filled prompts – instantiated prompts suitable for use as inputs to an LLM.
Fig. 12.1 illustrates filled prompts for these templates using our earlier hotel review,
along with sample outputs from an LLM:

Notice the design pattern of the prompts above: the input is followed by some
text which in turn will be completed by the desired response. This style, with the
instruction at the end, is common in prompting because it helpfully constrains the
generation. Consider, by contrast, the prompt in Example 12.1.

Translate English to French:
Did not like the service that I was provided! (12.1)

This prompt doesn’t do a good job of constraining possible continuations. Instead
of a French translation, models given this prompt may instead generate another sen-
tence in English that simply extends the English review. Prompts need to be designed
unambiguously, so that any reasonable continuation would accomplish the desired
task (Reynolds and McDonell, 2021).

An even more constraining style of prompt can specify the set of possible an-
swers in the prompt. For example here is a prompt template to do sentiment analysis
that prespecifies the potential answers:

A prompt consisting of a review plus an incomplete statement

Human: Do you think that “input” has negative or positive sentiment?
Choices:
(P) Positive
(N) Negative

Assistant: I believe the best answer is: (
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LLM Outputs for Basic Prompts

Original Review ($INPUT) Did not like the service that I was provided,

when I entered the hotel. I also did not like

the area, in which the hotel was located. Too

much noise and events going on for me to feel

relax and away from the city life.

Sentiment Prompt: $INPUT + In short, our stay was

Output: not enjoyable

Fine-grained Sentiment Prompt: $INPUT + These aspects were important to

the reviewer:

Output: 1. Poor service 2. Unpleasant location

3. Noisy and busy area

Summarization Prompt: $INPUT + tl;dr

Output: I had a bad experience with the hotel’s

service and the location was loud and busy.

Translation Prompt: $INPUT + Translate this to French

Output: Je n’ai pas aimé le service qui m’a été

offert lorsque je suis entré dans l’hôtel. Je

n’ai également pas aimé la zone dans laquelle se

trouvait l’hôtel. Trop de bruit et d’événements

pour que je me sente détendu et loin de la vie

citadine.

Figure 12.1 LLM outputs for simple prompts for sentiment, summarization and translation for an input text.

This prompt uses a number of more sophisticated prompting characteristics. It
specifies the two allowable choices (P) and (N), and ends the prompt with the open
parenthesis that strongly suggests the answer will be (P) or (N). Note that it also
specifies the role of the language model as an assistant.

We can do even more with prompts. For example, we might want to restrict a
summary to be a particular length, to have an answer generated according to some
kind of persona or role, or to specify a more structured output using a programming
language or a data interchange format such as JSON. Or we may want to prompt
the system to break down complex tasks, using methods like chain-of-thought that
we’ll discuss in Section 12.4. All of these kinds of instructions go beyond simple
prompting and require further LLM finetuning to enable them to follow instructions.
We’ll return to this notion of instruction tuning in Section 12.3.

In summary, we prompt an LM by transforming each task into a form that is
amenable to contextual generation by an LLM, as follows:

1. For a given task, develop a a task-specific template that has a free parameter
for the input text.

2. Given that input and the task-specific template, the input is used to instantiatetemplate

a filled prompt that is then passed to a pretrained language model.
3. Autoregressive decoding is then used to generate a sequence of token outputs.
4. The output of the model can either be used directly as the desired output (as

in the case of naturally generative tasks such as translation or summarization),
or a task-appropriate answer can be extracted from the generated output (as in
the case of classification).
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12.1.1 Learning from Demonstrations: Few-Shot Prompting
It’s often possible to improve a prompt by including some labeled examples in the
prompt template. We call such examples demonstrations. The task of promptingdemonstrations

with examples is sometimes called few-shot prompting, as contrasted with zero-few-shot

shot prompting which means instructions that don’t include labeled examples.zero-shot

Fig. 12.2 illustrates a few-shot example from an extractive question answering
task. The context combines the task definition along with three gold-standard ques-
tion and answer pairs from the training set.

Definition: This task is about writing a correct answer for the reading comprehension task.
Based on the information provided in a given passage, you should identify the shortest
continuous text span from the passage that serves as an answer to the given question. Avoid
answers that are incorrect or provides incomplete justification for the question.

Passage: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer,
songwriter, record producer and actress. Born and raised in Houston, Texas, she performed in
various singing and dancing competitions as a child, and rose to fame in the late 1990s as lead
singer of R&B girl-group Destiny’s Child. Managed by her father, Mathew Knowles, the group
became one of the world’s best-selling girl groups of all time. Their hiatus saw the release
of Beyoncé’s debut album, Dangerously in Love (2003), which established her as a solo artist
worldwide, earned five Grammy Awards and featured the Billboard Hot 100 number-one singles
“Crazy in Love” and “Baby Boy”.

Examples:
Q: In what city and state did Beyoncé grow up?
A: Houston, Texas

Q: What areas did Beyoncé compete in when she was growing up?
A: singing and dancing

Q: When did Beyoncé release Dangerously in Love?
A: 2003

Q: When did Beyoncé start becoming popular?
A:

Figure 12.2 A prompt for extractive question answering, from an example from the SQuAD 2.0 dataset
(Rajpurkar et al., 2018). The prompt contains the task definition, the passage, 3 demonstration examples,
followed by the test question. This definition specification and format are after the Natural Instructions dataset
(Mishra et al., 2022).

How Many Demonstrations? The number of demonstrations doesn’t have to be
large. A small number of randomly selected labeled examples used as demonstra-
tions can be sufficient to improve performance over the zero-shot setting. Indeed,
the largest performance gains in few-shot prompting tends to come from the first
training example, with diminishing returns for subsequent demonstrations. This is
in contrast with finetuning of specialized classifier heads that we saw in Chapter 11
where it helps to have lots of examples.

Why isn’t it useful to have more demonstrations? The reason is that the primary
benefit in examples is to demonstrate the task to be performed to the LLM and the
format of the sequence, not to provide relevant information as to the right answer
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for any particular question. In fact, demonstrations that have incorrect answers can
still improve a system (Min et al., 2022; Webson and Pavlick, 2022). Adding too
many examples seems to cause the model to overfit to details of the exact examples
chosen and generalize poorly.

How to Select Demonstrations? Demonstrations are generally created by for-
matting examples drawn from a labeled training set There are some heuristics about
what makes a good demonstration. For example, using demonstrations that are sim-
ilar to the current input seems to improve performance. It can thus be useful to
dynamically retrieve demonstrations for each input, based on their similarity to the
current example (for example, comparing the embedding of the current example
with embeddings of each of the training set example to find the best top-T ).

But more generally, the best way to select demonstrations from the training set
is programmatically: choosing the set of demonstrations that most increases task
performance of the prompt on a test set. Task performance for sentiment analysis
or multiple-choice question answering can be measured in accuracy; for machine
translation with chrF, and for summarization via Rouge. Systems like DSPy (Khat-
tab et al., 2024), a framework for algorithmically optimizing LM prompts, can au-
tomatically find the optimum set of demonstrations to include by searching through
the space of possible demonstrations to include. We’ll return to automatic prompt
optimization in Section 12.5.

12.1.2 In-Context Learning and Induction Heads

As a way of getting a model to do what we want, prompting is fundamentally differ-
ent than pretraining. Learning via pretraining means updating the model’s parame-
ters by using gradient descent according to some loss function. But prompting with
demonstrations can teach a model to do a new task. The model is learning something
as it processes the prompt.

Even without demonstrations, we can think of the process of prompting as a kind
of learning. For example, the further a model gets in a prompt, the better it tends
to get at predicting the upcoming tokens. The information in the context is helping
give the model more predictive power.

We use the term in-context learning to refer to either of these kinds of learningin-context
learning

that language models do from their prompts. In-context learning means language
models learning to do new tasks, better predict tokens, or generally reduce their
loss, but without any gradient-based updates to the model’s parameters.

How does in-context learning work? While we don’t know for sure, there are
some intriguing ideas. One hypothesis is based on the idea of induction headsinduction heads

(Elhage et al., 2021; Olsson et al., 2022). Induction heads are the name for a circuit,
which is a kind of abstract component of a network. The induction head circuit
is part of the attention computation in transformers, discovered by looking at mini
language models with only 1-2 attention heads.

The function of the induction head is to predict repeated sequences. For example
if it sees the pattern AB...A in an input sequence, it predicts that B will follow,
instantiating the pattern completion rule AB...A→ B. It does this by having a prefix
matching component of the attention computation that, when looking at the current
token A, searches back over the context to find a prior instance of A. If it finds one,
the induction head has a copying mechanism that “copies” the token B that followed
the earlier A, by increasing the probability the B will occur next. Fig. 12.3 shows an
example.
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Figure 1: In the sequence “...vintage cars ... vintage”, an induction head identifies the initial occurrence of “vintage”,
attends to the subsequent word “cars” for prefix matching, and predicts “cars” as the next word through the copying
mechanism.

determines each head’s independent output for the
current token.

Leveraging this decomposition, Elhage et al.
(2021) discovered a distinct behaviour in certain
attention heads, which they named induction heads.
This behaviour emerges when these heads process
sequences of the form "[A] [B] ... [A] → ". In
these heads, the QK circuit directs attention to-
wards [B], which appears directly after the previous
occurrence of the current token [A]. This behaviour
is termed prefix matching. The OV circuit subse-
quently increases the output logit of the [B] token,
termed copying. An overview of this mechanism is
shown in Figure 1.

4 Methods

4.1 Models

We utilise two recently developed open-source
models, namely Llama-3-8B2 and InternLM2-20B
(Cai et al., 2024), both of which are based on the
original Llama (Touvron et al., 2023a) architec-
ture. These models feature grouped-query atten-
tion mechanisms (Ainslie et al., 2023) to enhance
efficiency. Llama-3-8B, comprises 32 layers, each
with 32 attention heads and it uses a query group
size of 4 attention heads. It has shown superior
performance compared to its predecessors, even
the larger Llama-2 models.

InternLM2-20B, featuring 48 layers with 48 at-
tention heads each, uses a query group size of 6
attention heads. We selected InternLM2-20B for
its exemplary performance on the Needle-in-the-
Haystack3 task, which assesses LLMs’ ability to
retrieve a single critical piece of information em-
bedded within a lengthy text. This mirrors the
functionality of induction heads, which scan the
context for prior occurrences of a token to extract
relevant subsequent information.

2https://ai.meta.com/blog/meta-llama-3/
3https://github.com/gkamradt/LLMTest_

NeedleInAHaystack

4.2 Identifying Induction Heads

To identify induction heads within models, we mea-
sure the ability of all attention heads to perform
prefix matching on random input sequences.4 We
follow the task-agnostic approach to computing pre-
fix matching scores outlined by Bansal et al. (2023).
We argue that focusing solely on prefix matching
scores is sufficient for our analysis, as high pre-
fix matching cores specifically indicate induction
heads, while less relevant heads tend to show high
copying capabilities (Bansal et al., 2023). We gen-
erate a sequence of 50 random tokens, excluding
the 4% most common and least common tokens.
This sequence is repeated four times to form the
input to the model. The prefix matching score is cal-
culated by averaging the attention values from each
token to the tokens that directly followed the same
token in earlier repeats. The final prefix matching
scores are averaged over five random sequences.

The prefix matching scores for Llama-3-8B are
shown in Figure 2. For IntermLM2-20B, we refer
to Figure 8 in Appendix A.1. Both models exhibit
heads with notably high prefix matching scores,
distributed across various layers. In the Llama-3-
8B model, ~3% of the heads have a prefix matching
score of 0.3 or higher, indicating a degree of spe-
cialisation in prefix matching, and some heads have
high scores of up to 0.98.

4.3 Head Ablations

To investigate the significance of induction heads
for a specific ICL task, we conduct zero-ablations
of 1% and 3% of the heads with the highest prefix
matching scores. This ablation process involves
masking the corresponding partition of the output
matrix, denoted as Wh

o in Eq. 1, by setting it to
zero. This effectively renders the heads inactive

4In this work, the term "induction heads" refers to what
we define as behavioural induction heads, not mechanistic
ones. A true induction head must be verified mechanistically;
however, our analysis employs prefix-matching scores as a
proxy. We will continue to use the term "induction heads" for
simplicity throughout the rest of the paper.

4

Figure 12.3 An induction head looking at vintage uses the prefix matching mechanism to
find a prior instance of vintage, and the copying mechanism to predict that cars will occur
again. Figure from Crosbie and Shutova (2022).

Olsson et al. (2022) propose that a generalized fuzzy version of this pattern com-
pletion rule, implementing a rule like A*B*...A→ B*, where A* ≈ A and B* ≈ B
(by ≈ we mean they they are semantically similar in some way), might be respon-
sible for in-context learning. Suggestive evidence for their hypothesis comes from
Crosbie and Shutova (2022), who show that ablating induction heads causes in-ablating

context learning performance to decrease. Ablation is originally a medical term
meaning the removal of something. We use it in NLP interpretability studies as
a tool for testing causal effects; if we knock out a hypothesized cause, we would
expect the effect to disappear. Crosbie and Shutova (2022) ablate induction heads
by first finding attention heads that perform as induction heads on random input
sequences, and then zeroing out the output of these heads by setting certain terms
of the output matrix WO to zero. Indeed they find that ablated models are much
worse at in-context learning: they have much worse performance at learning from
demonstrations in the prompts.

12.2 Post-training and Model Alignment

With simple prompting, LLMs have been successfully applied to a range of appli-
cations without the need to update the parameters in the underlying models. Nev-
ertheless, there are limits to how much can be expected from a model whose sole
training objective is to predict the next word from large amounts of pretraining text.
To see this, consider the following failed examples of following instructions from
early work with GPT (Ouyang et al., 2022).

Prompt: Explain the moon landing to a six year old in a few sentences.
Output: Explain the theory of gravity to a 6 year old.

Prompt: Translate to French: The small dog
Output: The small dog crossed the road.

Here, the LLM ignores the intent of the request and relies instead on its natural
inclination to autoregressively generate continuations consistent with its context. In
the first example, it outputs a text somewhat similar to the original request, and in the
second it provides a continuation to the given input, ignoring the request to translate.
LLMs are not sufficiently helpful: they need extra training to increase their abilities
to follow textual instructions.

A deeper problem is that LLMs can simultaneously be too harmful. Pretrained
language models easily generate text that is harmful in many ways. For example
they can generate text that is false, including unsafe misinformation like giving dan-
gerously incorrect answers to medical questions. And they can generate text that is
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toxic in many ways, such as facilitating the spread of hate speech. Gehman et al.
(2020) show that even completely non-toxic prompts can lead large language mod-
els to output hate speech and abuse their users. Or language models can generate
stereotypes (Cheng et al., 2023) and negative attitudes (Brown et al., 2020; Sheng
et al., 2019) about many demographic groups.

One reason LLMs are too harmful and insufficiently helpful is that their pre-
training objective (success at predicting words in text) is misaligned with the human
need for models to be helpful and non-harmful.

In an attempt to address these two problems, language models generally include
two additional kinds of training for model alignment: methods designed to adjustmodel

alignment
LLMs to better align them to human needs for models to be helpful and non-harmful.
In the first technique, instruction tuning (or sometimes called SFT for supervised
finetuning), models are finetuned on a corpus of instructions and questions with
their corresponding responses. In the second technique, preference alignment, of-
ten called RLHF after one of the specific instantiations, Reinforcement Learning
from Human Feedback, a separate model is trained to decide how much a candidate
response aligns with human preferences. This model is then used to finetune the
base model.

We’ll use the term base model to mean a model that has been pretrained butbase model

hasn’t yet been aligned either by instruction tuning or RLHF. And we refer to thesealigned

steps as post-training, meaning that they apply after the model has been pretrained.post-training

12.3 Model Alignment: Instruction Tuning

Instruction tuning (short for instruction finetuning, and sometimes even short-Instruction
tuning

ened to instruct tuning) is a method for making an LLM better at following instruc-
tions. It involves taking a base pretrained LLM and training it to follow instructions
for a range of tasks, from machine translation to meal planning, by finetuning it on
a corpus of instructions and responses. The resulting model not only learns those
tasks, but also engages in a form of meta-learning – it improves its ability to follow
instructions generally.

Instruction tuning is a form of supervised learning where the training data con-
sists of instructions and we continue training the model on them using the same
language modeling objective used to train the original model. In the case of causal
models, this is just the standard guess-the-next-token objective. The training corpus
of instructions is simply treated as additional training data, and the gradient-based
updates are generating using cross-entropy loss as in the original model training.
Even though it is trained to predict the next token (which we traditionally think of
as self-supervised), we call this method supervised fine tuning (or SFT) becauseSFT

unlike in pretraining, each instruction or question in the instruction tuning data has
a supervised objective: a correct answer to the question or a response to the instruc-
tion.

How does instruction tuning differ from the other kinds of finetuning introduced
in Chapter 10 and Chapter 11? Fig. 12.4 sketches the differences. In the first exam-
ple, introduced in, Chapter 10 we can finetune as a way of adapting to a new domain
by just continuing pretraining the LLM on data from a new domain. In this method
all the parameters of the LLM are updated.

In the second example, also from Chapter 10, parameter-efficient finetuning,
we adapt to a new domain by creating some new (small) parameters, and just adapt-
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Figure 12.4 Instruction tuning compared to the other kinds of finetuning.

ing them to the new domain. In LoRA, for example, it’s the A and B matrices that
we adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 11, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own
loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

12.3.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-
scriptions similar to the prompts we’ve already seen such as Answer the following
question, Translate the following text to Arapaho, or Summarize this report. How-
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ever, since we will be using supervised finetuning to update the model, these in-
structions need not be limited to simple prompts designed to evoke a behavior found
in the pretraining corpora. Instructions can also include length restrictions or other
constraints, personas to assume, and demonstrations.

Many huge instruction tuning datasets have been created, covering many tasks
and languages. For example Aya gives 503 million instructions in 114 languages
from 12 tasks including question answering, summarization, translation, paraphras-
ing, sentiment analysis, natural language inference and 6 others (Singh et al., 2024).
SuperNatural Instructions 12 million examples from 1600 tasks (Wang et al., 2022),
Flan 2022 15 million examples from 1836 tasks (Longpre et al., 2023), and OPT-
IML 18 million examples from 2000 tasks (Iyer et al., 2022).

These instruction-tuning datasets are created in four ways. The first is for people
to write the instances directly. For example, part of the Aya instruct finetuning cor-
pus (Fig. 12.5) includes 204K instruction/response instances written by 3000 fluent
speakers of 65 languages volunteering as part of a participatory research initiative
with the goal of improving multilingual performance of LLMs.

Lang Prompt Completion

ara . ا ح ة ء ً َ ك ُ ا ح َ إن

د و واَ ع ا َ َ

ُ ِ ِ ا ّ َ أ َ

ء ا َ َ ازي ُ َ

fra Qui a écrit le livre La
Sagouine?

Antonine Maillet a écrit La Sagouine en 1971. Elle a écrit beau-
coup d’histoires sur les Acadiens (les francophones de la côte Est
du Canada) et a fait connaître l’Acadie au monde.

ibo Kedu ka ndị Igbo si eme
emume ji ọhụrụ?

Emume ji ọhụrụ n’omenala Igbo, bụ emume na-egosi njedebe
oge ọrụ ugbo, na-amalite site n’emume ekele ma tinyekwa oriri
na egwu. Ọ bụ mmemme ọgbakọ ebe a na-ekerịta ji ọhụrụ, na-
egosipụta ekele na mmalite nke oge ọhụrụ, na-eme ka mmekọrịta
mmadụ na ibe ya dịkwuo elu.

por Qual é a capital do estado da
Bahia?

A capital do estado da Bahia, no Brasil, é Salvador. Fundada
em 1549, foi a primeira capital do Brasil e é conhecida por
seu patrimônio cultural rico e diversificado. A cidade é famosa
por sua arquitetura colonial, particularmente no Pelourinho, um
centro histórico que foi declarado Patrimônio Mundial pela UN-
ESCO.

pes کبوتر لانه چند ميبد کبوترخانه برج در
دارد؟ وجود

نوار و دارد وجود کبوتر لانه چهار هزار آن داخل که است استوانه ای برجی ميبد کبوتر خانه
خطر برابر در برج اين است. شده کشيده برج دورتادور کبوتران جذب برای رنگی سفيد

است. بوده ايمن بسيار کبوترها به حيوانات ديگر حمله

msa Apakah nasi lemak? Nasi lemak merupakan makanan tradisi orang Melayu yang
terdapat di semua bahagian Malaysia, Singapura, Indonesia
(terutama di Riau, Jambi serta utara dan pantai timur Su-
matera) dan Brunei. Sajian ini merujuk kepada nasi yang di-
masak dengan menggunakan santan kelapa bagi menambah rasa
lemaknya. Kadangkala, daun pandan wangi dimasukkan semasa
nasi dimasak bagi menambahkan aromanya.

tam ெசயற்ைக நுண்ணறவு
என்றால் என்ன?

ெபாதுவாக மனிதர்களால் ெசய்யப்படும் பணிகைளச்
ெசய்ய ஒரு கணினி அல்லது ஒரு கணினியால்
கட்டுப்படுத்தப்படும்ஒருேராேபாவன்தறன்ெசயற்ைக
நுண்ணறவுஎனப்படும்.

Table 3: Examples of prompt and completions in the Aya Dataset.

tors is not uniform across languages. Moreover, within each language, there is a lack of consistent
contributions from all annotators. In this section, we examine the impact of annotator skew on the
resulting dataset.

Annotator Skew Across Languages. Annotators were encouraged to contribute to any language
in which they could comfortably read and write and were asked to focus most of their efforts on
languages other than English. Although a significant number of participants registered for many
languages, the engagement level of annotators was not equal, which resulted in considerable differ-
ences in the number of contributions across languages. Figure 10 (top) provides an overview of the
percentage of each language present in the final compilation. The highest number of contributions
is for Malagasy with 14,597 instances, and the lowest is 79 for Kurdish.

Annotator Skew Within a Language. The final contributions for each language in the Aya
Dataset are not evenly distributed among annotators. The median number of annotators per lan-
guage is 15 (mean is 24.75) with one language having only a single active annotator (Sindhi) and
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Figure 12.5 Samples of prompt/completion instances in 4 of the 65 languages in the Aya
corpus (Singh et al., 2024).

Developing high quality supervised training data in this way is time consuming
and costly. A more common approach makes use of the copious amounts of super-
vised training data that have been curated over the years for a wide range of natural
language tasks. There are thousands of such datasets available, like the SQuAD
dataset of questions and answers (Rajpurkar et al., 2016) or the many datasets of
translations or summarization. This data can be automatically converted into sets of
instruction prompts and input/output demonstration pairs via simple templates.

Fig. 12.6 illustrates examples for some applications from the SUPERNATURALIN-
STRUCTIONS resource (Wang et al., 2022), showing relevant slots such as text,
context, and hypothesis. To generate instruction-tuning data, these fields and the
ground-truth labels are extracted from the training data, encoded as key/value pairs,
and inserted in templates (Fig. 12.7) to produce instantiated instructions. Because
it’s useful for the prompts to be diverse in wording, language models can also be
used to generate paraphrase of the prompts.

Because supervised NLP datasets are themselves often produced by crowdwork-
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Few-Shot Learning for QA

Task Keys Values
Sentiment text Did not like the service that I was provided...

label 0
text It sounds like a great plot, the actors are first grade, and...
label 0

NLI premise No weapons of mass destruction found in Iraq yet.
hypothesis Weapons of mass destruction found in Iraq.
label 2
premise Jimmy Smith... played college football at University of Col-

orado.
hypothesis The University of Colorado has a college football team.
label 0

Extractive Q/A context Beyoncé Giselle Knowles-Carter is an American singer...
question When did Beyonce start becoming popular?
answers { text: [’in the late 1990s’], answer start: 269 }

Figure 12.6 Examples of supervised training data for sentiment, natural language inference and Q/A tasks.
The various components of the dataset are extracted and stored as key/value pairs to be used in generating
instructions.

Task Templates
Sentiment -{{text}} How does the reviewer feel about the movie?

-The following movie review expresses what sentiment?

{{text}}
-{{text}} Did the reviewer enjoy the movie?

Extractive Q/A -{{context}} From the passage, {{question}}
-Answer the question given the context. Context:

{{context}} Question: {{question}}
-Given the following passage {{context}}, answer the

question {{question}}
NLI -Suppose {{premise}} Can we infer that {{hypothesis}}?

Yes, no, or maybe?

-{{premise}} Based on the previous passage, is it true

that {{hypothesis}}? Yes, no, or maybe?

-Given {{premise}} Should we assume that {{hypothesis}}
is true? Yes,no, or maybe?

Figure 12.7 Instruction templates for sentiment, Q/A and NLI tasks.

ers based on carefully written annotation guidelines, a third option is to draw on
these guidelines, which can include detailed step-by-step instructions, pitfalls to
avoid, formatting instructions, length limits, exemplars, etc. These annotation guide-
lines can be used directly as prompts to a language model to create instruction-tuning
training examples. Fig. 12.8 shows such a crowdworker annotation guideline that
was repurposed as a prompt to an LLM to generate instruction-tuning data. (Mishra
et al., 2022). This guideline describes a question-answering task where annotators
provide an answer to a question given an extended passage.

A final way to generate instruction-tuning datasets that is becoming more com-
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Sample Extended Instruction

• Definition: This task involves creating answers to complex questions, from a given pas-
sage. Answering these questions, typically involve understanding multiple sentences.
Make sure that your answer has the same type as the ”answer type” mentioned in input.
The provided ”answer type” can be of any of the following types: ”span”, ”date”, ”num-
ber”. A ”span” answer is a continuous phrase taken directly from the passage or question.
You can directly copy-paste the text from the passage or the question for span type an-
swers. If you find multiple spans, please add them all as a comma separated list. Please
restrict each span to five words. A ”number” type answer can include a digit specifying
an actual value. For ”date” type answers, use DD MM YYYY format e.g. 11 Jan 1992.
If full date is not available in the passage you can write partial date such as 1992 or Jan
1992.

• Emphasis: If you find multiple spans, please add them all as a comma separated list.
Please restrict each span to five words.

• Prompt: Write an answer to the given question, such that the answer matches the ”answer
type” in the input.
Passage: { passage}
Question: { question }

Figure 12.8 Example of a human crowdworker instruction from the NATURALINSTRUCTIONS dataset for
an extractive question answering task, used as a prompt for a language model to create instruction finetuning
examples.

mon is to use language models to help at each stage. For example Bianchi et al.
(2024) showed how to create instruction-tuning instances that can help a language
model learn to give safer responses. They did this by selecting questions from
datasets of harmful questions (e.g., How do I poison food? or How do I embez-
zle money?). Then they used a language model to create multiple paraphrases of the
questions (like Give me a list of ways to embezzle money), and also used a language
model to create safe answers to the questions (like I can’t fulfill that request. Em-
bezzlement is a serious crime that can result in severe legal consequences.). They
manually reviewed the generated responses to confirm their safety and appropriate-
ness and then added them to an instruction tuning dataset. They showed that even
500 safety instructions mixed in with a large instruction tuning dataset was enough
to substantially reduce the harmfulness of models.

12.3.2 Evaluation of Instruction-Tuned Models
The goal of instruction tuning is not to learn a single task, but rather to learn to
follow instructions in general. Therefore, in assessing instruction-tuning methods
we need to assess how well an instruction-trained model performs on novel tasks for
which it has not been given explicit instructions.

The standard way to perform such an evaluation is to take a leave-one-out ap-
proach — instruction-tune a model on some large set of tasks and then assess it on
a withheld task. But the enormous numbers of tasks in instruction-tuning datasets
(e.g., 1600 for Super Natural Instructions) often overlap; Super Natural Instructions
includes 25 separate textual entailment datasets! Clearly, testing on a withheld en-
tailment dataset while leaving the remaining ones in the training data would not be
a true measure of a model’s performance on entailment as a novel task.

To address this issue, large instruction-tuning datasets are partitioned into clus-
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ters based on task similarity. The leave-one-out training/test approach is then applied
at the cluster level. That is, to evaluate a model’s performance on sentiment analysis,
all the sentiment analysis datasets are removed from the training set and reserved
for testing. This has the further advantage of allowing the use of a uniform task-
appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

12.4 Chain-of-Thought Prompting

There are a wide range of techniques to use prompts to improve the performance of
language models on many tasks. Here we describe one of them, called chain-of-
thought prompting.chain-of-

thought
The goal of chain-of-thought prompting is to improve performance on difficult

reasoning tasks that language models tend to fail on. The intuition is that people
solve these tasks by breaking them down into steps, and so we’d like to have lan-
guage in the prompt that encourages language models to break them down in the
same way.

The actual technique is quite simple: each of the demonstrations in the few-shot
prompt is augmented with some text explaining some reasoning steps. The goal is to
cause the language model to output similar kinds of reasoning steps for the problem
being solved, and for the output of those reasoning steps to cause the system to
generate the correct answer.

Indeed, numerous studies have found that augmenting the demonstrations with
reasoning steps in this way makes language models more likely to give the correct
answer difficult reasoning tasks (Wei et al., 2022; Suzgun et al., 2023). Fig. 12.9
shows an example where the demonstrations are augmented with chain-of-thought
text in the domain of math word problems (from the GSM8k dataset of math word
problems (Cobbe et al., 2021). Fig. 12.10 shows a similar example from the BIG-
Bench-Hard dataset (Suzgun et al., 2023).

Figure 12.9 Example of the use of chain-of-thought prompting (right) versus standard
prompting (left) on math word problems. Figure from Wei et al. (2022).
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(B)

Task description: Answer questions about which times certain events 
could have occurred.

Q: Today, Tiffany went to the beach. Between what times could they 
have gone? We know that: 
Tiffany woke up at 5am. [...] The beach was closed after 4pm. [...]
Options: (A) 9am to 12pm (B) 12pm to 2pm 

(C) 5am to 6am (D) 3pm to 4pm

A: (D)

Q: Today, Hannah went to the soccer field. Between what times could 
they have gone? We know that: 
Hannah woke up at 5am. [...] The soccer field was closed after 6pm. [...]
Options: (A) 3pm to 5pm (B) 11am to 1pm 

(C) 5pm to 6pm (D) 1pm to 3pm

A:

Model Output Model Output

Model Input (“Answer-Only” Prompting)

Wake-up time: 5am. 
5am-6am: buying clothes at the mall. 
6am-11am: watching a movie at the theater.
11am-1pm: getting a coffee at the cafe.
1pm-3pm: working at the office. 
3pm-5pm: waiting at the airport. 
5pm-6pm: free. The soccer field closure time: 6pm. 
The only time when Hannah could have gone to the soccer field was 
5pm to 6pm. So the answer is (C).

Model Input (Chain-of-Thought Prompting)

Task description: Answer questions about which times certain events 
could have occurred.

Q: Today, Tiffany went to the beach. Between what times could they 
have gone? We know that: 
Tiffany woke up at 5am. [...] The beach was closed after 4pm. [...]
Options: (A) 9am to 12pm (B) 12pm to 2pm 

(C) 5am to 6am (D) 3pm to 4pm

A: Let's think step by step. 
Wake-up time: 5am. [...] The only time when Tiffany could have gone to 
the beach was 3pm to 4pm. So the answer is (D).

Q: Today, Hannah went to the soccer field. Between what times could 
they have gone? We know that: 
Hannah woke up at 5am. [...] The soccer field was closed after 6pm. [...]
Options: (A) 3pm to 5pm (B) 11am to 1pm 

(C) 5pm to 6pm (D) 1pm to 3pm

A: Let's think step by step. 

Task Description

Question

Chain-of-Thought

Test-Time 
Question

Task Description

Question

Test-Time 
Question

Answer

Generated 
Chain-of-Thought

Generated 
Answer

Options
Options

Figure 3: An illustration of the two prompting setups we explore in our paper (answer-only and CoT prompting). Both setups
include task descriptions and options in the input prompt. The task here is Temporal Sequences.

“let’s think step-by-step” (Kojima et al., 2022) to
all CoT annotations in the few-shot exemplars. An
example of a CoT prompt is shown in Figure 3.
Language models. We consider three fami-
lies of language models: Codex (Chen et al.,
2021a), InstructGPT (Ouyang et al., 2022; Brown
et al., 2020), and PaLM (Chowdhery et al., 2022).
For Codex, we focus on code-davinci-002, code-
davinci-002, and code-cushman-001. For Instruct-
GPT, we use text-davinci-002, text-curie-002, text-
babbgage-001, and text-ada-001. For PaLM, we
use the three available sizes: 8B, 62B, and 540B.
Evaluation protocol. We evaluate all language
models via greedy decoding (i.e., temperature sam-
pling with temperature parameter ⌧ = 0). We
extract the final answer based on keywords that
the language model is expected to produce (i.e.,
“the answer is”). We measure accuracy using exact
match (EM), computed by comparing the generated
output with the ground-truth label.4

4 Results

4.1 Standard answer-only prompting
underestimates model capabilities

Table 2 summarizes the performance of PaLM, In-
structGPT, and Codex models on BBH for answer-
only and CoT prompting approaches. While
answer-only prompting has been used as the stan-

4For multiple-choice tasks, this setup differs slightly from
rank/scoring classification (Brown et al., 2020; Srivastava
et al., 2022; Lampinen et al., 2022). We provide a language
model with all multiple-choice options at once, generate an
output based on the input, and measure exact match accuracy.

dard in many prior work (Brown et al., 2020; Rae
et al., 2021; Hoffmann et al., 2022; Srivastava et al.,
2022), it typically underestimates model perfor-
mance on challenging tasks, such as those that re-
quire multiple reasoning steps. In the setting re-
ported in (Srivastava et al., 2022), none of the mod-
els (including PaLM 540B) outperformed human-
rater baselines on any of the tasks meeting the BBH
criteria. The few-shot evaluation of PaLM 540B
with answer-only prompting in this paper, however,
outperforms the average human-rater on 6 out of
23 BBH tasks and is overall 1.4% better than the
BIG-Bench reported result, which demonstrates the
effect of including instructions and answer options
in the prompt.

CoT prompting provides double-digit improve-
ments for all three models in Table 2. For the best
model (Codex), CoT prompting outperforms the av-
erage human-rater score on 17 out of 23 tasks, com-
pared to 5 out of 23 tasks for answer-only prompt-
ing. Additionally, we see that Codex with CoT
prompting outperforms the average human-rater
by more than 6%, but it still lags behind the best
human-rater performance by over 20%. This shows
that language models are still not performing at the
level of expert human-raters.

4.2 Positive delta from chain-of-thought
requires sufficient model scale

Next we study how the performance improves by
using CoT prompting as we increase the model
scale. In Figure 4, we plot the performance of both
CoT and answer-only prompting (no CoT) as a

13006

Figure 12.10 Example of the use of chain-of-thought prompting (right) vs standard prompting (left) in a
reasoning task on temporal sequencing. Figure from Suzgun et al. (2023).

12.5 Automatic Prompt Optimization

Given a prompt for a task (human or computer generated), prompt optimization
methods search for prompts with improved performance. Most of these approaches
can be viewed as a form of iterative improvement search (Russell and Norvig, 2002)
through a space of possible prompts for those that optimize performance on a task.
As such, these approaches all share the following components:

• A start state – An initial human or machine generated prompt or prompts
suitable for some task.

• A scoring metric – A method for assessing how well a given prompt performs
on the task.

• An expansion method – A method for generating variations of a prompt.

Given the enormous variation in how prompts for a single task can be expressed in
language, search methods have to be constrained to a reasonable space. Beam search
is a widely used method that combines breadth-first search with a fixed-width pri-
ority queue that focuses the search effort on the top performing variants. Fig. 12.11
outlines the general approach behind most current prompt optimization methods.

Beginning with initial candidate prompt(s), the algorithm generates variants and
adds them to a list of prompts to be considered. These prompts are then selectively
added to the active list based on whether their scores place them in the top set of
candidates. A beam width of 1 results in a focused greedy search, whereas an infinite
beam width results in an exhaustive breadth first search. The goal is to continue
to seek improved prompts given the computational resources available. Iterative
improvement searches typically use a combination of a fixed number of iterations in
combination with a failure to improve after some period to time as stopping criteria.
This latter is equivalent to early stopping with patience used in training deep neural
networks.
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function PROMPTOPTIMIZATION(prompts, width) returns optimized prompts

active←prompts ; Add initial set of candidate prompts to agenda
repeat until done

frontier← foo
children←EXPAND(c) ; Expand each candidate prompt
foreach c ∈ children

frontier←ADDTOBEAM(c,frontier, w ) ; apply it, creating a new state
active← frontier

return

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda← INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda←REMOVE(WORSTOF(agenda))
agenda← INSERT(state, agenda)

return agenda

Figure 12.11 A generic iterative-improvement beam search for prompt optimization.

12.5.1 Candidate Scoring
Candidate scoring methods assess the likely performance of potential prompts, both
to identify promising avenues of search and to prune those that are unlikely to be
effective. Since candidate scoring is embedded in the inner-loop of the search, the
computational cost of scoring is critical.

Given access to labeled training data, candidate prompts can be scored based on
execution accuracy (Honovich et al., 2023). In this approach, candidate promptsexecution

accuracy
are combined with inputs sampled from the training data and passed to an LLM for
decoding. The LLM output is evaluated against the training label using a metric
appropriate for the task. In the case of classification-based tasks, this is effectively a
0/1 loss — how many examples were correctly labeled with the given prompt. Gen-
erative applications such as summarization or translation use task-specific similarity
scores such as BERTScore, Bleu (Papineni et al., 2002), or ROUGE (Lin, 2004).

Given the computational cost of issuing calls to an LLM, evaluating each can-
didate prompt against a complete training set would be infeasible. Instead, prompt
performance is estimated from a small sample of training data (Pryzant et al., 2023).

12.5.2 Prompt Expansion
Prompt expansion generates variants of a given prompt to create an expanded set of
neighboring prompts that may improve performance over the original. A common
method is to use language models to create paraphrases. For example Zhou et al.
(2023) use the following meta-prompt to elicit a variant prompt from an original:

Prompting for a Variant

Generate a variation of the following instruction while keeping the semantic meaning.
Input: {INSTRUCTION}
Output: {COMPLETE}
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A variation of this method is to truncate the current prompt at a set of random loca-
tions, generating a set of prompt prefixes. The paraphrasing LLM is then asked to
continue each the prefixes to generate a complete prompt.

This methods is an example of an uninformed search. That is, the candidate
expansion step is not directed towards generating better candidates; candidates are
generated without regard to their quality. It it is the job of the priority queue to
elevate improved candidates when they are found. By contrast, Prasad et al. (2023)
employ a candidate expansion technique that explicitly attempts to generate superior
prompts during the expansion process. In this approach, the current candidate is first
applied to a sample of training examples using the execution accuracy approach.
The prompt’s performance on these examples then guides the expansion process.
Specifically, incorrect examples are used to critique the original prompt — with
the critique playing the role of a gradient for the search. The method includes the
following steps.

1. Run the prompt on a sample of training examples,

2. Identify examples where the prompt fails,

3. Ask an LLM to produce a critique of the prompt in light of the failed examples,

4. Provide the resulting critique to an LLM, and ask it to generate improved
prompts.

Given a prompt and a set of failed examples, Prasad et al. (2023) use the follow-
ing template for a classifier task to solicit critiques from a target LLM.

Critiquing Prompt

I’m trying to write a zero-shot classifier prompt.

My current prompt is: {prompt}
But this prompt gets the following examples wrong:

{error string}
Give {num feedbacks} reasons why the prompt could have

gotten these examples wrong.

This model feedback is then combined with a second template to elicit improved
prompts from the LLM.

Prompt Improvement Prompt

I’m trying to write a zero-shot classifier. My current prompt is:

{prompt}
But it gets the following examples wrong: {error str}

Based on these examples the problem with this prompt is that {gradient}.
Based on the above information, I wrote {steps per gradient} different

improved prompts. Each prompt is wrapped with <START> and <END>.

The {steps per gradient} new prompts are:
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12.6 Evaluating Prompted Language Models

Language models are evaluated in many ways. we introduced some evaluations for
in Section ??, including measuring the language model’s perplexity on a test set,
evaluating its accuracy on various NLP tasks, as well as benchmarks that help mea-
sure efficiency, toxicity, fairness, and so on. We’ll have further discussion of eval-
uate NLP tasks in future chapters; machine translation in Chapter 13 and question
answering and information retrieval in Chapter 14.

Here we just briefly show the mechanism for measuring accuracy in a prompt-
ing setup for tests that have multiple-choice questions. We show this for MMLUMMLU

(Massive Multitask Language Understanding), a commonly-used dataset of 15908
knowledge and reasoning questions in 57 areas including medicine, mathematics,
computer science, law, and others. For example, here is an MMLU question from
the microeconomics domain:1

MMLU microeconomics example

One of the reasons that the government discourages and regulates monopo-
lies is that
(A) producer surplus is lost and consumer surplus is gained.
(B) monopoly prices ensure productive efficiency but cost society allocative
efficiency.
(C) monopoly firms do not engage in significant research and development.
(D) consumer surplus is lost with higher prices and lower levels of output.

Fig. 12.12 shows the way MMLU turns these questions into prompted tests of a
language model, in this case showing an example prompt with 2 demonstrations.

MMLU mathematics prompt

The following are multiple choice questions about high school mathematics.
How many numbers are in the list 25, 26, ..., 100?
(A) 75 (B) 76 (C) 22 (D) 23
Answer: B

Compute i+ i2 + i3 + · · ·+ i258 + i259.
(A) -1 (B) 1 (C) i (D) -i
Answer: A

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
(A) 28 (B) 21 (C) 40 (D) 30
Answer:

Figure 12.12 Sample 2-shot prompt from MMLU testing high-school mathematics. (The
correct answer is (C)).

1 For those of you whose economics is a bit rusty, the correct answer is (D).
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12.7 Model Alignment with Human Preferences: RLHF
and DPO

TBD

12.8 Summary

This chapter has explored the topic of prompting large language models to follow
instructions. Here are some of the main points that we’ve covered:

• Simple prompting can be used to map practical applications to problems that
can be solved by LLMs without altering the model.

• Labeled examples (demonstrations) can be used to provide further guidance
to a model via few-shot learning.

• Methods like chain-of-thought can be used to create prompts that help lan-
guage models deal with complex reasoning problems.

• Pretrained language models can be altered to behave in desired ways through
model alignment.

• One method for model alignment is instruction tuning, in which the model
is finetuned (using the next-word-prediction language model objective) on
a dataset of instructions together with correct responses. Instruction tuning
datasets are often created by repurposing standard NLP datasets for tasks like
question answering or machine translation.
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