
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2024. All

rights reserved. Draft of August 20, 2024.

CHAPTER

3 N-gram Language Models

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Predicting is difficult—especially about the future, as the old quip goes. But how
about predicting something that seems much easier, like the next word someone is
going to say? What word, for example, is likely to follow

The water of Walden Pond is so beautifully ...

You might conclude that a likely word is blue, or green, or clear, but probably not
refrigerator nor this. In this chapter we formalize this intuition by introducing
language models or LMs, models that assign a probability to each possible nextlanguage model

LM word. Language models can also assign a probability to an entire sentence, telling
us that the following sequence has a much higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would we want to predict upcoming words, or know the probability of a sen-
tence? One reason is for generation: choosing contextually better words. For ex-
ample we can correct grammar or spelling errors like Their are two midterms,
in which There was mistyped as Their, or Everything has improve, in which
improve should have been improved. The phrase There are is more probable
than Their are, and has improved than has improve, so a language model can
help users select the more grammatical variant. Or for a speech system to recognize
that you said I will be back soonish and not I will be bassoon dish, it
helps to know that back soonish is a more probable sequence. Language models
can also help in augmentative and alternative communication (Trnka et al. 2007,
Kane et al. 2017). People can use AAC systems if they are physically unable toAAC

speak or sign but can instead use eye gaze or other movements to select words from
a menu. Word prediction can be used to suggest likely words for the menu.

Word prediction is also central to NLP for another reason: large language mod-
els are built just by training them to predict words!! As we’ll see in chapters 7-9,
large language models learn an enormous amount about language solely from being
trained to predict upcoming words from neighboring words.

In this chapter we introduce the simplest kind of language model: the n-gramn-gram

language model. An n-gram is a sequence of n words: a 2-gram (which we’ll call
bigram) is a two-word sequence of words like The water, or water of, and a 3-
gram (a trigram) is a three-word sequence of words like The water of, or water

2 CHAPTER 3 • N-GRAM LANGUAGE MODELS

of Walden. But we also (in a bit of terminological ambiguity) use the word ‘n-
gram’ to mean a probabilistic model that can estimate the probability of a word given
the n-1 previous words, and thereby also to assign probabilities to entire sequences.

In later chapters we will introduce the much more powerful neural large lan-
guage models, based on the transformer architecture of Chapter 9. But because
n-grams have a remarkably simple and clear formalization, we use them to intro-
duce some major concepts of large language modeling, including training and test
sets, perplexity, sampling, and interpolation.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “The water of Walden Pond is so
beautifully ” and we want to know the probability that the next word is blue:

P(blue|The water of Walden Pond is so beautifully) (3.1)

One way to estimate this probability is directly from relative frequency counts: take a
very large corpus, count the number of times we see The water of Walden Pond
is so beautifully, and count the number of times this is followed by blue. This
would be answering the question “Out of the times we saw the history h, how many
times was it followed by the word w”, as follows:

P(blue|The water of Walden Pond is so beautifully) =
C(The water of Walden Pond is so beautifully blue)

C(The water of Walden Pond is so beautifully)
(3.2)

If we had a large enough corpus, we could compute these two counts and estimate
the probability from Eq. 3.2. But even the entire web isn’t big enough to give us
good estimates for counts of entire sentences. This is because language is creative;
new sentences are invented all the time, and we can’t expect to get accurate counts
for such large objects as entire sentences. For this reason, we’ll need more clever
ways to estimate the probability of a word w given a history h, or the probability of
an entire word sequence W .

Let’s start with some notation. First, throughout this chapter we’ll continue to
refer to words, although in practice we usually compute language models over to-
kens like the BPE tokens of page ??. To represent the probability of a particular
random variable Xi taking on the value “the”, or P(Xi = “the”), we will use the
simplification P(the). We’ll represent a sequence of n words either as w1 . . .wn or
w1:n. Thus the expression w1:n−1 means the string w1,w2, ...,wn−1, but we’ll also
be using the equivalent notation w<n, which can be read as “all the elements of w
from w1 up to and including wn−1”. For the joint probability of each word in a se-
quence having a particular value P(X1 = w1,X2 = w2,X3 = w3, ...,Xn = wn) we’ll
use P(w1,w2, ...,wn).

Now, how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-
bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . .P(Xn|X1:n−1)

=

n∏
k=1

P(Xk|X1:k−1) (3.3)

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n−1)

=

n∏
k=1

P(wk|w1:k−1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n−1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption
The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n−1) by using only the conditional probability of the
preceding word P(wn|wn−1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n−1)≈ P(wn|wn−1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n−1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n−1)≈ P(wn|wn−N+1:n−1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)≈
n∏

k=1

P(wk|wk−1) (3.9)

4 CHAPTER 3 • N-GRAM LANGUAGE MODELS

3.1.2 How to estimate probabilities
How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum
likelihood
estimation

the MLE estimate for the parameters of an n-gram model by getting counts from
a corpus, and normalizing the counts so that they lie between 0 and 1. For proba-normalize

bilistic models, normalizing means dividing by some total count so that the resulting
probabilities fall between 0 and 1 and sum to 1.

For example, to compute a particular bigram probability of a word wn given a
previous word wn−1, we’ll compute the count of the bigram C(wn−1wn) and normal-
ize by the sum of all the bigrams that share the same first word wn−1:

P(wn|wn−1) =
C(wn−1wn)∑

w C(wn−1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol </s>.1

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = 0.67 P(Sam|<s>) = 1

3 = 0.33 P(am|I) = 2
3 = 0.67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = 0.5 P(do|I) = 1
3 = 0.33

For the general case of MLE n-gram parameter estimation:

P(wn|wn−N+1:n−1) =
C(wn−N+1:n−1 wn)

C(wn−N+1:n−1)
(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency
frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of
the training set T given the model M (i.e., P(T |M)). For example, suppose the word
Chinese occurs 400 times in a corpus of a million words. What is the probability
that a random word selected from some other text of, say, a million words will be the
word Chinese? The MLE of its probability is 400

1000000 or 0.0004. Now 0.0004 is not
the best possible estimate of the probability of Chinese occurring in all situations; it

1 We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-
symbol, instead of the sentence probabilities of all sentences summing to one, the sentence probabilities
for all sentences of a given length would sum to one. This model would define an infinite set of probability
distributions, with one distribution per sentence length. See Exercise 3.5.

3.1 • N-GRAMS 5

might turn out that in some other corpus or context Chinese is a very unlikely word.
But it is the probability that makes it most likely that Chinese will occur 400 times
in a million-word corpus. We present ways to modify the MLE estimates slightly to
get better probability estimates in Section 3.6.

Let’s move on to some examples from a real but tiny corpus, drawn from the
now-defunct Berkeley Restaurant Project, a dialogue system from the last century
that answered questions about a database of restaurants in Berkeley, California (Ju-
rafsky et al., 1994). Here are some sample user queries (text-normalized, by lower
casing and with punctuation striped) (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
tell me about chez panisse
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from part of a bigram grammar from text-
normalized Berkeley Restaurant Project sentences. Note that the majority of the
values are zero. In fact, we have chosen the sample words to cohere with each other;
a matrix selected from a random set of eight words would be even more sparse.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray. Each cell shows the count of
the column label word following the row label word. Thus the cell in row i and column want
means that want followed i 827 times in the corpus.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of
unigram counts):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= 0.25×0.33×0.0011×0.5×0.68
= 0.000031

6 CHAPTER 3 • N-GRAM LANGUAGE MODELS

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

We leave it as Exercise 3.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

3.1.3 Dealing with scale in large n-gram models
In practice, language models can be very large, leading to practical issues.

Log probabilities Language model probabilities are always stored and computed
in log space as log probabilities. This is because probabilities are (by definition)log

probabilities
less than or equal to 1, and so the more probabilities we multiply together, the
smaller the product becomes. Multiplying enough n-grams together would result
in numerical underflow. Adding in log space is equivalent to multiplying in linear
space, so we combine log probabilities by adding them. By adding log probabilities
instead of multiplying probabilities, we get results that are not as small. We do all
computation and storage in log space, and just convert back into probabilities if we
need to report probabilities at the end by taking the exp of the logprob:

p1× p2× p3× p4 = exp(log p1 + log p2 + log p3 + log p4) (3.13)

In practice throughout this book, we’ll use log to mean natural log (ln) when the
base is not specified.

Longer context Although for pedagogical purposes we have only described bi-
gram models, when there is sufficient training data we use trigram models, whichtrigram

condition on the previous two words, or 4-gram or 5-gram models. For these larger4-gram

5-gram n-grams, we’ll need to assume extra contexts to the left and right of the sentence end.
For example, to compute trigram probabilities at the very beginning of the sentence,
we use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

Some large n-gram datasets have been created, like the million most frequent
n-grams drawn from the Corpus of Contemporary American English (COCA), a
curated 1 billion word corpus of American English (Davies, 2020), Google’s Web
5-gram corpus from 1 trillion words of English web text (Franz and Brants, 2006),
or the Google Books Ngrams corpora (800 billion tokens from Chinese, English,
French, German, Hebrew, Italian, Russian, and Spanish) (Lin et al., 2012)).

3.2 • EVALUATING LANGUAGE MODELS: TRAINING AND TEST SETS 7

It’s even possible to use extremely long-range n-gram context. The infini-gram
(∞-gram) project (Liu et al., 2024) allows n-grams of any length. Their idea is to
avoid the expensive (in space and time) pre-computation of huge n-gram count ta-
bles. Instead, n-gram probabilities with arbitrary n are computed quickly at inference
time by using an efficient representation called suffix arrays. This allows computing
of n-grams of every length for enormous corpora of 5 trillion tokens.

Efficiency considerations are important when building large n-gram language
models. It is standard to quantize the probabilities using only 4-8 bits (instead of
8-byte floats), store the word strings on disk and represent them in memory only as
a 64-bit hash, and represent n-grams in special data structures like ‘reverse tries’.
It is also common to prune n-gram language models, for example by only keeping
n-grams with counts greater than some threshold or using entropy to prune less-
important n-grams (Stolcke, 1998). Efficient language model toolkits like KenLM
(Heafield 2011, Heafield et al. 2013) use sorted arrays and use merge sorts to effi-
ciently build the probability tables in a minimal number of passes through a large
corpus.

3.2 Evaluating Language Models: Training and Test Sets

The best way to evaluate the performance of a language model is to embed it in
an application and measure how much the application improves. Such end-to-end
evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way toextrinsic

evaluation
know if a particular improvement in the language model (or any component) is really
going to help the task at hand. Thus for evaluating n-gram language models that are
a component of some task like speech recognition or machine translation, we can
compare the performance of two candidate language models by running the speech
recognizer or machine translator twice, once with each language model, and seeing
which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. In-
stead, it’s helpful to have a metric that can be used to quickly evaluate potential
improvements in a language model. An intrinsic evaluation metric is one that mea-intrinsic

evaluation
sures the quality of a model independent of any application. In the next section we’ll
introduce perplexity, which is the standard intrinsic metric for measuring language
model performance, both for simple n-gram language models and for the more so-
phisticated neural large language models of Chapter 9.

In order to evaluate any machine learning model, we need to have at least three
distinct data sets: the training set, the development set, and the test set.training set

development
set

test set
The training set is the data we use to learn the parameters of our model; for

simple n-gram language models it’s the corpus from which we get the counts that
we normalize into the probabilities of the n-gram language model.

The test set is a different, held-out set of data, not overlapping with the training
set, that we use to evaluate the model. We need a separate test set to give us an
unbiased estimate of how well the model we trained can generalize when we apply
it to some new unknown dataset. A machine learning model that perfectly captured
the training data, but performed terribly on any other data, wouldn’t be much use
when it comes time to apply it to any new data or problem! We thus measure the
quality of an n-gram model by its performance on this unseen test set or test corpus.

How should we choose a training and test set? The test set should reflect the
language we want to use the model for. If we’re going to use our language model

8 CHAPTER 3 • N-GRAM LANGUAGE MODELS

for speech recognition of chemistry lectures, the test set should be text of chemistry
lectures. If we’re going to use it as part of a system for translating hotel booking re-
quests from Chinese to English, the test set should be text of hotel booking requests.
If we want our language model to be general purpose, then the test set should be
drawn from a wide variety of texts. In such cases we might collect a lot of texts
from different sources, and then divide it up into a training set and a test set. It’s
important to do the dividing carefully; if we’re building a general purpose model,
we don’t want the test set to consist of only text from one document, or one author,
since that wouldn’t be a good measure of general performance.

Thus if we are given a corpus of text and want to compare the performance of
two different n-gram models, we divide the data into training and test sets, and train
the parameters of both models on the training set. We can then compare how well
the two trained models fit the test set.

But what does it mean to “fit the test set”? The standard answer is simple:
whichever language model assigns a higher probability to the test set—which
means it more accurately predicts the test set—is a better model. Given two proba-
bilistic models, the better model is the one that better predicts the details of the test
data, and hence will assign a higher probability to the test data.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the
probability of a particular “test” sentence. If our test sentence is part of the training
corpus, we will mistakenly assign it an artificially high probability when it occurs
in the test set. We call this situation training on the test set. Training on the test
set introduces a bias that makes the probabilities all look too high, and causes huge
inaccuracies in perplexity, the probability-based metric we introduce below.

Even if we don’t train on the test set, if we test our language model on the
test set many times after making different changes, we might implicitly tune to its
characteristics, by noticing which changes seem to make the model better. For this
reason, we only want to run our model on the test set once, or a very few number of
times, once we are sure our model is ready.

For this reason we normally instead have a third dataset called a developmentdevelopment
test

test set or, devset. We do all our testing on this dataset until the very end, and then
we test on the test once to see how good our model is.

How do we divide our data into training, development, and test sets? We want
our test set to be as large as possible, since a small test set may be accidentally un-
representative, but we also want as much training data as possible. At the minimum,
we would want to pick the smallest test set that gives us enough statistical power
to measure a statistically significant difference between two potential models. It’s
important that the devset be drawn from the same kind of text as the test set, since
its goal is to measure how we would do on the test set.

3.3 Evaluating Language Models: Perplexity

We said above that we evaluate language models based on which one assigns a
higher probability to the test set. A better model is better at predicting upcoming
words, and so it will be less surprised by (i.e., assign a higher probability to) each
word when it occurs in the test set. Indeed, a perfect language model would correctly
guess each next word in a corpus, assigning it a probability of 1, and all the other
words a probability of zero. So given a test corpus, a better language model will

3.3 • EVALUATING LANGUAGE MODELS: PERPLEXITY 9

assign a higher probability to it than a worse language model.
But in fact, we do not use raw probability as our metric for evaluating language

models. The reason is that the probability of a test set (or any sequence) depends
on the number of words or tokens in it; the probability of a test set gets smaller the
longer the text. We’d prefer a metric that is per-word, normalized by length, so we
could compare across texts of different lengths. The metric we use is, a function of
probability called perplexity, is one of the most important metrics in NLP, used for
evaluating large language models as well as n-gram models.

The perplexity (sometimes abbreviated as PP or PPL) of a language model on aperplexity

test set is the inverse probability of the test set (one over the probability of the test
set), normalized by the number of words (or tokens). For this reason it’s sometimes
called the per-word or per-token perplexity. We normalize by the number of words
N by taking the Nth root. For a test set W = w1w2 . . .wN ,:

perplexity(W) = P(w1w2 . . .wN)
− 1

N (3.14)

= N

√
1

P(w1w2 . . .wN)

Or we can use the chain rule to expand the probability of W :

perplexity(W) = N

√√√√ N∏
i=1

1
P(wi|w1 . . .wi−1)

(3.15)

Note that because of the inverse in Eq. 3.15, the higher the probability of the word
sequence, the lower the perplexity. Thus the the lower the perplexity of a model on
the data, the better the model. Minimizing perplexity is equivalent to maximizing
the test set probability according to the language model. Why does perplexity use
the inverse probability? It turns out the inverse arises from the original definition
of perplexity from cross-entropy rate in information theory; for those interested, the
explanation is in the advanced Section 3.7. Meanwhile, we just have to remember
that perplexity has an inverse relationship with probability.

The details of computing the perplexity of a test set W depends on which lan-
guage model we use. Here’s the perplexity of W with a unigram language model
(just the geometric mean of the inverse of the unigram probabilities):

perplexity(W) = N

√√√√ N∏
i=1

1
P(wi)

(3.16)

The perplexity of W computed with a bigram language model is still a geometric
mean, but now of the inverse of the bigram probabilities:

perplexity(W) = N

√√√√ N∏
i=1

1
P(wi|wi−1)

(3.17)

What we generally use for word sequence in Eq. 3.15 or Eq. 3.17 is the entire
sequence of words in some test set. Since this sequence will cross many sentence
boundaries, if our vocabulary includes a between-sentence token <EOS> or separate
begin- and end-sentence markers <s> and </s> then we can include them in the

10 CHAPTER 3 • N-GRAM LANGUAGE MODELS

probability computation. If we do, then we also include one token per sentence in
the total count of word tokens N.2

We mentioned above that perplexity is a function of both the text and the lan-
guage model: given a text W , different language models will have different perplex-
ities. Because of this, perplexity can be used to compare different language models.
For example, here we trained unigram, bigram, and trigram grammars on 38 million
words from the Wall Street Journal newspaper. We then computed the perplexity of
each of these models on a WSJ test set using Eq. 3.16 for unigrams, Eq. 3.17 for
bigrams, and the corresponding equation for trigrams. The table below shows the
perplexity of the 1.5 million word test set according to each of the language models.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the n-gram gives us about the word
sequence, the higher the probability the n-gram will assign to the string. A trigram
model is less surprised than a unigram model because it has a better idea of what
words might come next, and so it assigns them a higher probability. And the higher
the probability, the lower the perplexity (since as Eq. 3.15 showed, perplexity is
related inversely to the probability of the test sequence according to the model). So
a lower perplexity tells us that a language model is a better predictor of the test set.

Note that in computing perplexities, the language model must be constructed
without any knowledge of the test set, or else the perplexity will be artificially low.
And the perplexity of two language models is only comparable if they use identical
vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im-
provement in the performance of a language processing task like speech recognition
or machine translation. Nonetheless, because perplexity usually correlates with task
improvements, it is commonly used as a convenient evaluation metric. Still, when
possible a model’s improvement in perplexity should be confirmed by an end-to-end
evaluation on a real task.

3.3.1 Perplexity as Weighted Average Branching Factor
It turns out that perplexity can also be thought of as the weighted average branch-
ing factor of a language. The branching factor of a language is the number of
possible next words that can follow any word. For example consider a mini artificial
language that is deterministic (no probabilities), any word can follow any word, and
whose vocabulary consists of only three colors:

L = {red,blue,green} (3.18)

The branching factor of this language is 3.
Now let’s make a probabilistic version of the same LM, let’s call it A, where each

word follows each other with equal probability 1
3 (it was trained on a training set with

equal counts for the 3 colors), and a test set T = “red red red red blue”.
Let’s first convince ourselves that if we compute the perplexity of this artificial

digit language on this test set (or any such test set) we indeed get 3. By Eq. 3.15, the

2 For example if we use both begin and end tokens, we would include the end-of-sentence marker </s>
but not the beginning-of-sentence marker <s> in our count of N; This is because the end-sentence token is
followed directly by the begin-sentence token with probability almost 1, so we don’t want the probability
of that fake transition to influence our perplexity.

3.4 • SAMPLING SENTENCES FROM A LANGUAGE MODEL 11

perplexity of A on T is:

perplexityA(T) = PA(red red red red blue)
− 1

5

=

((
1
3

)5
)− 1

5

=

(
1
3

)−1

= 3 (3.19)

But now suppose red was very likely in the training set a different LM B, and so B
has the following probabilities:

P(red) = 0.8 P(green) = 0.1 P(blue) = 0.1 (3.20)

We should expect the perplexity of the same test set red red red red blue for
language model B to be lower since most of the time the next color will be red, which
is very predictable, i.e. has a high probability. So the probability of the test set will
be higher, and since perplexity is inversely related to probability, the perplexity will
be lower. Thus, although the branching factor is still 3, the perplexity or weighted
branching factor is smaller:

perplexityB(T) = PB(red red red red blue)
−1/5

= 0.04096−
1
5

= 0.527−1 = 1.89 (3.21)

3.4 Sampling sentences from a language model

0 1

0.06

the

.06

0.03

of
0.02

a
0.02

to in

.09 .11 .13 .15
…

however
(p=0.0003)

polyphonic
p=0.0000018

…0.02

.66 .99
…

Figure 3.3 A visualization of the sampling distribution for sampling sentences by repeat-
edly sampling unigrams. The blue bar represents the relative frequency of each word (we’ve
ordered them from most frequent to least frequent, but the choice of order is arbitrary). The
number line shows the cumulative probabilities. If we choose a random number between 0
and 1, it will fall in an interval corresponding to some word. The expectation for the random
number to fall in the larger intervals of one of the frequent words (the, of, a) is much higher
than in the smaller interval of one of the rare words (polyphonic).

One important way to visualize what kind of knowledge a language model em-
bodies is to sample from it. Sampling from a distribution means to choose randomsampling

points according to their likelihood. Thus sampling from a language model—which
represents a distribution over sentences—means to generate some sentences, choos-
ing each sentence according to its likelihood as defined by the model. Thus we are
more likely to generate sentences that the model thinks have a high probability and
less likely to generate sentences that the model thinks have a low probability.

12 CHAPTER 3 • N-GRAM LANGUAGE MODELS

This technique of visualizing a language model by sampling was first suggested
very early on by Shannon (1948) and Miller and Selfridge (1950). It’s simplest to
visualize how this works for the unigram case. Imagine all the words of the English
language covering the number line between 0 and 1, each word covering an interval
proportional to its frequency. Fig. 3.3 shows a visualization, using a unigram LM
computed from the text of this book. We choose a random value between 0 and 1,
find that point on the probability line, and print the word whose interval includes this
chosen value. We continue choosing random numbers and generating words until
we randomly generate the sentence-final token </s>.

We can use the same technique to generate bigrams by first generating a ran-
dom bigram that starts with <s> (according to its bigram probability). Let’s say the
second word of that bigram is w. We next choose a random bigram starting with w
(again, drawn according to its bigram probability), and so on.

3.5 Generalizing vs. overfitting the training set

The n-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a
given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.

We can use the sampling method from the prior section to visualize both of
these facts! To give an intuition for the increasing power of higher-order n-grams,
Fig. 3.4 shows random sentences generated from unigram, bigram, trigram, and 4-
gram models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.4 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context, the more coherent the sentences. The unigram sen-
tences show no coherent relation between words nor any sentence-final punctua-
tion. The bigram sentences have some local word-to-word coherence (especially
considering punctuation as words). The trigram sentences are beginning to look a
lot like Shakespeare. Indeed, the 4-gram sentences look a little too much like Shake-
speare. The words It cannot be but so are directly from King John. This is because,
not to put the knock on Shakespeare, his oeuvre is not very large as corpora go

3.5 • GENERALIZING VS. OVERFITTING THE TRAINING SET 13

(N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of
possible 4-grams is V 4 = 7× 1017. Thus, once the generator has chosen the first
3-gram (It cannot be), there are only seven possible next words for the 4th element
(but, I, that, thus, this, and the period).

To get an idea of the dependence on the training set, let’s look at LMs trained on a
completely different corpus: the Wall Street Journal (WSJ) newspaper. Shakespeare
and the WSJ are both English, so we might have expected some overlap between our
n-grams for the two genres. Fig. 3.5 shows sentences generated by unigram, bigram,
and trigram grammars trained on 40 million words from WSJ.

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.5 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 3.4. While they both
model “English-like sentences”, there is no overlap in the generated sentences, and
little overlap even in small phrases. Statistical models are pretty useless as predictors
if the training sets and the test sets are as different as Shakespeare and the WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For exam-
ple some tweets will use features of African American English (AAE)— the name
for the many variations of language used in African American communities (King,
2020). Such features can include words like finna—an auxiliary verb that marks
immediate future tense —that don’t occur in other varieties, or spellings like den for
then, in tweets like this one (Blodgett and O’Connor, 2017):

(3.22) Bored af den my phone finna die!!!

while tweets from English-based languages like Nigerian Pidgin have markedly dif-
ferent vocabulary and n-gram patterns from American English (Jurgens et al., 2017):

(3.23) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Is it possible for the testset nonetheless to have a word we have never seen be-
fore? What happens if the word Jurafsky never occurs in our training set, but pops
up in the test set? The answer is that although words might be unseen, we actu-
ally run our NLP algorithms not on words but on subword tokens. With subword

14 CHAPTER 3 • N-GRAM LANGUAGE MODELS

tokenization (like the BPE algorithm of Chapter 2) any word can be modeled as a
sequence of known smaller subwords, if necessary by a sequence of individual let-
ters. So although for convenience we’ve been referring to words in this chapter, the
language model vocabulary is actually the set of tokens rather than words, and the
test set can never contain unseen tokens.

3.6 Smoothing, Interpolation, and Backoff

There is a problem with using maximum likelihood estimates for probabilities: any
finite training corpus will be missing some perfectly acceptable English word se-
quences. That is, cases where a particular n-gram never occurs in the training data
but appears in the test set. Perhaps our training corpus has the words ruby and
slippers in it but just happens not to have the phrase ruby slippers.

These unseen sequences or zeros—sequences that don’t occur in the training setzeros

but do occur in the test set—are a problem for two reasons. First, their presence
means we are underestimating the probability of word sequences that might occur,
which hurts the performance of any application we want to run on this data. Second,
if the probability of any word in the test set is 0, the probability of the whole test
set is 0. Perplexity is defined based on the inverse probability of the test set. Thus
if some words in context have zero probability, we can’t compute perplexity at all,
since we can’t divide by 0!

The standard way to deal with putative “zero probability n-grams” that should re-
ally have some non-zero probability is called smoothing or discounting. Smoothingsmoothing

discounting algorithms shave off a bit of probability mass from some more frequent events and
give it to unseen events. Here we’ll introduce some simple smoothing algorithms:
Laplace (add-one) smoothing, stupid backoff, and n-gram interpolation.

3.6.1 Laplace Smoothing
The simplest way to do smoothing is to add one to all the n-gram counts, before
we normalize them into probabilities. All the counts that used to be zero will now
have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called
Laplace smoothing. Laplace smoothing does not perform well enough to be usedLaplace

smoothing
in modern n-gram models, but it usefully introduces many of the concepts that we
see in other smoothing algorithms, gives a useful baseline, and is also a practical
smoothing algorithm for other tasks like text classification (Chapter 4).

Let’s start with the application of Laplace smoothing to unigram probabilities.
Recall that the unsmoothed maximum likelihood estimate of the unigram probability
of the word wi is its count ci normalized by the total number of word tokens N:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate name add-
one smoothing). Since there are V words in the vocabulary and each one was in-add-one

cremented, we also need to adjust the denominator to take into account the extra V
observations. (What happens to our P values if we don’t increase the denominator?)

PLaplace(wi) =
ci +1
N +V

(3.24)

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 15

Instead of changing both the numerator and denominator, it is convenient to describe
how a smoothing algorithm affects the numerator, by defining an adjusted count c∗.
This adjusted count is easier to compare directly with the MLE counts and can be
turned into a probability like an MLE count by normalizing by N. To define this
count, since we are only changing the numerator in addition to adding 1 we’ll also
need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.25)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount di, the ratio of the discounted countsdiscount

to the original counts:

di =
c∗i
ci

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

PMLE(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.26)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.27)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be

16 CHAPTER 3 • N-GRAM LANGUAGE MODELS

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 3.7 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 3.8 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

computed by Eq. 3.28. Figure 3.8 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(3.28)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from 0.66 in the unsmoothed case to 0.26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is 0.39,
while the discount for Chinese food is 0.10, a factor of 10! The sharp change occurs
because too much probability mass is moved to all the zeros.

3.6.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a
fractional count k (0.5? 0.01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(3.29)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 17

3.6.3 Language Model Interpolation
There is an alternative source of knowledge we can draw on to solve the problem
of zero frequency n-grams. If we are trying to compute P(wn|wn−2wn−1) but we
have no examples of a particular trigram wn−2wn−1wn, we can instead estimate its
probability by using the bigram probability P(wn|wn−1). Similarly, if we don’t have
counts to compute P(wn|wn−1), we can look to the unigram P(wn). In other words,
sometimes using less context can help us generalize more for contexts that the model
hasn’t learned much about.

The most common way to use this n-gram hierarchy is called interpolation:interpolation

computing a new probability by interpolating (weighting and combining) the tri-
gram, bigram, and unigram probabilities.3 In simple linear interpolation, we com-
bine different order n-grams by linearly interpolating them. Thus, we estimate the
trigram probability P(wn|wn−2wn−1) by mixing together the unigram, bigram, and
trigram probabilities, each weighted by a λ :

P̂(wn|wn−2wn−1) = λ1P(wn)

+λ2P(wn|wn−1)

+λ3P(wn|wn−2wn−1) (3.30)

The λ s must sum to 1, making Eq. 3.30 equivalent to a weighted average. In a
slightly more sophisticated version of linear interpolation, each λ weight is com-
puted by conditioning on the context. This way, if we have particularly accurate
counts for a particular bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, so we can make the λ s for those trigrams
higher and thus give that trigram more weight in the interpolation. Equation 3.31
shows the equation for interpolation with context-conditioned weights, where each
lambda takes an argument that is the two prior word context:

P̂(wn|wn−2wn−1) = λ1(wn−2:n−1)P(wn)

+λ2(wn−2:n−1)P(wn|wn−1)

+λ3(wn−2:n−1)P(wn|wn−2wn−1) (3.31)

How are these λ values set? Both the simple interpolation and conditional interpo-
lation λ s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus, so-called because we hold it out from the training data, that we use
to set these λ values.4 We do so by choosing the λ values that maximize the likeli-
hood of the held-out corpus. That is, we fix the n-gram probabilities and then search
for the λ values that—when plugged into Eq. 3.30—give us the highest probability
of the held-out set. There are various ways to find this optimal set of λ s. One way
is to use the EM algorithm, an iterative learning algorithm that converges on locally
optimal λ s (Jelinek and Mercer, 1980).

3.6.4 Stupid Backoff
An alternative to interpolation is backoff. In a backoff model, if the n-gram we needbackoff

3 We won’t discuss the less-common alternative, called backoff, in which we use the trigram if the
evidence is sufficient for it, but if not we instead just use the bigram, otherwise the unigram. That is, we
only “back off” to a lower-order n-gram if we have zero evidence for a higher-order n-gram.
4 Held-out corpora are generally used to set hyperparameters, which are special parameters, unlike
regular counts that are learned from the training data; we’ll discuss hyperparameters in Chapter 7.

18 CHAPTER 3 • N-GRAM LANGUAGE MODELS

has zero counts, we approximate it by backing off to the (n-1)-gram. We continue
backing off until we reach a history that has some counts. For a backoff model to
give a correct probability distribution, we have to discount the higher-order n-gramsdiscount

to save some probability mass for the lower order n-grams. In practice, instead of
discounting, it’s common to use a much simpler non-discounted backoff algorithm
called stupid backoff (Brants et al., 2007).stupid backoff

Stupid backoff gives up the idea of trying to make the language model a true
probability distribution. There is no discounting of the higher-order probabilities. If
a higher-order n-gram has a zero count, we simply backoff to a lower order n-gram,
weighed by a fixed (context-independent) weight. This algorithm does not produce
a probability distribution, so we’ll follow Brants et al. (2007) in referring to it as S:

S(wi|wi−N+1: i−1) =

count(wi−N+1: i)

count(wi−N+1: i−1)
if count(wi−N+1: i)> 0

λS(wi|wi−N+2: i−1) otherwise
(3.32)

The backoff terminates in the unigram, which has score S(w) = count(w)
N . Brants et al.

(2007) find that a value of 0.4 worked well for λ .

3.7 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 3.3 as a way to evaluate n-gram models on
a test set. A better n-gram model is one that assigns a higher probability to the
test data, and perplexity is a normalized version of the probability of the test set.
The perplexity measure actually arises from the information-theoretic concept of
cross-entropy, which explains otherwise mysterious properties of perplexity (why
the inverse probability, for example?) and its relationship to entropy. Entropy is aEntropy

measure of information. Given a random variable X ranging over whatever we are
predicting (words, letters, parts of speech), the set of which we’ll call χ , and with a
particular probability function, call it p(x), the entropy of the random variable X is:

H(X) =−
∑
x∈χ

p(x) log2 p(x) (3.33)

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits.

One intuitive way to think about entropy is as a lower bound on the number of
bits it would take to encode a certain decision or piece of information in the optimal
coding scheme. Consider an example from the standard information theory textbook
Cover and Thomas (1991). Imagine that we want to place a bet on a horse race but
it is too far to go all the way to Yonkers Racetrack, so we’d like to send a short
message to the bookie to tell him which of the eight horses to bet on. One way to
encode this message is just to use the binary representation of the horse’s number
as the code; thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with
horse 8 coded as 000. If we spend the whole day betting and each horse is coded
with 3 bits, on average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed and that we represent it as the prior probability of each horse as follows:

3.7 • ADVANCED: PERPLEXITY’S RELATION TO ENTROPY 19

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variable X that ranges over horses gives us a lower
bound on the number of bits and is

H(X) = −
i=8∑
i=1

p(i) log2 p(i)

= − 1
2 log2

1
2−

1
4 log2

1
4−

1
8 log2

1
8−

1
16 log2

1
16−4(1

64 log2
1

64)

= 2 bits (3.34)

A code that averages 2 bits per race can be built with short encodings for more
probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code 0, and the remaining horses as 10,
then 110, 1110, 111100, 111101, 111110, and 111111.

What if the horses are equally likely? We saw above that if we used an equal-
length binary code for the horse numbers, each horse took 3 bits to code, so the
average was 3. Is the entropy the same? In this case each horse would have a
probability of 1

8 . The entropy of the choice of horses is then

H(X) =−
i=8∑
i=1

1
8

log2
1
8
=− log2

1
8
= 3 bits (3.35)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involves sequences. For a grammar, for example, we
will be computing the entropy of some sequence of words W = {w1,w2, . . . ,wn}.
One way to do this is to have a variable that ranges over sequences of words. For
example we can compute the entropy of a random variable that ranges over all se-
quences of words of length n in some language L as follows:

H(w1,w2, . . . ,wn) =−
∑

w1:n∈L

p(w1:n) log p(w1:n) (3.36)

We could define the entropy rate (we could also think of this as the per-wordentropy rate

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(w1:n) =−
1
n

∑
w1:n∈L

p(w1:n) log p(w1:n) (3.37)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic process L that produces a
sequence of words, and allow W to represent the sequence of words w1, . . . ,wn, then
L’s entropy rate H(L) is defined as

H(L) = lim
n→∞

1
n

H(w1:n)

= − lim
n→∞

1
n

∑
W∈L

p(w1:n) log p(w1:n) (3.38)

20 CHAPTER 3 • N-GRAM LANGUAGE MODELS

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and Thomas
1991) states that if the language is regular in certain ways (to be exact, if it is both
stationary and ergodic),

H(L) = lim
n→∞
−1

n
log p(w1:n) (3.39)

That is, we can take a single sequence that is long enough instead of summing over
all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem
is that a long-enough sequence of words will contain in it many other shorter se-
quences and that each of these shorter sequences will reoccur in the longer sequence
according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to aStationary

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence n-grams, are stationary. For example, in
a bigram, Pi is dependent only on Pi−1. So if we shift our time index by x, Pi+x is
still dependent on Pi+x−1. But natural language is not stationary, since as we show
in Appendix D, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus, our statistical models only give
an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic process by taking a very long
sample of the output and computing its average log probability.

Now we are ready to introduce cross-entropy. The cross-entropy is useful whencross-entropy

we don’t know the actual probability distribution p that generated some data. It
allows us to use some m, which is a model of p (i.e., an approximation to p). The
cross-entropy of m on p is defined by

H(p,m) = lim
n→∞
−1

n

∑
W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn) (3.40)

That is, we draw sequences according to the probability distribution p, but sum the
log of their probabilities according to m.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞
−1

n
logm(w1w2 . . .wn) (3.41)

This means that, as for entropy, we can estimate the cross-entropy of a model m
on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up-
per bound on the entropy H(p). For any model m:

H(p)≤ H(p,m) (3.42)

This means that we can use some simplified model m to help estimate the true en-
tropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus,
the difference between H(p,m) and H(p) is a measure of how accurate a model is.
Between two models m1 and m2, the more accurate model will be the one with the

3.8 • SUMMARY 21

lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so
a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy
as we saw it in Eq. 3.41. Cross-entropy is defined in the limit as the length of the
observed word sequence goes to infinity. We approximate this cross-entropy by
relying on a (sufficiently long) sequence of fixed length. This approximation to the
cross-entropy of a model M = P(wi|wi−N+1: i−1) on a sequence of words W is

H(W) =− 1
N

logP(w1w2 . . .wN) (3.43)

The perplexity of a model P on a sequence of words W is now formally defined asperplexity

2 raised to the power of this cross-entropy:

Perplexity(W) = 2H(W)

= P(w1w2 . . .wN)
− 1

N

= N

√
1

P(w1w2 . . .wN)

3.8 Summary

This chapter introduced language modeling via the n-gram model, a classic model
that allows us to introduce many of the basic concepts in language modeling.

• Language models offer a way to assign a probability to a sentence or other
sequence of words or tokens, and to predict a word or token from preceding
words or tokens.

• N-grams are perhaps the simplest kind of language model. They are Markov
models that estimate words from a fixed window of previous words. N-gram
models can be trained by counting in a training corpus and normalizing the
counts (the maximum likelihood estimate).

• N-gram language models can be evaluated on a test set using perplexity.
• The perplexity of a test set according to a language model is a function of

the probability of the test set: the inverse test set probability according to the
model, normalized by the length.

• Sampling from a language model means to generate some sentences, choos-
ing each sentence according to its likelihood as defined by the model.

• Smoothing algorithms provide a way to estimate probabilities for events that
were unseen in training. Commonly used smoothing algorithms for n-grams
include add-1 smoothing, or rely on lower-order n-gram counts through inter-
polation.

Bibliographical and Historical Notes
The underlying mathematics of the n-gram was first proposed by Markov (1913),
who used what are now called Markov chains (bigrams and trigrams) to predict
whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con-
sonant. Markov classified 20,000 letters as V or C and computed the bigram and

22 CHAPTER 3 • N-GRAM LANGUAGE MODELS

trigram probability that a given letter would be a vowel given the previous one or
two letters. Shannon (1948) applied n-grams to compute approximations to English
word sequences. Based on Shannon’s work, Markov models were commonly used in
engineering, linguistic, and psychological work on modeling word sequences by the
1950s. In a series of extremely influential papers starting with Chomsky (1956) and
including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued
that “finite-state Markov processes”, while a possibly useful engineering heuristic,
were incapable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computational linguists to ignore
work in statistical modeling for decades.

The resurgence of n-gram language models came from Fred Jelinek and col-
leagues at the IBM Thomas J. Watson Research Center, who were influenced by
Shannon, and James Baker at CMU, who was influenced by the prior, classified
work of Leonard Baum and colleagues on these topics at labs like the US Institute
for Defense SAnalyses (IDA) after they were declassified. Independently these two
labs successfully used n-grams in their speech recognition systems at the same time
(Baker 1975b, Jelinek et al. 1975, Baker 1975a, Bahl et al. 1983, Jelinek 1990). The
terms “language model” and “perplexity” were first used for this technology by the
IBM group. Jelinek and his colleagues used the term language model in a pretty
modern way, to mean the entire set of linguistic influences on word sequence prob-
abilities, including grammar, semantics, discourse, and even speaker characteristics,
rather than just the particular n-gram model itself.

Add-one smoothing derives from Laplace’s 1812 law of succession and was first
applied as an engineering solution to the zero frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-
one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were
proposed in the 80s and 90s, including Good-Turing discounting—first applied to the
n-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)— Witten-
Bell discounting (Witten and Bell, 1991), and varieties of class-based n-gram mod-class-based

n-gram
els that used information about word classes. Starting in the late 1990s, Chen and
Goodman performed a number of carefully controlled experiments comparing dif-
ferent algorithms and parameters (Chen and Goodman 1999, Goodman 2006, inter
alia). They showed the advantages of Modified Interpolated Kneser-Ney, which
became the standard baseline for n-gram language modeling around the turn of the
century, especially because they showed that caches and class-based models pro-
vided only minor additional improvement. SRILM (Stolcke, 2002) and KenLM
(Heafield 2011, Heafield et al. 2013) are publicly available toolkits for building n-
gram language models.

Large language models are based on neural networks rather than n-grams, en-
abling them to solve the two major problems with n-grams: (1) the number of param-
eters increases exponentially as the n-gram order increases, and (2) n-grams have no
way to generalize from training examples to test set examples unless they use iden-
tical words. Neural language models instead project words into a continuous space
in which words with similar contexts have similar representations. We’ll introduce
transformer-based large language models in Chapter 9, along the way introducing
feedforward language models (Bengio et al. 2006, Schwenk 2007) in Chapter 7 and
recurrent language models (Mikolov, 2012) in Chapter 8.

EXERCISES 23

Exercises
3.1 Write out the equation for trigram probability estimation (modifying Eq. 3.11).

Now write out all the non-zero trigram probabilities for the I am Sam corpus
on page 4.

3.2 Calculate the probability of the sentence i want chinese food. Give two
probabilities, one using Fig. 3.2 and the ‘useful probabilities’ just below it on
page 6, and another using the add-1 smoothed table in Fig. 3.7. Assume the
additional add-1 smoothed probabilities P(i|<s>)= 0.19 and P(</s>|food)=
0.40.

3.3 Which of the two probabilities you computed in the previous exercise is higher,
unsmoothed or smoothed? Explain why.

3.4 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

Using a bigram language model with add-one smoothing, what is P(Sam |
am)? Include <s> and </s> in your counts just like any other token.

3.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram
grammar on the following training corpus without using the end-symbol </s>:

<s> a b

<s> b b

<s> b a

<s> a a

Demonstrate that your bigram model does not assign a single probability dis-
tribution across all sentence lengths by showing that the sum of the probability
of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the
sum of the probability of all possible 3 word sentences over the alphabet {a,b}
is also 1.0.

3.6 Suppose we train a trigram language model with add-one smoothing on a
given corpus. The corpus contains V word types. Express a formula for esti-
mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2),
in terms of various n-gram counts and V. Use the notation c(w1,w2,w3) to
denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and
so on for bigrams and unigrams.

3.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bi-
gram model and a maximum-likelihood unigram model with λ1 =

1
2 and λ2 =

1
2 , what is P(Sam|am)? Include <s> and </s> in your counts just like any
other token.

3.8 Write a program to compute unsmoothed unigrams and bigrams.

24 CHAPTER 3 • N-GRAM LANGUAGE MODELS

3.9 Run your n-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

3.10 Add an option to your program to generate random sentences.

3.11 Add an option to your program to compute the perplexity of a test set.

3.12 You are given a training set of 100 numbers that consists of 91 zeros and 1
each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0
0 0. What is the unigram perplexity?

Exercises 25

Algoet, P. H. and T. M. Cover. 1988. A sandwich proof of
the Shannon-McMillan-Breiman theorem. The Annals of
Probability, 16(2):899–909.

Bahl, L. R., F. Jelinek, and R. L. Mercer. 1983. A maxi-
mum likelihood approach to continuous speech recogni-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(2):179–190.

Baker, J. K. 1975a. The DRAGON system – An overview.
IEEE Transactions on ASSP, ASSP-23(1):24–29.

Baker, J. K. 1975b. Stochastic modeling for automatic
speech understanding. In D. R. Reddy, ed., Speech Recog-
nition. Academic Press.

Bengio, Y., H. Schwenk, J.-S. Senécal, F. Morin, and J.-L.
Gauvain. 2006. Neural probabilistic language models. In
Innovations in Machine Learning, 137–186. Springer.

Blodgett, S. L. and B. O’Connor. 2017. Racial disparity in
natural language processing: A case study of social media
African-American English. FAT/ML Workshop, KDD.

Brants, T., A. C. Popat, P. Xu, F. J. Och, and J. Dean.
2007. Large language models in machine translation.
EMNLP/CoNLL.

Chen, S. F. and J. Goodman. 1999. An empirical study of
smoothing techniques for language modeling. Computer
Speech and Language, 13:359–394.

Chomsky, N. 1956. Three models for the description of
language. IRE Transactions on Information Theory,
2(3):113–124.

Chomsky, N. 1957. Syntactic Structures. Mouton.
Church, K. W. and W. A. Gale. 1991. A comparison of the

enhanced Good-Turing and deleted estimation methods
for estimating probabilities of English bigrams. Com-
puter Speech and Language, 5:19–54.

Cover, T. M. and J. A. Thomas. 1991. Elements of Informa-
tion Theory. Wiley.

Davies, M. 2020. The Corpus of Contemporary Amer-
ican English (COCA): One billion words, 1990-2019.
https://www.english-corpora.org/coca/.

Franz, A. and T. Brants. 2006. All our n-gram are
belong to you. https://research.google/blog/

all-our-n-gram-are-belong-to-you/.
Gale, W. A. and K. W. Church. 1994. What is wrong with

adding one? In N. Oostdijk and P. de Haan, eds, Corpus-
Based Research into Language, 189–198. Rodopi.

Goodman, J. 2006. A bit of progress in language model-
ing: Extended version. Technical Report MSR-TR-2001-
72, Machine Learning and Applied Statistics Group, Mi-
crosoft Research, Redmond, WA.

Heafield, K. 2011. KenLM: Faster and smaller language
model queries. Workshop on Statistical Machine Trans-
lation.

Heafield, K., I. Pouzyrevsky, J. H. Clark, and P. Koehn. 2013.
Scalable modified Kneser-Ney language model estima-
tion. ACL.

Jeffreys, H. 1948. Theory of Probability, 2nd edition. Claren-
don Press. Section 3.23.

Jelinek, F. 1990. Self-organized language modeling for
speech recognition. In A. Waibel and K.-F. Lee, eds,
Readings in Speech Recognition, 450–506. Morgan Kauf-
mann. Originally distributed as IBM technical report in
1985.

Jelinek, F. and R. L. Mercer. 1980. Interpolated estimation
of Markov source parameters from sparse data. In E. S.
Gelsema and L. N. Kanal, eds, Proceedings, Workshop
on Pattern Recognition in Practice, 381–397. North Hol-
land.

Jelinek, F., R. L. Mercer, and L. R. Bahl. 1975. Design of a
linguistic statistical decoder for the recognition of contin-
uous speech. IEEE Transactions on Information Theory,
IT-21(3):250–256.

Johnson, W. E. 1932. Probability: deductive and inductive
problems (appendix to). Mind, 41(164):421–423.

Jurafsky, D., C. Wooters, G. Tajchman, J. Segal, A. Stolcke,
E. Fosler, and N. Morgan. 1994. The Berkeley restaurant
project. ICSLP.

Jurgens, D., Y. Tsvetkov, and D. Jurafsky. 2017. Incorpo-
rating dialectal variability for socially equitable language
identification. ACL.

Kane, S. K., M. R. Morris, A. Paradiso, and J. Campbell.
2017. “at times avuncular and cantankerous, with the
reflexes of a mongoose”: Understanding self-expression
through augmentative and alternative communication de-
vices. CSCW.

King, S. 2020. From African American Vernacular English
to African American Language: Rethinking the study of
race and language in African Americans’ speech. Annual
Review of Linguistics, 6:285–300.

Lin, Y., J.-B. Michel, E. Aiden Lieberman, J. Orwant,
W. Brockman, and S. Petrov. 2012. Syntactic annotations
for the Google books NGram corpus. ACL.

Liu, J., S. Min, L. Zettlemoyer, Y. Choi, and H. Hajishirzi.
2024. Infini-gram: Scaling unbounded n-gram language
models to a trillion tokens. ArXiv preprint.

Markov, A. A. 1913. Essai d’une recherche statistique sur
le texte du roman “Eugene Onegin” illustrant la liaison
des epreuve en chain (‘Example of a statistical investiga-
tion of the text of “Eugene Onegin” illustrating the de-
pendence between samples in chain’). Izvistia Impera-
torskoi Akademii Nauk (Bulletin de l’Académie Impériale
des Sciences de St.-Pétersbourg), 7:153–162.

Mikolov, T. 2012. Statistical language models based on neu-
ral networks. Ph.D. thesis, Brno University of Technol-
ogy.

Miller, G. A. and N. Chomsky. 1963. Finitary models of lan-
guage users. In R. D. Luce, R. R. Bush, and E. Galanter,
eds, Handbook of Mathematical Psychology, volume II,
419–491. John Wiley.

Miller, G. A. and J. A. Selfridge. 1950. Verbal context and
the recall of meaningful material. American Journal of
Psychology, 63:176–185.

Nádas, A. 1984. Estimation of probabilities in the language
model of the IBM speech recognition system. IEEE
Transactions on ASSP, 32(4):859–861.

Schwenk, H. 2007. Continuous space language models.
Computer Speech & Language, 21(3):492–518.

Shannon, C. E. 1948. A mathematical theory of commu-
nication. Bell System Technical Journal, 27(3):379–423.
Continued in the following volume.

Stolcke, A. 1998. Entropy-based pruning of backoff lan-
guage models. Proc. DARPA Broadcast News Transcrip-
tion and Understanding Workshop.

https://www.jstor.org/stable/2243846
https://www.jstor.org/stable/2243846
https://doi.org/10.1109/TASSP.1975.1162650
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/D07-1090
https://doi.org/10.1016/0885-2308(91)90016-J
https://doi.org/10.1016/0885-2308(91)90016-J
https://doi.org/10.1016/0885-2308(91)90016-J
https://www.english-corpora.org/coca/
https://research.google/blog/all-our-n-gram-are-belong-to-you/
https://research.google/blog/all-our-n-gram-are-belong-to-you/
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.1145/2998181.2998284
https://doi.org/10.1145/2998181.2998284
https://doi.org/10.1145/2998181.2998284
https://doi.org/10.1145/2998181.2998284
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://www.aclweb.org/anthology/P12-3029
https://www.aclweb.org/anthology/P12-3029
https://arxiv.org/abs/2401.17377
https://arxiv.org/abs/2401.17377
https://doi.org/10.1016/j.csl.2006.09.003
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

26 Chapter 3 • N-gram Language Models

Stolcke, A. 2002. SRILM – an extensible language modeling
toolkit. ICSLP.

Trnka, K., D. Yarrington, J. McCaw, K. F. McCoy, and
C. Pennington. 2007. The effects of word prediction on
communication rate for AAC. NAACL-HLT.

Witten, I. H. and T. C. Bell. 1991. The zero-frequency prob-
lem: Estimating the probabilities of novel events in adap-
tive text compression. IEEE Transactions on Information
Theory, 37(4):1085–1094.

https://www.aclweb.org/anthology/N07-2044
https://www.aclweb.org/anthology/N07-2044

	N-gram Language Models
	N-Grams
	The Markov assumption
	How to estimate probabilities
	Dealing with scale in large n-gram models

	Evaluating Language Models: Training and Test Sets
	Evaluating Language Models: Perplexity
	Perplexity as Weighted Average Branching Factor

	Sampling sentences from a language model
	Generalizing vs. overfitting the training set
	Smoothing, Interpolation, and Backoff
	Laplace Smoothing
	Add-k smoothing
	Language Model Interpolation
	Stupid Backoff

	Advanced: Perplexity's Relation to Entropy
	Summary
	Bibliographical and Historical Notes
	Exercises

