N-gram
Language
Modeling

Introduction to N-gram
Language Models

Predicting words

The water of Walden Pond is beautifully ...

blue
green
clear

*refrigerator
*that

Language Models

Systems that can predict upcoming words
* Can assign a probability to each potential next word
* Can assign a probability to a whole sentence

Why word prediction?

It's a helpful part of language tasks

* Grammar or spell checking
Their are two midterms Fheir There are two midterms
Everything has improve Everything has impreve improved

* Speech recognition
| will be back soonish | will be bassoon dish

Why word prediction?

It's how large language models (LLMs) work!
LLMs are trained to predict words
Left-to-right (autoregressive) LMs learn to predict next word

LLMs generate text by predicting words
By predicting the next word over and over again

Language Modeling (LM) more formally

Goal: compute the probability of a sentence or
sequence of words W:

P(W) = P(w,,W,,W3,W,,We...W,)

Related task: probability of an upcoming word:
P(ws|wq,,wW,,w5,w,) or P(w,|w,,w,..w,_,)

An LM computes either of these:
P(W) or P(w,|w,w,..w_,)

How to estimate these probabilities

Could we just count and divide?

P(blue|The water of Walden Pond is so beautifully) =

C(The water of Walden Pond is so beautifully blue)
C(The water of Walden Pond is so beautifully)

No! Too many possible sentences!
We’'ll never see enough data for estimating these

How to compute P(W) or P(w,|w,, ..w,_,)
How to compute the joint probability P(W):
P(The, water, of, Walden, Pond, is, so, beautifully, blue)

Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities
P(B|A) = P(A,B)/P(A) Rewriting: P(A,B)=P(A)P(B|A)

More variables:
P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

The Chain Rule in General

P(X1,X2,X3,...,X,) = P(X1)P(X,[x)P(X3]X1,X5). . . P(Xy[X 15 - X 1)

The Chain Rule applied to compute joint

probability of words in sentence
P(Wl;n) P(Wl)P(W2|W1)P(W3 ‘Wl;z) .. .P(Wn|W1;n_1)

n
| [POwilwie—1)
k=1

P(“The water of Walden Pond”) =
P(The) x P(water|The) x P(of|The water)
x P(Walden|The water of) x P(Pond|The water of Walden

Markov Assumption

Simplifying assumption:

Andrei Markov

P(blue|The water of Walden Pond is so beautifully)

~ P(blue|beautifully)

P(Wn‘wlzn—l) %P(Wn|wn—1)

Wikimedia commons

Bigram Markov Assumption

Instead of: HP WWik-1)

More generally, we approximate each
component in the product

P(Wn|W1:n—1) %P(Wnlwn—N—l—lzn—l)

Simplest case: Unigram model

Pww,...w)= HP(WZ.)

Some automatically generated sentences from two different unigram models

To him swallowed confess hear both . Which . 0f save on trail
for are ay device and rote life have

Hill he late speaks ; or ! a more to leg less first you enter
Months the my and i1issue of year foreign new exchange’s September

were recession exchange new endorsed a acqulire to six executives

Bigram model|

Pw. lww,...w._)=Pw, lw._)

Some automatically generated sentences rom two different unigram models

Why dost stand forth thy canopy, forsooth; he 1s this palpable hit
the King Henry. Live king. Follow.

What means, sir. I confess she? then all sorts, he i1s trim, captain.
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners

one gram poilint five percent of U. S. E. has already old M. X.
corporation of living

on information such as more frequently fishing to keep her

Problems with N-gram models

* N-grams can't handle long-distance dependencies:

“The soups that | made from that new cookbook |
bought yesterday were amazingly delicious.”

* N-grams don't do well at modeling new sequences
with similar meanings

The solution: Large language models

* can handle much longer contexts

* because of using embedding spaces, can model
synonymy better, and generate better novel strings

Why N-gram models?

A nice clear paradigm that lets us introduce many of
the important issues for large language models

* training and test sets

* the perplexity metric

* sampling to generate sentences

* ideas like interpolation and backoff

N-gram
Language
Modeling

Introduction to N-grams

N-gram
Language
Modeling

Estimating N-gram
Probabilities

Estimating b

gram probabilities

The Maximum Likelihood Estimate

P(walwa—1) = ZC (VC”’(’W;WTL)
P(w,|wp—1) = Clwn—1wn)

C(Wn_l)

An example

<s>|am Sam </s> P(w, 1w,)= c(W,_,w;)
l l—
<s>Sam | am </s> c(w,_;)
<s> | do not like green eggs and ham </s>
P(I|<s>) =% =.67 P(Sam|<s>)=1=.33 P(am|I)=3
P(</s>|Sam) = % =0.5 P(Sam|am)= % =.5 P(do|I)= %

v O

o~

More examples:
Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
tell me about chez panisse
I'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 6 6 5 |
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

Normalize by unigrams:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
Result:
1 want | to eat chinese | food | lunch | spend

1 0.002 [033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 | 0 0.66 | 0.0011 | 0.0065 | 0.0065 | 0.0054]0.0011
to 0.00083 | 0 0.0017]0.28 | 0.00083 |0 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 [0.056 | O
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I}<s>)

x P(want|l)

x P(english|want)

x P(food|english)

X P(</s>|food)

= .000031

What kinds of knowledge do N-grams represent?

P(english|jwant) =.0011
P(chineselwant) = .0065
P(tolwant) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) = 0
P(1|<s>)=.25

Dealing with scale in large n-grams

LM probabilities are stored and computed in
log format, i.e. log probabilities

This avoids underflow from multiplying many
small numbers

log(p, x p, x p3 x py) =log p, +log p, +1og p; +log p,

If we need probabilities we can do one exp at the end

p1 X p2 X p3 X pg = exp(log p1 +log p> +log p3 +log p4)

Larger ngrams

4-grams, 5-grams

Large datasets of large n-grams have been released

* N-grams from Corpus of Contemporary American English (COCA)
1 billion words (Davies 2020)

* Google Web 5-grams (Franz and Brants 2006) 1 trillion words)
 Efficiency: quantize probabilities to 4-8 bits instead of 8-byte float
Newest model: infini-grams (e=-grams) (Liu et al 2024)

* No precomputing! Instead, store 5 trillion words of web text in
suffix arrays. Can compute n-gram probabilities with any n!

N-gram LM Toolkits

SRILM
o http://www.speech.sri.com/projects/srilm/

KenLM
o https://kheafield.com/code/kenim/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

N-gram
Language
Modeling

Estimating N-gram
Probabilities

Evaluation and Perplexity

Language
Modeling

How to evaluate N-gram models

"Extrinsic (in-vivo) Evaluation”

To compare models A and B
1. Put each model in a real task
* Machine Translation, speech recognition, etc.

2. Run the task, get a score for A and for B

* How many words translated correctly
* How many words transcribed correctly

3. Compare accuracy for A and B

Intrinsic (in-vitro) evaluation

Extrinsic evaluation not always possible
* Expensive, time-consuming
* Doesn't always generalize to other applications

Intrinsic evaluation: perplexity

* Directly measures language model performance at
predicting words.

* Doesn't necessarily correspond with real application
performance

* But gives us a single general metric for language models
* Useful for large language models (LLMs) as well as n-grams

Training sets and test sets

We train parameters of our model on a training set.

We test the model’s performance on data we
haven’t seen.

> A test set is an unseen dataset; different from training set.
> |ntuition: we want to measure generalization to unseen data

> An evaluation metric (like perplexity) tells us how well
our model does on the test set.

Choosing training and test sets

* If we're building an LM for a specific task

* The test set should reflect the task language we
want to use the model for

* If we're building a general-purpose model

* We'll need lots of different kinds of training
data

* We don't want the training set or the test set to
be just from one domain or author or language.

Training on the test set

We can’t allow test sentences into the training set

* Or else the LM will assign that sentence an artificially
high probability when we see it in the test set

* And hence assign the whole test set a falsely high
probability.

* Making the LM look better than it really is
This is called “Training on the test set”
Bad science!

Dev sets

* If we test on the test set many times we might
implicitly tune to its characteristics

* Noticing which changes make the model better.

*So we run on the test set only once, or a few times

* That means we need a third dataset:
* A development test set or, devset.
* We test our LM on the devset until the very end
* And then test our LM on the test set once

ntuition of perplexity as evaluation metric:
How good is our language model?

Intuition: A good LM prefers "real" sentences
* Assign higher probability to “real” or “frequently
observed” sentences

* Assigns lower probability to “word salad” or
“rarely observed” sentences?

ntuition of perplexity 2:
Predicting upcoming words

' 0.9
The Shannon Game: How well can we [time
predict the next word? < dream 0.03

* Once upon a
* That is a picture of a
* For breakfast | ate my usual

midnight 0.02

| _ and 1e-100
Claude Shann Unigrams are terrible at this game (Why?)

A good LM is one that assigns a higher probability
to the next word that actually occurs

Picture credit: Historiska bildsamlingen
https://creativecommons .org/licenses /by/2.0/

Intuition of perplexity 3: The best language model
IS one that best predicts the entire unseen test set

* We said: a good LM is one that assigns a higher
probability to the next word that actually occurs.

* Let's generalize to all the words!

* The best LM assigns high probability to the entire test
set.

* When comparing two LMs, A and B
* We compute P,(test set) and Py(test set)

* The better LM will give a higher probability to (=be less
surprised by) the test set than the other LM.

Intuition of perplexity 4: Use perplexity instead of
raw probability

* Probability depends on size of test set
* Probability gets smaller the longer the text
* Better: a metric that is per-word, normalized by length

* Perplexity is the inverse probability of the test set,
normalized by the number of words

I
PP(W) = Pww,.wy) VN

]</ 1
Pww,..wy)

Intuition of perplexity 5: the inverse

Perplexity is the inverse probability of the test set,
normalized by the number of words

1
PP(W) = Pwwy..wy) N

]{/ 1
Pww,..wy)

(The inverse comes from the original definition of perplexity
from cross-entropy rate in information theory)

Probability range is [0,1], perplexity range is [1,o°]
Minimizing perplexity is the same as maximizing probability

Intuition of perplexity 6: N-grams

1

PP(W) = P(wwy.wy) ¥

X/ 1
Pww,..wy)

Chain rule: PP(W) = ’i

Bigrams: PP(W) = li

Intuition of perplexity 7:
Weighted average branching factor

Perplexity is also the weighted average branching factor of a language.
Branching factor: number of possible next words that can follow any word
Example: Deterministic language L = {red,blue, green}
Branching factor = 3 (any word can be followed by red, blue, green)
Now assume LM A where each word follows any other word with equal probability %

Given a test set T = "red red red red blue"
Perplexity,(T) = Py(red red red red blue)¥/5 = ((})°)°> = (%) =3

But now suppose red was very likely in training set, such that for LM B:
o P(red) =.8 pl(green)=.1 p(blue)=.1

We would expect the probability to be higher, and hence the perplexity to be smaller:
Perplexityg(T) = Pg(red red red red blue)/>

=(8* 8% 8* 8* _1)—1/5 =040961/5> = 5271 =1.89

Holding test set constant:
Lower perplexity = better language model

Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Evaluation and Perplexity

Language
Modeling

Sampling and Generalization

Language
Modeling

The Shannon (1948) Visualization Method
Sample words from an LM

Claude Shannon

Unigram:

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

Bigram:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

How Shannon sampled those words in 1948

"Open a book at random and select a letter at random on the page.
This letter 1s recorded. The book 1s then opened to another page
and one reads until this letter 1s encountered. The succeeding
letter 1s then recorded. Turning to another page this second letter
1s searched for and the succeeding letter recorded, etc."

Sampling a word from a distribution

polyphonic
0=.0000018
however v
the of a to in (p=.0003)
0.06 0.03 | 0.02 [0.02]0.02 0o 2‘|] *‘
| | I oo | oo | |
.06 .09 .11 .13.15 .66 .99

Visualizing Bigrams the Shannon Way

Choose a random bigram (<s>, w)

<s> 1
according to its probability p(w|<s>) T want
Now choose a random bigram (w, x) want to
according to its probability p(x]|w) to eat
And so on until we choose </s> cat Chinese

Chinese food
food </s>
I want to eat Chinese food

Then string the words together

Note: there are other sampling methods

Used for neural language models

Many of them avoid generating words from the very
unlikely tail of the distribution

We'll discuss when we get to neural LM decoding:
> Temperature sampling
> Top-k sampling
> Top-p sampling

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he 1s trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
‘t1s done.
—This shall forbid 1t should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Shakespeare as corpus

N=884,647 tokens, V=29,066

Shakespeare produced 300,000 bigram types out of
V2= 844 million possible bigrams.

> 50 99.96% of the possible bigrams were never seen (have
zero entries in the table)

o That sparsity is even worse for 4-grams, explaining why
our sampling generated actual Shakespeare.

The Wall Street Journal is not Shakespeare

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

Can you guess the author? These 3-gram sentences
are sampled from an LM trained on who?

1) They also point to ninety nine polnt
s1xX billion dollars from two hundred four
oh si1x three percent of the rates of
interest stores as Mexico and gram Brazil
on market conditions

2) This shall forbid i1t should be branded,
1f renown made 1t empty.

3) “You are uniformly charming!” cried he,
with a smile of associating and now and
then I bowed and they perceived a chaise
and four to wish for.

Choosing training data

If task-specific, use a training corpus that has a similar
genre to your task.

* |f legal or medical, need lots of special-purpose documents

Make sure to cover different kinds of dialects and
speaker/authors.
* Example: African-American Vernacular English (AAVE)
* One of many varieties that can be used by African Americans and others

* Can include the auxiliary verb finna that marks immediate future tense:
* "My phone finna die"

The perils of overfitting

N-grams only work well for word prediction if the
test corpus looks like the training corpus

* But even when we try to pick a good training
corpus, the test set will surprise us!

* We need to train robust models that generalize!
One kind of generalization: Zeros
* Things that don’t ever occur in the training set
* But occur in the test set

Zeros

Training set: * Test set
... ate lunch ... ate lunch
.. ate dinner ... ate breakfast
... ate a
... ate the

P(“breakfast” | ate) =0

/ero probability bigrams

Bigrams with zero probability

> Will hurt our performance for texts where those words
appear!

> And mean that we will assign O probability to the test set!

And hence we cannot compute perplexity (can’t
divide by 0)!

Sampling and Generalization

Language
Modeling

N-gram
Language
Modeling

Smoothing, Interpolation,
and Backoff

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims

0.5 request
2 other

7 total

(())
x 5
S c O
—_ O =
-’ >
® & ©O

)
s | [o
T || 2 X %
o || = O = 0O
@ 8_ L » -9 © "5
S v S = © - @

- r_U O
] a | 1 | 1

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did
Just add one to all the counts!

C(Wn— 1 Wn)

MLE estimate:
Wn|Wp—1) =
PviLE(Wa|wi—1) Clvnt)

Add-1 estimate:
CWp—iwp)+1 C(wy—1wy) +1

P, nWn_1) = —
Laptace (¥niWn-1) = S~ G ") ¥ 1) Clmm 1) +V

Maximum Likelihood Estimates

The maximum likelihood estimate
o of some parameter of a model M from a training set T

> maximizes the likelihood of the training set T given the model M
Suppose the word “bagel” occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be
“bagel”?

MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus

o But it is the estimate that makes it most likely that “bagel” will occur 400 times
in @ million word corpus.

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

1 want | to eat chinese | food | Ilunch | spend '
i 6 | 828 | 1 10 | 1 1 1 3 '
want 3 ‘ 609 2 7 7 6 2
to 3 5 687 | 3 1 7 212
eat 1 3 1 17 3 43 |
chinese 2 1 1 1 83 2
food 16 16 1 2 5 1
lunch 3 1 1 1 2 1
spend 2 2 1 1 1 1

Laplace-smoothed bi;

P (Wn ‘Wn—l) —

orams

C(Wn—lwn) + 1

C (Wy) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078| 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058] 0.0012 0.00058| 0.00058] 0.00058| 0.00058| 0.00058

Reconstituted counts

A L 4 A N T N

[C(Wn—lwn) T 1] X C(Wn—l)

c’ (Wn—lwn) —

C(wy—1)+V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Compare with raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 | 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15| O 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| Ilunch| spend

1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 063 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 [0.16 0.16

Add-1 estimation is a blunt instrument

So add-1 isn’t used for N-grams:
> @Generally we use interpolation or backoff instead

But add-1 is used to smooth other NLP models
o For text classification
> |In domains where the number of zeros isn’t so huge.

Backoft and Interpolation

Sometimes it helps to use less context
> Condition on less context for contexts you know less about

Backoff:

> use trigram if you have good evidence,
> otherwise bigram, otherwise unigram

Interpolation:
° miX unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

p(Wn‘Wn—ZWn—l) — AIP(Wn’Wn—ZWn—l) ZA 1
e

+ A P(wy|wy—1)
_FA3P(Wn)

Lambdas conditional on context:

How to set As for interpolation?

Use a held-out corpus

. Held-Out Test

Choose As to maximize probability of held-out data:
> Fix the N-gram probabilities (on the training data)

> Then search for As that give largest probability to held-
out set

Backoff

Suppose you want:
P(pancakes| delicious soufflé)

If the trigram probability is 0, use the bigram
P(pancakes| soufflé)

If the bigram probability is 0, use the unigram
P(pancakes)

Complication: need to discount the higher-order ngram so
probabilities don't sum higher than 1 (e.g., Katz backoff)

Stupid Backoft

Backoff without discounting (not a true probability)

count(w" . i
Witer) if count(w;_,)>0

S(w, lwl)=4 count(w_,,)

04S(w, Ilw",) otherwise

count(w:,)
N

S(w,) =

74

N-gram
Language
Modeling

Interpolation and Backoff

