
N-gram
Language
Modeling

Introduction to N-gram
Language Models

Predicting words

The water of Walden Pond is beautifully ...

*refrigerator
*that

blue
green
clear

Language Models

Systems that can predict upcoming words
• Can assign a probability to each potential next word
• Can assign a probability to a whole sentence

Why word prediction?

It's a helpful part of language tasks
•Grammar or spell checking

Their are two midterms Their There are two midterms
Everything has improve Everything has improve improved

• Speech recognition
I will be back soonish I will be bassoon dish

Why word prediction?

It's how large language models (LLMs) work!
LLMs are trained to predict words

• Left-to-right (autoregressive) LMs learn to predict next word

LLMs generate text by predicting words
• By predicting the next word over and over again

Language Modeling (LM) more formally

Goal: compute the probability of a sentence or
sequence of words W:
 P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming word:
 P(w5|w1,w2,w3,w4) or P(wn|w1,w2…wn-1)

An LM computes either of these:
 P(W) or P(wn|w1,w2…wn-1)

How to estimate these probabilities

Could we just count and divide?

No! Too many possible sentences!
We’ll never see enough data for estimating these

2 CHAPTER 3 • N-GRAM LANGUAGE MODELS

of Walden. But we also (in a bit of terminological ambiguity) use the word ‘n-
gram’ to mean a probabilistic model that can estimate the probability of a word given
the n-1 previous words, and thereby also to assign probabilities to entire sequences.

In later chapters we will introduce the much more powerful neural large lan-

guage models, based on the transformer architecture of Chapter 10. But because
n-grams have a remarkably simple and clear formalization, we use them to introduce
some major concepts of large language modeling, including training and test sets,
perplexity, sampling, and interpolation.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “The water of Walden Pond is so
beautifully ” and we want to know the probability that the next word is blue:

P(blue|The water of Walden Pond is so beautifully) (3.1)

One way to estimate this probability is directly from relative frequency counts: take a
very large corpus, count the number of times we see The water of Walden Pond
is so beautifully, and count the number of times this is followed by blue. This
would be answering the question “Out of the times we saw the history h, how many
times was it followed by the word w”, as follows:

P(blue|The water of Walden Pond is so beautifully) =
C(The water of Walden Pond is so beautifully blue)

C(The water of Walden Pond is so beautifully)
(3.2)

If we had a large enough corpus, we could compute these two counts and estimate
the probability from Eq. 3.2. But even the entire web isn’t big enough to give us
good estimates for counts of entire sentences. This is because language is creative;
new sentences are invented all the time, and we can’t expect to get accurate counts
for such large objects as entire sentences. For this reason, we’ll need more clever
ways to estimate the probability of a word w given a history h, or the probability of
an entire word sequence W .

Let’s start with some notation. First, throughout this chapter we’ll continue to
refer to words, although in practice we usually compute language models over to-

kens like the BPE tokens of page ??. To represent the probability of a particular
random variable Xi taking on the value “the”, or P(Xi = “the”), we will use the
simplification P(the). We’ll represent a sequence of n words either as w1 . . .wn or
w1:n. Thus the expression w1:n�1 means the string w1,w2, ...,wn�1, but we’ll also
be using the equivalent notation w<n, which can be read as “all the elements of w
from w1 up to and including wn�1”. For the joint probability of each word in a se-
quence having a particular value P(X1 = w1,X2 = w2,X3 = w3, ...,Xn = wn) we’ll
use P(w1,w2, ...,wn).

Now, how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-

bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . .P(Xn|X1:n�1)

=
nY

k=1

P(Xk|X1:k�1) (3.3)

2 CHAPTER 3 • N-GRAM LANGUAGE MODELS

of Walden. But we also (in a bit of terminological ambiguity) use the word ‘n-
gram’ to mean a probabilistic model that can estimate the probability of a word given
the n-1 previous words, and thereby also to assign probabilities to entire sequences.

In later chapters we will introduce the much more powerful neural large lan-

guage models, based on the transformer architecture of Chapter 10. But because
n-grams have a remarkably simple and clear formalization, we use them to introduce
some major concepts of large language modeling, including training and test sets,
perplexity, sampling, and interpolation.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “The water of Walden Pond is so
beautifully ” and we want to know the probability that the next word is blue:

P(blue|The water of Walden Pond is so beautifully) (3.1)

One way to estimate this probability is directly from relative frequency counts: take a
very large corpus, count the number of times we see The water of Walden Pond
is so beautifully, and count the number of times this is followed by blue. This
would be answering the question “Out of the times we saw the history h, how many
times was it followed by the word w”, as follows:

P(blue|The water of Walden Pond is so beautifully) =
C(The water of Walden Pond is so beautifully blue)

C(The water of Walden Pond is so beautifully)
(3.2)

If we had a large enough corpus, we could compute these two counts and estimate
the probability from Eq. 3.2. But even the entire web isn’t big enough to give us
good estimates for counts of entire sentences. This is because language is creative;
new sentences are invented all the time, and we can’t expect to get accurate counts
for such large objects as entire sentences. For this reason, we’ll need more clever
ways to estimate the probability of a word w given a history h, or the probability of
an entire word sequence W .

Let’s start with some notation. First, throughout this chapter we’ll continue to
refer to words, although in practice we usually compute language models over to-

kens like the BPE tokens of page ??. To represent the probability of a particular
random variable Xi taking on the value “the”, or P(Xi = “the”), we will use the
simplification P(the). We’ll represent a sequence of n words either as w1 . . .wn or
w1:n. Thus the expression w1:n�1 means the string w1,w2, ...,wn�1, but we’ll also
be using the equivalent notation w<n, which can be read as “all the elements of w
from w1 up to and including wn�1”. For the joint probability of each word in a se-
quence having a particular value P(X1 = w1,X2 = w2,X3 = w3, ...,Xn = wn) we’ll
use P(w1,w2, ...,wn).

Now, how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-

bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . .P(Xn|X1:n�1)

=
nY

k=1

P(Xk|X1:k�1) (3.3)

=

How to compute P(W) or P(wn|w1, …wn-1)

How to compute the joint probability P(W):

P(The, water, of, Walden, Pond, is, so, beautifully, blue)

Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities
P(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A) P(B|A)

More variables:
 P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

The Chain Rule in General
 P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The Chain Rule applied to compute joint
probability of words in sentence

P(“The water of Walden Pond”) =
 P(The) × P(water|The) × P(of|The water)
 × P(Walden|The water of) × P(Pond|The water of Walden)

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

Markov Assumption

Simplifying assumption:
Andrei Markov

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

≈

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

Wikimedia commons

Bigram Markov Assumption

Instead of:
More generally, we approximate each
component in the product

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

3.1 • N-GRAMS 3

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n�1)

=
nY

k=1

P(wk|w1:k�1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n�1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string in some corpus, because language is creative and
any particular context might have never occurred before!

3.1.1 The Markov assumption

The intuition of the n-gram model is that instead of computing the probability of a
word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n�1) by using only the conditional probability of the
preceding word P(wn|wn�1). In other words, instead of computing the probability

P(blue|The water of Walden Pond is so beautifully) (3.5)

we approximate it with the probability

P(blue|beautifully) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n�1)⇡ P(wn|wn�1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n�1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n�1)⇡ P(wn|wn�N+1:n�1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)⇡
nY

k=1

P(wk|wk�1) (3.9)

Simplest case: Unigram model

To him swallowed confess hear both . Which . Of save on trail
for are ay device and rote life have

Hill he late speaks ; or ! a more to leg less first you enter

Months the my and issue of year foreign new exchange’s September

were recession exchange new endorsed a acquire to six executives

Some automatically generated sentences from two different unigram models

€

P(w1w2…wn) ≈ P(wi)
i
∏

Bigram model

Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

What means, sir. I confess she? then all sorts, he is trim, captain.

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners
one gram point five percent of U. S. E. has already old M. X.
corporation of living

on information such as more frequently fishing to keep her

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)
Some automatically generated sentences rom two different unigram models

Problems with N-gram models
• N-grams can't handle long-distance dependencies:
“The soups that I made from that new cookbook I

bought yesterday were amazingly delicious."
• N-grams don't do well at modeling new sequences

with similar meanings
The solution: Large language models
• can handle much longer contexts
• because of using embedding spaces, can model
synonymy better, and generate better novel strings

Why N-gram models?

A nice clear paradigm that lets us introduce many of
the important issues for large language models
• training and test sets
• the perplexity metric
• sampling to generate sentences
• ideas like interpolation and backoff

N-gram
Language
Modeling

Introduction to N-grams

N-gram
Language
Modeling

Estimating N-gram
Probabilities

Estimating bigram probabilities

The Maximum Likelihood Estimate

4 CHAPTER 3 • N-GRAM LANGUAGE MODELS

3.1.2 How to estimate probabilities

How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum

likelihood

estimation

the MLE estimate for the parameters of an n-gram model by getting counts from
a corpus, and normalizing the counts so that they lie between 0 and 1. For proba-normalize

bilistic models, normalizing means dividing by some total count so that the resulting
probabilities fall between 0 and 1.

For example, to compute a particular bigram probability of a word wn given a
previous word wn�1, we’ll compute the count of the bigram C(wn�1wn) and normal-
ize by the sum of all the bigrams that share the same first word wn�1:

P(wn|wn�1) =
C(wn�1wn)P

w C(wn�1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn�1 must be equal to the unigram count for that word wn�1 (the reader
should take a moment to be convinced of this):

P(wn|wn�1) =
C(wn�1wn)

C(wn�1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>1

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLE n-gram parameter estimation:

P(wn|wn�N+1:n�1) =
C(wn�N+1:n�1 wn)

C(wn�N+1:n�1)
(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency

frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of
the training set T given the model M (i.e., P(T |M)). For example, suppose the word
Chinese occurs 400 times in a corpus of a million words. What is the probability
that a random word selected from some other text of, say, a million words will be
the word Chinese? The MLE of its probability is 400

1000000 or .0004. Now .0004 is not
the best possible estimate of the probability of Chinese occurring in all situations; it

1 We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-
symbol, instead of the sentence probabilities of all sentences summing to one, the sentence probabilities
for all sentences of a given length would sum to one. This model would define an infinite set of probability
distributions, with one distribution per sentence length. See Exercise 3.5.

4 CHAPTER 3 • N-GRAM LANGUAGE MODELS

3.1.2 How to estimate probabilities

How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum

likelihood

estimation

the MLE estimate for the parameters of an n-gram model by getting counts from
a corpus, and normalizing the counts so that they lie between 0 and 1. For proba-normalize

bilistic models, normalizing means dividing by some total count so that the resulting
probabilities fall between 0 and 1.

For example, to compute a particular bigram probability of a word wn given a
previous word wn�1, we’ll compute the count of the bigram C(wn�1wn) and normal-
ize by the sum of all the bigrams that share the same first word wn�1:

P(wn|wn�1) =
C(wn�1wn)P

w C(wn�1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn�1 must be equal to the unigram count for that word wn�1 (the reader
should take a moment to be convinced of this):

P(wn|wn�1) =
C(wn�1wn)

C(wn�1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>1

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLE n-gram parameter estimation:

P(wn|wn�N+1:n�1) =
C(wn�N+1:n�1 wn)

C(wn�N+1:n�1)
(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency

frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of
the training set T given the model M (i.e., P(T |M)). For example, suppose the word
Chinese occurs 400 times in a corpus of a million words. What is the probability
that a random word selected from some other text of, say, a million words will be
the word Chinese? The MLE of its probability is 400

1000000 or .0004. Now .0004 is not
the best possible estimate of the probability of Chinese occurring in all situations; it

1 We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-
symbol, instead of the sentence probabilities of all sentences summing to one, the sentence probabilities
for all sentences of a given length would sum to one. This model would define an infinite set of probability
distributions, with one distribution per sentence length. See Exercise 3.5.

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More examples:
Berkeley Restaurant Project sentences
can you tell me about any good cantonese restaurants close by
tell me about chez panisse
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Raw bigram counts

Out of 9222 sentences

Raw bigram probabilities

Normalize by unigrams:

Result:

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
 P(I|<s>)
 × P(want|I)
 × P(english|want)
 × P(food|english)
 × P(</s>|food)
 = .000031

What kinds of knowledge do N-grams represent?

P(english|want) = .0011
P(chinese|want) = .0065
P(to|want) = .66
P(eat | to) = .28
P(food | to) = 0
P(want | spend) = 0
P (i | <s>) = .25

Dealing with scale in large n-grams

LM probabilities are stored and computed in
log format, i.e. log probabilities
This avoids underflow from multiplying many
small numbers
log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

6 CHAPTER 3 • N-GRAM LANGUAGE MODELS

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= .000031

We leave it as Exercise 3.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

3.1.3 Dealing with scale in large n-gram models

In practice, language models can be very large, leading to practical issues.

Log probabilities Language model probabilities are always stored and computed
in log format, i.e., as log probabilities. This is because probabilities are (by def-log

probabilities

inition) less than or equal to 1, and so the more probabilities we multiply together,
the smaller the product becomes. Multiplying enough n-grams together would result
in numerical underflow. Adding in log space is equivalent to multiplying in linear
space, so we combine log probabilities by adding them. By adding log probabilities
instead of multiplying probabilities, we get results that are not as small. We do all
computation and storage in log space, and just convert back into probabilities if we
need to report probabilities at the end by taking the exp of the logprob:

p1 ⇥ p2 ⇥ p3 ⇥ p4 = exp(log p1 + log p2 + log p3 + log p4) (3.13)

In practice throughout this book, we’ll use log to mean natural log (ln) when the
base is not specified.

Longer context Although for pedagogical purposes we have only described bi-
gram models, in practice we can use trigram models, which condition on the previ-trigram

ous two words, or 4-gram or even 5-gram models, when there is sufficient training4-gram

5-gram data. Note that for these larger n-grams, we’ll need to assume extra contexts to the
left and right of the sentence end. For example, to compute trigram probabilities at
the very beginning of the sentence, we use two pseudo-words for the first trigram
(i.e., P(I|<s><s>).

Some very large n-gram datasets have been created, like the million most fre-
quent n-grams drawn from the Corpus of Contemporary American English (COCA),
a curated and balanced 1 billion word corpus of American English (Davies, 2020),
Google’s Web 5-gram corpus from 1 trillion words of English web text (Franz and

If we need probabilities we can do one exp at the end

Larger ngrams

4-grams, 5-grams
Large datasets of large n-grams have been released
• N-grams from Corpus of Contemporary American English (COCA)

1 billion words (Davies 2020)
• Google Web 5-grams (Franz and Brants 2006) 1 trillion words)
• Efficiency: quantize probabilities to 4-8 bits instead of 8-byte float
Newest model: infini-grams (∞-grams) (Liu et al 2024)
• No precomputing! Instead, store 5 trillion words of web text in

suffix arrays. Can compute n-gram probabilities with any n!

N-gram LM Toolkits

SRILM
◦ http://www.speech.sri.com/projects/srilm/
KenLM
◦ https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

N-gram
Language
Modeling

Estimating N-gram
Probabilities

Language
Modeling

Evaluation and Perplexity

How to evaluate N-gram models

"Extrinsic (in-vivo) Evaluation"
To compare models A and B
1. Put each model in a real task
• Machine Translation, speech recognition, etc.

2. Run the task, get a score for A and for B
• How many words translated correctly
• How many words transcribed correctly

3. Compare accuracy for A and B

Intrinsic (in-vitro) evaluation

Extrinsic evaluation not always possible
• Expensive, time-consuming
• Doesn't always generalize to other applications
Intrinsic evaluation: perplexity
• Directly measures language model performance at

predicting words.
• Doesn't necessarily correspond with real application

performance
• But gives us a single general metric for language models
• Useful for large language models (LLMs) as well as n-grams

Training sets and test sets

We train parameters of our model on a training set.
We test the model’s performance on data we
haven’t seen.

◦ A test set is an unseen dataset; different from training set.
◦ Intuition: we want to measure generalization to unseen data

◦ An evaluation metric (like perplexity) tells us how well
our model does on the test set.

Choosing training and test sets

• If we're building an LM for a specific task
• The test set should reflect the task language we

want to use the model for

• If we're building a general-purpose model
• We'll need lots of different kinds of training

data
• We don't want the training set or the test set to

be just from one domain or author or language.

Training on the test set

We can’t allow test sentences into the training set
• Or else the LM will assign that sentence an artificially

high probability when we see it in the test set
• And hence assign the whole test set a falsely high

probability.
• Making the LM look better than it really is

This is called “Training on the test set”
Bad science!

35

Dev sets

• If we test on the test set many times we might
implicitly tune to its characteristics
•Noticing which changes make the model better.

• So we run on the test set only once, or a few times
•That means we need a third dataset:

• A development test set or, devset.
• We test our LM on the devset until the very end
• And then test our LM on the test set once

Intuition of perplexity as evaluation metric:
How good is our language model?

Intuition: A good LM prefers "real" sentences
• Assign higher probability to “real” or “frequently

observed” sentences
• Assigns lower probability to “word salad” or

“rarely observed” sentences?

Intuition of perplexity 2:
Predicting upcoming words

The Shannon Game: How well can we
predict the next word?
• Once upon a ____
• That is a picture of a ____
• For breakfast I ate my usual ____

Unigrams are terrible at this game (Why?)

time 0.9

dream 0.03

midnight 0.02

…

and 1e-100

Picture credit: Historiska bildsamlingen
https://creativecommons.org/licenses/by/2.0/

Claude Shannon

A good LM is one that assigns a higher probability
to the next word that actually occurs

Intuition of perplexity 3: The best language model
is one that best predicts the entire unseen test set

• We said: a good LM is one that assigns a higher
probability to the next word that actually occurs.

• Let's generalize to all the words!
• The best LM assigns high probability to the entire test

set.

• When comparing two LMs, A and B
• We compute PA(test set) and PB(test set)
• The better LM will give a higher probability to (=be less

surprised by) the test set than the other LM.

• Probability depends on size of test set
• Probability gets smaller the longer the text
• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set,
normalized by the number of words

Intuition of perplexity 4: Use perplexity instead of
raw probability

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity is the inverse probability of the test set,
normalized by the number of words

(The inverse comes from the original definition of perplexity
from cross-entropy rate in information theory)
Probability range is [0,1], perplexity range is [1,∞]
Minimizing perplexity is the same as maximizing probability

Intuition of perplexity 5: the inverse

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Intuition of perplexity 6: N-grams

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Bigrams:

Chain rule:

Intuition of perplexity 7:
Weighted average branching factor

Perplexity is also the weighted average branching factor of a language.

Branching factor: number of possible next words that can follow any word

Example: Deterministic language L = {red,blue, green}

 Branching factor = 3 (any word can be followed by red, blue, green)

Now assume LM A where each word follows any other word with equal probability ⅓

Given a test set T = "red red red red blue"
PerplexityA(T) = PA(red red red red blue)-1/5 =

But now suppose red was very likely in training set, such that for LM B:
◦ P(red) = .8 p(green) = .1 p(blue) = .1

We would expect the probability to be higher, and hence the perplexity to be smaller:
PerplexityB(T) = PB(red red red red blue)-1/5

((⅓)5)-1/5 = (⅓)-1 =3

= (.8 * .8 * .8 * .8 * .1) -1/5 =.04096 -1/5 = .527-1 = 1.89

Holding test set constant:
Lower perplexity = better language model

Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Language
Modeling

Evaluation and Perplexity

Language
Modeling

Sampling and Generalization

The Shannon (1948) Visualization Method
Sample words from an LM

Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

Bigram:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

Claude Shannon

How Shannon sampled those words in 1948

"Open a book at random and select a letter at random on the page.
This letter is recorded. The book is then opened to another page
and one reads until this letter is encountered. The succeeding
letter is then recorded. Turning to another page this second letter
is searched for and the succeeding letter recorded, etc."

Sampling a word from a distribution

0 1

0.06

the

.06

0.03

of
0.02

a
0.02

to in

.09 .11 .13 .15
…

however
(p=.0003)

polyphonic
p=.0000018

…0.02

.66 .99
…

Visualizing Bigrams the Shannon Way

Choose a random bigram (<s>, w)

 according to its probability p(w|<s>)

Now choose a random bigram (w, x)
according to its probability p(x|w)

And so on until we choose </s>

Then string the words together

<s> I
 I want
 want to
 to eat
 eat Chinese
 Chinese food
 food </s>
I want to eat Chinese food

Note: there are other sampling methods

Used for neural language models
Many of them avoid generating words from the very
unlikely tail of the distribution
We'll discuss when we get to neural LM decoding:

◦ Temperature sampling
◦ Top-k sampling
◦ Top-p sampling

Approximating Shakespeare

12 CHAPTER 3 • N-GRAM LANGUAGE MODELS

given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.

We can use the sampling method from the prior section to visualize both of
these facts! To give an intuition for the increasing power of higher-order n-grams,
Fig. 3.4 shows random sentences generated from unigram, bigram, trigram, and 4-
gram models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.4 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen the first 3-gram
(It cannot be), there are only seven possible next words for the 4th element (but, I,
that, thus, this, and the period).

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.5
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 3.4. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,

Shakespeare as corpus

N=884,647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of
V2= 844 million possible bigrams.

◦ So 99.96% of the possible bigrams were never seen (have
zero entries in the table)

◦ That sparsity is even worse for 4-grams, explaining why
our sampling generated actual Shakespeare.

The Wall Street Journal is not Shakespeare
3.5 • GENERALIZATION AND ZEROS 13

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.5 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For exam-
ple some tweets will use features of African American English (AAE)— the name
for the many variations of language used in African American communities (King,
2020). Such features include words like finna—an auxiliary verb that marks imme-
diate future tense —that don’t occur in other varieties, or spellings like den for then,
in tweets like this one (Blodgett and O’Connor, 2017):

(3.19) Bored af den my phone finna die!!!

while tweets from varieties like Nigerian English have markedly different vocabu-
lary and n-gram patterns from American English (Jurgens et al., 2017):

(3.20) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:
denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros—things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the

Can you guess the author? These 3-gram sentences
are sampled from an LM trained on who?
1) They also point to ninety nine point
six billion dollars from two hundred four
oh six three percent of the rates of
interest stores as Mexico and gram Brazil
on market conditions
2) This shall forbid it should be branded,
if renown made it empty.
3) “You are uniformly charming!” cried he,
with a smile of associating and now and
then I bowed and they perceived a chaise
and four to wish for.

55

Choosing training data

If task-specific, use a training corpus that has a similar
genre to your task.
• If legal or medical, need lots of special-purpose documents

Make sure to cover different kinds of dialects and
speaker/authors.
• Example: African-American Vernacular English (AAVE)
• One of many varieties that can be used by African Americans and others
• Can include the auxiliary verb finna that marks immediate future tense:
• "My phone finna die"

The perils of overfitting

N-grams only work well for word prediction if the
test corpus looks like the training corpus
• But even when we try to pick a good training

corpus, the test set will surprise us!
• We need to train robust models that generalize!

One kind of generalization: Zeros
• Things that don’t ever occur in the training set
• But occur in the test set

Zeros
Training set:

… ate lunch
… ate dinner
… ate a
… ate the

P(“breakfast” | ate) = 0

• Test set
… ate lunch
… ate breakfast

Zero probability bigrams

Bigrams with zero probability
◦ Will hurt our performance for texts where those words

appear!
◦ And mean that we will assign 0 probability to the test set!

And hence we cannot compute perplexity (can’t
divide by 0)!

Language
Modeling

Sampling and Generalization

N-gram
Language
Modeling

Smoothing, Interpolation,
and Backoff

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

Steal probability mass to generalize better

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did
Just add one to all the counts!

MLE estimate:

Add-1 estimate:

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 15

We can now turn c⇤i into a probability P⇤
i by normalizing by N.

A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c⇤, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted countsdiscount

to the original counts:

dc =
c⇤

c
Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn�1) =
C(wn�1wn)

C(wn�1)
(3.23)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn�1) =
C(wn�1wn)+1P
w (C(wn�1w)+1)

=
C(wn�1wn)+1
C(wn�1)+V

(3.24)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.25. Figure 3.8 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(3.25)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is .39,
while the discount for Chinese food is .10, a factor of 10! The sharp change occurs
because too much probability mass is moved to all the zeros.

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 15

We can now turn c⇤i into a probability P⇤
i by normalizing by N.

A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c⇤, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted countsdiscount

to the original counts:

dc =
c⇤

c
Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

PMLE(wn|wn�1) =
C(wn�1wn)

C(wn�1)
(3.23)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn�1) =
C(wn�1wn)+1P
w (C(wn�1w)+1)

=
C(wn�1wn)+1
C(wn�1)+V

(3.24)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.25. Figure 3.8 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(3.25)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is .39,
while the discount for Chinese food is .10, a factor of 10! The sharp change occurs
because too much probability mass is moved to all the zeros.

3.6 • SMOOTHING, INTERPOLATION, AND BACKOFF 15

We can now turn c⇤i into a probability P⇤
i by normalizing by N.

A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c⇤, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted countsdiscount

to the original counts:

dc =
c⇤

c
Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:

P(wn|wn�1) =
C(wn�1wn)

C(wn�1)
(3.23)

For add-one smoothed bigram counts, we need to augment the unigram count by the
number of total word types in the vocabulary V :

PLaplace(wn|wn�1) =
C(wn�1wn)+1P
w (C(wn�1w)+1)

=
C(wn�1wn)+1
C(wn�1)+V

(3.24)

Thus, each of the unigram counts given in the previous section will need to be aug-
mented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.25. Figure 3.8 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(3.25)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is .39,
while the discount for Chinese food is .10, a factor of 10! The sharp change occurs
because too much probability mass is moved to all the zeros.

Maximum Likelihood Estimates

The maximum likelihood estimate
◦ of some parameter of a model M from a training set T
◦ maximizes the likelihood of the training set T given the model M

Suppose the word “bagel” occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be
“bagel”?

MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus
◦ But it is the estimate that makes it most likely that “bagel” will occur 400 times

in a million word corpus.

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

Laplace-smoothed bigrams

Reconstituted counts

Compare with raw bigram counts

Add-1 estimation is a blunt instrument

So add-1 isn’t used for N-grams:
◦ Generally we use interpolation or backoff instead

But add-1 is used to smooth other NLP models
◦ For text classification
◦ In domains where the number of zeros isn’t so huge.

Backoff and Interpolation

Sometimes it helps to use less context
◦ Condition on less context for contexts you know less about
Backoff:
◦ use trigram if you have good evidence,
◦ otherwise bigram, otherwise unigram

Interpolation:
◦ mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

Lambdas conditional on context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

How to set λs for interpolation?

Use a held-out corpus

Choose λs to maximize probability of held-out data:
◦ Fix the N-gram probabilities (on the training data)
◦ Then search for λs that give largest probability to held-

out set

Training Data Held-Out
Data

Test
Data

Backoff

Suppose you want:
P(pancakes| delicious soufflé)

If the trigram probability is 0, use the bigram
P(pancakes| soufflé)

If the bigram probability is 0, use the unigram
P(pancakes)

Complication: need to discount the higher-order ngram so
probabilities don't sum higher than 1 (e.g., Katz backoff)

Stupid Backoff

Backoff without discounting (not a true probability)

74

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

N-gram
Language
Modeling

Interpolation and Backoff

