

Definition of Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe" Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- **Computational Biology**
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC-TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Minimum Edit Distance

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Minimum Edit Distance INTE * NTION | | | | | | | | | | * E X E C U T I O N d s s i s

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Alignment in Computational Biology

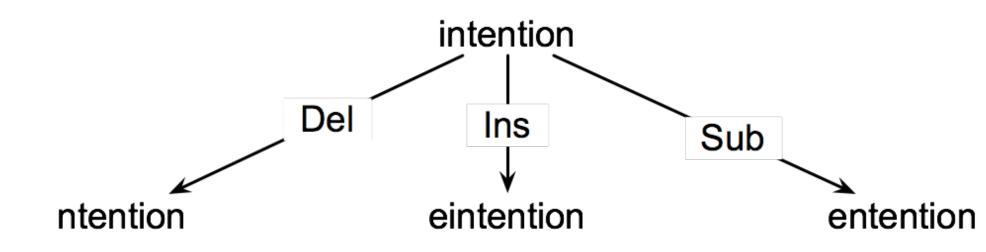
Given a sequence of bases

> AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCCGAC

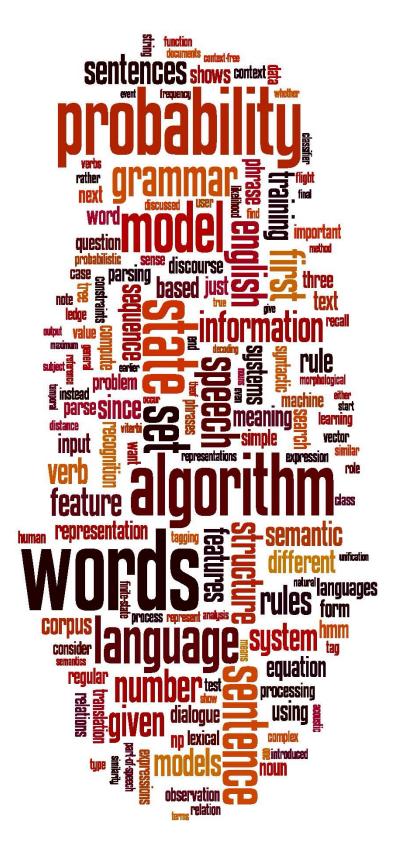
Given two sequences, align each letter to a letter or gap


Other uses of Edit Distance in NLP

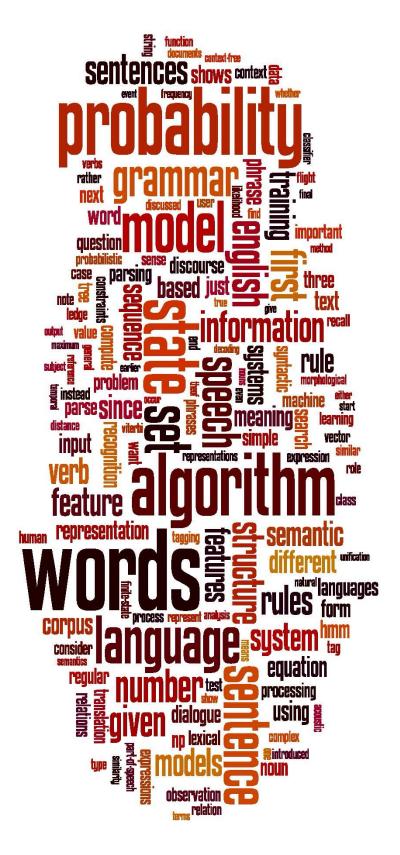
- **Evaluating Machine Translation and speech recognition**
- **R** Spokesman confirms senior government adviser was shot **H** Spokesman said the senior adviser was shot dead S D Ι Τ
- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - **IBM** profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - **Initial state**: the word we're transforming
 - **Operators**: insert, delete, substitute
 - **Goal state**: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits


Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.


Defining Min Edit Distance

- For two strings
 - X of length *n*
 - Y of length *m*
- We define D(*i*,*j*)
 - the edit distance between X[1..*i*] and Y[1..*j*]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Definition of Minimum Edit Distance

Computing Minimum Edit Distance

Dan Jurafsky

Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(*n*,*m*)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small *i*, *j*
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

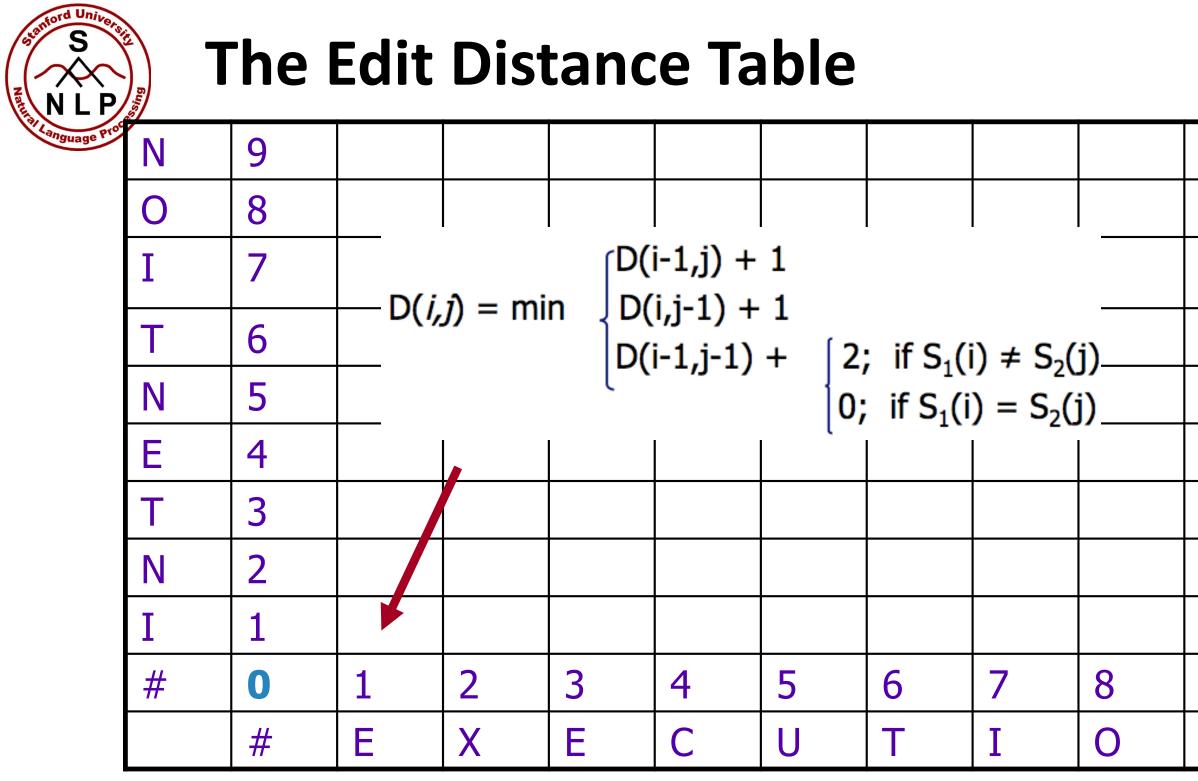
Defining Min Edit Distance (Levenshtein)

- Initialization
 - D(i,0) = i D(0,j) = j
- Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & if X(i) \\ 0; & if X(i) \end{cases}$

• Termination:


D(N,M) is distance

2; if X(i) ≠ Y(j)
0; if X(i) = Y(j)

The Edit Distance Table

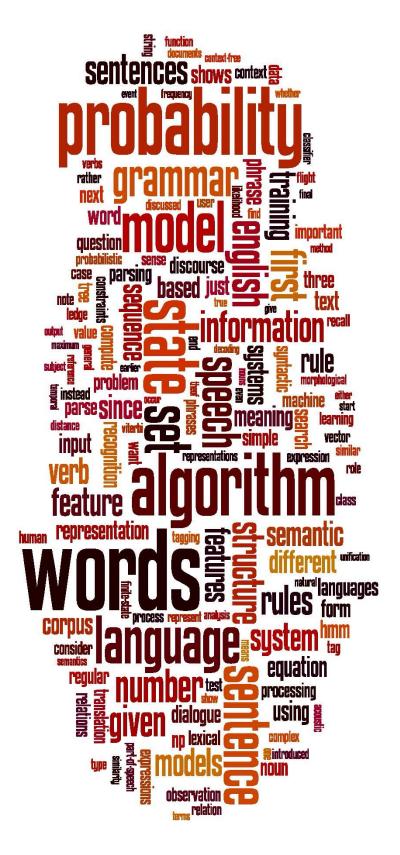
Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

9
Ν

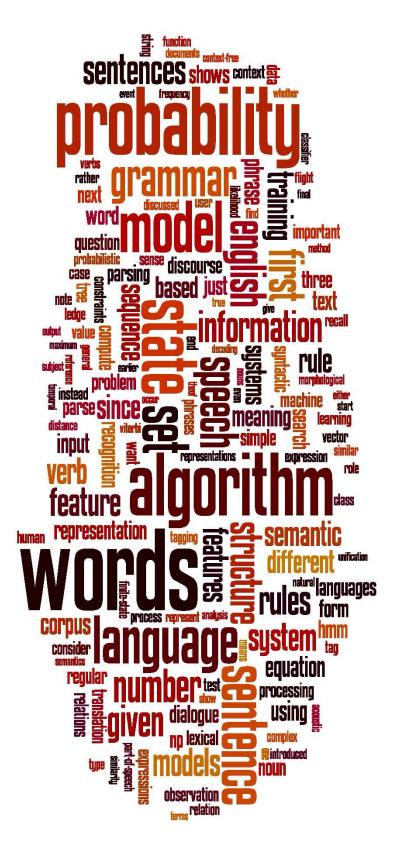
Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \\ 0; \text{ if } S_1(i) \end{cases}$$

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν


$\neq S_2(j)$ = $S_2(j)$

Dan Jurafsky


The Edit Distance Table

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	Е	С	U	Т	Ι	0	Ν

Computing Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to **align** each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \\ 0; \text{ if } S_1(i) \end{cases}$$

Ν	9									
0	8									
Ι	7									
Т	6									
Ν	5									
E	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

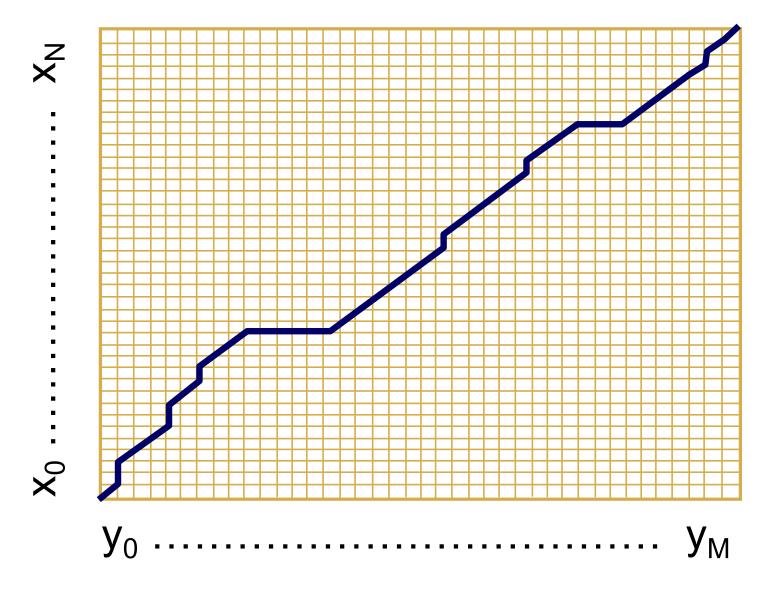
$\neq S_2(j)$ = $S_2(j)$

Dan Jurafsky

MinEdit with Backtrace

n	9	↓ 8	int 9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	$\swarrow \leftarrow \downarrow 8$	∠←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠́←↓ 9	∠←↓ 10	↓ 9	∠ 8	← 9	$\leftarrow 10$	
t	6	↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	∠́⇔, 9	∠ 8	← 9	<i>←</i> 10	←↓ 11	
n	5	↓ 4	∠←↓ 5	∠←↓6	∠←↓ 7	∠́←↓ 8	∠́←↓ 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$	∠́←↓ 9	∠←↓ 10	↓ 9	
t	3	∠←↓4	∠←↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	∠ 7	$\leftarrow \downarrow 8$	∠́←↓ 9	↓ 8	
n	2	∠←↓ 3	∠←↓4	∠←↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠ 7	
i	1		∠←↓3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Dan Jurafsky


Adding Backtrace to Minimum Edit Distance

Base conditions: Termination: D(i,0) = i D(0,j) = j D(N,M) is distance **Recurrence Relation**: For each i = 1...MFor each j = 1...N $D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) \\ \text{ptr}(i,j) = \begin{cases} \text{LEFT} & \text{insertion} \\ \text{DOWN} & \text{deletion} \\ \text{DIAG} & \text{substitution} \end{cases}$

Dan Jurafsky

The Distance Matrix

Every non-decreasing path from (0,0) to (M, N) corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Slide adapted from Serafim Batzoglou

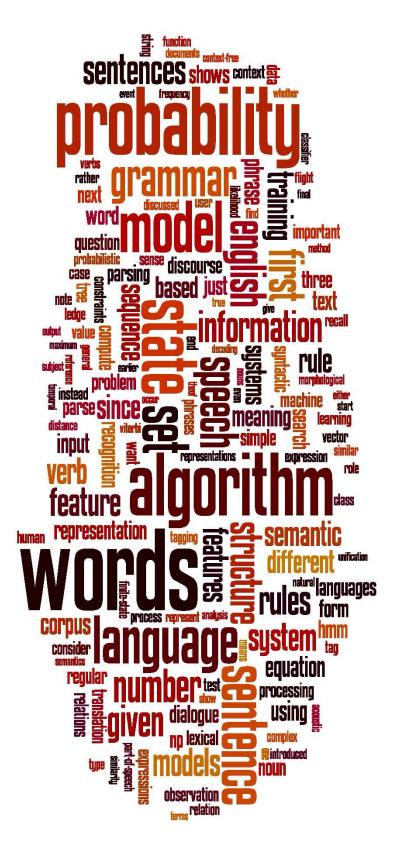
Result of Backtrace

• Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

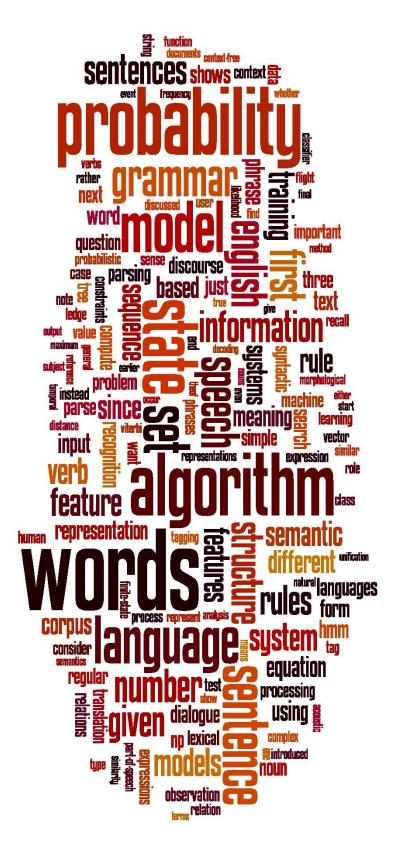
Performance

• Time:


O(nm)

• Space:

O(nm)


Backtrace

O(n+m)

Backtrace for Computing Alignments

Weighted Minimum Edit Distance

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

ed than others kely than

Confusion matrix for spelling errors

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

X							-, -					Ŷ	(coi	rrect)	}			- ``		,						
	a	b	с	d	e	f	g	ħ	i	j	k	1	m	n	0	р	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	Ō
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	-, 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1		116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
P	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	I	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	l	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

Initialization:

D(0, 0) = 0 $D(i,0) = D(i-1,0) + del[x(i)]; \quad 1 < i \le N$ $D(0,j) = D(0,j-1) + ins[y(j)]; \quad 1 < j \leq M$

Recurrence Relation:

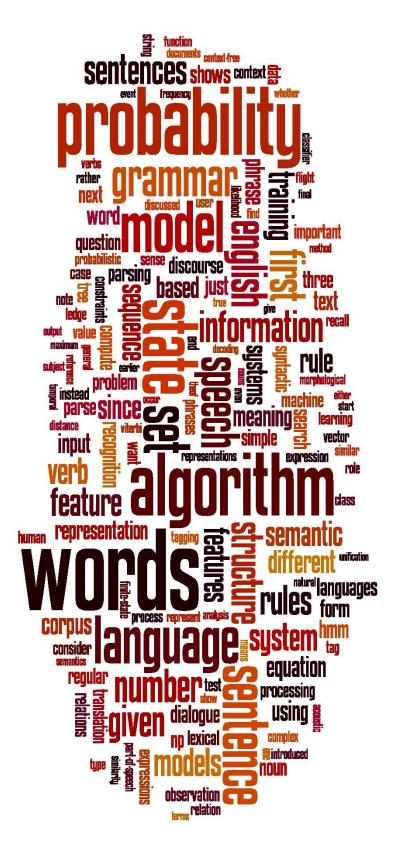
 $D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$

Termination:

D(N,M) is distance

Where did the name, dynamic programming, come from?

... The 1950s were not good years for mathematical research. [the] Secretary of Defense ... had a pathological fear and hatred of the word, research...


I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Weighted Minimum Edit Distance

