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Is this spam?



Who wrote which Federalist Papers?

1787-8: essays anonymously written by:
     Alexander Hamilton, James Madison, and John Jay 

to convince New York to ratify U.S Constitution  
Authorship of 12 of the letters unclear between:

1963: solved by Mosteller and Wallace using Bayesian methods
James MadisonAlexander Hamilton



Positive or negative movie review?

unbelievably disappointing 

Full of zany characters and richly applied satire, and 
some great plot twists

this is the greatest screwball comedy ever filmed

It was pathetic. The worst part about it was the 
boxing scenes.
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What is the subject of this article?

Antogonists and Inhibitors
Blood Supply
Chemistry
Drug Therapy
Embryology
Epidemiology
… 5

MeSH Subject Category Hierarchy

?

MEDLINE Article



Text Classification

Assigning subject categories, topics, or genres
Spam detection
Authorship identification (who wrote this?)
Language Identification (is this Portuguese?)
Sentiment analysis
…



Text Classification: definition

Input:
◦  a document d
◦  a fixed set of classes  C = {c1, c2,…, cJ}

Output: a predicted class c Î C



Basic Classification Method: 
Hand-coded rules

Rules based on combinations of words or other 
features

◦  spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high
• In very specific domains
• If rules are carefully refined by experts
But:
• building and maintaining rules is expensive
• they are too literal and specific: "high-precision, low-recall"



Classification Method:
Supervised Machine Learning
Input: 

◦ a document d
◦  a fixed set of classes  C = {c1, c2,…, cJ}
◦ A training set of m hand-labeled documents (d1,c1),....,(dm,cm)

Output: 
◦ a learned classifier γ:d à c
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Classification Methods:
Supervised Machine Learning

Many kinds of classifiers!
• Naïve Bayes (this lecture)
• Logistic regression  
• Neural networks
• k-nearest neighbors
• …

We can also use pretrained large language models!
• Fine-tuned as classifiers
• Prompted to give a classification



Text 
Classification 
and Naive 
Bayes

The Naive Bayes Classifier



Naive Bayes Intuition

Simple ("naive") classification method based on 
Bayes rule
Relies on very simple representation of document
◦ Bag of words



The Bag of Words Representation
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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The bag of words representation

γ( )=c
seen 2
sweet 1

whimsical 1

recommend 1
happy 1

... ...



Bayes’ Rule Applied to Documents and Classes

•For a document d and a class c

P(c | d) = P(d | c)P(c)
P(d)



Naive Bayes Classifier (I)

cMAP = argmax
c∈C

P(c | d)

= argmax
c∈C

P(d | c)P(c)
P(d)

= argmax
c∈C

P(d | c)P(c)

MAP is “maximum a 
posteriori”  = most 
likely class

Bayes Rule

Dropping the 
denominator



Naive Bayes Classifier (II)

cMAP = argmax
c∈C

P(d | c)P(c)
Document d 
represented as 
features 
x1..xn

= argmax
c∈C

P(x1, x2,…, xn | c)P(c)

"Likelihood" "Prior"



Naïve Bayes Classifier (IV)

How often does this 
class occur?

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

O(|X|n•|C|) parameters

We can just count the 
relative frequencies in 
a corpus

Could only be estimated if a 
very, very large number of 
training examples was 
available.



Multinomial Naive Bayes Independence 
Assumptions

Bag of Words assumption: Assume position doesn’t matter
Conditional Independence: Assume the feature 
probabilities P(xi|cj) are independent given the class c.

P(x1, x2,…, xn | c)

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)



Multinomial Naive Bayes Classifier

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj ) P(x | c)
x∈X
∏



Applying Multinomial Naive Bayes Classifiers 
to Text Classification

cNB = argmax
c j∈C

P(cj ) P(xi | cj )
i∈positions
∏

positions ¬ all word positions in test document      
  



Problems with multiplying lots of probs

There's a problem with this:

Multiplying lots of probabilities can result in floating-point underflow!
  .0006 * .0007 * .0009 * .01 * .5 * .000008….

Idea:   Use logs, because  log(ab) = log(a) + log(b)
  We'll sum logs of probabilities instead of multiplying probabilities!

cNB = argmax
c j∈C

P(cj ) P(xi | cj )
i∈positions
∏



We actually do everything in log space
Instead of this:

This:

Notes:
1) Taking log doesn't change the ranking of classes!
 The class with highest probability also has highest log probability!
2) It's a linear model:
 Just a max of a sum of weights: a linear function of the inputs
 So naive bayes is a linear classifier

<latexit sha1_base64="o0LQfSf3I3G0xas3oLJOwQZR0GU="></latexit>

cNB = argmax
cj2C

2

4logP (cj) +
X

i2positions

logP (xi|cj)

3

5

cNB = argmax
c j∈C

P(cj ) P(xi | cj )
i∈positions
∏
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Learning the Multinomial Naive Bayes Model

First attempt: maximum likelihood estimates
◦ simply use the frequencies in the data

Sec.13.3

P̂(wi | cj ) =
count(wi,cj )
count(w,cj )

w∈V
∑

!𝑃 𝑐! =
𝑁"!
𝑁#$#%&



Parameter estimation

Create mega-document for topic j by concatenating all 
docs in this topic

◦ Use frequency of w in mega-document

fraction of times word wi appears 
among all words in documents of topic cj

P̂(wi | cj ) =
count(wi,cj )
count(w,cj )

w∈V
∑



Problem with Maximum Likelihood

What if we have seen no training documents with the word fantastic 
and classified in the topic positive (thumbs-up)?

Zero probabilities cannot be conditioned away, no matter the other 
evidence!

P̂("fantastic" positive) =  count("fantastic", positive)
count(w, positive

w∈V
∑ )

 =  0

cMAP = argmaxc P̂(c) P̂(xi | c)i∏

Sec.13.3



Laplace (add-1) smoothing for Naïve Bayes

P̂(wi | c) =
count(wi,c)+1
count(w,c)+1( )

w∈V
∑

=
count(wi,c)+1

count(w,c
w∈V
∑ )

#

$
%%

&

'
((  +  V

P̂(wi | c) =
count(wi,c)
count(w,c)( )

w∈V
∑



Multinomial Naïve Bayes: Learning

Calculate P(cj) terms
◦ For each cj in C do

 docsj ¬ all docs with  class =cj

P(wk | cj )←
nk +α

n+α |Vocabulary |
P(cj )←

| docsj |
| total # documents|

• Calculate P(wk | cj) terms
• Textj ¬ single doc containing all docsj
• For each word wk in Vocabulary

    nk ¬ # of occurrences of wk in Textj

• From training corpus, extract Vocabulary



Unknown words

What about unknown words
◦ that appear in our test data 
◦ but not in our training data or vocabulary?

We ignore them
◦ Remove them from the test document!
◦ Pretend they weren't there!
◦ Don't include any probability for them at all!

Why don't we build an unknown word model?
◦ It doesn't help: knowing which class has more unknown words is 

not generally helpful!



Stop words

Some systems ignore stop words
◦ Stop words: very frequent words like the and a.

◦ Sort the vocabulary by word frequency in training set
◦ Call the top 10 or 50 words the stopword list.
◦ Remove all stop words from both training and test sets

◦ As if they were never there!

But removing stop words doesn't usually help
• So in practice most NB algorithms use all words and don't 

use stopword lists
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Let's do a worked sentiment example!

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary
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1. Prior from training:
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P(+) = 2/5

2. Drop "with"
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/𝑃 𝑐% =
𝑁&!
𝑁'(')*



Optimizing for sentiment analysis

For tasks like sentiment, word occurrence seems to 
be more important than word frequency.

◦ The occurrence of the word fantastic tells us a lot
◦ The fact that it occurs 5 times may not tell us much more.

Binary multinominal naive bayes, or binary NB
◦ Clip our word counts at 1
◦ Note: this is different than Bernoulli naive bayes; see the 

textbook at the end of the chapter.



Binary Multinomial Naïve Bayes: Learning

Calculate P(cj) terms
◦ For each cj in C do

 docsj ¬ all docs with  class =cj

P(cj )←
| docsj |

| total # documents| P(wk | cj )←
nk +α

n+α |Vocabulary |

• Textj ¬ single doc containing all docsj
• For each word wk in Vocabulary

    nk ¬ # of occurrences of wk in Textj

• From training corpus, extract Vocabulary

• Calculate P(wk | cj) terms
• Remove duplicates in each doc:
• For each word type w in docj  
• Retain only a single instance of w



Binary Multinomial Naive Bayes
 on a test document d

39

First remove all duplicate words from d
Then compute NB using the same equation: 

cNB = argmax
c j∈C

P(cj ) P(wi | cj )
i∈positions
∏



Binary multinominal naive Bayes
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multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
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8 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
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multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �
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plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.
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Counts can still be 2! Binarization is within-doc!



Text 
Classification 
and Naive 
Bayes

Sentiment and Binary 
Naive Bayes



Text 
Classification 
and Naive 
Bayes

More on Sentiment 
Classification



Sentiment Classification: Dealing with Negation

I really like this movie
I really don't like this movie

Negation changes the meaning of "like" to negative.
Negation can also change negative to positive-ish 

◦ Don't dismiss this film
◦ Doesn't let us get bored



Sentiment Classification: Dealing with Negation

Simple baseline method:
Add NOT_ to every word between negation and following punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In 
Proceedings of the Asia Pacific Finance Association Annual Conference (APFA).
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.  2002.  Thumbs up? Sentiment Classification using 
Machine Learning Techniques. EMNLP-2002, 79—86.



Sentiment Classification: Lexicons

Sometimes we don't have enough labeled training 
data
In that case, we can make use of pre-built word lists
Called lexicons
There are various publically available lexicons



MPQA Subjectivity Cues Lexicon

Home page: https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
6885 words from 8221 lemmas, annotated for intensity (strong/weak)

◦ 2718 positive
◦ 4912 negative

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great 
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate 

49

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in 
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003.

https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/


The General Inquirer

◦ Home page: http://www.wjh.harvard.edu/~inquirer
◦ List of Categories:  http://www.wjh.harvard.edu/~inquirer/homecat.htm
◦ Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Categories:
◦ Positiv (1915 words) and Negativ (2291 words)
◦ Strong vs Weak, Active vs Passive, Overstated versus Understated
◦ Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc

Free for Research Use

Philip J. Stone, Dexter C Dunphy, Marshall S. Smith, Daniel M. Ogilvie. 1966. The General 
Inquirer: A Computer Approach to Content Analysis. MIT Press

http://www.wjh.harvard.edu/~inquirer
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls


Using Lexicons in Sentiment Classification

Add a feature that gets a count whenever a word 
from the lexicon occurs

◦ E.g., a feature called "this word occurs in the positive 
lexicon" or "this word occurs in the negative lexicon"

Now all positive words (good, great, beautiful, 
wonderful) or negative words count for that feature.
Using 1-2 features isn't as good as using all the words.
• But when training data is sparse or not representative of the 

test set, dense lexicon features can help



Naive Bayes in Other tasks: Spam Filtering

SpamAssassin Features:
◦ Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
◦ From: starts with many numbers
◦ Subject is all capitals
◦ HTML has a low ratio of text to image area
◦ "One hundred percent guaranteed"
◦ Claims you can be removed from the list



Naive Bayes in Language ID

Determining what language a piece of text is written in.
Features based on character n-grams do very well
Important to train on lots of varieties of each language

(e.g., American English varieties like African-American English, 
or English varieties around the world like Indian English)



Summary: Naive Bayes is Not So Naive

Very Fast, low storage requirements
Work well with very small amounts of training data
Robust to Irrelevant Features

 Irrelevant Features cancel each other without affecting results

Very good in domains with many equally important features
 Decision Trees suffer from fragmentation in such cases – especially if little data

Optimal if the independence assumptions hold: If assumed 
independence is correct, then it is the Bayes Optimal Classifier for problem

A good dependable baseline for text classification
◦ But we will see other classifiers that give better accuracy

Slide from Chris Manning
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Dan Jurafsky

Generative Model for Multinomial Naïve Bayes

57

c=China

X1=Shanghai X2=and X3=Shenzhen X4=issue X5=bonds



Dan Jurafsky

Naïve Bayes and Language Modeling

• Naïve bayes classifiers can use any sort of feature
• URL, email address, dictionaries, network features

• But if, as in the previous slides
• We use only word features 
• we use all of the words in the text (not a subset)

• Then 
• Naïve bayes has an important similarity to language 

modeling.58



Dan Jurafsky

Each class = a unigram language model

• Assigning each word: P(word | c)
• Assigning each sentence: P(s|c)=Π P(word|c)

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

…

I love this fun film

0.1 0.1 .05 0.01 0.1

Class pos

P(s | pos) = 0.0000005 

Sec.13.2.1



Dan Jurafsky

Naïve Bayes as a Language Model

• Which class assigns the higher probability to s?

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model pos Model neg

filmlove this funI

0.10.1 0.01 0.050.1
0.10.001 0.01 0.0050.2

P(s|pos)  >  P(s|neg)

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

Sec.13.2.1
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Evaluating Classifiers: How well does our 
classifier work?

Let's first address binary classifiers:
• Is this email spam? 

spam (+)     or   not spam (-)

• Is this post about Delicious Pie Company? 
about Del. Pie Co (+)   or    not about Del. Pie Co(-)

We'll need to know
1. What did our classifier say about each email or post?
2. What should our classifier have said, i.e.,  the correct 

answer, usually as defined by humans ("gold label")



First step in evaluation: The confusion matrix

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn



Accuracy on the confusion matrix

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn



Why don't we use accuracy?
Accuracy doesn't work well when we're dealing with 
uncommon or imbalanced classes
Suppose we look at 1,000,000 social media posts to find 
Delicious Pie-lovers (or haters)
• 100 of them talk about our pie
• 999,900 are posts about something unrelated

Imagine the following simple classifier
 Every post is "not about pie"



Accuracy re: pie posts

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

100 posts are about pie; 999,900 aren't



Why don't we use accuracy?
Accuracy of our "nothing is pie" classifier
 999,900 true negatives  and 100 false negatives
 Accuracy is 999,900/1,000,000 = 99.99%!
 But useless at finding pie-lovers (or haters)!!
 Which was our goal!
Accuracy doesn't work well for unbalanced classes 
 Most tweets are not about pie!



Instead of accuracy we use precision and recall

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall = 
tp

tp+fn

precision = 
tp

tp+fp

accuracy = 
tp+tn

tp+fp+tn+fn

Precision: % of selected items that are correct
Recall: % of correct items that are selected



Precision/Recall aren't fooled by the"just call 
everything negative" classifier!

Stupid classifier: Just say no: every tweet is "not about pie"
• 100 tweets  talk about pie,   999,900 tweets don't
• Accuracy = 999,900/1,000,000 = 99.99%

But the Recall and Precision for this classifier are terrible:
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while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)
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A combined measure: F1

F1 is a  combination of precision and recall.
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F1 is a special case of the general "F-measure"

F-measure is the (weighted) harmonic mean of 
precision and recall

F1 is a special case of F-measure with β=1, α=½
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while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)



Suppose we have more than 2 classes?

Lots of text classification tasks have more than two classes.
◦ Sentiment analysis (positive, negative, neutral) , named entities (person, location, organization)

We can define precision and recall for multiple classes like this 3-way email task:
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How to combine P/R values for different classes:
Microaveraging vs Macroaveraging
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Harms of classification
Classifiers, like any NLP algorithm, can cause harms
This is true for any classifier, whether Naive Bayes or 
other algorithms



Representational Harms
• Harms caused by a system that demeans a social group

• Such as by perpetuating negative stereotypes about them. 

• Kiritchenko and Mohammad 2018 study
• Examined 200 sentiment analysis systems on pairs of sentences
• Identical except for names:
• common African American (Shaniqua) or European American (Stephanie).
• Like "I talked to Shaniqua yesterday" vs "I talked to Stephanie yesterday"

• Result: systems assigned lower sentiment and more negative 
emotion to sentences with African American names

• Downstream harm: 
• Perpetuates stereotypes about African Americans 
• African Americans treated differently by NLP tools like sentiment (widely 

used in marketing research, mental health studies, etc.)



Harms of Censorship
• Toxicity detection is the text classification task of detecting hate speech, 

abuse, harassment, or other kinds of toxic language.
• Widely used in online content moderation

• Toxicity classifiers incorrectly flag non-toxic sentences that simply 
mention minority identities (like the words "blind" or "gay")
• women (Park et al., 2018), 
• disabled people (Hutchinson et al., 2020) 
• gay people (Dixon et al., 2018; Oliva et al., 2021)

• Downstream harms:
• Censorship of speech by disabled people and other groups
• Speech by these groups becomes less visible online
• Writers might be nudged by these algorithms to avoid these words 

making people less likely to write about themselves or these groups.



Performance Disparities

1. Text classifiers perform worse on many languages of 
the world due to lack of data or labels

2. Text classifiers perform worse on varieties of even 
high-resource languages like English
• Example task: language identification, a first step in NLP 

pipeline ("Is this post in English or not?") 
• English language detection performance worse for writers 

who are African American (Blodgett and O'Connor 2017) 
or from India (Jurgens et al., 2017)



Harms in text classification

• Causes:
• Issues in the data; NLP systems amplify biases in training data
• Problems in the labels
• Problems in the algorithms (like what the model is trained to 

optimize) 

• Prevalence: The same problems occur throughout NLP 
(including large language models)  
• Solutions: There are no general mitigations or solutions
• But harm mitigation is an active area of research
• And there are standard benchmarks and tools that we can use 

for measuring some of the harms
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