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LLMs are built out of transformers
Transformer: a specific kind of network architecture, like a 
fancier feedforward network, but based on attention
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.
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A very approximate timeline

1990 Static Word Embeddings
2003 Neural Language Model
2008 Multi-Task Learning
2015 Attention
2017 Transformer
2018 Contextual Word Embeddings and Pretraining
2019 Prompting



Transformers

Attention



Instead of starting with the big picture
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Let's consider the embeddings for an individual word from a particular layer



Problem with static embeddings (word2vec)

They are static!  The embedding for a word doesn't reflect how its 
meaning changes in context.

 The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for "it"?
 



Contextual Embeddings

• Intuition: a representation of meaning of a word 
should be different in different contexts!

• Contextual Embedding: each word has a different 
vector that expresses different meanings 
depending on the surrounding words

• How to compute contextual embeddings?
• Attention



Contextual Embeddings

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too tired
The chicken didn't cross the road because it was too wide

At this point in the sentence, it's probably referring to either the chicken or the street

 



Intuition of attention

Build up the contextual embedding from a word by 
selectively integrating information from all the 
neighboring words
We say that a word "attends to" some neighboring 
words more than others



Intuition of attention: 
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Attention definition

A mechanism for helping compute the embedding for 
a token by selectively attending to and integrating 
information from surrounding tokens (at the previous 
layer).

More formally: a method for doing a weighted sum of 
vectors.



Attention is left-to-right
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Simplified version of attention: a sum of prior words 
weighted by their similarity with the current word

Given a sequence of token embeddings:
 x1 x2   x3   x4   x5   x6   x7   xi

Produce: ai = a weighted sum of x1 through x7 (and xi)
Weighted by their similarity to xi
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Figure 10.2 Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

10.1.3 Self-attention more formally

We’ve given the intuition of self-attention (as a way to compute representations of a
word at a given layer by integrating information from words at the previous layer)
and we’ve defined context as all the prior words in the input. Let’s now introduce
the self-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a
collection of other items in a way that reveals their relevance in the current context.
In the case of self-attention for language, the set of comparisons are to other words
(or tokens) within a given sequence. The result of these comparisons is then used to
compute an output sequence for the current input sequence. For example, returning
to Fig. 10.2, the computation of a3 is based on a set of comparisons between the
input x3 and its preceding elements x1 and x2, and to x3 itself.

How shall we compare words to other words? Since our representations for
words are vectors, we’ll make use of our old friend the dot product that we used
for computing word similarity in Chapter 6, and also played a role in attention in
Chapter 9. Let’s refer to the result of this comparison between words i and j as a
score (we’ll be updating this equation to add attention to the computation of this
score):

Verson 1: score(xi,x j) = xi ·x j (10.4)

The result of a dot product is a scalar value ranging from �• to •, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 ·x2 and x3 ·x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ai j, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

ai j = softmax(score(xi,x j)) 8 j  i (10.5)

=
exp(score(xi,x j))Pi

k=1 exp(score(xi,xk))
8 j  i (10.6)

Of course, the softmax weight will likely be highest for the current focus element
i, since vecxi is very similar to itself, resulting in a high dot product. But other
context words may also be similar to i, and the softmax will also assign some weight
to those words.

Given the proportional scores in a , we generate an output value ai by summing
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to Fig. 10.2, the computation of a3 is based on a set of comparisons between the
input x3 and its preceding elements x1 and x2, and to x3 itself.
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for computing word similarity in Chapter 6, and also played a role in attention in
Chapter 9. Let’s refer to the result of this comparison between words i and j as a
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example, the first step in computing y3 would be to compute three scores: x3 · x1,
x3 ·x2 and x3 ·x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ai j, that indicates the proportional
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=
exp(score(xi,x j))Pi

k=1 exp(score(xi,xk))
8 j  i (10.6)

Of course, the softmax weight will likely be highest for the current focus element
i, since vecxi is very similar to itself, resulting in a high dot product. But other
context words may also be similar to i, and the softmax will also assign some weight
to those words.

Given the proportional scores in a , we generate an output value ai by summing
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the inputs seen so far, each weighted by its a value.

ai =
X

ji

ai jx j (10.7)

The steps embodied in Equations 10.4 through 10.7 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output a is the result of this straightfor-
ward computation over the inputs.

This kind of simple attention can be useful, and indeed we saw in Chapter 9
how to use this simple idea of attention for LSTM-based encoder-decoder models
for machine translation. But transformers allow us to create a more sophisticated
way of representing how words can contribute to the representation of longer inputs.
Consider the three different roles that each input embedding plays during the course
of the attention process.

• As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.query

• In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.key

• And finally, as a value used to compute the output for the current focus ofvalue

attention.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will be used to project each input vector xi into
a representation of its role as a key, query, or value.

qi = xiW
Q; ki = xiWK; vi = xiW

V (10.8)

The inputs x and outputs y of transformers, as well as the intermediate vectors after
the various layers like the attention output vector a, all have the same dimensionality
1⇥ d. We’ll have a dimension dk for the key and query vectors, and a separate
dimension dv for the value vectors. In the original transformer work (Vaswani et al.,
2017), d was 512, dk and dv were both 64. The shapes of the transform matrices are
then WQ 2 Rd⇥dk , WK 2 Rd⇥dk , and WV 2 Rd⇥dv .

Given these projections, the score between a current focus of attention, xi, and
an element in the preceding context, x j, consists of a dot product between its query
vector qi and the preceding element’s key vectors k j. This dot product has the right
shape since both the query and the key are of dimensionality 1⇥ dk. Let’s update
our previous comparison calculation to reflect this, replacing Eq. 10.4 with Eq. 10.9:

Verson 2: score(xi,x j) = qi ·k j (10.9)

The ensuing softmax calculation resulting in ai, j remains the same, but the output
calculation for ai is now based on a weighted sum over the value vectors v.

ai =
X

ji

ai jv j (10.10)

Again, the softmax weight ai j will likely be highest for the current focus element
i, and so the value for yi will be most influenced by vi. But the model will also pay
attention to other contextual words if they are similar to i, allowing their values to



Intuition of attention: 
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An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like xi and x4) 
directly, we'll represent 3 separate roles each vector xi plays:
• query: As the current element being compared to the 

preceding inputs. 
• key: as a preceding input that is being compared to the 

current element to determine a similarity
• value: a value of a preceding element that gets weighted 

and summed 
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Intuition of attention: 
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An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector xi into a 
representation of its role as query, key, value:
• query: WQ

• key: WK

• value: WV

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the a values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head
version of attention that’s used in transformers. (The word head is often used inhead
transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue
up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in ai j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k jp

dk

(9.11)

ai j = softmax(score(xi,x j)) 8 j  i (9.12)

ai =
X

ji

ai jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.



An Actual Attention Head: slightly more complicated

Given these 3 representation of xi

To compute  similarity of current element xi with 
some prior element xj

We’ll use dot product between  qi and kj. 
And instead of summing up xj ,  we'll sum up vj

9.1 • ATTENTION 5
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Final equations for one attention head
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Actual Attention: slightly more complicated

• Instead of one attention head, we'll have lots of them!
• Intuition: each head might be attending to the context for different purposes

• Different linguistic relationships or patterns in the context

9.2 • TRANSFORMER BLOCKS 7

shows an intuition.
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= softmax(scorec(xi,x j)) 8 j  i (9.16)
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i j
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j
(9.17)

ai = (head1 �head2...�headh)WO (9.18)

MultiHeadAttention(xi, [x1, · · · ,xN ]) = ai (9.19)

The output of each of the h heads is of shape 1⇥ dv, and so the output of the
multi-head layer with h heads consists of h vectors of shape 1⇥dv. These are con-
catenated to produce a single output with dimensionality 1⇥ hdv. Then we use yet
another linear projection WO 2 Rhdv⇥d to reshape it, resulting in the multi-head
attention vector ai with the correct output shape [1xd] at each input i.
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Figure 9.5 The multi-head attention computation for input xi, producing output ai. A multi-head attention
layer has h heads, each with its own key, query and value weight matrices. The outputs from each of the heads
are concatenated and then projected down to d, thus producing an output of the same size as the input.

9.2 Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes three other kinds of layers: (1)
a feedforward layer, (2) residual connections, and (3) normalizing layers (colloqui-
ally called “layer norm”).

Fig. 9.6 illustrates a transformer block, sketching a common way of thinking
about the block that is called the residual stream (Elhage et al., 2021). In the resid-residual stream
ual stream viewpoint, we consider the processing of an individual token i through
the transformer block as a single stream of d-dimensional representations for token
position i. This residual stream starts with the original input vector, and the various



Multi-head attention

ai
xi-1 xixi-2xi-3

WK
1

Head 1
WV

1 WQ
1

…

…

WK
2

Head 2
WV

2 WQ
2 WK

8

Head 8
WV

8 WQ
8

ai
WO  [hdv x d]

[1 x dv ]

[1 x d]

[1 x d]

[1 x hdv ]

Project down to d

Concatenate Outputs

Each head
attends differently

to context

…

[1 x dv ]



Summary

Attention is a method for enriching the representation of a token by 
incorporating contextual information
The result: the embedding for each word will be different in different 
contexts!
Contextual embeddings: a representation of word meaning in its 
context.
We'll see in the next lecture that attention can also be viewed as a 
way to move information from one token to another.
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The residual stream: each token gets passed up and 
modified
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Figure 9.6 The architecture of a transformer block showing the residual stream. This
figure shows the prenorm version of the architecture, in which the layer norms happen before
the attention and feedforward layers rather than after.

components read their input from the residual stream and add their output back into
the stream.

The input at the bottom of the stream is an embedding for a token, which has
dimensionality d. This initial embedding gets passed up (by residual connections),
and is progressively added to by the other components of the transformer: the at-
tention layer that we have seen, and the feedforward layer that we will introduce.
Before the attention and feedforward layer is a computation called the layer norm.

Thus the initial vector is passed through a layer norm and attention layer, and
the result is added back into the stream, in this case to the original input vector
xi. And then this summed vector is again passed through another layer norm and a
feedforward layer, and the output of those is added back into the residual, and we’ll
use hi to refer to the resulting output of the transformer block for token i. (In earlier
descriptions the residual stream was often described using a different metaphor as
residual connections that add the input of a component to its output, but the residual
stream is a more perspicuous way of visualizing the transformer.)

We’ve already seen the attention layer, so let’s now introduce the feedforward
and layer norm computations in the context of processing a single input xi at token
position i.

Feedforward layer The feedforward layer is a fully-connected 2-layer network,
i.e., one hidden layer, two weight matrices, as introduced in Chapter 7. The weights
are the same for each token position i , but are different from layer to layer. It
is common to make the dimensionality dff of the hidden layer of the feedforward
network be larger than the model dimensionality d. (For example in the original
transformer model, d = 512 and dff = 2048.)

FFN(xi) = ReLU(xiW1 +b1)W2 +b2 (9.20)

Layer Norm At two stages in the transformer block we normalize the vector (Ba
et al., 2016). This process, called layer norm (short for layer normalization), is onelayer norm
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Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer 
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of many forms of normalization that can be used to improve training performance
in deep neural networks by keeping the values of a hidden layer in a range that
facilitates gradient-based training.

Layer norm is a variation of the z-score from statistics, applied to a single vec-
tor in a hidden layer. That is, the term layer norm is a bit confusing; layer norm
is not applied to an entire transformer layer, but just to the embedding vector of a
single token. Thus the input to layer norm is a single vector of dimensionality d

and the output is that vector normalized, again of dimensionality d. The first step in
layer normalization is to calculate the mean, µ , and standard deviation, s , over the
elements of the vector to be normalized. Given an embedding vector x of dimen-
sionality d, these values are calculated as follows.

µ =
1
d

dX

i=1

xi (9.21)

s =

vuut1
d

dX

i=1

(xi �µ)2 (9.22)

Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. The result of this computation is
a new vector with zero mean and a standard deviation of one.

x̂=
(x�µ)

s
(9.23)

Finally, in the standard implementation of layer normalization, two learnable param-
eters, g and b , representing gain and offset values, are introduced.

LayerNorm(x) = g (x�µ)
s

+b (9.24)

Putting it all together The function computed by a transformer block can be ex-
pressed by breaking it down with one equation for each component computation,
using t (of shape [1⇥ d]) to stand for transformer and superscripts to demarcate
each computation inside the block:

t1
i

= LayerNorm(xi) (9.25)

t2
i

= MultiHeadAttention(t1
i
,
⇥
x11, · · · ,x1N

⇤
) (9.26)

t3
i

= t2
i
+xi (9.27)

t4
i

= LayerNorm(t3
i
) (9.28)

t5
i

= FFN(t4
i
) (9.29)

hi = t5
i
+ t3

i
(9.30)

Notice that the only component that takes as input information from other tokens
(other residual streams) is multi-head attention, which (as we see from (9.27)) looks
at all the neighboring tokens in the context. The output from attention, however, is
then added into this token’s embedding stream. In fact, Elhage et al. (2021) show that
we can view attention heads as literally moving information from the residual stream
of a neighboring token into the current stream. The high-dimensional embedding
space at each position thus contains information about the current token and about
neighboring tokens, albeit in different subspaces of the vector space. Fig. 9.7 shows
a visualization of this movement.
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Putting together a single transformer block
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Notice that the only component that takes as input information from other tokens
(other residual streams) is multi-head attention, which (as we see from (9.27)) looks
at all the neighboring tokens in the context. The output from attention, however, is
then added into this token’s embedding stream. In fact, Elhage et al. (2021) show that
we can view attention heads as literally moving information from the residual stream
of a neighboring token into the current stream. The high-dimensional embedding
space at each position thus contains information about the current token and about
neighboring tokens, albeit in different subspaces of the vector space. Fig. 9.7 shows
a visualization of this movement.
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A transformer is a stack of these blocks
so all the vectors are of the same dimensionality d
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Residual streams and attention

Notice that all  parts of the transformer block apply to 1 residual stream (1 
token).
Except attention, which takes information from other tokens
 Elhage et al. (2021) show that we can view attention heads as literally moving 
information from the residual stream of a neighboring token into the current 
stream .

Token A
residual
 stream

Token B
residual 
stream
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Parallelizing computation using X

For attention/transformer block we've been computing a single 
output at a single time step i in a single residual stream. 
But we can pack the  N tokens of the input sequence into a single 
matrix X of size [N × d]. 
Each row of X is the embedding of one token of the input. 
X can have 1K-32K rows, each of the dimensionality of the 
embedding d (the model dimension)
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dimension).

Parallelizing attention Let’s first see this for a single attention head and then turn
to multiple heads, and then add in the rest of the components in the transformer
block. For one head we multiply X by the key, query, and value matrices WQ of
shape [d⇥dk], WK of shape [d⇥dk], and WV of shape [d⇥dv], to produce matrices
Q of shape [N ⇥dk], K 2 RN⇥dk , and V 2 RN⇥dv , containing all the key, query, and
value vectors:

Q= XWQ; K= XWK; V = XWV (9.31)

Given these matrices we can compute all the requisite query-key comparisons simul-
taneously by multiplying Q and K| in a single matrix multiplication. The product is
of shape N ⇥N, visualized in Fig. 9.9.

q1•k1

q2•k1 q2•k2

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

N

N

q1•k2 q1•k3 q1•k4

q2•k3 q2•k4

q3•k4

Figure 9.8 The N ⇥N QK| matrix showing how it computes all qi · k j comparisons in a
single matrix multiple.

Once we have this QK| matrix, we can very efficiently scale these scores, take
the softmax, and then multiply the result by V resulting in a matrix of shape N ⇥d:
a vector embedding representation for each token in the input. We’ve reduced the
entire self-attention step for an entire sequence of N tokens for one head to the
following computation:

A = softmax
✓

mask
✓
QK|
p

dk

◆◆
V (9.32)

Masking out the future You may have noticed that we introduced a mask function
in Eq. 9.32 above. This is because the self-attention computation as we’ve described
it has a problem: the calculation in QK| results in a score for each query value
to every key value, including those that follow the query. This is inappropriate in
the setting of language modeling: guessing the next word is pretty simple if you
already know it! To fix this, the elements in the upper-triangular portion of the
matrix are zeroed out (set to �•), thus eliminating any knowledge of words that
follow in the sequence. This is done in practice by adding a mask matrix M in
which Mi j =�• 8 j > i (i.e. for the upper-triangular portion) and Mi j = 0 otherwise.
Fig. 9.9 shows the resulting masked QK| matrix. (we’ll see in Chapter 11 how to
make use of words in the future for tasks that need it).

Fig. 9.10 shows a schematic of all the computations for a single attention head
parallelized in matrix form.

Fig. 9.8 and Fig. 9.9 also make it clear that attention is quadratic in the length
of the input, since at each layer we need to compute dot products between each pair
of tokens in the input. This makes it expensive to compute attention over very long
documents (like entire novels). Nonetheless modern large language models manage
to use quite long contexts of thousands or tens of thousands of tokens.
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Now can do a single matrix multiply to combine Q and KT
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Parallelizing attention

• Scale the  scores, take the softmax, and then 
multiply the result by V resulting in a matrix of 
shape N × d
• An attention vector for each input token
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Once we have this QK| matrix, we can very efficiently scale these scores, take
the softmax, and then multiply the result by V resulting in a matrix of shape N ⇥d:
a vector embedding representation for each token in the input. We’ve reduced the
entire self-attention step for an entire sequence of N tokens for one head to the
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Masking out the future You may have noticed that we introduced a mask function
in Eq. 9.32 above. This is because the self-attention computation as we’ve described
it has a problem: the calculation in QK| results in a score for each query value
to every key value, including those that follow the query. This is inappropriate in
the setting of language modeling: guessing the next word is pretty simple if you
already know it! To fix this, the elements in the upper-triangular portion of the
matrix are zeroed out (set to �•), thus eliminating any knowledge of words that
follow in the sequence. This is done in practice by adding a mask matrix M in
which Mi j =�• 8 j > i (i.e. for the upper-triangular portion) and Mi j = 0 otherwise.
Fig. 9.9 shows the resulting masked QK| matrix. (we’ll see in Chapter 11 how to
make use of words in the future for tasks that need it).

Fig. 9.10 shows a schematic of all the computations for a single attention head
parallelized in matrix form.

Fig. 9.8 and Fig. 9.9 also make it clear that attention is quadratic in the length
of the input, since at each layer we need to compute dot products between each pair
of tokens in the input. This makes it expensive to compute attention over very long
documents (like entire novels). Nonetheless modern large language models manage
to use quite long contexts of thousands or tens of thousands of tokens.



Masking out the future

• What is this mask function?
QKT has a score for each query dot every key, 
including those that follow the query.
• Guessing the next word is pretty simple if you 

already know it! 
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Fig. 9.8 and Fig. 9.9 also make it clear that attention is quadratic in the length
of the input, since at each layer we need to compute dot products between each pair
of tokens in the input. This makes it expensive to compute attention over very long
documents (like entire novels). Nonetheless modern large language models manage
to use quite long contexts of thousands or tens of thousands of tokens.



Masking out the future

Add –∞ to cells in upper triangle
The softmax will turn it to 0
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taneously by multiplying Q and K| in a single matrix multiplication. The product is
of shape N ⇥N, visualized in Fig. 9.9.

q1•k1

q2•k1 q2•k2

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

N

N

q1•k2 q1•k3 q1•k4

q2•k3 q2•k4

q3•k4

Figure 9.8 The N ⇥N QK| matrix showing how it computes all qi · k j comparisons in a
single matrix multiple.

Once we have this QK| matrix, we can very efficiently scale these scores, take
the softmax, and then multiply the result by V resulting in a matrix of shape N ⇥d:
a vector embedding representation for each token in the input. We’ve reduced the
entire self-attention step for an entire sequence of N tokens for one head to the
following computation:

A = softmax
✓

mask
✓
QK|
p

dk

◆◆
V (9.32)

Masking out the future You may have noticed that we introduced a mask function
in Eq. 9.32 above. This is because the self-attention computation as we’ve described
it has a problem: the calculation in QK| results in a score for each query value
to every key value, including those that follow the query. This is inappropriate in
the setting of language modeling: guessing the next word is pretty simple if you
already know it! To fix this, the elements in the upper-triangular portion of the
matrix are zeroed out (set to �•), thus eliminating any knowledge of words that
follow in the sequence. This is done in practice by adding a mask matrix M in
which Mi j =�• 8 j > i (i.e. for the upper-triangular portion) and Mi j = 0 otherwise.
Fig. 9.9 shows the resulting masked QK| matrix. (we’ll see in Chapter 11 how to
make use of words in the future for tasks that need it).

Fig. 9.10 shows a schematic of all the computations for a single attention head
parallelized in matrix form.

Fig. 9.8 and Fig. 9.9 also make it clear that attention is quadratic in the length
of the input, since at each layer we need to compute dot products between each pair
of tokens in the input. This makes it expensive to compute attention over very long
documents (like entire novels). Nonetheless modern large language models manage
to use quite long contexts of thousands or tens of thousands of tokens.
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the self-attention output A of shape [N ⇥d].

Qi = XWQi ; Ki = XWKi ; Vi = XWVi (9.33)

headi = SelfAttention(Qi,Ki,Vi) = softmax
✓
QiKi|
p

dk

◆
Vi (9.34)

MultiHeadAttention(X) = (head1 �head2...�headh)W
O (9.35)

Putting it all together with the parallel input matrix X The function computed
in parallel by an entire layer of N transformer block over the entire N input tokens
can be expressed as:

O = LayerNorm(X+MultiHeadAttention(X)) (9.36)

H = LayerNorm(O+FFN(O)) (9.37)

Or we can break it down with one equation for each component computation, using
T (of shape [N ⇥ d]) to stand for transformer and superscripts to demarcate each
computation inside the block:

T1 = MultiHeadAttention(X) (9.38)

T2 = X+T1 (9.39)

T3 = LayerNorm(T2) (9.40)

T4 = FFN(T3) (9.41)

T5 = T4+T3 (9.42)

H = LayerNorm(T5) (9.43)

Here when we use a notation like FFN(T3) we mean that the same FFN is applied
in parallel to each of the N embedding vectors in the window. Similarly, each of the
N tokens is normed in parallel in the LayerNorm. Crucially, the input and output
dimensions of transformer blocks are matched so they can be stacked. Since each
token xi at the input to the block has dimensionality d, that means the input X and
output H are both of shape [N ⇥d].

9.4 The input: embeddings for token and position

Let’s talk about where the input X comes from. Given a sequence of N tokens (N is
the context length in tokens), the matrix X of shape [N ⇥ d] has an embedding forembedding

each word in the context. The transformer does this by separately computing two
embeddings: an input token embedding, and an input positional embedding.

A token embedding, introduced in Chapter 7 and Chapter 8, is a vector of di-
mension d that will be our initial representation for the input token. (As we pass
vectors up through the transformer layers in the residual stream, this embedding
representation will change and grow, incorporating context and playing a different
role depending on the kind of language model we are building.) The set of initial
embeddings are stored in the embedding matrix E, which has a row for each of the
|V | tokens in the vocabulary. Thus each word is a row vector of d dimensions, and
E has shape [|V |⇥d].

Given an input token string like Thanks for all the we first convert the tokens
into vocabulary indices (these were created when we first tokenized the input using
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Token and Position Embeddings

The matrix X (of shape [N × d]) has an embedding for 
each word in the context. 
This embedding is created by adding two distinct 
embedding for each input
• token embedding
• positional embedding



Token Embeddings

Embedding matrix E has shape [|V | ×  d ]. 
• One row for each of the |V | tokens in the vocabulary. 
• Each word is a row vector of d dimensions

Given:  string "Thanks for all the"
1. Tokenize with BPE and convert into vocab indices
w = [5,4000,10532,2224] 
2. Select the corresponding rows from E, each row an embedding
•   (row 5, row 4000, row 10532, row 2224). 



Position Embeddings

There are many methods, but we'll just describe the simplest: absolute 
position.
Goal: learn a position embedding matrix Epos of shape [1 × N ]. 
Start with randomly initialized embeddings
• one for each integer up to some maximum length. 
• i.e., just as we have an embedding for token fish, we’ll have an 

embedding for position 3 and position 17.
• As with word embeddings, these position embeddings are learned along 

with other parameters during training. 



Each x is just the sum of word and position embeddings

X = Composite
Embeddings

(word + position)

Transformer Block

Janet
1

will
2

back
3

Janet will back the bill

the
4

bill
5

+ + + + +

Position
Embeddings

Word
Embeddings
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Unembedding layer:  linear layer projects from hLN (shape [1 × d]) to logit vector 

Why "unembedding"? Tied to ET

Weight tying, we use the same weights for 
two different matrices

Unembedding layer maps from an embedding to a 
1x|V| vector of logits



Language modeling head
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Logits, the score vector u

One score for each of the |V | 
possible words in the vocabulary V . 
Shape 1 × |V |. 

Softmax turns the logits into 
probabilities over vocabulary. 
Shape 1 × |V |. 

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of
its occurrence with the n� 1 prior words. The context is thus of size n� 1. For
transformer language models, the context is the size of the transformer’s context
window, which can be quite large: 2K, 4K, even 32K tokens for very large models.

The job of the language modeling head is to take the output of the final trans-
former layer from the last token N and use it to predict the upcoming word at posi-
tion N+1. Fig. 9.14 shows how to accomplish this task, taking the output of the last
token at the last layer (the d-dimensional output embedding of shape [1⇥ d]) and
producing a probability distribution over words (from which we will choose one to
generate).
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Word probabilities
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Figure 9.14 The language modeling head: the circuit at the top of a transformer that maps from the output
embedding for token N from the last transformer layer (hL

N
) to a probability distribution over words in the

vocabulary V .

The first module in Fig. 9.14 is a linear layer, whose job is to project from the
output h

L

N
, which represents the output token embedding at position N from the final

block L, (hence of shape [1⇥d]) to the logit vector, or score vector, that will have alogit

single score for each of the |V | possible words in the vocabulary V . The logit vector
u is thus of dimensionality 1⇥ |V |.

This linear layer can be learned, but more commonly we tie this matrix to (the
transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the
transformer the embedding matrix (of shape [|V |⇥d]) is used to map from a one-hot
vector over the vocabulary (of shape [1⇥ |V |]) to an embedding (of shape [1⇥ d]).
And then in the language model head, ET, the transpose of the embedding matrix (of
shape [d ⇥ |V |]) is used to map back from an embedding (shape [1⇥d]) to a vector
over the vocabulary (shape [1⇥|V |]). In the learning process, E will be optimized to
be good at doing both of these mappings. We therefore sometimes call the transpose
ET the unembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hLN ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a
given text. But the most important usage to generate text, which we do by sampling
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Transformers

Input and output: Position 
embeddings and the Language 
Model Head


