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Preface

As Benford’s law arises in so many different fields, there teeanendous opportunity
to design an interdisciplinary class on its theory and apgibns. Our hope is that this
collection of exercises for the bodkhe Theory and Applications of Benford’s Lawill
facilitate its use as a textbook.

There are almost as many possible classes that could beafer Benford’s law as
there are researches in the subject; the goal of our bookese exercises is to provide
a good, common denominator starting ground. As the booknisegith several chapters
where the theory is developed to various levels, from anrméd discussion to a detailed
discourse involved advanced analysis, one option is tohesetchapters as a springboard
to motivate numerous topics in advanced analysis.

After the theory, we turn to some of the large number of aggilbms. The instructor has
many options here, and can use these chapters and execcibesttate the far-reaching
consequences of simple ideas. Additionally, this matenzy be used to motivate a quick
introduction to statistics.

In order to assist instructors and students, for many cheipte
http://web.willians.edu/ Mathematics/sjmniller/public_htm/benford/

we provide links to relevant material and other resourcesh(ss videos and programs) as
available. Many authors contributed exercises for their atiner chapters. Additionally,
numerous other problems were written or assembled by therextid students working
with him (especially John Bihn of Williams College). It is éepsure to thank everyone
for their contributions. Further, one advantage of posgiraplems online is that this need
not be a static list, and thus please feel free to email theesliggestions for additional
exercises.

Finally, if you are interested in using this book for a classhave done so and have
suggestions or requests, we would love to hear from you amk with you. Please con-
tact the editor at the email address below.

Steven J. Miller
Williams College
Williamstown, MA
June 2014
siml@williams.edu, Steven.Miller.MC.96 @aya.yale.edu






Notation

O : indicates the end of a proof.

=: x =y mod n means there exists an integesuch thatt = y + an.

3: there exists.

v : for all.

| -|:]S] (or #8S) is the number of elements in the set

[-]: [«] is the smallest integer greater than or equal,teead “the ceiling of:.”

|-] or[]: |=] (also written[z]) is the greatest integer less than or equat toead “the
floor of x.”

{-} or {-) : {z} is the fractional part of;; notex = [z] + {z}.
<, > : see Big-Oh notation.

Vi aVbisthe maximum ot andb.

At a Abis the minimum ofz andb.

14 (orI4): the indicator function of sedl; thusl 4(z) is 1 if z € A and O otherwise.

0, : Dirac probability measure concentratediat €.

A : Lebesgue measure ¢R, ) or parts thereof.

Aa,o - NOrmalized Lebesgue measure (uniform distribution) fenbd), B[a, b)).
o(f) : theo-algebra generated by the functign @ — R.

a(A) : the spectrum (set of eigenvalues) af & d-matrix A.



Viii NOTATION

A¢ : the complement ofd in some ambient spade clear from the context; i.eA¢ =
{weN:wdgA}.

A\B : the set of elements of notin B, i.e., A\B = AN B°.

AARB : the symmetric difference ol andB, i.e., AAB = A\ B U B\ A.

a.e. : (Lebesgue) almost every (or almost everywhere).

a.s. : almost surely, i.e., with probability one.

B : Benford distribution of{R™, S).

BB : Borelo-algebra orR or parts thereof.

Big-Oh notation : A(x) = O(B(x)), read “A(z) is of order (or big-Oh)B(z)”, means
there exists &' > 0 and anx, such that for all: > z¢, |A(x)| < CB(z). This is also
written A(z) < B(z) or B(z) > A(x).

C : the set of complex number§z : z = = + iy, z,y € R}.

C* : the set of alll times continuously differentiable functiorse No.

C* : the set of all smooth (i.e., infinitely differentiable) fetions;C>° = ﬂgzo ct.

D1, Dy, Ds, ... : the first, second, third,. . significant decimal digit.

D,(fi) : them-th significant digit basé.

E[X] (orEX) : the expectation ok .

e(r) : e(x) = e?mie,

f+IP: a probability measure oR induced byP and the measurable functigh: Q2 — R,

via f,P(-) :==P(f71(")).

F,: {F,} is the sequence of Fibonacci numb€is, } = {0,1,1,2,3,5,8,...} (F42 =
Fn+1 + F, with Fy=0 andF1 = 1)

Fp, Fx : the distribution functions o and X.
111 =+—1.

i.i.d. : independent, identically distributed (sequenctamily of random variables); often
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one writes i.i.d.r.v.

Sz seefez.

infimum : the infimum of a set, denotedf,, x,,, is the largest number (if one exists)
such thatz,, > ¢ for all n, and for anye > 0 there is somey, such that,,, < ¢+ e. If

the sequence has finitely many terms, the infimum is the saitie asinimum value.

j :in some chapterg = +/—1 (this convention is frequently used in engineering).

Leb : Lebesgue measure.

Little-oh notation :A(z) = o(B(x)), read “A(x) is little-Oh of B(z)", meandim, ., A(z)/B(z) =
0.

LY(R): all f: R — C which are measurable and Lebesgue integrable.
log : usually the natural logarithm, though in some chapterstiié logarithm base 10.
In : the natural logarithm.

N : the set of natural number$, 1,2, 3,...}.

Ny : the set of positive natural numbelt, 2,3, ... }.

N : the Newton map associated with a differentiable funcfon

o(+), O(-): see ‘Little-oh’ and ‘Big-Oh’ notation, respectively.

Or(x0) : the orbit ofzy under the mafl”, possibly nonautonomous.

{pn} : the set of prime numbers: 2, 3,5, 7, 11, 13,

P : probability measure ofR, B), possibly random.

Px : the distribution of the random variablé.

Prob (or Pr) : a probability function on a probability space.

Q : the set of rational numbersx : 2 = §,p7 q €Z,q #0}.

R : the set of real numbers.

R : the set of positive real numbers.

Rz, Sz : the real and imaginary parts efe C; if 2 = x + iy, Rz = z andSz = .



X NOTATION

S : the significand function: if: > 0 thenz = S(z) - 10*®), whereS(z) € [1,10) and
k(x) € Z; more generally one can study the significand functignin baseB.

S : the significandr-algebra.

supremum : given a sequenge, } >, the supremum of the set, denoteth,, z,,, is the
smallest numbet (if one exists) such that,, < ¢ for all n, and for anye > 0 there is
somen, such thatz,,, > ¢ — e. If the sequence has finitely many terms, the supremum is
the same as the maximum value.

u.d. mod1 : uniformly distributed modulo one.

Var(X) (orvar(X)) : the variance of the random variablg assuming the expected value
of X is finite; Var(X) = E[(X — E[X])?].

W : the set of whole numbergi,2,3,4,...}.
X, B x: (X,,) converges in distribution t& .

a.s.

X, = X : (X,) converges toY almost surely.
Z, |z| : the conjugate and absolute valuezof C.
Z: the set of integers{...,—2,-1,0,1,2,...}.

77 : the set of non-negative integef$, 1,2, ... }.
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General Theory I. Basis of Benford’s Law






Chapter One

A Quick Introduction to Benford’s Law

Steven J. Miller
A couple of important points.

e There are many problems that would fit in multiple chapteis h&lp both the in-
structors and the readers, we have decided to collect theen fibus, some of the
exercises in this chapter will be far more accessible aéading later parts of the
book.

e In Mathematica, if you define the following function you céren use it to find the
first digit:

firstdigit[x ] := Floor[10"Md[ Log[ 10, x], 1]]

(a similar function is definable in other languages, but yfmeasx will differ slightly).

Exercise1.1. If X is Benford base 10, find the probability that its significatedts 2.789.

Exercise 1.2. If X is Benford base 10, find the probability that its significatatts with
7.5 (in other words, its significand is {ii.5, 7.6)).

Exercise1.3. If X is Benford base 10, find the probability that its significaasimo 7's in
the firstk digits (thus a significand of 1.701 would have no 7 in its fiigitdbut it would
have a 7 in its first two digits.

Exercise 1.4. Considera™ for various « and various ranges of; for example, take
a€{2,3,5,10,v2,v5,V/10, 7, ¢,v} (herey is the Euler-Mascheroni constant, see
http://en.w ki pedi a. or g/ wi ki / Eul er - Mascher oni _const ant forade-
scription and properties), and letgo from 1 toNV, whereN € {103,10°,107}. Which of
these data sets do you expect to be Benford? Why or why nodl. tpeabout chi-square
goodness of fit tests (see for example

http://en.w ki pedi a. or g/ wi ki / Pear son_chi _squar e) and compare the
observed frequencies with the Benford probabilities.

1Department of Mathematics and Statistics, Williams Cadleg/illiamstown, MA 01267. The author was
partially supported by NSF grants DMS0970067 and DMS128567
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Exercise 1.5. Reuvisit the previous problem with more values\af The problem is there
we looked at three snapshots of the behavior; it is far moter@sting to plot the chi-
square values as a function f, for V ranging from say 100 t@0” or more. You will see
especially interesting behavior if you look at the first t8gif=".

Exercise 1.6. We have seen that Benford behavior of a sequence is relatglidistri-
bution of its logarithm. Thus, in the previous problem it nheyuseful to look at a log-log
plot. Thus instead of plotting the chi-square value agathstupper boundV, plot the
logarithm of the chi-square value agairisg V.

Exercise 1.7. Frequently taking logarithms helps illuminate relatioish For example,
Kepler's third law (see

http://ww. physi cscl assroom conl cl ass/ ci rcl es/ Lesson- 4/ Kepl er - s- Thr ee- Laws )
says that the square of the time it takes a planet to orbit aisymoportional to the cube
of the semi-major axis. Find data for these quantities far ¢fight planets in our system
(or nine if you count Pluto!) and plot them, and then do a log-plot. A huge advantage
of log-log plots is that linear relations are easy to obseaval estimate; try and find the
best fit line here, and note that the slope of the line shoulddme to 1.5 (if" is the period
and L is the length of the semi-major axis, Kepler’s third law iattthere is a constant’
such thatT? = CL?, or equivalentlyl’ = CL*/?, orlogT = 2 log L + log C). Revisit
the original plot, and try to see that it suppoff8 is proportional toL?!

Exercise 1.8. Prove the log-laws: lfog, x; = y; andr > 0 then
e log, b =1 andlog, 1 = 0 (notelog, x = y meanse = bY);
o log,(z") = rlog, x;

o log,(x122) = log, x1 + logy, z2 (the logarithm of a product is the sum of the loga-
rithms);

o log,(z1/x2) = log, 1 — log, a2 (the logarithm of a quotient is the difference of the
logarithms; this follows directly from the previous two Hayvs);

e log. x = log, x/ log, ¢ (this is the change of base formula).

Exercise 1.9. The last log-law (the change of base formula) is often fdeggtbut is
especially important. It tells us that if we can compute ldthpans in one base then we can
compute them in any base. In other words, it suffices to cjestenetable of logarithms,
so we only need to find one base where we can easily computéthoge. What base
do you think that is, and how would you compute logarithmsrbitrary positive real
numbers?

Exercise 1.10. The previous problem is similar to issues that arise in piulity text-
books. These books only provide tables of probabilitie@néfilom variables drawn from
a normal distributios, as one can convert from such a table to probabilities for ather
random variable. One such table is online here:

2The random variabl& is normally distributed with mean and variancer? if its probability density func-

tionis f(z; pu, o) = exp (—(z — p)?/(202)) /V2mo2.
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htt p:// www. mat hsi sfun. coni dat a/ st andar d- nor mal - di stribution-table. htm . Use
a standard table to determine the probability a normal randeariable with meamn = 5
and variances? = 16 (so the standard deviation is = 4) takes on a value between -3
and 7. Thus, similar to the change of base formula, there isrmrmous computational
savings as we only need to compute probabilities for one abdistribution.

Exercise 1.11. Prove L log, = = ﬁgb. Hint: first do this wherb = e, the base of the

natural logarithms; us€°¢* = x and the chain rule.

Exercise 1.12. Revisit the first two problems, but now consider some othipresgces, such
asn!, cos(n) (in radians of course as otherwise the sequence is peripdtc)?, n'e ™,
ploglogn plogloglogn ‘nn |n some situationdog, does not mean the logarithm base 4,
but rather four iterations of the logarithm function. It ride interesting to investigating
n'°&se ™ under this definition for various integer-valued functighs

Exercise 1.13. Revisit the previous problem but for some recurrence refeti For exam-
ple, try the Fibonacci numbergy, 5 = F,+1 + F, with F;, = 0 andF; = 1) and some
other relations, such as:

e Catalan numbersC,, = #1 (27?) these satisfy a more involved recurrence (see

http://en.w ki pedi a. or g/ wi ki / Cat al an_nunber ).
e Squaring FibonaccisG,,+2 = G2, + GZ with Gy = 0 andG; = 1.
e F, wherep is a prime (i.e., only look at the Fibonaccis at a prime index)

e The logistic mapz,,+1 = rz,(1—x,) for various choices of and various starting
valuesr (seenttp://en. wi ki pedi a. or g/ wi ki / Recurrence_rel ation).

e Newton’s method for thdifferencebetween the:™ prediction and the true value.
For example, to find the square-root@fone uses:, 1 = % (a:n + zi), and thus

we would study the distribution of leading digits|gfa — z,,|. One could also look
at other roots, other numbers, or more complicated fundidfor more on Newton’s
method, sebt t p: // mat hwor | d. wol f ram com’ Newt onsMet hod. ht i .

e The3z + 1 Map: z,+1 = 3z, + 1 if z,, is odd andz,,/2 if z,, is even (though
some authors use a slightly different definition, wheredgreven one instead lets
Thy1 = x,/2%, whered is the highest power of 2 dividing,). It is conjectured
that no matter what positive starting seeglyou take, eventually,, cycles among
4, 2 and 1 forn sufficiently large (or is identically 1 from some point onaarwe
use the second definition). We return to this problem in Givapit

For the remaining problems, whenever a data set satisfieBéslaw we mean the
strongversion of the law. This means the cumulative distributionction of the signifi-
candisFx (s) = logyo(s) for s € [1,10), which implies that the probability of a first digit
of dislog,,(1+ 1/d).

Exercise 1.14. If a data set satisfies (the strong version of) Benford’s laseb10, what
are the probabilities of all pairs of leading digits? In oth@ords, what is the probability
the first two digits arel; d> (in that order)? What if instead our set were Benford bé®e
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Exercise1.15. Let X be a random variable that satisfies (the strong version ofjférel’s
law. What is the probability that the second digit#® Note here that the possible values
of d range from 0 to 9.

Exercise 1.16. Building on the previous problem, compute the probabiligtta random
variable satisfying the strong version of Benford’s law litas:™ digit equal tod. If we
denote these probabilities by, (d), what islimy_, -, px(d)? Prove your claim.

Exercise1.17. Find a data set that is spread over several orders of mageitadd inves-
tigate its Benfordness. For example, stock prices or voltregeed on a company that has
been around for decades.

Exercise1.18. Look at some of the data sets from the previous exercisew#rahotBen-
ford, and see what happens if you multiply them togetherekample, consider?-cos(n)

(in radians), orn? 10" cos(n), or even larger products. Does this support the claim in
the chapter that products of random variables tend to caywéo Benford behavior?

Exercise 1.19. Let uy,, denote the mean of significandskotligits of random variables
perfectly satisfying Benford’s law, and lej denote the mean of the significands of random
variables perfectly following Benford’s law. What jig., for k € 1,2,3? Doesuy,
converge tqu,? If yes, boundus., — | @s a function of.

Exercise 1.20. Benford's law can be viewed as the distribution on signifasaarising
from the density(z) = m on|[1,10) (and O otherwise). More generally, consider
densitiegp, (z) = C,./z" for x € [1,10) and 0 otherwise withr € (—o0, o), whereC,

is a normalization constant so that the density integrate$.t For eachr, calculate the
probability of observing a first digit of, and calculate the expected value of the first digit.



Chapter Three

Fourier Analysis and Benford’s Law

Steven J. Miller

3.1 PROBLEMSFROM INTRODUCTION TO FOURIER ANALYSIS

The following exercises are from the chapter “An Introdactio Fourier Analysis”, from
the bookAn Invitation to Modern Number Theo(Princeton University Press, Steven J.
Miller and Ramin Takloo-Bighash). This chapter is avaiabhline on the webpage for
this book (go to the links for Chapter 3).

Exercise 3.1. Provee” converges for al: € R (even better, for alk € C). Show the
series fore” also equals

tim (1+ %)n 3.1)

n—oo

which you may remember from compound interest problems.

Exercise3.2. Prove, using the series definition, thédt™ = e*eYand calculate the deriva-
tive ofe”.

Exercise 3.3. Let f, g andh be continuous functions df, 1], anda, b € C. Prove

1. {f, f) > 0, and equal® if and only if f is identically zero;

2. (f.9) =19, f);
3. {af +bg,h) = a(f,h) +b{g,h).

Exercise 3.4. Find a vectors = (Z;) € C? such thaf + v3 = 0, but (7, 7) # 0.
Exercise 3.5. Provez™ and 2™ are not perpendicular off0, 1]. Find ac € R such that
2™ — cx™ is perpendicular tar™; c is related to the projection af” in the direction of
x™.

Exercise 3.6 (Important) Show form,n € Z that

1 ifm=n

(em(z),en()) = { (3.2)

0 otherwise.

1Department of Mathematics and Statistics, Williams Cadleg/illiamstown, MA 01267. The author was
partially supported by NSF grants DMS0970067 and DMS128567
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Exercise 3.7. Let f and g be periodic functions with period. Proveaf(x) + Bg(z) is
periodic with perioda.
Exercise3.8. Prove any function can be written as the sum of an even and@fuodtion.

Exercise 3.9. Show
(f(@) = F(n)en(x), en(z)) = 0. (3.3)

This agrees with our intuition: after removing the projectiin a certain direction, what
is left is perpendicular to that direction.

Exercise 3.10. Prove
1. (f(z) — Sn(z), en(z)) = 0if |n| < N.
2. |F(n)| < fy 1f(2)\da.
3. Bessel's Inequality: iff, f) < cothen>>>> ___|f(n)|2 < (f, ).

4. Riemann-Lebesgue Lemma(ff f) < oo thenlim,|_, f(n) = 0 (this holds for
more generalf; it suffices thatfo1 |f(z)]|dz < o).

5. Assumg is differentiablek times; integrating by parts, shojy (n)| < - and the
constant depends only ghand its firstk derivatives.

Exercise3.11. Leth(x) = f(x)+g(z). Doesh(n) = f(n)+3(n)? Leth(z) = f(x)g(x).
Doesk(n) = f(n)(n)?

Exercise 3.12. Remark 11.2.4 shows that(if, /), (g, g) < oo then the dot product of
andg exists: <f, g) < cco. Dothere exisff, g : [0,1] — Csuch thatfo1 |f(z)|dx, fol lg(z)|dx <
00 butf0 (z)dx = 00? Is f € L*([0,1]) a stronger or an equivalent assumption as
fe Lo, 1])

Exercise 3.13. Define

N for|z| < &
A = -N 3.4
v (@) {O otherwise. (3.4)

Prove Ay is an approximation to the identity (jni, 5] If fis continuously differentiable
and periodic with period, calculate

Jim_ /_ F(2) An (2)da. (3.5)

Exercise3.14. Let A(x) be a non-negative function with A(z)dz = 1. ProveAy (z) =
N - A(Nz) is an approximation to the identity dR.

Exercise3.15 (Important) Let Ay (z) be an approximation to the identity ¢n 1, 1]. Let

/() be a continuous function dr-3, 1]. Prove

1

lim f( VAN (z)dx = f(0). (3.6)

N—o00
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Exercise 3.16. Prove the two formulas above. The geometric series formilil&davhelp-
ful:

M N M+1

) S —— (3.7)
1—r

n=N

Exercise 3.17. Show that the Dirichlet kernels ar@t an approximation to the identity.
How large arefo1 |Dy(z)|dx andfO Dy (z)?dz?

Exercise3.18. Prove the Weierstrass Approximation Theorem implies thgral version
of Weierstrass’ Theorem.

Exercise 3.19. Let f(z) be periodic function with period. Show

Sn(zo) = | f@)Dn(@—wo)de = | flao—a)Dy(@)de.  (3.8)

1 1

2 2

Exercise 3.20. Letf(n) = QW Doesy ™ ( )en(x) converge to a continuous, differ-
entiable function? If so, is there a S|mple expression fat fhnction?

Exercise 3.21. Fill in the details for the above proof. Prove the result fdr A satisfying
Iy 1f (@)2dz < oo

Exercise 3.22. If fol |f(z)]?dx < oo, show Bessel's Inequality implies there exist8 a
such that f(n)| < B for all n.

Exercise 3.23. Though we usefd+b|? < 4|a|?+4/b|?, any bound of the formaa|? +c|b|?
would suffice. What is the smallestat works for alla, b € C?

Exercise 3.24. Let f(z) = + — |z| on[-1,1]. Calculate}";” W Use this to

deduce the value of >7 | -4 3. Th|s is often denote¢i2) (see Exercise 3.1.7). See [BP]
for connections with continued fractions, and [K&fpr connections with quadratic reci-
procity.

Exercise3.25. Let f(z) = z on[0, 1]. Evaluate}_ | 5.

Exercise 3.26. Let f(z) = z on[—3, 1]. ProveZ = >, 22_7:—1)2 See also Exercise

3.3.29; see Chapteirl of [BB]* or [Sc]® for a history of calculations of.

Exercise3.27. Find a function to determing > | L.

2E. Bombieri and A. van der PoorteGontinued fractions of algebraic numbemages 137-152 i@ompu-
tational Algebra and Number Theory (Sydney, 1992jthematical Applications, Vol. 325, Kluwer Academic,
Dordrecht, 1995.

3A. Karlsson,Applications of heat kernels on Abelian grougg2n), quadratic reciprocity, Bessel integral
preprint.

4J. Borwein and P. BorweirRi and the AGM: A Study in Analytic Number Theory and Comjuriat Com-
plexity, John Wiley and Sons, New York987.

5p. SchumenMathematical Journeyshiley-Interscience, John Wiley & Sons, New YogQ04.
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Exercise 3.28. Show the Gaussiaf(z) = Jzi? e~(@=m*/29% is in S(R) for anyyu, o €
R.

Exercise3.29. Let f(x) be a Schwartz function with compact support contalne{dm o]

and denote its Fourier transform bj/( ). Prove for any integerd > 0 that |f( )| <
cry~“, where the constant; depends only off, its derivatives andr As such a bound

is useless ay = 0, one often derives bounds of the foffity)| < W

Exercise 3.30. Consider

fz) = {nG (% —|n— x|) if |2 —n| < =5 L for somen € Z (3.9)

0 otherwise.

Showy () is continuous buf’(0) is undefined. Show (z:) converges and is well defined
foranyx ¢ Z.

Exercise 3.31. Prove Lemma 11.4.8.

Exercise 3.32. For what weaker assumptions ofy f/, f” is the conclusion of Lemma
11.4.10 still true?

Exercise 3.33. One cannot always interchange orders of integration. Fomdicity, we
give a sequence,,, suchthad " (> amn) # >, (>, @mn). FOrm,n > 0let

1 ifn=m
Ampn = §—1 ifn=m+1 (3.10)
0 otherwise.

Show that the two different orders of summation yield défieanswers (the reason for this
is that the sum of the absolute value of the terms diverges).

Exercise 3.34. The example in the previous remark Has,,, . max, | f,(z)| = oo; in
other words, there is nd/ such that|f,, (z)| < M for all M andx. Find a family of
functionsf,, (z) such that

lim fn )dzx 75/ hm fanlz (3.11)

n—r00

and eachf,,(z) and f(«) is continuous andif,,(z)|, | f(«)| < M for someM and all z.

Exercise 3.35. Let f,g be continuous functions oh = [0,1] or I = R. Show if
(f,f),{g,9) < oo thenh = f x g exists. Hint: Use the Cauchy-Schwarz inequality.
Show furtherthaﬁ(n) = f(n)g(n) if I =1[0,1] orif I = R. Thus the Fourier transform
converts convolution to multiplication.

Exercise 3.36. Prove (11.77).

Exercise 3.37 (Important) If for all ¢ = 1,2,... we have(f;, f;) < oo, prove for all

i andj that (f; = f;, fi = f;) < oco. What aboutf; = (f2 = f3) (and so on)? Prove
f1 = (fax f3) = (f1 = f2) * f3. Therefore convolution is associative, and we may write
f1#---x fy for the convolution ofV functions.
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Exercise 3.38. SupposeXy, ..., Xy are i.i.d.rv. from a probability distributiop on R.
Determine the probability thak; + --- + X € [a,b]. What must be assumed about
for the integrals to converge?

Exercise 3.39. One useful property of the Fourier transform is that the dative ofy is
the Fourier transform ofmixg(x); thus, differentiation (hard) is converted to multiplica-
tion (easy). Explicitly, show

Jy) = / 2mix - g(x)e” ™Y dx. (3.12)

If g is a probability density, notg’(0) = —27iE[z] andg”(0) = —47r2E[2?].
Exercise 3.40. If B(z) = A(cx) for some fixed # 0, showB(y) = LA (¥).

C

Exercise3.41. Show that if the probability density &f; +- - -+ X = zis (px*- - -xp)(x)
(i.e., the distribution of the sum is given py - - - x p), then the probability density of
X1+7\/N+XN =zis(VNpx---++vNp)(xzv/N). By Exercise 3.40, show

N
- 5L
FT {(\/Np**\/ﬁp)(x\/ﬁ)} (y) = [p(\/N)} . (3.13)
Exercise 3.42. Show for any fixeg that
. 97242 3 N on2
Jf;b‘7%/+0<;w>] = 2, (3.14)

Exercise3.43. Show that the Fourier transform ef 2% at z is \/Lz_ﬂ e~*"/2_ Hint; This
problem requires contour integration from complex analysi

Exercise 3.44. Modify the proof to deal with the case pthaving mean: and variance

a2

Exercise 3.45. For reasonable assumptions pnestimate the rate of convergence to the
Gaussian.

Exercise 3.46. Letp,, p2 be two probability densities satisfying (11.79). Considgr =
X1 + -+ Xn, where for each, X; is equally likely to be drawn randomly from or
p2. Show the Central Limit Theorem is still true in this case. aiMhwe instead had a
fixed, finite number of such distributiops, . . ., pi,, and for eachi we draw.X; from p;
with probabilityg; (of courseg: + -+ + g = 1)?

Exercise 3.47 (Gibbs PhenomenonDefine a periodic with period function by

-1 if—3<z<0
= = 3.15
fle) {1 if0<a<l. (3.15)

Prove that the Fourier coefficients are

_ {O if nis even (3.16)

L if nis odd.
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Show that theV'™" partial Fourier seriesSy(z) converges pointwise tg(x) wherever
f is continuous, but overshoots and undershootsiforear 0. Hint: Express the series
expansion folSy (z) as a sum of sines. Nofé“(;;”—w’””) = [, cos(2mmt)dt. Express this

as the real part of a geometric series of complex exponentald use the geometric series
formula. This will lead to

* 1 etnmit — 1 ¥ sin(4nmt)

which is aboutl.179 (or an overshoot of abouit’%) whenz = ﬁ. What can you say
about the Fejér serie®y (x) for x near0?

Exercise 3.48 (Nowhere Differentiable Function)\eierstrass constructed a continuous
but nowhere differentiable function! We give a modified edanand sketch the proof.
Consider

= n n 1

flz) = nzzoa cos(2" - 2mx), 5 <a< 1. (3.18)
Show  is continuous but nowhere differentiablélint: First show|a| < 1 implies f
is continuous. Our claim orf follows from: if a periodic continuous functionis dif-
ferentiable atzy andg(n) = 0 unlessn = +2™, then there exist§' such that for all
n, [g(n)] < Cn2~". To see this, show it suffices to considgr = 0 and g(0) = 0.
Our assumptions imply thdy, e,,) = 0if 2»~! < m < 2"*1 andm # 2". We have
9(2™) = (g, ean Fyn—1(z)) whereFy is the Fejér kernel. The claim follows from bounding
the integral(g, ea» Fon—1(2x)). In fact, more is true: Baire showed that, in a certain sense,
“most” continuous functions are nowhere differentiableleSfor example, [Fof).

Exercise 3.49 (Isoperimetric Inequality)Let~y(¢) = (z(¢),y(t)) be a smooth closed curve
in the plane; we may assume it is parametrized by arc lengthres lengthl. Prove the
enclosed area is largest wheny(t) is a circle. Hint: By Green’s Theorem (Theorem
A.2.9),

?{xdy —ydr = 2Area(A). (3.19)
.

The assumptions on(¢) imply z(t), y(t) are periodic functions with Fourier series ex-
dy
dt
a relation among the Fourier coefficients &f and 2% (which are related to those of{t)
andy(t)); (3.19)gives another relation among the Fourier coefficients. Ehretations
imply 4rArea(A) < 1 with strict inequality unless the Fourier coefficients \&mnior
|n| > 1. After some algebra, one finds this implies we have a streduality unlessy is
a circle.

2
pansions an ‘fl—f)g + ( ) = 1. Integrate this equality fromm = 0 to ¢ = 1 to obtain

Exercise 3.50 (Applications to Differential EquationsOne reason for the introduction of
Fourier series was to solve differential equations. Coasithe vibrating string problem:
a unit string with endpoints fixed is stretched into somaéahjtosition and then released;

6G. Folland,Real Analysis: Modern Techniques and Their Applicati@msl edition, Pure and Applied Math-
ematics, Wiley-Interscience, New York, 1999.
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describe its motion as time passes. Lét,t) denote the vertical displacement from the
rest positionz units from the left endpoint at tinte For all ¢ we have:(0,t) = u(1,t) =0
as the endpoints are fixed. Ignoring gravity and frictiom,small displacements Newton’s
laws imply
O%u(z,t) o 0%u(z,t)
52— ¢ am (3.20)
wherec depends on the tension and density of the string. Guessialygan of the form

u(z,t) = ian(t) sin(nma), (3.21)
n=1

solve fora,, (t).
One can also study problems @by using the Fourier Transform. Its use stems from
the fact that it converts multiplication to differentiatipand vice versa: ifj(xz) = f'(x)

~

andh(x) = z f(x), prove thag(y) = 2wiy f(y) and%(yy) = —2m‘ﬁ(y). This and Fourier
Inversion allow us to solve problems such as the heat equatio

ou(z,t)  0*u(x,t)
5 =52 ¢ eR, t>0 (3.22)

with initial conditionsu(z, 0) = f(z).

3.2 PROBLEMSFROM CHAPTER 1: REVISITED

Many of the problems from Chapter 1 are appropriate here dis Weaddition to re-
examining those problems, consider the following.

Exercise 3.51. Is the sequence, = n'°¢™ Benford?

Exercise 3.52. In some situation$og, does not mean the logarithm base 4, but rather
four iterations of the logarithm function. Investigat®2s(» ™ under this definition for
various integer-valued functions

3.3 PROBLEMSFROM CHAPTER 3

Exercise 3.53. Assume an infinite sequence of real numHers} has its logarithms mod-
ulo 1, {y, = log;,x, mod 1}, satisfying the following property: as — oo the pro-
portion ofy,, in any intervalla,b] C [0, 1] converges td — a if b — a > 1/2. Prove or
disprove thaf{z,, } is Benford.

Exercise 3.54. As+/2 is irrational, the sequencéx,, = n+v/2} is uniformly distributed
modulo 1. Is the sequenée? } uniformly distributed modulo 1?

Exercise 3.55. Does there exist an irrational such thatx is a root of a quadratic poly-
nomial with integer coefficienendthe sequencén™}>° ; is Benford base 10?

Exercise 3.56. Which of the following are Benford, and why?
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{na?} = {2?, 222,322, 422,.. . } for z > 1.

{n7r2} — {7.‘.2’ on2 372 An2, ... 1.

{n?n?} = {n? 472,972, 167%,. .. }.

{57 +2n} = {7,29,133,641,...}.

° {€1+n7'r} — {61+7'r7 €1+27T, e14»37'1'7 e1+47‘r7 . }
e 1/X,whereX is arandom variable uniformly distributed df, 5).

Exercise 3.57. We showed a Geometric Brownian Motion is a Benford-goodgssgcis
the sum of two independent Geometric Brownian Motions Besgfood?

The next few questions are related to a map we now describsh@eed that, suitably
viewed, the3x + 1 Map leads to Benford behavior (or is close to Benford for atvall
large starting seeds). Consider the following map. Rét) be the number formed by
writing the digits ofz in reverse order. 1R(z) = = we sayz is palindromic. Ifz is
not a palindromic number s€t(z) = = + R(z), and if z is palindromic letP(z) =
x. For a given starting seech consider the sequence wherg,; = P(x). Itis not
known if there are any, such that the resulting sequence diverges to infinity, thatig
believed that almost all such numbers do. The first candida¢scape is 196; for more
seeht t p: // en. wi ki pedi a. org/ wi ki / Lychrel _nunber (this process is also
called “reverse-and-add”, and the candidates are calletrey numbers).

Exercise 3.58. Consider the reverse-and-add map described above appiedlarge
starting seed. Find as good of a lower bound as you can for thaber of seeds be-
tween10™ and 10" such that the resulting sequence stabilizes (i.e., we eaéyhit a
palindrome).

Exercise 3.59. Come up with a model to estimate the probability a given stgrseed in
10" and10™*! has its iterates under the reverse-and-add map divergefiityy Hint: «
plus R(x) is a palindrome if and only if there are no carries when we #uas you must
estimate the probability of having no carries.

Exercise 3.60. Investigate the Benfordness of sequences arising fronetleese-and-add
map for various starting seeds. Of course the calculatiocoisplicated by our lack of
knowledge about this map, specifically we don’t know everstamgéng seed that diverges!
Look at what happens with various Lycherel numbers. For édaan you find a starting
seedrq such that it iterates to a palindrome aftdf or more steps?

Exercise 3.61. Redo the previous three problems in different bases. Yoswanwill
depend now on the base; for example, much more is known baber2 (ve can give
specific starting seeds that iterate to infinity).

Exercise 3.62. Use the Erdds-Turan Inequality to calculate upper boundstfe discrep-

ancy for various sequences, and use those results to provimBebehavior. Note you
need to find a sequence where you can do the resulting conutibr example, earlier
we investigated,, = n'°¢™; are you able to do the summation for this case?
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Exercise 3.63. Consider the analysis of products of random variables. Rixabability p
(maybep = 1/2), and independent identically distributed random varetK, . .., X,,.
Assume as — oo the product of theX;’s becomes Benford. What if now we 135,{ be

the random variable where we toasindependent coins, each with probabilityand if
thei toss is a head thef; is in the product (if the product is empty we use the standard
convention that it is then 1). Is this process Benford?

Exercise 3.64. Redo the previous problem, but drop the assumption thatthéam vari-
ables are identically distributed.

Exercise 3.65. Redo the previous two problems, but now allow the probatitiat the;™
toss is a head to depend on

Exercise 3.66. Consider
i _ Ll 1
o = 4™ Tl 57 (3.23)
0 otherwise;

this is the function from Example 3.3.5 and led to non-Behb@havior for the product.
Can you write down the density for the product?

Exercise 3.67. In the spirit of the previous problem, find other random vatés where
the product is not Benford.

Exercise 3.68. Consider a Weibull random variable where we fix the scale peatra to
be 1 and the translation parametgito be 0; thusf (z;v) = 27~ exp(z?) for z > 0 and
is zero otherwise. Investigate the Benfordness of chairdandom variables here, where
the shape parameteris the output of the previous step.

Exercise 3.69. The methods of [JKKKM] led to good bounds for chaining expdiaé
and uniform random variables. Can you obtain good, explioinds in other cases? For
example, consider a binomial process with fixed parameter

Exercise3.70. Apply the methods of Cuff, Lewis and Miller (for the Weibigtrabution)to
other random variables. Consider the generalized Gamntaildigion (see

http://en.w ki pedi a. org/ wi ki / General i zed_ganma_di stri bution

for more information), where the density is
p/d® d—1
ria,d,p) = 27 exp (—(x/a)?

for z > 0 and 0 otherwise, where, d, p are positive parameters.

For the next few problems, lg}.(z) — 1/(1 + |z|") with r > 1.
Exercise 3.71. Show that forr > 1, [*_ f. (z)dx is finite. Verify that/”_ f, (z) dx
= 27” csc (%)
Exercise 3.72. Verify that the Fourier transform identity used in our ansil;
1 s - T
bty bty s - 2miby o _ .
pr(e )e 281n(r)e csc(r(l 2my)),

whereb € [0, 1].
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Chapter Four

Benford's Law Geometry

Lawrence Leemis

Exercise4.1. Perform a chi-square goodness-of-fit test on the data vaiugable 4.1.

Exercise 4.2. Let the random variabl& have the Benford distribution as defined in this
chapter. FindE[X]. Next, generate one million Benford random variates and pam
their sample mean. Perform this Monte Carlo experimentragtienes to assure that the
sample means are ne X]|.

Exercise 4.3. LetT ~ exponentigll). Find the probability mass function of the leading
digit to three-digit accuracy. Compare your results to thas Table 4.2.

Exercise4.4. Redo the previous exercise, but instead of finding the pibtyamass func-
tion of the leading digit, find the cumulative distributiamttion of the significand (i.e.,
find the probability of observing a significand of at mekt

Exercise 4.5. Determine the set of conditions an b, and ¢ associated withi/ ~
triangular(a, b, ¢) which result inT’ = 10" following Benford’s Law.

Exercise4.6. Use R to confirm that the cumulative distribution functigriz) = Prob(X <
x) = log;,(x+1) results in a probability mass function that gives the disition specified
in Benford’s Law. What is the range of

Exercise4.7. Use R to determine if the cumulative distribution functfgriz) = Prob(X <
x) = x? (for some range for) results in a probability mass function that gives the distr
bution specified in Benford's Law. If yes, what is the rangerfd

Exercise 4.8. Which of the following distributions a4 follow Benford’'s Law?
o fw(w)~U(0,3.5).
o fw(w) ~U(17,117).
o fiv(w)=w?—w?+wfor0<w<1,andl —w? +w? —wforl <w < 2.
o fw(w)=ywforo<w<1,andl —yw —1forl <w < 2.

Exercise 4.9. Letb; andb, be two different integers exceeding 1. Is there a probabilit
densityp on an intervall such that if a random variabl&” hasp for its probability density
function thenX is Benford in both bas&, andb,? What if the two bases are allowed to
be real numbers exceeding 1? Prove your claims.

1Department of Mathematics, The College of William & Mary, Iidimsburg, VA 23187.



Chapter Five

Explicit Error Bounds via Total Variation

Lutz Dimbgen and Christoph Leuenberger
Exercise5.1. Find TV (sin(x), [—m, 7]).
Exercise5.2. Confirmthatl'V (h,J) = TV *(h,J) + TV~ (h,]).
Exercise 5.3. LetY, andZ be independent random variables such thiathas a density
fo with TV(f,) < oo and Z has distributionr. Verify thatY := Y, + Z has density
fy) = [ foly — 2) m(dz) with TV (f) < TV(fo).
Exercise5.4. Show that an absolutely continuous probability dengin R satisfies
f'(@)?
TV(f)? < / dz.

Exercise5.5. Letv, , be the density of the gamma distributiGamma(a, o) with shape
parameterz > 0 and scale parameter > 0, i.e.,
Yao(x) = o %" L exp(—x/c)/T(a)

for z > 0, and~, , = 0 on(—o0,0].
(i) Show that for > 1,

TV(Ya) = 0 ' TV(7e,1) and TV(ve,1) = 2((a—1)/e)* "/T(a).
(ii) It is well-known thaf(t + 1) = (t/e)!v/2rt(1 + o(1)) ast — oo (this is Stirling’s
formula). What does this imply farV(v,,1)? Show thatl'V(v,,,) — 0 asyao — o
anda > 1.

Exercise5.6. Let X be a strictly positive random variable with densitgn (0, co). Verify
thatY :=logz(X) has densityf given byf(y) = log(B)BYh(BY) for y € R.

Exercise 5.7. Let X be a random variable with distributio@Gamma(a, o) for some
a,o > 0; see Exercise 5.5
(i) Determine the density, , of Y := logz(X). Here you should realize that, ,(y) =
fa,1(y —logg(o)). Show then that

Tv(fa,o) =2 IOg(B)(a/e)a/F(a)'
What happens ag — oo?
(i) To understand why the leading digits &f are far from Benfords law for large,
verify thatX = o(a + /aZ,) for a random variableZ, with mean zero and variance
one. (Indeed, the density af, converges uniformly to the standard Gaussian density as
a — 00.) Now investigate the distribution &f = logz(X) asa — .

LUniversity of Bern, Bern, Switzerland and University oftsourg, Fribourg, Switzerland respectively.



Chapter Six

Lévy Processes and BenfordSs Law

Klaus Schiirgér

Exercise 6.1. Provide an example of a non-continuous cadlag function.
Exercise 6.2. Prove that a Weiner Process is also a Lévy Process.
Exercise 6.3. Prove that a Poisson Process is also a Lévy Process.

Exercise 6.4. Prove that the exponential Lévy Procdssp(X;)} (t € R) is a martingale
with respect tq 7, ) := o{X, : s < t} if and only if E[exp(X;)] = 1.

Exercise 6.5. Let f(t) = Elexp(it€)], g(t) = Elexp(itn)] (¢t € R) be the characteris-
tic functions of(real-) valued random variable§, n (i = v/—1). Recall thatexp(it) =
cost + isint (¢t € R) and Elexp(it§)] = E[cos(tf)] + iE(sin(tf)]
(t € R). Finally, a +ib := a — ib (a,b € R) denotes the complex conjugateaot- :b.
Note that| f|2(t) = f(t) - f(t). Show the following.

(@) fiscontinuousf(0) =1,and|f(t)| <1, teR.
(b) fis a characteristic function.
(c) f-gis acharacteristic function. Hencgf|2is a characteristic function.

(d) Lethq,ho,... be characteristic functions. if; > 0,as > 0, ... are real numbers
such thatu; + as + --- = 1, thena,hy + a2ho + - - - is a characteristic function.

(e) Show that every characteristic function h is non-negediefinite, i.e., for ath > 2,

realty,...,t, and complexy, ..., a, we have that
n n
D> h(t; — te)aja > 0.
j=1k=1

Exercise 6.6. Show that, for each real number> 0, f(z
characteristic function. Deduce thgtz) := (cos(27pz))
function.

) := cos(2mpz) (z € R)is a
2 (z € R) is a characteristic

1Department of Economics, University of Bonn, Adenaueeald-42, 53113 Bonn, Germany.
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Exercise 6.7. (This exercise gives an example of a characteristic funatibich “wildly
fluctuates”.)It follows from Exercise§.6 and6.5(d) that

h(z) == i2_k(cos(2w7kz))2, z€eR
k=1

is a characteristic function. Show thétis of infinite total variation over each non-
degenerate intervdh, b}, i.e.,

n
sup {Z |h(2k+1) — h(zk)l} = oo,
k=1
the supremum taken over all> 1 and real numberg < z; < 23 < -+ < zp41 < b.

[Hint: It suffices to prove the claim for intervals+ 7=~ r + 2 - 7~V] (being convenient
for calculations) whereN > 1is an integer and > 0 a real number. Lek > N +1 and
denote byl (k) the set of integergsuch thatl + (r+7-™)7% < j < ((r+2-7-N)7*. For

j € I(k) putta;—1(k) = (j — 1/4)77 % t2;(k) = j - 7*. Show, by using the inequalities
la + b > |a| — |b] and|(cos b)? — (cosa)?| < 2|b — al (a,b € R) that

> I(taj(k)) = h(ta;—1 (k)| > 2(1 —x/5)7 N (7/2)* + const]
JEI(k)

Exercise 6.8. (a) Try to guess how the integraf; f(z)exp(itz)dz behaves as
t — oolif f: [a,b] — R is a step function of the fornfi(t) = Z;.”:l ¥, 16, (1)
wherea < by < by < -+- < by, <b.

(b) Verify your guess whefiis an indicator function of an interval.
(c) How does the above integral behave wtfea continuous otja, b]?
Exercise6.9. Show that a Lévy measuggsatisfies)(R \ (—a, a)) < oo forall a > 0.

Exercise 6.10. Let X be a Lévy process having Lévy meas@re Show that, for fixed
¢ > 0ands > 0, the process{* given byX; = X.,.s — X (¢t > 0) is a Lévy process
having Lévy measu@* = cQ.

Exercise6.11. Let N = () (¢t > 0) be a Poisson process with parameder- 0.

(a) Verify that the generating triple d¥ is given by(\, 0, @*) whereQ™* has total mass
A concentrated of1}.

(b) Verify(6.15) directly for X = N, i.e.,
Q*(A) = ¢ 'E[#{s<t<s+c: AN, € A~ {0}}]
holds for allc > 0, s > 0 and every Borel sett C R.

Exercise 6.12. LetT; = Z?’;l ¢; (t > 0) denote the compound Poisson process of
Example6.1.21. (Here, (V) is a Poisson process with parameter> 0; (3, (2,... are
independent random variables with a common distributipnsuch thatQ, ({0}) = 0.
Furthermore, the processés, ) and (V;) are independent of each other.
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(a) Show that the characteristic functignof 7; (¢ > 0) is given by

az) = exp [ [ (€ - D@
R
forall z € Rand¢ > 0.

(b) It can be showrfsee the reference in Exampd .21) that (7}) is a Lévy process.
Determine its generating tripl€3, o2, Q).

Exercise 6.13. Let W be a (standard) Brownian motiofBM). Show that, for each >
0,W* = (cW,,.2) is aBM (scaling property.

Exercise6.14. Leté ~ N(u,0?) wherey € R ando > 0.
(a) Deduce fron{6.26) that the characteristic function dfis given by
Elexp(iz€)] = exp(ipz — 0%2%/2), z € R.
(b) Deduce from the result ifa) that, for all i1, = € R ando > 0,

/OO cos(zz) exp(—(z — p)?/(20%))dz = V2mo? cos(uz) exp(—o?2?/2)

and
/ sin(zx) exp(—(z — p)?/(20%))dz = V2ro? sin(pz) exp(—o?22/2).
Exercise6.15. LetW = (W;) be aBM. Put
Stu = sup |Wips — Wil, t >0,u> 0.
0<s<u

(a) Show thatS,,, is a random variable. (This requires a little argument since the
definition ofsS; ,, involves uncountably many random variables!
[Hint: Recall that all sample paths 6% are continuous.

(b) Show thatV,,/n — 0 (n — o0) a.s.
(c) Since, for each fixed> 0, (W4 — Ws) (u > 0) is aBM, it follows that

For eacht > 0, S; ; has the same distribution & ;. (%)
Furthermore, we have that
P(Sp1>a) < 2exp(—a2/2), a>0 (%)

(see, e.g., [KaSh] or [RY] Use(b) as well as(x) and (xx) to show that
Wi/t — 0 (t — o) a.s.

[Hint:Use the Borel-Cantelli Lemmia.
Exercise 6.16. Let&,&s,... be independent random variables defined on some prob-
ability space(f?, F, P), which have a common distribution given B¢, = +1) =
p, P& =-1)=1—-p=:q(n>1),whered < p < 1. PutS, =& +---+&,, n>
0 (So = 0), and let(F,,) (n > 0) be the filtration generated bf¢,,). (Note that
]:0 = {@7 Q})
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(@) Showthat,, := (¢/p)°" (n > 0) is an(F,)-martingale.
(b) Pute(a) := Elexp(aé1)] = pexp(a) + gexp(—a) (« € R). Show that, for every
fixeda € R,
Zn = exp(aS,)/(e(a))™ (n > 0)
is an(F,,)-martingale.
Exercise6.17. Letéy, &, ... be independent random variables defined on the same prob-
ability space, which have a common distribution givemrt§y,, = +1) = P(§, = —1) =
1/2. PutSy = 0andS, = & + -+ + &, (n > 1) which means thatS,,) is a simple

symmetric random walk o#, starting at0. Let (F,,) be the filtration generated bi,, ).
Show that following two sequences &%, )-martingales:

(@ (S2 —3nS,).
(b) (S2 —6nS2 + 3n? + 2n).

[Hint: Note thatE[¢,,|F,,—1] = E[¢,] = 0 a.s. (sinceg,, is independent of,,_1), and
thatE[S2_,&,|Fn1] = S2_,E[¢,] = 0 a.s. (sinceS,,_; is F,_1-measurablg Note
thatSn = On—1 +€n]

Exercise6.18. Let(2, F, P) be a probability space and I1éF,,) (n > 0) be any filtration
on (£, F). In the sequel leZ = (Z,) (n > 0)andH = (H,) (n > 1) be sequences
of random variables defined df2, F) such thatZ is adapted and7 is predictable which
means that, for alh > 1, H,, is F,,_i-measurable. The sequentee Z given by

(H. Z)n = iHJ(ZJ - ijl), n Z 0 ((H ® Z)Q = O)

is called theH -transform ofZ or the (discretg stochastic integral off with respect toZ.
Now letZ be an(F, )-martingale and assume that;(Z; — Z;_1) € L', j = 1,2,...
Show thatd e Z is an(F,,)-martingale.

[Hint: Use the iteration property of conditional expectatsisee Examplé.1.29).]

Exercise 6.19. LetW = (W;) be aBM and let(F;) be the filtration generated by
Show that the following processes &€, )-martingales:

(@ (W).
(b) (W2 —1t).
(©) (W} —6tW2 + 3t2).
[Hint: Note thatWW; — W is independent aF; (0 < s < t).]

Exercise 6.20. Let (N;) be a Poisson process with parameter> 0, and putM; =
N, — Xt (t > 0). Let(F,) be the filtration generated bV, ).

(a) Show thatM,) is an(F;)-martingale.
[Hint: N, — N is independentaF, (0 < s < t),]
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(b) Show thatM? — \t) is an(F;)-martingale.
[Hint: Write M}? — M2 = (M, — M)? + 2Ms(M; — My) (0 < s < t).]

Exercise6.21. Let(NN;) be a Poisson process with parameter- 0, and letc > 0 be any
constant.

(a) Determine the constapt(c) such that the procegexp(cN;: + p(c)t)) (t > 0)is a
martingale with respect to the filtratiof?F;) generated by .V, ).
[Hint: Use Theoren.1.30 and Exercise.11.]

(b) Verify directly that the process obtained(& is an (F;)-martingale..
[Hint: Use thatE[exp(c(N; — N;))|Fs] = E[exp(c(N; — N))] a.s. (0 < s < t)
sinceN; — N is independent af; ]

Exercise 6.22. Let¢ have a binomial distribution with parameters> 1 and0 < p < 1,
ie.,

(a) Use Azuma’s inequalityTheoren®.3.1) to prove the following inequality which is
due to H. ChernoffAnn. Math. Statist23 (1952), 493 — 507):
P(|¢ —np| > t) < 2exp(—2t%/n), t >0, n > 1. (+)

[Hint: ¢ has the same distribution as a sum of suitable 1 random variables

511 oo agn]
(b) Verify () directly forn = 1.

Exercise 6.23. Prove(6.147).
[Hint: First note that|g(z)| =: exp(I(z)), where

I(z) = /:% (log (g))rd:c, z2>0,7r>0.

Then(6.147) says that

I(z) < 2(7’1 0 (1 — (10g(22/(37r)))T+1) , 2> 4w, r >0, (%)

In order to prove(x) note that the cosine is 0 on the intervals/ (k) := [(2k — 1)m —
7/2,(2k — 1)m 4+ 7 /2], and that

J(k)C[0,z] iff 1<k<E(z):= |z/(2r)+1/4]. (*x)

Hence
k(z)—1 ] o
I(z) < — ; /J(k) - (log (E)) dx.

Using (+x) and comparing with a certain Riemann integral finally yielel$.]
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Exercise 6.24. A processZ; = Zyexp(Xy), t > 0 (Zy > 0) is observed at time points

t =0,1,2,...,7, where(X,) is a Lévy process of jump-diffusion type as in Example
6.5.2. LetHy(2) denote the null hypothesis which says that there existR, ¢ > 2, A > 0

and a distribution; on R satisfyingQ:({0}) = 0 such that(X;) is associated with
a,c, A, and@;. (Note thatH,(2)) has a meaning different from that at the beginning of
§6.5!) Let Ho(2) be rejected if Ly /T — p1o(1)| > 0.1 (see(6.100) and(6.150)). Let the
level of significance bé.1. (Note that the rejection off,(2) entails the rejection of the
null hypothesis thatZ,) is a Black-Scholes process having volatility2 (see(6.27)).)
How large hasT’ to be?( Answer:T' > 1715.)

Exercise6.25. AprocessZ; = Zyexp(X:),t > 0 (Zy > 0) is observed at the time points
t=0,1,2,...,T,where(X;) = at + T},t > 0. Here,a € R; (T}) is a compound Pois-
son (or CP-)process associated with > 0 andQ; = N(u,0?) (see Examplé.1.21).
Suppose that the null hypothegig(A*, o*) (A\* > 0,0* > 0) is to be tested, which says
that there existy € R, u € R, A > A\*, ando > ¢* such thatX, = ot + T} (¢t > 0), and
(T}) is a CP-process associated with and ). Verify that the test outlined in Exercise
6.24, which rejectsfy (\*, 0*) if L7 /T — p1o(1)| > 0.1, is not applicable no matter how
the level of significance < py < 1 is chosen.

[Hint: Show that there does not exist affjnite) constantd_" satisfying(6.153) (g
being the characteristic function of;, (X;)being an arbitrary Lévy process satisfying
Hy(\*,0%)). Use Exercisé.14(b).]

Exercise 6.26. Suppose we observe a process= Z exp(ut +cXy),t > 0 (Zy > 0) at
time pointst = 0,1,...,T. Let(X;) be a gamma process with parameterand A, and
consider(as in Examples.5.5) the null hypothesigiy(c*, o*, A*) whereB = 10, cx =
a* =1,A* =2,pg =v=0.1,m=1,d; = 1,and\(10) = (27/log 10)? (recall that
log is the natural logarithm.

(@) Show that in this special case we can chopse= (log 10)?/24.

(b) How large has the time horizdhto be?(Answer:T' > 2129 (instead ofl" > 2582
as in Examples.5.5!).)

Exercise 6.27. Prove the following elementary resyltemma6.6.7): Leta,as, - be
real numbers such th@t < a, <1 (n>1) andzz‘;1 a, < oco. Then

Za’;—)O(t—)oo).

n=1

Exercise 6.28. Prove the claim in Exampl&1.28.

Exercise 6.29. Prove the iteration property of conditional expectatiofsee Example
6.1.29).

Exercise 6.30. Prove Lemmd.2.1.



PART 3
Applications I: Accounting and Vote Fraud






Chapter Seven

Benford's Law as a Bridge between Statistics and

Accounting

Richard J. Cleary and Jay C. Thibodéau

An auditor decides to run a Benford’s law on a data set thasistsof 1000 legiti-
mate expense records from a business, plus a number of femtdransactions that an
employee is making to a front for a business set up in a refatmame. Because the
employees of the business have to obtain special appravekfeenditures over $10,000,
the fraudulent transactions are all for amounts betweed08%and $9,999. For the 1000
legitimate expenditures, we have this data:

First Digit | Observed
314
178
111
92
88
59
56
56
46

O©CoO~NOOOUTA,WNPE

Exercise 7.1. Using the Benford law test at

http://web.willianms. edu/ Mat hematics/sjm |l er/public_htm/benford/
chapter01/M |1 erNigrini_Excel BenfordTester_Ver401. x| sx

(or any other suitable software), verify that the data confs reasonably well to Benford’s
Law.

Exercise 7.2. Use trial and error (or some more clever approach) to detemrtiow many
fraudulent transactions with first digit nine would need wdrlded to the 1000 legitimate
observations above in order for the hypothesis that the éztaws Benford’s Law to be
rejected at a five percent significance level. Does this sdausible?

Exercise 7.3. What is the role of sample size in the sensitivity of Bengdedv? Suppose
there are 10,000 legitimate observations instead of 1000tH® ratios for legitimate ob-
servations remains the same, i.e., the number of obsensatay teach digit is multiplied
by 10. Try the problem again. What changes?

IMathematics & Science Division, Babson College, and Depant of Accountancy, Bentley University.
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Exercise7.4. In which of the following situations is an auditor most lik&b use Benford’s
Law?

e An analysis of a fast food franchise’s inventory of hambrgge
e An audit of a Fortune 500 company’s monthly total revenue thesfiscal year.
e An analysis of a multi-billion dollar technology compangignificant assets.

Exercise 7.5. Give an additional example of a way that including Benfoildtsv in an
introductory-level statistics class will meet the four tgpaf the GAISE report of 2005.

Exercise7.6. Determine whether the following situations are Type | esrdiype Il errors,
or neither.

e An auditor uses Benford’s Law to analyze the values of cadoethecks by a busi-
ness in the past fiscal year. The auditor finds that there ayeifitant spikes in the
data set, with 23 and 37 appearing as the first two digits mdétenathan expected.
After further investigation, it was found that there werdidvmon-fraudulent expla-
nations for the variations in the first digits.

e An auditor finds that a company’s reported revenue does tloidenford’s Law.
Further investigation is taken, and it is found that a manalgas been rounding
up her weekly sales to the nearest thousand to earn an inveeéised on a weekly
sales benchmark. The manager claims that the inflated sades an accounting
error.

e An owner of a business has falsely claimed to give his emgdoyenuses on each
paycheck based on their monthly sales in order to lower hisnme taxes. An au-
ditor examines the data, but is unable to confidently claiat the data does not
follow Benford's Law. Rather than waste funds on a costlgstigation, the auditor
chooses not to investigate the owner.

Exercise 7.7. What are the negative effects of a Type | error in an audit? peTyerror?
In what situations might one be more dangerous than the 8ther

Exercise 7.8. What are some of the reasons listed in the chapter that migham why a
data set should not be expected to follow Benford's Law?

Exercise 7.9. Give an example of a reason other than fraud that explainsavtigita set
that is expected to conform to Benford’s Law does not.



Chapter Eight

Detecting Fraud and Errors Using Benford’'s Law

Mark Nigrini*

Exercise 8.1. Do the following data sets meet the requirements descrilyeligrini in
order to be expected to follow Benford’s Law? Explain why bywot.

e The 4-digit PIN numbers chosen by clients of a local bank.
e The annual salaries of graduates from a public university.
e Numeric student ID numbers assigned by a school.

e The distances in miles between Washington, DC and the 500popslated cities
in the United States (excluding Washington, DC).

e Results to a survey of 1,000 students asked to provide a mimbetween 1 and
1,000,000.

e The number of tickets bought for all events held in a paréicstadium over the
past five years.

Exercise 8.2. Take a company which has been at the heart of a scandal (fanghea
Enron) and investigate some of its publicly available data.

Exercise8.3. An audit of a small company reveals a large number of traneaststarting
with a 5. Come up with some explanations other than fradidt: there are two cases: it
is the same amount to the same source each time, and itisn’t.

1Department of Accounting, West Virginia University, Mordgawn, West Virginia 26506.



Chapter Nine

Can Vote Counts’ Digits and Benford’s Law Diagnose

Elections?

Walter R. Mebane, Jr.

Exercise9.1. If X satisfies Benford’s law, then the mean of its second digitli8Z What
is the mean of thé'" digit?

Exercise9.2. If X satisfies Benford's law, multiply by an appropriate powel0fso that
it hask integer digits. What is the probability the last digitd® What is the probability
the last two digits are equal? What is the probability the tago digits differ by 1?

Exercise 9.3. Find some recent voting data (say city or precinct totalg) awvestigate the
distribution of the first and second digits.

1Department of Political Science and Department of StatistUniversity of Michigan, Ann Arbor, MI. The
author thanks Jake Gatof, Joe Klaver, William Macmillan Matthew Weiss for their assistance.



Chapter Ten

Complementing Benford’s Law for small V: a local

bootstrap

Boudewijn F. Roukenta

Exercise 10.1. Do you agree with the assessment that Nigrini’s conditi@nsapplying
Benford’s Law are mostly satisfied? Why or why not?

Exercise 10.2. Why does having a large(log,, x;) and a larges (log,, w; ;) ensure that
v;,; first-digit distribution approaches Benford’s Law?

Exercise 10.3. What does it mean for bootstrap methods to be considereds&awative?”
Identify some of the ways in which bootstrap methods aressuatve.

Exercise 10.4. There are many conservative statistics. Look up the Bamfieadjustment
for multiple comparisons, as well as alternatives to that.

Exercise 10.5. How would a local bootstrap realization change if the valdeowere
changed?

Exercise 10.6. Confirm that ifcy 7 > 99.924%, thenc. 7 > 99.99960%.

1Toruh Centre for Astronomy, Faculty of Physics, Astronomy arférimatics, Nicolaus Copernicus Univer-
sity, ul. Gagarina 11, 87-100 TamuPoland.
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Chapter Eleven

Measuring the Quality of European Statistics

Bernhard Rauch, Max Géttsche, Gernot Brahler, Stefan Engel

Exercise 11.1. In which of the following two scenarios would be larger?

e The first-digit frequencies are mostly identical to the etpé Benford distribution,
but the digit 1 appears 31.1% of the time and the digit 2 appd#r.6% of the time
(compared with the expected values of approximately 30.heélb1&.6%, respec-
tively)

e The first-digit frequencies are mostly identical to the etpé Benford distribution,
but the digit 8 appears 6.12% of the time and the digit 2 app&a58% of the time
(compared with the expected values of approximately 5.1R64a58%, respec-
tively)

Exercise 11.2. Whatispuy, the value of the mean of the Benford distribution of firsitdig
baseb?

Exercise 11.3. What is the value of* if j. = 3.5?

Exercise 11.4. Using Figure 11.1, confirm the values gf, x?/n, andd* for the distri-
bution of first digits for Greece social statistics in the y2a04.

Exercise 11.5. Using Figure 11.1 and the formula for distance measur&ised by Judge
and Schechter, calculate the value of the mean of the dgjageh the year 2004. Confirm

. . _ %Y nProb(D;=4)
this value by using the formuja, = ==————.

The final problem uses data on two fictitious countries, wigchvailable online

http://web.w I lianms. edu/ Mat hematics/sjmller/public_htm/
benf or d/ chapt er 11/

(some of the additional readings on that webpage may be lasefuvell).

Exercise 11.6. Calculate the valueg?, x?/n, d* anda* and compare the results for both
countries. Which one of these two countries should be exahtiloser? Are the outcomes
consistent?

1Rauch: University of Regensburg, Department of Econontlogzersitatsstrae 31, 93053 Regensburg, Ger-
many; Gottsche and Engel: Catholic University of Eichsttdgolstadt, Department of Auditing and Controlling,
Auf der Schanz 49, 85049, Ingolstadt, Germany; Brahler:efiau University of Technology, Department of
Taxation Theory and Auditing, Helmholtzplatz 3, 98693 liraa, Germany.



Chapter Twelve

Benford’'s Law and Fraud in Economic Research

Karl-Heinz Tédter

Exercise 12.1. Use (12.1) to findf(6) and F'(6) for Benford's Law.

Exercise 12.2. If X is a Benford variable defined di, 10), then what is the probability
that the second digit is 5 given that the first digit is also 5?

Exercise12.3. Use (12.4) to confirm that when using Benford’s Law for Rodrdgures,
Prob(D; = 8) = 0.054.
Exercise 12.4. If X is a Benford variable defined di, 10), given that the first digit is 8,

what is the probability that the second digit is O when roumggdio two significant digits?
What is the probability that the second digit is 2?

Exercise 12.5. Using Benford’s Law for Rounded Figures as the frequendiéissb digits
for a data set of 300 observed values, calcul@te @2, M;, and M, using (12.6) and
(12.7).

Exercise12.6. Should th&), test or thel/; test be used for attempting to detect variations
in Benford's Law?

e What if the data set in question has a mean of 3.44?

e Which test should be used for detecting variations in thee@ized Benford’s
Law?

Exercise 12.7. The Federal Tax Office (FTO) knows tHat= 10% of tax declarations
of small and medium enterprises are falsified. The FTO chibekfirst digits using Ben-
ford’s Law. Random samples of tax declarations are drawntaedull hypothesisH,)
“Conformity to Benford’s Law” is tested at the = 5% level of significance.

e Using (12.9), what rejection rate df,(#) would you expect if the probability of a
type Il error 3 lies in the interval [0.05, 0.75]?

e The FTO obtained the rejection rale= 0.12. Use (12.9) to calculate the probabil-
ity 3 of a type Il error.

e The FTO arranges for an audit at the taxable enterprise ifBemford test rejects
H, for a certain tax declaration at the = 5% level. What is the probability that
such an audit will be provoked erroneously? And what is ttedability to forbear
an audit erroneously?

1Research Centre, Deutsche Bundesbank
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Exercise 12.8. A sample of scientific articles is taken, and 17% are foundaweehre-
gression coefficients with a doubtful distribution of firggits. Use (12.10) to calculate
Q.



Chapter Thirteen

Testing for Strategic Manipulation of Economic and

Financial Data

Charles C. Moul and John V. C. Nye

Exercise 13.1. What are some of the potential reasons given in Section d8WHy data
sets that are expected to follow Benford’s Law fail to do so?

Exercise 13.2. Did Benford’s Law prove financial misreporting during theditial cri-
sis? Justify your assertion.

Exercise 13.3. What are some of the potential motives that banks have foipukating
VAR data?

1Economics Department, Farmer School of Business, MiamiéJsity, Ohio and Mercatus Center and Eco-
nomics Department, George Mason University and NationabReeh University — Higher School of Economics,
Moscow, respectively; We thank Marc Taub for excellent aesle assistance.
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Chapter Fourteen

Psychology and Benford’s Law

Bruce D. Burns and Jonathan Krydier

Exercise 14.1. Using (11.1) in Section 11.3, fing? for the elaborated and unelaborated
data from Scott, Barnard and May'’s study found in Table 14.1.

Exercise 14.2. What distribution of leading digits would you expect if pleopere asked
to randomly give an integer frorhto N? How does your answer depend &i? Try an
experiment with some of your friends and family.

1School of Psychology, The University of Sydney, NSW 2006sthalia. The authors would like to thank
to Hal Willaby for comments on an earlier draft. The authoesevsupported by a grant from the University of
Sydney, and it is a pleasure to thank them for their gengrosit



Chapter Fifteen

Managing Risk in Numbers Games: Benford’s Law and

the Small Number Phenomenon

Mabel C. Chou, Qingxia Kong, Chung-Piaw Teo and Huan Zheng

Exercise 15.1. What are the risks associated with a high liability limit infixed-odds
lottery game? What if the limit is too small?

Exercise 15.2. From the data obtained in Table 15.1, determine the prolitghiihat a
given number on a ticket for the UK powerball game is a singdé.d

Exercise 15.3. Figure 15.1 shows the proportion of tickets in a Pennsyladtick-3 game
with a given first digit. Explain why there are several outlitarger than the mean pro-
portion and no outliers smaller than the mean proportion.

Exercise 15.4. What is the probability that a Type | player chooses the nurBdé in a
Pick-3 game?

Exercise 15.5. Let Alice be a Type Il player in a Pick-3 game that bets on a remalith
three significant digit80% of the time, a number with two significant digit§% of the
time, and a number with one significant di§#% of the time. What is the probability that
Alice bets on the number 345? The number 45? The number 5?

Exercise 15.6. In the Pennsylvania Pick-3 game, the least square modetamels that
60.42% of the players are Type | players aBd.58% of the players are Type |l players.
Based on this model, use (15.4) to calculate the expectgubpion of the betting volume
on a three-digit number with first significant digit 4.

Exercise 15.7. Let Bob be a Type Il player in a Pick-3 game that bets on a numiitér
three significant digit80% of the time, but also has a tendency to exhibit switching be-
havior; that is, he will switch later digits with probab#it0.9105, and switch the digitto 0
with probability 0.1054. What is the probability that Bobt®en the number 345?

Exercise15.8. Use (15.5) to calculate the probability that Bob choosesedtdigit num-
ber in between 520 and 529 inclusive.

Exercise 15.9. Calculate the variance using the equation in 15.4.1 undergbenario
that all players randomly select a three-digit number.

1Chou and Teo: National University of Singapore; Kong: Uriigad Adolfo Ibafiez; Zheng: Shanghai Jiao
Tong University.



Chapter Sixteen

Benford’s Law in the Natural Sciences

David Hoylé

Exercise 16.1. Demonstrate that (16.3) holds far= 2.

Exercise16.2. Rewrite the lognormal distribution density function (@S the lognormal
density function (16.6).

Exercise 16.3. Show that ag grows larger, the lognormal density function approaches
the power lawp(z) = C,2~*, whereC, is a constant depending on

Exercise 16.4. Provide examples not mentioned in the chapter of scientifia dets that
are not effectively scale-invariant.

Exercise 16.5. Explain the intuition behind why the following distributi® are approxi-
mately Benford:

e The Boltzman-Gibbs distribution (16.8).
e The Fermi-Dirac distribution (16.9).
e The Bose-Einstein distribution (16.10).

Exercise 16.6. Obtain a physics textbook (or a CRC handbook, or...) and fifidtaf
physical constants. Perform a chi-squared test to detegrifithe list of constants follow
Benford's Law as expected.

Exercise 16.7. Sandon found agreement between Benford’s Law and populatid sur-
face area data for the countries of the world. Find a sourca irovides the population
density of each country. Then determine if population dgfsilows Benford’s Law. This
can be done using a chi-squared test. In general, shouldatie of two of two Benford
random variables be Benford?

1Thorpe Informatics Ltd., Adamson House, Towers Businesk, R&ilmslow Rd., Manchester, M20 2YY,
UK.



Chapter Seventeen

Generalizing Benford’s Law: A Re-examination of

Falsified Clinical Data

Joanne Lee, Wendy K. Tam Cho, and George Jtidge

Exercise 17.1. Use (17.1) to calculate the average frequency of first digitStigler’s
distribution of first significant digits. Check to see that tlistribution matches the values
displayed in Table 17.1.

Exercise 17.2. Verify (17.3), (17.5), and (17.6). Then verify that the sunthe three
subsets matches (17.7).

Exercise 17.3. Calculate the mean of the Stiegler FSD distribution and BehFSD
distribution to confirm that they are equivalent to 3.55 and43 respectively.

Exercise17.4. For the Estimated Maximum Entropy FSD distribution for daith a FSD
mean of 3.44 shown in Table 17.3, fifk{p) and ensure that the criterion from (17.13)
and (17.14) are reached.

e If the Estimated Maximum Entropy FSD distribution is acdarahen the listed
probabilities will maximizeH (p). First, determine if replacing; with 0.231 and
p2 with 0.2 still allows (17.13) and (17.14) to hold. Now fifk(p). Is H (p) larger
or smaller than before?

Exercise 17.5. If the FSD mean is 5, what will be the estimated maximum entigD
distribution? What is/ ar(d) according to (17.18)?

Exercise 17.6. Examining the Poehlman data in Table 17.4, calculate thierifce for
each digit FSD distribution given by Benford’s Law.

Exercise 17.7. The estimated empirical likelihood distributions given 8- mean will
maximize3_;_, p;. To test this, ensure that the product of b from Table 17.5 are
greater than the empirical data found in Table 17.4.

Exercise 17.8. A researcher is trying to decide if a dataset follows Benfoidw or
Stigler's law. What values of the mean of the leading digifjgast Benford over Stigler?
What values suggest Stigler over Benford?

1Lee: Researcher, Mathematica Policy Research; Cho: Deeats of Political Science and Statistics, and
Senior Research Scientist, National Center for Superctingppplications at the University of lllinois at
Urbana-Champaign; Judge: Department of Agricultural aeddirce Economics, University of California at
Berkeley.



PART 6
Applications IV: Images






Chapter Eighteen

Partial Volume Modeling of Medical Imaging Systems

using the Benford Distribution

John Chiverton and Kevin Wells

Exercise 18.1. What is the PV effect? What implications does the PV effeet liar
medical imaging?

Exercise 18.2. Prove Corollary 18.3.4.

Exercise 18.3. What advantages are there to describing the PV effect usatgeas as in
(18.11)?

Exercise 18.4. What are the differences between a Rician noise model desthy (18.12)
and a Gaussian noise model described in (18.13)7?

Exercise 18.5. Use (18.22) to calculatg(«) for « = 0.50, wherea has two digits of
precision.

Exercise 18.6. How is the contrast to noise ratio (CNR) affected if both tlstathce
between the signal levels of two components and the stantsidtion of each class is
doubled.

1J. Chiverton is with the School of Engineering, University Rortsmouth, UK and K. Wells is with
the Centre for Vision, Speech and Signal Processing, Wsityeof Surrey, UK.john.chiverton@port.ac.uk,
k.wells@surrey.ac.uk



Chapter Nineteen

Application of Benford’s Law to Images

Fernando Pérez-Gonzalez, Tu-Thach Quach, Chaouki T. kjal
Gregory L. Heileman and Steven J. Mifler

Exercise19.1. In (19.9) one of the factors i (‘-ﬂ#gi‘(’)gm),wherej = /—1. Estimate

how rapidly this tends to zero ds| — oo as a function of: (if you wish, choose some
values of: to get a feel of the behavior).

Exercise 19.2. In (19.19) we find thata,(c,o)| < |a,(c™)| for all n; investigate how
close these can be for various choices ahdo.

Exercise 19.3. In Example 19.5.1 we found four zero-mean Gaussians withisbga-
rameterc = 1 with four different standard deviations and = 0. Can you find six
zero-mean Gaussians with shaping parameter 1 and six different standard deviations
with a; = 0? What about eight? More generally, can you fihd such Gaussians fan

a positive integer?

1perez-Gonzalez: Department of Signal Theory and Commiimisa University of Vigo, EE Telecomuni-
cacion, Campus Universitario, 36310 Vigo, Spain; Quacmd&aNational Laboratories, Albuquerque, NM;
Miller: Department of Mathematics and Statistics, Willistaown, MA; Abdallah and Heileman: Electrical &
Computer Engineering Department, University of New Mexigtbuquerque, NM.



