
Exercises to “The Theory and
Applications of Benford’s Law”

Steven J. Miller (editor)

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD





Contents

Preface v

Notation vii

PART 1. GENERAL THEORY I: BASIS OF BENFORD’S LAW 1

Chapter 1. A Quick Introduction to Benford’s Law 3

Chapter 3. Fourier Analysis and Benford’s Law 7

3.1 Problems from Introduction to Fourier Analysis 7
3.2 Problems from Chapter 1: Revisited 13
3.3 Problems from Chapter 3 13

PART 2. GENERAL THEORY II: DISTRIBUTIONS AND RATES OF CON-
VERGENCE 17

Chapter 4. Benford’s Law Geometry 19

Chapter 5. Explicit Error Bounds via Total Variation 20

Chapter 6. Lévy Processes and BenfordŠs Law 21

PART 3. APPLICATIONS I: ACCOUNTING AND VOTE FRAUD 27

Chapter 7. Benford’s Law as a Bridge between Statistics and Accounting 29

Chapter 8. Detecting Fraud and Errors Using Benford’s Law 31

Chapter 9. Can Vote Counts’ Digits and Benford’s Law Diagnose Elections? 32

Chapter 10. Complementing Benford’s Law for small N : a local bootstrap 33

PART 4. APPLICATIONS II: ECONOMICS 35

Chapter 11. Measuring the Quality of European Statistics 37



iv CONTENTS

Chapter 12. Benford’s Law and Fraud in Economic Research 38

Chapter 13. Testing for Strategic Manipulation of Economic and Financial Data 40

PART 5. APPLICATIONS III: PSYCHOLOGY AND THE SCIENCES 41

Chapter 14. Psychology and Benford’s Law 43

Chapter 15. Managing Risk in Numbers Games: Benford’s Law and the Small
Number Phenomenon 44

Chapter 16. Benford’s Law in the Natural Sciences 45

Chapter 17. Generalizing Benford’s Law: A Re-examination of Falsified Clinical
Data 46

PART 6. APPLICATIONS IV: IMAGES 47

Chapter 18. Partial Volume Modeling of Medical Imaging Systems using the
Benford Distribution 49

Chapter 19. Application of Benford’s Law to Images 50



Preface

As Benford’s law arises in so many different fields, there is atremendous opportunity
to design an interdisciplinary class on its theory and applications. Our hope is that this
collection of exercises for the bookThe Theory and Applications of Benford’s Lawwill
facilitate its use as a textbook.

There are almost as many possible classes that could be offered on Benford’s law as
there are researches in the subject; the goal of our book and these exercises is to provide
a good, common denominator starting ground. As the book begins with several chapters
where the theory is developed to various levels, from an informal discussion to a detailed
discourse involved advanced analysis, one option is to use these chapters as a springboard
to motivate numerous topics in advanced analysis.

After the theory, we turn to some of the large number of applications. The instructor has
many options here, and can use these chapters and exercises to illustrate the far-reaching
consequences of simple ideas. Additionally, this materialmay be used to motivate a quick
introduction to statistics.

In order to assist instructors and students, for many chapters at

http://web.williams.edu/Mathematics/sjmiller/public_html/benford/

we provide links to relevant material and other resources (such as videos and programs) as
available. Many authors contributed exercises for their and other chapters. Additionally,
numerous other problems were written or assembled by the editor and students working
with him (especially John Bihn of Williams College). It is a pleasure to thank everyone
for their contributions. Further, one advantage of postingproblems online is that this need
not be a static list, and thus please feel free to email the editor suggestions for additional
exercises.

Finally, if you are interested in using this book for a class,or have done so and have
suggestions or requests, we would love to hear from you and work with you. Please con-
tact the editor at the email address below.

Steven J. Miller
Williams College

Williamstown, MA
June 2014

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu





Notation

2 : indicates the end of a proof.

≡: x ≡ y mod n means there exists an integera such thatx = y + an.

∃ : there exists.

∀ : for all.

| · | : |S| (or#S) is the number of elements in the setS.

⌈·⌉ : ⌈x⌉ is the smallest integer greater than or equal tox, read “the ceiling ofx.”

⌊·⌋ or [·] : ⌊x⌋ (also written[x]) is the greatest integer less than or equal tox, read “the
floor of x.”

{·} or 〈·〉 : {x} is the fractional part ofx; notex = [x] + {x}.

≪,≫ : see Big-Oh notation.

∨ : a ∨ b is the maximum ofa andb.

∧ : a ∧ b is the minimum ofa andb.

1A (or IA) : the indicator function of setA; thus1A(x) is 1 if x ∈ A and 0 otherwise.

δa : Dirac probability measure concentrated ata ∈ Ω.

λ : Lebesgue measure on(R,B) or parts thereof.

λa,b : normalized Lebesgue measure (uniform distribution) on
(
[a, b),B[a, b)

)
.

σ(f) : theσ-algebra generated by the functionf : Ω → R.

σ(A) : the spectrum (set of eigenvalues) of ad× d-matrixA.



viii NOTATION

Ac : the complement ofA in some ambient spaceΩ clear from the context; i.e.,Ac =
{ω ∈ Ω : ω 6∈ A}.

A\B : the set of elements ofA not inB, i.e.,A\B = A ∩Bc.

A∆B : the symmetric difference ofA andB, i.e.,A∆B = A\B ∪B\A.

a.e. : (Lebesgue) almost every (or almost everywhere).

a.s. : almost surely, i.e., with probability one.

B : Benford distribution on(R+,S).

B : Borelσ-algebra onR or parts thereof.

Big-Oh notation :A(x) = O(B(x)), read “A(x) is of order (or big-Oh)B(x)”, means
there exists aC > 0 and anx0 such that for allx ≥ x0, |A(x)| ≤ CB(x). This is also
writtenA(x) ≪ B(x) orB(x) ≫ A(x).

C : the set of complex numbers:{z : z = x+ iy, x, y ∈ R}.

Cℓ : the set of allℓ times continuously differentiable functions,ℓ ∈ N0.

C∞ : the set of all smooth (i.e., infinitely differentiable) functions;C∞ =
⋂

ℓ≥0C
ℓ.

D1, D2, D3, . . . : the first, second, third,. . . significant decimal digit.

D
(b)
m : them-th significant digit baseb.

E[X ] (orEX) : the expectation ofX .

e(x) : e(x) = e2πix.

f∗P : a probability measure onR induced byP and the measurable functionf : Ω → R,
via f∗P(·) := P

(
f−1(·)

)
.

Fn: {Fn} is the sequence of Fibonacci numbers,{Fn} = {0, 1, 1, 2, 3, 5, 8, . . .} (Fn+2 =
Fn+1 + Fn with F0 = 0 andF1 = 1).

FP , FX : the distribution functions ofP andX .

i : i =
√
−1.

i.i.d. : independent, identically distributed (sequence or family of random variables); often



NOTATION ix

one writes i.i.d.r.v.

ℑz: seeℜz.

infimum : the infimum of a set, denotedinfn xn, is the largest numberc (if one exists)
such thatxn ≥ c for all n, and for anyǫ > 0 there is somen0 such thatxn0 < c + ǫ. If
the sequence has finitely many terms, the infimum is the same asthe minimum value.

j : in some chaptersj =
√
−1 (this convention is frequently used in engineering).

Leb : Lebesgue measure.

Little-oh notation :A(x) = o(B(x)), read “A(x) is little-Oh ofB(x)”, meanslimx→∞ A(x)/B(x) =
0.

L1(R) : all f : R −→ C which are measurable and Lebesgue integrable.

log : usually the natural logarithm, though in some chapters it is the logarithm base 10.

ln : the natural logarithm.

N : the set of natural numbers:{0, 1, 2, 3, . . .}.

N0 : the set of positive natural number:{1, 2, 3, . . .}.

Nf : the Newton map associated with a differentiable functionf .

o(·), O(·): see ‘Little-oh’ and ‘Big-Oh’ notation, respectively.

OT (x0) : the orbit ofx0 under the mapT , possibly nonautonomous.

{pn} : the set of prime numbers: 2, 3, 5, 7, 11, 13,. . ..

P : probability measure on(R,B), possibly random.

PX : the distribution of the random variableX .

Prob (orPr) : a probability function on a probability space.

Q : the set of rational numbers:{x : x = p
q , p, q ∈ Z, q 6= 0}.

R : the set of real numbers.

R+ : the set of positive real numbers.

ℜz, ℑz : the real and imaginary parts ofz ∈ C; if z = x+ iy, ℜz = x andℑz = y.



x NOTATION

S : the significand function: ifx > 0 thenx = S(x) · 10k(x), whereS(x) ∈ [1, 10) and
k(x) ∈ Z; more generally one can study the significand functionSB in baseB.

S : the significandσ-algebra.

supremum : given a sequence{xn}∞n=1, the supremum of the set, denotedsupn xn, is the
smallest numberc (if one exists) such thatxn ≤ c for all n, and for anyǫ > 0 there is
somen0 such thatxn0 > c− ǫ. If the sequence has finitely many terms, the supremum is
the same as the maximum value.

u.d. mod1 : uniformly distributed modulo one.

Var(X) (orvar(X)) : the variance of the random variableX , assuming the expected value
of X is finite;Var(X) = E[(X − E[X ])2].

W : the set of whole numbers:{1, 2, 3, 4, . . .}.

Xn
D→ X : (Xn) converges in distribution toX .

Xn
a.s.→ X : (Xn) converges toX almost surely.

z, |z| : the conjugate and absolute value ofz ∈ C.

Z : the set of integers:{. . . ,−2,−1, 0, 1, 2, . . .}.

Z+ : the set of non-negative integers,{0, 1, 2, . . .}.



PART 1

General Theory I: Basis of Benford’s Law





Chapter One

A Quick Introduction to Benford’s Law

Steven J. Miller1

A couple of important points.

• There are many problems that would fit in multiple chapters. To help both the in-
structors and the readers, we have decided to collect them here. Thus, some of the
exercises in this chapter will be far more accessible after reading later parts of the
book.

• In Mathematica, if you define the following function you can then use it to find the
first digit:

firstdigit[x_] := Floor[10^Mod[Log[10,x],1]]

(a similar function is definable in other languages, but the syntax will differ slightly).

Exercise 1.1. If X is Benford base 10, find the probability that its significand starts 2.789.

Exercise 1.2. If X is Benford base 10, find the probability that its significand starts with
7.5 (in other words, its significand is in[7.5, 7.6)).

Exercise 1.3. If X is Benford base 10, find the probability that its significant has no 7’s in
the firstk digits (thus a significand of 1.701 would have no 7 in its first digit, but it would
have a 7 in its first two digits.

Exercise 1.4. Considerαn for variousα and various ranges ofn; for example, take
α ∈ {2, 3, 5, 10,

√
2,
√
5,
√
10, π, e, γ} (hereγ is the Euler-Mascheroni constant, see

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant for a de-
scription and properties), and letn go from 1 toN , whereN ∈ {103, 105, 107}. Which of
these data sets do you expect to be Benford? Why or why not. Read up about chi-square
goodness of fit tests (see for example
http://en.wikipedia.org/wiki/Pearson_chi_square) and compare the
observed frequencies with the Benford probabilities.

1Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267. The author was
partially supported by NSF grants DMS0970067 and DMS1265673.



4 CHAPTER 1

Exercise 1.5. Revisit the previous problem with more values ofN . The problem is there
we looked at three snapshots of the behavior; it is far more interesting to plot the chi-
square values as a function ofN , for N ranging from say 100 to107 or more. You will see
especially interesting behavior if you look at the first digits ofπn.

Exercise 1.6. We have seen that Benford behavior of a sequence is related toequidistri-
bution of its logarithm. Thus, in the previous problem it maybe useful to look at a log-log
plot. Thus instead of plotting the chi-square value againstthe upper boundN , plot the
logarithm of the chi-square value againstlogN .

Exercise 1.7. Frequently taking logarithms helps illuminate relationships. For example,
Kepler’s third law (see
http://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws )
says that the square of the time it takes a planet to orbit a sunis proportional to the cube
of the semi-major axis. Find data for these quantities for the eight planets in our system
(or nine if you count Pluto!) and plot them, and then do a log-log plot. A huge advantage
of log-log plots is that linear relations are easy to observeand estimate; try and find the
best fit line here, and note that the slope of the line should beclose to 1.5 (ifT is the period
andL is the length of the semi-major axis, Kepler’s third law is that there is a constantC
such thatT 2 = CL3, or equivalentlyT = CL3/2, or logT = 3

2 logL + logC). Revisit
the original plot, and try to see that it supportsT 2 is proportional toL3!

Exercise 1.8. Prove the log-laws: Iflogb xi = yi andr > 0 then

• logb b = 1 andlogb 1 = 0 (notelogb x = y meansx = by);

• logb(x
r) = r logb x;

• logb(x1x2) = logb x1 + logb x2 (the logarithm of a product is the sum of the loga-
rithms);

• logb(x1/x2) = logb x1− logb x2 (the logarithm of a quotient is the difference of the
logarithms; this follows directly from the previous two log-laws);

• logc x = logb x/ logb c (this is the change of base formula).

Exercise 1.9. The last log-law (the change of base formula) is often forgotten, but is
especially important. It tells us that if we can compute logarithms in one base then we can
compute them in any base. In other words, it suffices to createjustonetable of logarithms,
so we only need to find one base where we can easily compute logarithms. What base
do you think that is, and how would you compute logarithms of arbitrary positive real
numbers?

Exercise 1.10. The previous problem is similar to issues that arise in probability text-
books. These books only provide tables of probabilities of random variables drawn from
a normal distribution2, as one can convert from such a table to probabilities for anyother
random variable. One such table is online here:

2The random variableX is normally distributed with meanµ and varianceσ2 if its probability density func-
tion isf(x;µ, σ) = exp

(

−(x− µ)2/(2σ2)
)

/
√

2πσ2 .
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http://www.mathsisfun.com/data/standard-normal-distribution-table.html . Use
a standard table to determine the probability a normal random variable with meanµ = 5
and varianceσ2 = 16 (so the standard deviation isσ = 4) takes on a value between -3
and 7. Thus, similar to the change of base formula, there is anenormous computational
savings as we only need to compute probabilities for one normal distribution.

Exercise 1.11. Prove d
dx logb x = 1

x log b . Hint: first do this whenb = e, the base of the

natural logarithms; useelogx = x and the chain rule.

Exercise 1.12. Revisit the first two problems, but now consider some other sequences, such
asn!, cos(n) (in radians of course as otherwise the sequence is periodic), n2, n3, nlogn,
nlog log n, nlog log logn, nn. In some situationslog4 does not mean the logarithm base 4,
but rather four iterations of the logarithm function. It might be interesting to investigating
nlogf(n) n under this definition for various integer-valued functionsf .

Exercise 1.13. Revisit the previous problem but for some recurrence relations. For exam-
ple, try the Fibonacci numbers (Fn+2 = Fn+1 + Fn with F0 = 0 andF1 = 1) and some
other relations, such as:

• Catalan numbers:Cn = 1
n+1

(
2n
n

)
; these satisfy a more involved recurrence (see

http://en.wikipedia.org/wiki/Catalan_number ).

• Squaring Fibonaccis:Gn+2 = G2
n+1 +G2

n with G0 = 0 andG1 = 1.

• Fp wherep is a prime (i.e., only look at the Fibonaccis at a prime index).

• The logistic map:xn+1 = rxn(1−xn) for various choices ofr and various starting
valuesx0 (seehttp://en.wikipedia.org/wiki/Recurrence_relation ).

• Newton’s method for thedifferencebetween thenth prediction and the true value.

For example, to find the square-root ofα one usesxn+1 = 1
2

(
xn + α

xn

)
, and thus

we would study the distribution of leading digits of|√α− xn|. One could also look
at other roots, other numbers, or more complicated functions. For more on Newton’s
method, seehttp://mathworld.wolfram.com/NewtonsMethod.html.

• The3x + 1 Map: xn+1 = 3xn + 1 if xn is odd andxn/2 if xn is even (though
some authors use a slightly different definition, where forxn even one instead lets
xn+1 = xn/2

d, whered is the highest power of 2 dividingxn). It is conjectured
that no matter what positive starting seedx0 you take, eventuallyxn cycles among
4, 2 and 1 forn sufficiently large (or is identically 1 from some point onward if we
use the second definition). We return to this problem in Chapter 3.

For the remaining problems, whenever a data set satisfies Benford’s law we mean the
strongversion of the law. This means the cumulative distribution function of the signifi-
cand isFX(s) = log10(s) for s ∈ [1, 10), which implies that the probability of a first digit
of d is log10(1 + 1/d).

Exercise 1.14. If a data set satisfies (the strong version of) Benford’s law base 10, what
are the probabilities of all pairs of leading digits? In other words, what is the probability
the first two digits ared1d2 (in that order)? What if instead our set were Benford baseb?
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Exercise 1.15. LetX be a random variable that satisfies (the strong version of) Benford’s
law. What is the probability that the second digit isd? Note here that the possible values
of d range from 0 to 9.

Exercise 1.16. Building on the previous problem, compute the probability that a random
variable satisfying the strong version of Benford’s law hasits kth digit equal tod. If we
denote these probabilities bypk(d), what islimk→∞ pk(d)? Prove your claim.

Exercise 1.17. Find a data set that is spread over several orders of magnitude, and inves-
tigate its Benfordness. For example, stock prices or volumetraded on a company that has
been around for decades.

Exercise 1.18. Look at some of the data sets from the previous exercises thatwerenotBen-
ford, and see what happens if you multiply them together. Forexample, considern2 ·cos(n)
(in radians), orn2

√
10

n
cos(n), or even larger products. Does this support the claim in

the chapter that products of random variables tend to converge to Benford behavior?

Exercise 1.19. Let µk;b denote the mean of significands ofk digits of random variables
perfectly satisfying Benford’s law, and letµb denote the mean of the significands of random
variables perfectly following Benford’s law. What isµk;b for k ∈ 1, 2, 3? Doesµk;b

converge toµb? If yes, bound|µk;b − µb| as a function ofk.

Exercise 1.20. Benford’s law can be viewed as the distribution on significands arising
from the densityp(x) = 1

x log(10) on [1, 10) (and 0 otherwise). More generally, consider
densitiespr(x) = Cr/x

r for x ∈ [1, 10) and 0 otherwise withr ∈ (−∞,∞), whereCr

is a normalization constant so that the density integrates to 1. For eachr, calculate the
probability of observing a first digit ofd, and calculate the expected value of the first digit.



Chapter Three

Fourier Analysis and Benford’s Law

Steven J. Miller1

3.1 PROBLEMS FROM INTRODUCTION TO FOURIER ANALYSIS

The following exercises are from the chapter “An Introduction to Fourier Analysis”, from
the bookAn Invitation to Modern Number Theory(Princeton University Press, Steven J.
Miller and Ramin Takloo-Bighash). This chapter is available online on the webpage for
this book (go to the links for Chapter 3).

Exercise 3.1. Proveex converges for allx ∈ R (even better, for allx ∈ C). Show the
series forex also equals

lim
n→∞

(
1 +

x

n

)n

, (3.1)

which you may remember from compound interest problems.

Exercise 3.2. Prove, using the series definition, thatex+y = exeyand calculate the deriva-
tive ofex.

Exercise 3.3. Letf , g andh be continuous functions on[0, 1], anda, b ∈ C. Prove

1. 〈f, f〉 ≥ 0, and equals0 if and only iff is identically zero;

2. 〈f, g〉 = 〈g, f〉;
3. 〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉.

Exercise 3.4. Find a vector~v =
(

v1
v2

)
∈ C2 such thatv21 + v22 = 0, but〈~v,~v〉 6= 0.

Exercise 3.5. Provexn andxm are not perpendicular on[0, 1]. Find a c ∈ R such that
xn − cxm is perpendicular toxm; c is related to the projection ofxn in the direction of
xm.

Exercise 3.6 (Important). Show form,n ∈ Z that

〈em(x), en(x)〉 =

{
1 if m = n

0 otherwise.
(3.2)

1Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267. The author was
partially supported by NSF grants DMS0970067 and DMS1265673.
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Exercise 3.7. Let f andg be periodic functions with perioda. Proveαf(x) + βg(x) is
periodic with perioda.

Exercise 3.8. Prove any function can be written as the sum of an even and an odd function.

Exercise 3.9. Show

〈f(x)− f̂(n)en(x), en(x)〉 = 0. (3.3)

This agrees with our intuition: after removing the projection in a certain direction, what
is left is perpendicular to that direction.

Exercise 3.10. Prove

1. 〈f(x)− SN (x), en(x)〉 = 0 if |n| ≤ N .

2. |f̂(n)| ≤
∫ 1

0
|f(x)|dx.

3. Bessel’s Inequality: if〈f, f〉 < ∞ then
∑∞

n=−∞ |f̂(n)|2 ≤ 〈f, f〉.

4. Riemann-Lebesgue Lemma: if〈f, f〉 < ∞ thenlim|n|→∞ f̂(n) = 0 (this holds for

more generalf ; it suffices that
∫ 1

0
|f(x)|dx < ∞).

5. Assumef is differentiablek times; integrating by parts, show|f̂(n)| ≪ 1
nk and the

constant depends only onf and its firstk derivatives.

Exercise 3.11. Leth(x) = f(x)+g(x). Doeŝh(n) = f̂(n)+ĝ(n)? Letk(x) = f(x)g(x).
Doesk̂(n) = f̂(n)ĝ(n)?

Exercise 3.12. Remark 11.2.4 shows that if〈f, f〉, 〈g, g〉 < ∞ then the dot product off
andg exists:〈f, g〉 < ∞. Do there existf, g : [0, 1] → C such that

∫ 1

0
|f(x)|dx,

∫ 1

0
|g(x)|dx <

∞ but
∫ 1

0 f(x)g(x)dx = ∞? Isf ∈ L2([0, 1]) a stronger or an equivalent assumption as
f ∈ L1([0, 1])?

Exercise 3.13. Define

AN (x) =

{
N for |x| ≤ 1

N

0 otherwise.
(3.4)

ProveAN is an approximation to the identity on[− 1
2 ,

1
2 ]. If f is continuously differentiable

and periodic with period1, calculate

lim
N→∞

∫ 1
2

− 1
2

f(x)AN (x)dx. (3.5)

Exercise 3.14. LetA(x) be a non-negative function with
∫
R
A(x)dx = 1. ProveAN (x) =

N · A(Nx) is an approximation to the identity onR.

Exercise 3.15 (Important). LetAN (x) be an approximation to the identity on[− 1
2 ,

1
2 ]. Let

f(x) be a continuous function on[− 1
2 ,

1
2 ]. Prove

lim
N→∞

∫ 1
2

− 1
2

f(x)AN (x)dx = f(0). (3.6)
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Exercise 3.16. Prove the two formulas above. The geometric series formula will be help-
ful:

M∑

n=N

rn =
rN − rM+1

1− r
. (3.7)

Exercise 3.17. Show that the Dirichlet kernels arenot an approximation to the identity.
How large are

∫ 1

0 |DN (x)|dx and
∫ 1

0 DN(x)2dx?

Exercise 3.18. Prove the Weierstrass Approximation Theorem implies the original version
of Weierstrass’ Theorem.

Exercise 3.19. Letf(x) be periodic function with period1. Show

SN(x0) =

∫ 1
2

− 1
2

f(x)DN (x − x0)dx =

∫ 1
2

− 1
2

f(x0 − x)DN (x)dx. (3.8)

Exercise 3.20. Let f̂(n) = 1
2|n| . Does

∑∞
−∞ f̂(n)en(x) converge to a continuous, differ-

entiable function? If so, is there a simple expression for that function?

Exercise 3.21. Fill in the details for the above proof. Prove the result for all f satisfying∫ 1

0 |f(x)|2dx < ∞.

Exercise 3.22. If
∫ 1

0
|f(x)|2dx < ∞, show Bessel’s Inequality implies there exists aB

such that|f̂(n)| ≤ B for all n.

Exercise 3.23. Though we used|a+b|2 ≤ 4|a|2+4|b|2, any bound of the formc|a|2+c|b|2
would suffice. What is the smallestc that works for alla, b ∈ C?

Exercise 3.24. Let f(x) = 1
2 − |x| on [− 1

2 ,
1
2 ]. Calculate

∑∞
n=0

1
(2n+1)2 . Use this to

deduce the value of
∑∞

n=1
1
n2 . This is often denotedζ(2) (see Exercise 3.1.7). See [BP]2

for connections with continued fractions, and [Kar]3 for connections with quadratic reci-
procity.

Exercise 3.25. Letf(x) = x on [0, 1]. Evaluate
∑∞

n=1
1
n2 .

Exercise 3.26. Let f(x) = x on [− 1
2 ,

1
2 ]. Prove π

4 =
∑∞

n=1
(−1)n+1

(2n−1)2 . See also Exercise

3.3.29; see Chapter11 of [BB]4 or [Sc]5 for a history of calculations ofπ.

Exercise 3.27. Find a function to determine
∑∞

n=1
1
n4 .

2E. Bombieri and A. van der Poorten,Continued fractions of algebraic numbers. Pages 137–152 inCompu-
tational Algebra and Number Theory (Sydney, 1992), Mathematical Applications, Vol. 325, Kluwer Academic,
Dordrecht, 1995.

3A. Karlsson,Applications of heat kernels on Abelian groups:ζ(2n), quadratic reciprocity, Bessel integral,
preprint.

4J. Borwein and P. Borwein,Pi and the AGM: A Study in Analytic Number Theory and Computational Com-
plexity, John Wiley and Sons, New York,1987.

5P. Schumer,Mathematical Journeys, Wiley-Interscience, John Wiley & Sons, New York,2004.
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Exercise 3.28. Show the Gaussianf(x) = 1√
2πσ2

e−(x−µ)2/2σ2

is inS(R) for anyµ, σ ∈
R.

Exercise 3.29. Letf(x) be a Schwartz function with compact support contained in[−σ, σ]

and denote its Fourier transform bŷf(y). Prove for any integerA > 0 that |f̂(y)| ≤
cfy

−A, where the constantcf depends only onf , its derivatives andσ. As such a bound

is useless aty = 0, one often derives bounds of the form|f̂(y)| ≤ c̃f
(1+|y|)A .

Exercise 3.30. Consider

f(x) =

{
n6

(
1
n4 − |n− x|

)
if |x− n| ≤ 1

n4 for somen ∈ Z

0 otherwise.
(3.9)

Showf(x) is continuous butF (0) is undefined. ShowF (x) converges and is well defined
for anyx 6∈ Z.

Exercise 3.31. Prove Lemma 11.4.8.

Exercise 3.32. For what weaker assumptions onf, f ′, f ′′ is the conclusion of Lemma
11.4.10 still true?

Exercise 3.33. One cannot always interchange orders of integration. For simplicity, we
give a sequenceamn such that

∑
m(

∑
n am,n) 6=

∑
n(
∑

m am,n). For m,n ≥ 0 let

am,n =





1 if n = m

−1 if n = m+ 1

0 otherwise.

(3.10)

Show that the two different orders of summation yield different answers (the reason for this
is that the sum of the absolute value of the terms diverges).

Exercise 3.34. The example in the previous remark haslimn→∞ maxx |fn(x)| = ∞; in
other words, there is noM such that|fn(x)| ≤ M for all M andx. Find a family of
functionsfn(x) such that

lim
n→∞

∫ ∞

−∞
fn(x)dx 6=

∫ ∞

−∞
lim
n→∞

fn(x)dx (3.11)

and eachfn(x) andf(x) is continuous and|fn(x)|, |f(x)| ≤ M for someM and allx.

Exercise 3.35. Let f, g be continuous functions onI = [0, 1] or I = R. Show if
〈f, f〉, 〈g, g〉 < ∞ thenh = f ∗ g exists. Hint: Use the Cauchy-Schwarz inequality.
Show further that̂h(n) = f̂(n)ĝ(n) if I = [0, 1] or if I = R. Thus the Fourier transform
converts convolution to multiplication.

Exercise 3.36. Prove (11.77).

Exercise 3.37 (Important). If for all i = 1, 2, . . . we have〈fi, fi〉 < ∞, prove for all
i and j that 〈fi ∗ fj , fi ∗ fj〉 < ∞. What aboutf1 ∗ (f2 ∗ f3) (and so on)? Prove
f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3. Therefore convolution is associative, and we may write
f1 ∗ · · · ∗ fN for the convolution ofN functions.
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Exercise 3.38. SupposeX1, . . . , XN are i.i.d.r.v. from a probability distributionp onR.
Determine the probability thatX1 + · · · + XN ∈ [a, b]. What must be assumed aboutp
for the integrals to converge?

Exercise 3.39. One useful property of the Fourier transform is that the derivative ofĝ is
the Fourier transform of2πixg(x); thus, differentiation (hard) is converted to multiplica-
tion (easy). Explicitly, show

ĝ′(y) =

∫ ∞

−∞
2πix · g(x)e−2πixydx. (3.12)

If g is a probability density, notêg′(0) = −2πiE[x] andĝ′′(0) = −4π2E[x2].

Exercise 3.40. If B(x) = A(cx) for some fixedc 6= 0, showB̂(y) = 1
c Â

(
y
c

)
.

Exercise 3.41. Show that if the probability density ofX1+ · · ·+XN = x is (p∗· · ·∗p)(x)
(i.e., the distribution of the sum is given byp ∗ · · · ∗ p), then the probability density of
X1+···+XN√

N
= x is (

√
Np ∗ · · · ∗

√
Np)(x

√
N). By Exercise 3.40, show

FT
[
(
√
Np ∗ · · · ∗

√
Np)(x

√
N)

]
(y) =

[
p̂

(
y√
N

)]N
. (3.13)

Exercise 3.42. Show for any fixedy that

lim
N→∞

[
1− 2π2y2

N
+O

(
y3

N3/2

)]N
= e−2π2y2

. (3.14)

Exercise 3.43. Show that the Fourier transform ofe−2π2y2

at x is 1√
2π

e−x2/2. Hint: This
problem requires contour integration from complex analysis.

Exercise 3.44. Modify the proof to deal with the case ofp having meanµ and variance
σ2.

Exercise 3.45. For reasonable assumptions onp, estimate the rate of convergence to the
Gaussian.

Exercise 3.46. Letp1, p2 be two probability densities satisfying (11.79). ConsiderSN =
X1 + · · · +XN , where for eachi, X1 is equally likely to be drawn randomly fromp1 or
p2. Show the Central Limit Theorem is still true in this case. What if we instead had a
fixed, finite number of such distributionsp1, . . . , pk, and for eachi we drawXi from pj
with probabilityqj (of course,q1 + · · ·+ qk = 1)?

Exercise 3.47 (Gibbs Phenomenon). Define a periodic with period1 function by

f(x) =

{
−1 if − 1

2 ≤ x < 0

1 if 0 ≤ x < 1
2 .

(3.15)

Prove that the Fourier coefficients are

f̂(n) =

{
0 if n is even
4

nπi if n is odd.
(3.16)
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Show that theN th partial Fourier seriesSN (x) converges pointwise tof(x) wherever
f is continuous, but overshoots and undershoots forx near0. Hint: Express the series
expansion forSN (x) as a sum of sines. Notesin(2mπx)

2mπ =
∫ x

0 cos(2mπt)dt. Express this
as the real part of a geometric series of complex exponentials, and use the geometric series
formula. This will lead to

S2N−1(x) = 8

∫ x

0

ℜ
(

1

2i

e4nπit − 1

sin(2πt)

)
dt = 4

∫ x

0

sin(4nπt)

sin(2πt)
dt, (3.17)

which is about1.179 (or an overshoot of about18%) whenx = 1
4nπ . What can you say

about the Fejér seriesTN(x) for x near0?

Exercise 3.48 (Nowhere Differentiable Function). Weierstrass constructed a continuous
but nowhere differentiable function! We give a modified example and sketch the proof.
Consider

f(x) =

∞∑

n=0

an cos(2n · 2πx), 1

2
< a < 1. (3.18)

Showf is continuous but nowhere differentiable.Hint: First show|a| < 1 impliesf
is continuous. Our claim onf follows from: if a periodic continuous functiong is dif-
ferentiable atx0 and ĝ(n) = 0 unlessn = ±2m, then there existsC such that for all
n, |ĝ(n)| ≤ Cn2−n. To see this, show it suffices to considerx0 = 0 and g(0) = 0.
Our assumptions imply that(g, em) = 0 if 2n−1 < m < 2n+1 andm 6= 2n. We have
ĝ(2n) = (g, e2nF2n−1(x)) whereFN is the Fejér kernel. The claim follows from bounding
the integral(g, e2nF2n−1(x)). In fact, more is true: Baire showed that, in a certain sense,
“most” continuous functions are nowhere differentiable! See, for example, [Fol]6.

Exercise 3.49 (Isoperimetric Inequality). Letγ(t) = (x(t), y(t)) be a smooth closed curve
in the plane; we may assume it is parametrized by arc length and has length1. Prove the
enclosed areaA is largest whenγ(t) is a circle. Hint: By Green’s Theorem (Theorem
A.2.9), ∮

γ

xdy − ydx = 2Area(A). (3.19)

The assumptions onγ(t) imply x(t), y(t) are periodic functions with Fourier series ex-

pansions and
(
dx
dt

)2
+

(
dy
dt

)2

= 1. Integrate this equality fromt = 0 to t = 1 to obtain

a relation among the Fourier coefficients ofdx
dt and dx

dt (which are related to those ofx(t)
andy(t)); (3.19)gives another relation among the Fourier coefficients. These relations
imply 4πArea(A) ≤ 1 with strict inequality unless the Fourier coefficients vanish for
|n| > 1. After some algebra, one finds this implies we have a strict inequality unlessγ is
a circle.

Exercise 3.50 (Applications to Differential Equations). One reason for the introduction of
Fourier series was to solve differential equations. Consider the vibrating string problem:
a unit string with endpoints fixed is stretched into some initial position and then released;

6G. Folland,Real Analysis: Modern Techniques and Their Applications, 2nd edition, Pure and Applied Math-
ematics, Wiley-Interscience, New York, 1999.
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describe its motion as time passes. Letu(x, t) denote the vertical displacement from the
rest positionx units from the left endpoint at timet. For all t we haveu(0, t) = u(1, t) = 0
as the endpoints are fixed. Ignoring gravity and friction, for small displacements Newton’s
laws imply

∂2u(x, t)

∂x2
= c2

∂2u(x, t)

∂t2
, (3.20)

wherec depends on the tension and density of the string. Guessing a solution of the form

u(x, t) =

∞∑

n=1

an(t) sin(nπx), (3.21)

solve foran(t).
One can also study problems onR by using the Fourier Transform. Its use stems from

the fact that it converts multiplication to differentiation, and vice versa: ifg(x) = f ′(x)

andh(x) = xf(x), prove that̂g(y) = 2πiyf̂(y) and df̂(y)
dy = −2πiĥ(y). This and Fourier

Inversion allow us to solve problems such as the heat equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, x ∈ R, t > 0 (3.22)

with initial conditionsu(x, 0) = f(x).

3.2 PROBLEMS FROM CHAPTER 1: REVISITED

Many of the problems from Chapter 1 are appropriate here as well. In addition to re-
examining those problems, consider the following.

Exercise 3.51. Is the sequencean = nlog n Benford?

Exercise 3.52. In some situationslog4 does not mean the logarithm base 4, but rather
four iterations of the logarithm function. Investigatenlogf(n) n under this definition for
various integer-valued functionsf .

3.3 PROBLEMS FROM CHAPTER 3

Exercise 3.53. Assume an infinite sequence of real numbers{xn} has its logarithms mod-
ulo 1, {yn = log10 xn mod 1}, satisfying the following property: asn → ∞ the pro-
portion ofyn in any interval[a, b] ⊂ [0, 1] converges tob − a if b − a > 1/2. Prove or
disprove that{xn} is Benford.

Exercise 3.54. As
√
2 is irrational, the sequence{xn = n

√
2} is uniformly distributed

modulo 1. Is the sequence{x2
n} uniformly distributed modulo 1?

Exercise 3.55. Does there exist an irrationalα such thatα is a root of a quadratic poly-
nomial with integer coefficientsandthe sequence{αn}∞n=1 is Benford base 10?

Exercise 3.56. Which of the following are Benford, and why?
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• {nx2} = {x2, 2x2, 3x2, 4x2, . . . } for x > 1.

• {nπ2} = {π2, 2π2, 3π2, 4π2, . . . }.

• {n2π2} = {π2, 4π2, 9π2, 16π2, . . . }.

• {5n + 2n} = {7, 29, 133, 641, . . .}.

• {e1+nπ} = {e1+π, e1+2π, e1+3π, e1+4π, . . . }.

• 1/X , whereX is a random variable uniformly distributed on[0, 5).

Exercise 3.57. We showed a Geometric Brownian Motion is a Benford-good process; is
the sum of two independent Geometric Brownian Motions Benford-good?

The next few questions are related to a map we now describe. Weshowed that, suitably
viewed, the3x + 1 Map leads to Benford behavior (or is close to Benford for almost all
large starting seeds). Consider the following map. LetR(x) be the number formed by
writing the digits ofx in reverse order. IfR(x) = x we sayx is palindromic. Ifx is
not a palindromic number setP (x) = x + R(x), and if x is palindromic letP (x) =
x. For a given starting seedx0 consider the sequence wherexn+1 = P (x). It is not
known if there are anyx0 such that the resulting sequence diverges to infinity, though it is
believed that almost all such numbers do. The first candidateto escape is 196; for more
seehttp://en.wikipedia.org/wiki/Lychrel_number (this process is also
called “reverse-and-add”, and the candidates are called Lychrel numbers).

Exercise 3.58. Consider the reverse-and-add map described above applied to a large
starting seed. Find as good of a lower bound as you can for the number of seeds be-
tween10n and10n+1 such that the resulting sequence stabilizes (i.e., we eventually hit a
palindrome).

Exercise 3.59. Come up with a model to estimate the probability a given starting seed in
10n and10n+1 has its iterates under the reverse-and-add map diverge to infinity. Hint: x
plusR(x) is a palindrome if and only if there are no carries when we add;thus you must
estimate the probability of having no carries.

Exercise 3.60. Investigate the Benfordness of sequences arising from the reverse-and-add
map for various starting seeds. Of course the calculation iscomplicated by our lack of
knowledge about this map, specifically we don’t know even onestarting seed that diverges!
Look at what happens with various Lycherel numbers. For eachN can you find a starting
seedx0 such that it iterates to a palindrome afterN or more steps?

Exercise 3.61. Redo the previous three problems in different bases. Your answer will
depend now on the base; for example, much more is known base 2 (there we can give
specific starting seeds that iterate to infinity).

Exercise 3.62. Use the Erdös-Turan Inequality to calculate upper bounds for the discrep-
ancy for various sequences, and use those results to prove Benford behavior. Note you
need to find a sequence where you can do the resulting computation. For example, earlier
we investigatedan = nlogn; are you able to do the summation for this case?
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Exercise 3.63. Consider the analysis of products of random variables. Fix aprobabilityp
(maybep = 1/2), and independent identically distributed random variablesX1, . . . , Xn.
Assume asn → ∞ the product of theXi’s becomes Benford. What if now we let̃Xn be
the random variable where we tossn independent coins, each with probabilityp, and if
theith toss is a head thenXi is in the product (if the product is empty we use the standard
convention that it is then 1). Is this process Benford?

Exercise 3.64. Redo the previous problem, but drop the assumption that the random vari-
ables are identically distributed.

Exercise 3.65. Redo the previous two problems, but now allow the probability that theith

toss is a head to depend oni.

Exercise 3.66. Consider

φm =

{
m if |x− 1

8 | ≤ 1
2m

0 otherwise;
(3.23)

this is the function from Example 3.3.5 and led to non-Benford behavior for the product.
Can you write down the density for the product?

Exercise 3.67. In the spirit of the previous problem, find other random variables where
the product is not Benford.

Exercise 3.68. Consider a Weibull random variable where we fix the scale parameterα to
be 1 and the translation parameterβ to be 0; thusf(x; γ) = xγ−1 exp(xγ) for x ≥ 0 and
is zero otherwise. Investigate the Benfordness of chainingrandom variables here, where
the shape parameterγ is the output of the previous step.

Exercise 3.69. The methods of [JKKKM] led to good bounds for chaining exponential
and uniform random variables. Can you obtain good, explicitbounds in other cases? For
example, consider a binomial process with fixed parameterp.

Exercise 3.70. Apply the methods of Cuff, Lewis and Miller (for the Weibull distribution)to
other random variables. Consider the generalized Gamma distribution (see

http://en.wikipedia.org/wiki/Generalized_gamma_distribution

for more information), where the density is

f(x; a, d, p) =
p/da

Γ(d/p)
xd−1 exp (−(x/a)p)

for x > 0 and 0 otherwise, wherea, d, p are positive parameters.

For the next few problems, letfr(x)− 1/(1 + |x|r) with r > 1.

Exercise 3.71. Show that forr > 1,
∫∞
−∞ fr (x) dx is finite. Verify that

∫∞
−∞ fr (x) dx

= 2π
r csc

(
π
r

)
.

Exercise 3.72. Verify that the Fourier transform identity used in our analysis:

pr
(
eb+y

)
eb+y =

1

2
sin

(π
r

)
e2πiby csc

(π
r
(1− 2πiy)

)
,

whereb ∈ [0, 1].
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Chapter Four

Benford’s Law Geometry

Lawrence Leemis1

Exercise 4.1. Perform a chi-square goodness-of-fit test on the data valuesin Table 4.1.

Exercise 4.2. Let the random variableX have the Benford distribution as defined in this
chapter. FindE[X ]. Next, generate one million Benford random variates and compute
their sample mean. Perform this Monte Carlo experiment several times to assure that the
sample means are nearE[X ].

Exercise 4.3. LetT ∼ exponential(1). Find the probability mass function of the leading
digit to three-digit accuracy. Compare your results to those in Table 4.2.

Exercise 4.4. Redo the previous exercise, but instead of finding the probability mass func-
tion of the leading digit, find the cumulative distribution function of the significand (i.e.,
find the probability of observing a significand of at mosts).

Exercise 4.5. Determine the set of conditions ona, b, and c associated withW ∼
triangular(a, b, c) which result inT = 10W following Benford’s Law.

Exercise 4.6. Use R to confirm that the cumulative distribution functionFx(x) = Prob(X ≤
x) = log10(x+1) results in a probability mass function that gives the distribution specified
in Benford’s Law. What is the range ofx?

Exercise 4.7. Use R to determine if the cumulative distribution functionFx(x) = Prob(X ≤
x) = x2 (for some range forx) results in a probability mass function that gives the distri-
bution specified in Benford’s Law. If yes, what is the range for x?

Exercise 4.8. Which of the following distributions ofW follow Benford’s Law?

• fW (w) ∼ U(0, 3.5).

• fW (w) ∼ U(17, 117).

• fW (w) = w3 − w2 + w for 0 ≤ w ≤ 1, and1− w3 + w2 − w for 1 ≤ w ≤ 2.

• fW (w) =
√
w for 0 ≤ w ≤ 1, and1−

√
w − 1 for 1 ≤ w ≤ 2.

Exercise 4.9. Let b1 andb2 be two different integers exceeding 1. Is there a probability
densityp on an intervalI such that if a random variableX hasp for its probability density
function thenX is Benford in both baseb1 andb2? What if the two bases are allowed to
be real numbers exceeding 1? Prove your claims.

1Department of Mathematics, The College of William & Mary, Williamsburg, VA 23187.



Chapter Five

Explicit Error Bounds via Total Variation

Lutz Dümbgen and Christoph Leuenberger1

Exercise 5.1. Find TV (sin(x), [−π, π]).

Exercise 5.2. Confirm thatTV (h, J) = TV +(h, J) + TV −(h, J).

Exercise 5.3. LetYo andZ be independent random variables such thatYo has a density
fo with TV(fo) < ∞ andZ has distributionπ. Verify thatY := Yo + Z has density
f(y) =

∫
fo(y − z)π(dz) with TV(f) ≤ TV(fo).

Exercise 5.4. Show that an absolutely continuous probability densityf onR satisfies

TV(f)2 ≤
∫

f ′(x)2

f(x)
dx.

Exercise 5.5. Letγa,σ be the density of the gamma distributionGamma(a, σ) with shape
parametera > 0 and scale parameterσ > 0, i.e.,

γa,σ(x) = σ−axa−1 exp(−x/σ)/Γ(a)

for x > 0, andγa,σ = 0 on (−∞, 0].

(i) Show that fora ≥ 1,
TV(γa,σ) = σ−1 TV(γa,1) and TV(γa,1) = 2((a− 1)/e)a−1/Γ(a).

(ii) It is well-known thatΓ(t + 1) = (t/e)t
√
2πt(1 + o(1)) as t → ∞ (this is Stirling’s

formula). What does this imply forTV(γa,1)? Show thatTV(γa,σ) → 0 as
√
a σ → ∞

anda ≥ 1.

Exercise 5.6. LetX be a strictly positive random variable with densityh on(0,∞). Verify
thatY := logB(X) has densityf given byf(y) = log(B)Byh(By) for y ∈ R.

Exercise 5.7. Let X be a random variable with distributionGamma(a, σ) for some
a, σ > 0; see Exercise 5.5

(i) Determine the densityfa,σ of Y := logB(X). Here you should realize thatfa,σ(y) =
fa,1(y − logB(σ)). Show then that

TV(fa,σ) = 2 log(B)(a/e)a/Γ(a).

What happens asa → ∞?

(ii) To understand why the leading digits ofX are far from Benfords law for largea,
verify thatX = σ(a +

√
aZa) for a random variableZa with mean zero and variance

one. (Indeed, the density ofZa converges uniformly to the standard Gaussian density as
a → ∞.) Now investigate the distribution ofY = logB(X) asa → ∞.

1University of Bern, Bern, Switzerland and University of Fribourg, Fribourg, Switzerland respectively.



Chapter Six

Lévy Processes and BenfordŠs Law

Klaus Schürger1

Exercise 6.1. Provide an example of a non-continuous cadlag function.

Exercise 6.2. Prove that a Weiner Process is also a Lévy Process.

Exercise 6.3. Prove that a Poisson Process is also a Lévy Process.

Exercise 6.4. Prove that the exponential Lévy Process{exp(Xt)} (t ∈ R) is a martingale
with respect to(Ft) := σ{Xs : s ≤ t} if and only ifE[exp(Xt)] = 1.

Exercise 6.5. Let f(t) = E[exp(itξ)], g(t) = E[exp(itη)] (t ∈ R) be the characteris-
tic functions of(real-) valued random variablesξ, η (i =

√
−1). Recall thatexp(it) =

cos t + i sin t (t ∈ R) and E[exp(itξ)] := E[cos(tξ)] + iE(sin(tξ)]
(t ∈ R). Finally, a+ ib := a − ib (a, b ∈ R) denotes the complex conjugate ofa + ib.
Note that|f |2(t) = f(t) · f̄(t). Show the following.

(a) f is continuous,f(0) = 1, and|f(t)| ≤ 1, t ∈ R.

(b) f̄ is a characteristic function.

(c) f · g is a characteristic function. Hence,|f |2is a characteristic function.

(d) Leth1, h2, . . . be characteristic functions. Ifa1 ≥ 0, a2 ≥ 0, . . . are real numbers
such thata1 + a2 + · · · = 1, thena1h1 + a2h2 + · · · is a characteristic function.

(e) Show that every characteristic function h is non-negative definite, i.e., for alln ≥ 2,
real t1, . . . , tn and complexa1, . . . , an we have that

n∑

j=1

n∑

k=1

h(tj − tk)aj āk ≥ 0.

Exercise 6.6. Show that, for each real numberp > 0, f(z) := cos(2πpz) (z ∈ R) is a
characteristic function. Deduce thatg(z) := (cos(2πpz))2 (z ∈ R) is a characteristic
function.

1Department of Economics, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany.
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Exercise 6.7. (This exercise gives an example of a characteristic function which “wildly
fluctuates”.)It follows from Exercises6.6 and6.5(d) that

h(z) :=

∞∑

k=1

2−k(cos(2π7kz))2, z ∈ R

is a characteristic function. Show thath is of infinite total variation over each non-
degenerate interval[a, b], i.e.,

sup

{
n∑

k=1

|h(zk+1)− h(zk)|
}

= ∞,

the supremum taken over alln ≥ 1 and real numbersa ≤ z1 < z2 < · · · < zn+1 ≤ b.

[Hint: It suffices to prove the claim for intervals[r+ 7−N , r+ 2 · 7−N ] (being convenient
for calculations!)whereN ≥ 1 is an integer andr ≥ 0 a real number. Letk ≥ N +1 and
denote byI(k) the set of integersj such that1+(r+7−N)7k < j ≤ ((r+2 ·7−N )7k. For
j ∈ I(k) put t2j−1(k) = (j − 1/4)7−k, t2j(k) = j · 7−k. Show, by using the inequalities
|a+ b| ≥ |a| − |b| and|(cos b)2 − (cos a)2| ≤ 2|b− a| (a, b ∈ R) that

∑

j∈I(k)

|h(t2j(k))− h(t2j−1(k))| ≥ 2(1− π/5)7−N(7/2)k + const.]

Exercise 6.8. (a) Try to guess how the integral
∫ b

a f(z) exp(itz)dz behaves as
t → ∞ if f : [a, b] → R is a step function of the formf(t) =

∑m
j=1 cj1[bj−1,bj)(t)

wherea ≤ b0 < b1 < · · · < bm ≤ b.

(b) Verify your guess whenf is an indicator function of an interval.

(c) How does the above integral behave whenf is continuous on[a, b]?

Exercise 6.9. Show that a Lévy measureQ satisfiesQ(R r (−α, α)) < ∞ for all α > 0.

Exercise 6.10. Let X be a Lévy process having Lévy measureQ. Show that, for fixed
c > 0 ands ≥ 0, the processX∗ given byX∗

t = Xct+s −Xs (t ≥ 0) is a Lévy process
having Lévy measureQ∗ = cQ.

Exercise 6.11. LetN = (Nt) (t ≥ 0) be a Poisson process with parameterλ > 0.

(a) Verify that the generating triple ofN is given by(λ, 0, Q∗) whereQ∗ has total mass
λ concentrated on{1}.

(b) Verify(6.15) directly forX = N , i.e.,

Q∗(A) = c−1E[#{s < t ≤ s+ c : ∆Nt ∈ Ar {0}}]
holds for allc > 0, s ≥ 0 and every Borel setA ⊂ R.

Exercise 6.12. Let Tt =
∑Nt

j=1 ζj (t ≥ 0) denote the compound Poisson process of
Example6.1.21. (Here, (Nt) is a Poisson process with parameterλ > 0; ζ1, ζ2, . . . are
independent random variables with a common distributionQ1 such thatQ1({0}) = 0.
Furthermore, the processes(ζn) and(Nt) are independent of each other.)
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(a) Show that the characteristic functiongt of Tt (t ≥ 0) is given by

gt(z) = exp

[
λt

∫

R

(eizx − 1)Q1(dx)

]

for all z ∈ R andt ≥ 0.

(b) It can be shown(see the reference in Example6.1.21) that (Tt) is a Lévy process.
Determine its generating triple(β, σ2, Q).

Exercise 6.13. Let W be a (standard) Brownian motion(BM). Show that, for eachc >
0,W ∗ = (cWt/c2) is aBM (scaling property).

Exercise 6.14. Let ξ ∼ N(µ, σ2) whereµ ∈ R andσ > 0.

(a) Deduce from(6.26) that the characteristic function ofξ is given by

E[exp(izξ)] = exp(iµz − σ2z2/2), z ∈ R.

(b) Deduce from the result in(a) that, for allµ, z ∈ R andσ > 0,
∫ ∞

−∞
cos(zx) exp(−(x− µ)2/(2σ2))dx =

√
2πσ2 cos(µz) exp(−σ2z2/2)

and∫ ∞

−∞
sin(zx) exp(−(x− µ)2/(2σ2))dx =

√
2πσ2 sin(µz) exp(−σ2z2/2).

Exercise 6.15. LetW = (Wt) be aBM. Put

St,u := sup
0≤s≤u

|Wt+s −Wt|, t ≥ 0, u > 0.

(a) Show thatSt,u is a random variable.(This requires a little argument since the
definition ofSt,u involves uncountably many random variables!)
[Hint: Recall that all sample paths ofW are continuous.]

(b) Show thatWn/n → 0 (n → ∞) a.s.

(c) Since, for each fixedt ≥ 0, (Wu+t −Wt) (u ≥ 0) is aBM, it follows that

For eacht > 0, St,1 has the same distribution asS0,1. (∗)

Furthermore, we have that

P (S0,1 ≥ a) ≤ 2 exp(−a2/2), a ≥ 0 (∗∗)

(see, e.g., [KaSh] or [RY]). Use(b) as well as(∗) and(∗∗) to show that

Wt/t → 0 (t → ∞) a.s.

[Hint:Use the Borel-Cantelli Lemma.]

Exercise 6.16. Let ξ1, ξ2, . . . be independent random variables defined on some prob-
ability space(Ω,F , P ), which have a common distribution given byP (ξn = +1) =
p, P (ξn = −1) = 1 − p =: q (n ≥ 1), where0 < p < 1. PutSn := ξ1 + · · ·+ ξn, n ≥
0 (S0 = 0), and let (Fn) (n ≥ 0) be the filtration generated by(ξn). (Note that
F0 = {∅,Ω}.)



24 CHAPTER 6

(a) Show thatYn := (q/p)Sn (n ≥ 0) is an(Fn)-martingale.

(b) Putc(α) := E[exp(αξ1)] = p exp(α) + q exp(−α) (α ∈ R). Show that, for every
fixedα ∈ R,

Zn := exp(αSn)/(c(α))
n (n ≥ 0)

is an(Fn)-martingale.

Exercise 6.17. Letξ1, ξ2, . . . be independent random variables defined on the same prob-
ability space, which have a common distribution given byP (ξn = +1) = P (ξn = −1) =
1/2. PutS0 = 0 andSn = ξ1 + · · · + ξn (n ≥ 1) which means that(Sn) is a simple
symmetric random walk onZ, starting at0. Let (Fn) be the filtration generated by(ξn).
Show that following two sequences are(Fn)-martingales:

(a) (S3
n − 3nSn).

(b) (S4
n − 6nS2

n + 3n2 + 2n).

[Hint: Note thatE[ξn|Fn−1] = E[ξn] = 0 a.s. (sinceξn is independent ofFn−1), and
that E[S2

n−1ξn|Fn−1] = S2
n−1E[ξn] = 0 a.s. (sinceSn−1 is Fn−1-measurable). Note

thatSn = Sn−1 + ξn.]

Exercise 6.18. Let(Ω,F , P ) be a probability space and let(Fn) (n ≥ 0) be any filtration
on (Ω,F). In the sequel letZ = (Zn) (n ≥ 0) andH = (Hn) (n ≥ 1) be sequences
of random variables defined on(Ω,F) such thatZ is adapted andH is predictable which
means that, for alln ≥ 1, Hn isFn−1-measurable. The sequenceH • Z given by

(H • Z)n :=
n∑

j=1

Hj(Zj − Zj−1), n ≥ 0 ((H • Z)0 = 0)

is called theH-transform ofZ or the(discrete) stochastic integral ofH with respect toZ.
Now letZ be an(Fn)-martingale and assume thatHj(Zj − Zj−1) ∈ L1, j = 1, 2, . . .
Show thatH • Z is an(Fn)-martingale.
[Hint: Use the iteration property of conditional expectations(see Example6.1.29).]

Exercise 6.19. Let W = (Wt) be aBM and let(Ft) be the filtration generated byW .
Show that the following processes are(Ft)-martingales:

(a) (Wt).

(b) (W 2
t − t).

(c) (W 4
t − 6tW 2

t + 3t2).

[Hint: Note thatWt −Ws is independent ofFs (0 ≤ s ≤ t).]

Exercise 6.20. Let (Nt) be a Poisson process with parameterλ > 0, and putMt =
Nt − λt (t ≥ 0). Let(Ft) be the filtration generated by(Nt).

(a) Show that(Mt) is an(Ft)-martingale.
[Hint: Nt −Ns is independent ofFs (0 ≤ s < t).]
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(b) Show that(M2
t − λt) is an(Ft)-martingale.

[Hint: Write M2
t −M2

s = (Mt −Ms)
2 + 2Ms(Mt −Ms) (0 ≤ s < t).]

Exercise 6.21. Let (Nt) be a Poisson process with parameterλ > 0, and letc > 0 be any
constant.

(a) Determine the constantµ(c) such that the process(exp(cNt + µ(c)t)) (t ≥ 0) is a
martingale with respect to the filtration(Ft) generated by(Nt).
[Hint: Use Theorem6.1.30 and Exercise6.11.]

(b) Verify directly that the process obtained in(a) is an(Ft)-martingale..
[Hint: Use thatE[exp(c(Nt − Ns))|Fs] = E[exp(c(Nt − Ns))] a.s. (0 ≤ s < t)
sinceNt −Ns is independent ofFs.]

Exercise 6.22. Let ξ have a binomial distribution with parametersn ≥ 1 and0 ≤ p ≤ 1,
i.e.,

P (ξ = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

(a) Use Azuma’s inequality(Theorem6.3.1) to prove the following inequality which is
due to H. Chernoff(Ann. Math. Statist.23 (1952), 493− 507):

P (|ξ − np| ≥ t) ≤ 2 exp(−2t2/n), t ≥ 0, n ≥ 1. (∗)

[Hint: ξ has the same distribution as a sum of suitable0 − 1 random variables
ξ1, . . . , ξn.]

(b) Verify(∗) directly forn = 1.

Exercise 6.23. Prove(6.147).
[Hint: First note that|g(z)| =: exp(I(z)), where

I(z) :=

∫ z

0

cosx− 1

x

(
log

( z
x

))r

dx, z ≥ 0, r > 0.

Then(6.147) says that

I(z) ≤ 1

2(r + 1)

(
1− (log(2z/(3π)))

r+1
)
, z ≥ 4π, r > 0. (∗)

In order to prove(∗) note that the cosine is≤ 0 on the intervalsJ(k) := [(2k − 1)π −
π/2, (2k − 1)π + π/2], and that

J(k) ⊂ [0, z] iff 1 ≤ k ≤ k(z) := ⌊z/(2π) + 1/4⌋. (∗∗)

Hence

I(z) ≤ −
k(z)−1∑

k=1

∫

J(k)

1

x

(
log

( z

x

))r

dx.

Using(∗∗) and comparing with a certain Riemann integral finally yields(∗).]
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Exercise 6.24. A processZt = Z0 exp(Xt), t ≥ 0 (Z0 > 0) is observed at time points
t = 0, 1, 2, . . . , T , where(Xt) is a Lévy process of jump-diffusion type as in Example
6.5.2. LetH0(2) denote the null hypothesis which says that there existα ∈ R, c ≥ 2, λ ≥ 0
and a distributionQ1 on R satisfyingQ1({0}) = 0 such that(Xt) is associated with
α, c, λ, andQ1. (Note thatH0(2)) has a meaning different from that at the beginning of
§6.5!) LetH0(2) be rejected if|L̃T /T − p10(1)| ≥ 0.1 (see(6.100) and(6.150)). Let the
level of significance be0.1. (Note that the rejection ofH0(2) entails the rejection of the
null hypothesis that(Zt) is a Black-Scholes process having volatility≥ 2 (see(6.27)).)
How large hasT to be?( Answer:T ≥ 1715.)

Exercise 6.25. A processZt = Z0 exp(Xt), t ≥ 0 (Z0 > 0) is observed at the time points
t = 0, 1, 2, . . . , T , where(Xt) = αt + Tt, t ≥ 0. Here,α ∈ R; (Tt) is a compound Pois-
son(or CP-)process associated withλ > 0 andQ1 = N(µ, σ2) (see Example6.1.21).
Suppose that the null hypothesisH0(λ

∗, σ∗) (λ∗ > 0, σ∗ > 0) is to be tested, which says
that there existα ∈ R, µ ∈ R, λ ≥ λ∗, andσ ≥ σ∗ such thatXt = αt + Tt (t ≥ 0), and
(Tt) is a CP-process associated withλ andQ1. Verify that the test outlined in Exercise
6.24, which rejectsH0(λ

∗, σ∗) if |L̃T /T −p10(1)| ≥ 0.1, is not applicable no matter how
the level of significance0 < p0 < 1 is chosen.
[Hint: Show that there does not exist any(finite) constant

∑∗ satisfying(6.153) (g
being the characteristic function ofX1, (Xt)being an arbitrary Lévy process satisfying
H0(λ

∗, σ∗)). Use Exercise6.14(b).]

Exercise 6.26. Suppose we observe a processZt = Z0 exp(µt+ cXt), t ≥ 0 (Z0 > 0) at
time pointst = 0, 1, . . . , T . Let (Xt) be a gamma process with parametersα and∆, and
consider(as in Example6.5.5) the null hypothesisH0(c

∗, α∗,∆∗) whereB = 10, c∗ =
α∗ = 1,∆∗ = 2, p0 = v = 0.1,m = 1, d1 = 1, andλ(10) = (2π/ log 10)2 (recall that
log is the natural logarithm).

(a) Show that in this special case we can choose
∑∗

= (log 10)2/24.

(b) How large has the time horizonT to be?(Answer:T ≥ 2129 (instead ofT ≥ 2582
as in Example6.5.5!).)

Exercise 6.27. Prove the following elementary result(Lemma6.6.7): Let a1, a2, · · · be
real numbers such that0 ≤ an < 1 (n ≥ 1) and

∑∞
n=1 an < ∞. Then

∞∑

n=1

atn → 0 (t → ∞).

Exercise 6.28. Prove the claim in Example6.1.28.

Exercise 6.29. Prove the iteration property of conditional expectations(see Example
6.1.29).

Exercise 6.30. Prove Lemma6.2.1.



PART 3

Applications I: Accounting and Vote Fraud





Chapter Seven

Benford’s Law as a Bridge between Statistics and

Accounting

Richard J. Cleary and Jay C. Thibodeau1

An auditor decides to run a Benford’s law on a data set that consists of 1000 legiti-
mate expense records from a business, plus a number of fraudulent transactions that an
employee is making to a front for a business set up in a relative’s name. Because the
employees of the business have to obtain special approval for expenditures over $10,000,
the fraudulent transactions are all for amounts between $9,000 and $9,999. For the 1000
legitimate expenditures, we have this data:

First Digit Observed
1 314
2 178
3 111
4 92
5 88
6 59
7 56
8 56
9 46

Exercise 7.1. Using the Benford law test at

http://web.williams.edu/Mathematics/sjmiller/public_html/benford/

chapter01/MillerNigrini_ExcelBenfordTester_Ver401.xlsx

(or any other suitable software), verify that the data conforms reasonably well to Benford’s
Law.

Exercise 7.2. Use trial and error (or some more clever approach) to determine how many
fraudulent transactions with first digit nine would need to be added to the 1000 legitimate
observations above in order for the hypothesis that the datafollows Benford’s Law to be
rejected at a five percent significance level. Does this seem plausible?

Exercise 7.3. What is the role of sample size in the sensitivity of Benford’s law? Suppose
there are 10,000 legitimate observations instead of 1000, but the ratios for legitimate ob-
servations remains the same, i.e., the number of observations for teach digit is multiplied
by 10. Try the problem again. What changes?

1Mathematics & Science Division, Babson College, and Department of Accountancy, Bentley University.
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Exercise 7.4. In which of the following situations is an auditor most likely to use Benford’s
Law?

• An analysis of a fast food franchise’s inventory of hamburgers.

• An audit of a Fortune 500 company’s monthly total revenue over the fiscal year.

• An analysis of a multi-billion dollar technology company’ssignificant assets.

Exercise 7.5. Give an additional example of a way that including Benford’sLaw in an
introductory-level statistics class will meet the four goals of the GAISE report of 2005.

Exercise 7.6. Determine whether the following situations are Type I errors, Type II errors,
or neither.

• An auditor uses Benford’s Law to analyze the values of canceled checks by a busi-
ness in the past fiscal year. The auditor finds that there are significant spikes in the
data set, with 23 and 37 appearing as the first two digits more often than expected.
After further investigation, it was found that there were valid non-fraudulent expla-
nations for the variations in the first digits.

• An auditor finds that a company’s reported revenue does not follow Benford’s Law.
Further investigation is taken, and it is found that a manager has been rounding
up her weekly sales to the nearest thousand to earn an incentive based on a weekly
sales benchmark. The manager claims that the inflated sales were an accounting
error.

• An owner of a business has falsely claimed to give his employees bonuses on each
paycheck based on their monthly sales in order to lower his income taxes. An au-
ditor examines the data, but is unable to confidently claim that the data does not
follow Benford’s Law. Rather than waste funds on a costly investigation, the auditor
chooses not to investigate the owner.

Exercise 7.7. What are the negative effects of a Type I error in an audit? A Type II error?
In what situations might one be more dangerous than the other?

Exercise 7.8. What are some of the reasons listed in the chapter that might explain why a
data set should not be expected to follow Benford’s Law?

Exercise 7.9. Give an example of a reason other than fraud that explains whya data set
that is expected to conform to Benford’s Law does not.



Chapter Eight

Detecting Fraud and Errors Using Benford’s Law

Mark Nigrini1

Exercise 8.1. Do the following data sets meet the requirements described by Nigrini in
order to be expected to follow Benford’s Law? Explain why or why not.

• The 4-digit PIN numbers chosen by clients of a local bank.

• The annual salaries of graduates from a public university.

• Numeric student ID numbers assigned by a school.

• The distances in miles between Washington, DC and the 500 most populated cities
in the United States (excluding Washington, DC).

• Results to a survey of 1,000 students asked to provide a number in between 1 and
1,000,000.

• The number of tickets bought for all events held in a particular stadium over the
past five years.

Exercise 8.2. Take a company which has been at the heart of a scandal (for example,
Enron) and investigate some of its publicly available data.

Exercise 8.3. An audit of a small company reveals a large number of transactions starting
with a 5. Come up with some explanations other than fraud.Hint: there are two cases: it
is the same amount to the same source each time, and it isn’t.

1Department of Accounting, West Virginia University, Morgantown, West Virginia 26506.



Chapter Nine

Can Vote Counts’ Digits and Benford’s Law Diagnose

Elections?

Walter R. Mebane, Jr.1

Exercise 9.1. If X satisfies Benford’s law, then the mean of its second digit is 4.187. What
is the mean of thekth digit?

Exercise 9.2. If X satisfies Benford’s law, multiply by an appropriate power of10 so that
it hask integer digits. What is the probability the last digit isd? What is the probability
the last two digits are equal? What is the probability the last two digits differ by 1?

Exercise 9.3. Find some recent voting data (say city or precinct totals) and investigate the
distribution of the first and second digits.

1Department of Political Science and Department of Statistics, University of Michigan, Ann Arbor, MI. The
author thanks Jake Gatof, Joe Klaver, William Macmillan andMatthew Weiss for their assistance.



Chapter Ten

Complementing Benford’s Law for small N : a local

bootstrap

Boudewijn F. Roukema1

Exercise 10.1. Do you agree with the assessment that Nigrini’s conditions for applying
Benford’s Law are mostly satisfied? Why or why not?

Exercise 10.2. Why does having a largeσ(log10 xi) and a largeσ(log10 wi,j) ensure that
vi,j first-digit distribution approaches Benford’s Law?

Exercise 10.3. What does it mean for bootstrap methods to be considered “conservative?”
Identify some of the ways in which bootstrap methods are conservative.

Exercise 10.4. There are many conservative statistics. Look up the Bonferroni adjustment
for multiple comparisons, as well as alternatives to that.

Exercise 10.5. How would a local bootstrap realization change if the value of ∆ were
changed?

Exercise 10.6. Confirm that ifcbK7 > 99.924%, thenceK7 > 99.99960%.

1Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univer-
sity, ul. Gagarina 11, 87-100 Toruń, Poland.
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Applications II: Economics





Chapter Eleven

Measuring the Quality of European Statistics

Bernhard Rauch, Max Göttsche, Gernot Brähler, Stefan Engel1

Exercise 11.1. In which of the following two scenarios wouldχ2 be larger?

• The first-digit frequencies are mostly identical to the expected Benford distribution,
but the digit 1 appears 31.1% of the time and the digit 2 appears 16.6% of the time
(compared with the expected values of approximately 30.1% and 17.6%, respec-
tively)

• The first-digit frequencies are mostly identical to the expected Benford distribution,
but the digit 8 appears 6.12% of the time and the digit 2 appears 3.58% of the time
(compared with the expected values of approximately 5.12% and 4.58%, respec-
tively)

Exercise 11.2. What isµb, the value of the mean of the Benford distribution of first digits
baseb?

Exercise 11.3. What is the value ofa∗ if µe = 3.5?

Exercise 11.4. Using Figure 11.1, confirm the values ofχ2, χ2/n, andd∗ for the distri-
bution of first digits for Greece social statistics in the year 2004.

Exercise 11.5. Using Figure 11.1 and the formula for distance measurea∗ used by Judge
and Schechter, calculate the value of the mean of the dataset(µe) in the year 2004. Confirm

this value by using the formulaµe =
Σ9

i=1nProb(D1=i)
n .

The final problem uses data on two fictitious countries, whichis available online

http://web.williams.edu/Mathematics/sjmiller/public_html/
benford/chapter11/

(some of the additional readings on that webpage may be useful as well).

Exercise 11.6. Calculate the valuesχ2, χ2/n, d∗ anda∗ and compare the results for both
countries. Which one of these two countries should be examined closer? Are the outcomes
consistent?

1Rauch: University of Regensburg, Department of Economics,Universitätsstraße 31, 93053 Regensburg, Ger-
many; Göttsche and Engel: Catholic University of Eichstätt-Ingolstadt, Department of Auditing and Controlling,
Auf der Schanz 49, 85049, Ingolstadt, Germany; Brähler: Ilmenau University of Technology, Department of
Taxation Theory and Auditing, Helmholtzplatz 3, 98693 Ilmenau, Germany.



Chapter Twelve

Benford’s Law and Fraud in Economic Research

Karl-Heinz Tödter1

Exercise 12.1. Use (12.1) to findf(6) andF (6) for Benford’s Law.

Exercise 12.2. If X is a Benford variable defined on[1, 10), then what is the probability
that the second digit is 5 given that the first digit is also 5?

Exercise 12.3. Use (12.4) to confirm that when using Benford’s Law for Rounded Figures,
Prob(D1 = 8) = 0.054.

Exercise 12.4. If X is a Benford variable defined on[1, 10), given that the first digit is 8,
what is the probability that the second digit is 0 when rounding to two significant digits?
What is the probability that the second digit is 2?

Exercise 12.5. Using Benford’s Law for Rounded Figures as the frequencies of first digits
for a data set of 300 observed values, calculateQ1, Q2, M1, andM2 using (12.6) and
(12.7).

Exercise 12.6. Should theQ1 test or theM1 test be used for attempting to detect variations
in Benford’s Law?

• What if the data set in question has a mean of 3.44?

• Which test should be used for detecting variations in the Generalized Benford’s
Law?

Exercise 12.7. The Federal Tax Office (FTO) knows thatΩ = 10% of tax declarations
of small and medium enterprises are falsified. The FTO checksthe first digits using Ben-
ford’s Law. Random samples of tax declarations are drawn andthe null hypothesis (Ho)
“Conformity to Benford’s Law” is tested at theα = 5% level of significance.

• Using (12.9), what rejection rate ofHo(θ) would you expect if the probability of a
type II errorβ lies in the interval [0.05, 0.75]?

• The FTO obtained the rejection rateθ = 0.12. Use (12.9) to calculate the probabil-
ity β of a type II error.

• The FTO arranges for an audit at the taxable enterprise if theBenford test rejects
Ho for a certain tax declaration at theα = 5% level. What is the probability that
such an audit will be provoked erroneously? And what is the probability to forbear
an audit erroneously?

1Research Centre, Deutsche Bundesbank
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Exercise 12.8. A sample of scientific articles is taken, and 17% are found to have re-
gression coefficients with a doubtful distribution of first digits. Use (12.10) to calculate
Ω̂.



Chapter Thirteen

Testing for Strategic Manipulation of Economic and

Financial Data

Charles C. Moul and John V. C. Nye1

Exercise 13.1. What are some of the potential reasons given in Section 13.1 for why data
sets that are expected to follow Benford’s Law fail to do so?

Exercise 13.2. Did Benford’s Law prove financial misreporting during the financial cri-
sis? Justify your assertion.

Exercise 13.3. What are some of the potential motives that banks have for manipulating
VAR data?

1Economics Department, Farmer School of Business, Miami University, Ohio and Mercatus Center and Eco-
nomics Department, George Mason University and National Research University – Higher School of Economics,
Moscow, respectively; We thank Marc Taub for excellent research assistance.
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Applications III: Psychology and the Sciences





Chapter Fourteen

Psychology and Benford’s Law

Bruce D. Burns and Jonathan Krygier1

Exercise 14.1. Using (11.1) in Section 11.3, findχ2 for the elaborated and unelaborated
data from Scott, Barnard and May’s study found in Table 14.1.

Exercise 14.2. What distribution of leading digits would you expect if people were asked
to randomly give an integer from1 to N? How does your answer depend onN? Try an
experiment with some of your friends and family.

1School of Psychology, The University of Sydney, NSW 2006, Australia. The authors would like to thank
to Hal Willaby for comments on an earlier draft. The authors were supported by a grant from the University of
Sydney, and it is a pleasure to thank them for their generosity.



Chapter Fifteen

Managing Risk in Numbers Games: Benford’s Law and

the Small Number Phenomenon

Mabel C. Chou, Qingxia Kong, Chung-Piaw Teo and Huan Zheng1

Exercise 15.1. What are the risks associated with a high liability limit in afixed-odds
lottery game? What if the limit is too small?

Exercise 15.2. From the data obtained in Table 15.1, determine the probability that a
given number on a ticket for the UK powerball game is a single digit.

Exercise 15.3. Figure 15.1 shows the proportion of tickets in a Pennsylvania Pick-3 game
with a given first digit. Explain why there are several outliers larger than the mean pro-
portion and no outliers smaller than the mean proportion.

Exercise 15.4. What is the probability that a Type I player chooses the number 345 in a
Pick-3 game?

Exercise 15.5. Let Alice be a Type II player in a Pick-3 game that bets on a number with
three significant digits80% of the time, a number with two significant digits15% of the
time, and a number with one significant digit5% of the time. What is the probability that
Alice bets on the number 345? The number 45? The number 5?

Exercise 15.6. In the Pennsylvania Pick-3 game, the least square model indicates that
60.42% of the players are Type I players and39.58% of the players are Type II players.
Based on this model, use (15.4) to calculate the expected proportion of the betting volume
on a three-digit number with first significant digit 4.

Exercise 15.7. Let Bob be a Type II player in a Pick-3 game that bets on a numberwith
three significant digits80% of the time, but also has a tendency to exhibit switching be-
havior; that is, he will switch later digits with probability 0.9105, and switch the digit to 0
with probability 0.1054. What is the probability that Bob bets on the number 345?

Exercise 15.8. Use (15.5) to calculate the probability that Bob chooses a three-digit num-
ber in between 520 and 529 inclusive.

Exercise 15.9. Calculate the variance using the equation in 15.4.1 under the scenario
that all players randomly select a three-digit number.

1Chou and Teo: National University of Singapore; Kong: Universidad Adolfo Ibañez; Zheng: Shanghai Jiao
Tong University.



Chapter Sixteen

Benford’s Law in the Natural Sciences

David Hoyle1

Exercise 16.1. Demonstrate that (16.3) holds forα = 2.

Exercise 16.2. Rewrite the lognormal distribution density function (16.5) as the lognormal
density function (16.6).

Exercise 16.3. Show that asσ grows larger, the lognormal density function approaches
the power lawp(x) = Cσx

−1, whereCσ is a constant depending onσ.

Exercise 16.4. Provide examples not mentioned in the chapter of scientific data sets that
are not effectively scale-invariant.

Exercise 16.5. Explain the intuition behind why the following distributions are approxi-
mately Benford:

• The Boltzman-Gibbs distribution (16.8).

• The Fermi-Dirac distribution (16.9).

• The Bose-Einstein distribution (16.10).

Exercise 16.6. Obtain a physics textbook (or a CRC handbook, or...) and find alist of
physical constants. Perform a chi-squared test to determine if the list of constants follow
Benford’s Law as expected.

Exercise 16.7. Sandon found agreement between Benford’s Law and population and sur-
face area data for the countries of the world. Find a source that provides the population
density of each country. Then determine if population density follows Benford’s Law. This
can be done using a chi-squared test. In general, should the ratio of two of two Benford
random variables be Benford?

1Thorpe Informatics Ltd., Adamson House, Towers Business Park, Wilmslow Rd., Manchester, M20 2YY,
UK.



Chapter Seventeen

Generalizing Benford’s Law: A Re-examination of

Falsified Clinical Data

Joanne Lee, Wendy K. Tam Cho, and George Judge1

Exercise 17.1. Use (17.1) to calculate the average frequency of first digitsin Stigler’s
distribution of first significant digits. Check to see that the distribution matches the values
displayed in Table 17.1.

Exercise 17.2. Verify (17.3), (17.5), and (17.6). Then verify that the sum of the three
subsets matches (17.7).

Exercise 17.3. Calculate the mean of the Stiegler FSD distribution and Benford FSD
distribution to confirm that they are equivalent to 3.55 and 3.44, respectively.

Exercise 17.4. For the Estimated Maximum Entropy FSD distribution for datawith a FSD
mean of 3.44 shown in Table 17.3, findH(p) and ensure that the criterion from (17.13)
and (17.14) are reached.

• If the Estimated Maximum Entropy FSD distribution is accurate, then the listed
probabilities will maximizeH(p). First, determine if replacinĝp1 with 0.231 and
p̂2 with 0.2 still allows (17.13) and (17.14) to hold. Now findH(p). IsH(p) larger
or smaller than before?

Exercise 17.5. If the FSD mean is 5, what will be the estimated maximum entropy FSD
distribution? What isV ar(d) according to (17.18)?

Exercise 17.6. Examining the Poehlman data in Table 17.4, calculate the difference for
each digit FSD distribution given by Benford’s Law.

Exercise 17.7. The estimated empirical likelihood distributions given a FSD mean will
maximize

∑9
i=1 pi. To test this, ensure that the product of thep′is from Table 17.5 are

greater than the empirical data found in Table 17.4.

Exercise 17.8. A researcher is trying to decide if a dataset follows Benford’s law or
Stigler’s law. What values of the mean of the leading digit suggest Benford over Stigler?
What values suggest Stigler over Benford?

1Lee: Researcher, Mathematica Policy Research; Cho: Departments of Political Science and Statistics, and
Senior Research Scientist, National Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Judge: Department of Agricultural and Resource Economics, University of California at
Berkeley.



PART 6

Applications IV: Images





Chapter Eighteen

Partial Volume Modeling of Medical Imaging Systems

using the Benford Distribution

John Chiverton and Kevin Wells1

Exercise 18.1. What is the PV effect? What implications does the PV effect have for
medical imaging?

Exercise 18.2. Prove Corollary 18.3.4.

Exercise 18.3. What advantages are there to describing the PV effect using matrices as in
(18.11)?

Exercise 18.4. What are the differences between a Rician noise model described by (18.12)
and a Gaussian noise model described in (18.13)?

Exercise 18.5. Use (18.22) to calculatep(α) for α = 0.50, whereα has two digits of
precision.

Exercise 18.6. How is the contrast to noise ratio (CNR) affected if both the distance
between the signal levels of two components and the standarddeviation of each class is
doubled.

1J. Chiverton is with the School of Engineering, University of Portsmouth, UK and K. Wells is with
the Centre for Vision, Speech and Signal Processing, University of Surrey, UK.john.chiverton@port.ac.uk,
k.wells@surrey.ac.uk.



Chapter Nineteen

Application of Benford’s Law to Images

Fernando Pérez-González, Tu-Thach Quach, Chaouki T. Abdallah,
Gregory L. Heileman and Steven J. Miller1

Exercise 19.1. In (19.9) one of the factors isΓ
(

−j2πn+log 10
c log 10

)
, wherej =

√
−1. Estimate

how rapidly this tends to zero as|n| → ∞ as a function ofc (if you wish, choose some
values ofc to get a feel of the behavior).

Exercise 19.2. In (19.19) we find that|an(c, σ)| ≤ |an(c+)| for all n; investigate how
close these can be for various choices ofc andσ.

Exercise 19.3. In Example 19.5.1 we found four zero-mean Gaussians with shaping pa-
rameterc = 1 with four different standard deviations anda1 = 0. Can you find six
zero-mean Gaussians with shaping parameterc = 1 and six different standard deviations
with a1 = 0? What about eight? More generally, can you find2m such Gaussians form
a positive integer?

1Perez-Gonzalez: Department of Signal Theory and Communications, University of Vigo, EE Telecomuni-
cacion, Campus Universitario, 36310 Vigo, Spain; Quach: Sandia National Laboratories, Albuquerque, NM;
Miller: Department of Mathematics and Statistics, Williamstown, MA; Abdallah and Heileman: Electrical &
Computer Engineering Department, University of New Mexico, Albuquerque, NM.


