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Preface

In designing a survey or an experiment, statistical power analysis is
often used to determine the sample size – the number of participants
or subjects. This ensures that one would detect an existing effect
when conducting a hypothesis testing with the collected data. Since
a statistical power analysis is often specific to a particular statistical
test, the procedure for power analysis has to be developed for each test
accordingly. For example, the method for a t-test is different from that
for a regression in general.

Not surprisingly, statistical power analysis is a popular research area
in statistics. The work by Cohen (1988) is probably the most influential
piece in the area. Availability of software also makes statistical power
analysis possible. For example, G*Power (Faul et al., 2009) is a popular,
free, stand-alone program for a large number of types of power analysis.
Similarly, commercial software such as SAS and Stata also includes
procedures or routines for power analysis.

Supported by a grant from the Institute of Education Sciences
(R305D140037), we have conducted a study trying to develop gen- The contents of the book and WebPower

do not necessarily represent the policy of
the Department of Education, and you
should not assume endorsement by the
Federal Government.

eral methods and software tools for statistical power analysis. First,
we studied the existing methods for power analysis and tried to in-
corporate them into our software development. Second, we discussed
a general Monte Carlo based method for statistical power analysis,
which seemed to become more and more popular in the literature (e.g.,
Muthén & Muthén, 2002; Zhang, 2014). Third, we developed a new
double Monte Carlo method to deal with missing data and non-normal
data in planning sample sizes.

To help the adoption of the methods, we also developed software in
several formats.

• A Web application was developed and is currently on- https://webpower.psychstat.org

line so that one can conduct statistical power analysis freely online.
Therefore, statistical power analysis can be conducted within a Web
browser directly on a desktop, laptop or even a smartphone. There
is generally no need to install any software for carrying out power
analysis.
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• An R package WebPower is made available on CRAN. Therefore, https://CRAN.R-
project.org/package=WebPowerone can conduct power analysis in the popular statistical software

R. As an open-source project, interested researchers are welcome to
contribute to the development of the package on GitHub. https://github.com/johnnyzhz/WebPower

• An Android App WebPower is now published on Play store. Anyone
can install the app on their Android devices and conduct the analysis
on a phone or tablet.

This book serves as both a manual for the software we developed and a
technical report for the methods underlying the software. By using the
book, readers will immediately learn how to conduct statistical power
analysis through well-designed examples. For each power analysis
method, we also tried our best to provide the underlying technical de-
tails. This helps interested readers understand the method underlying
each power analysis procedure.

The book consists of three parts, after the first introductory chapter.
Chapter 1 provides a general introduction to statistical power analysis.
Part I consists of Chapters 2 to 15. Each chapter in this part focuses on
a particular type of power analysis. For example, Chapter 2 is about
power analysis for testing correlation coefficients. Chapter 15 discusses
two methods for conducting a power analysis for structural equation
modeling. Part II consists of Chapters 16 to 18. In this part, we show
how to conduct regular Monte Carlo based power analysis for the t-test,
general SEM and mediation analysis, and latent score analysis. Part III
introduces a general path diagram based method for statistical power
analysis. Both the regular Monte Carlo method and the double Monte
Carlo method are discussed.

The study and the book are not possible without the support from
the Institute of Education Sciences (IES; R305D140037). The Center
for Research Computing at the University of Notre Dame hosts the https://crc.nd.edu/

servers running the WebPower Web application and provides technical
support.

Our study was also supported by many individuals including our
colleagues in the Department of Psychology at the University of Notre
Dame. Many graduate students have also contributed to the writing
of the book including Meghan Cain, Han Du, Ge Jiang, Haiyan Liu,
Agung Santoso, Lin Xing, and Miao Yang. Dr. Yujiao Mai assisted in
the development of the software and contributed to several chapters of
the book. Their names and current affiliations are listed within each
chapter. Last but not least, we would like to thank our program officer
at IES – Dr. Phill Gagné. Dr. Gagné has been always supportive and
patient over the whole course of the project.

Zhiyong Zhang and Ke-Hai Yuan
Notre Dame, IN, 2018
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1 Introduction to Statistical Power
Analysis

Zhiyong Zhang and Ke-Hai Yuan
Department of Psychology
University of Notre Dame

Performing statistical power analysis and sample size estimation
is an important aspect of experimental design. Journals published
by both American Educational Research Association and American
Psychological Association have particularly emphasized the importance
of statistical power analysis (cf., Peng et al., 2012). Without power
analysis, the sample size may be too large or too small. If a sample size
is too small, an experiment will lack the precision to provide reliable
answers to the questions under investigation. Then, the validity of the
statistical conclusions from the research is endangered (e.g., Cohen,
1988; Hedges & Rhoads, 2010; Shadish et al., 2002). If a sample size is
too large, time and resources will be wasted, often for minimal gain.
Statistical power analysis and sample size planning allow us to decide
how large a sample size is needed to enable statistical judgments that
are accurate and reliable and how likely a statistical test is going to
detect effects of a given size in a particular situation.

1.1 What Is Statistical Power?

The power of a statistical test is the probability that the test will reject a
false null hypothesis (i.e. that it will not make a type II error). Given
the null hypothesis H0 and an alternative hypothesis H1, we can define
power in the following way. First, the type I error is the probability to
incorrectly reject the null hypothesis. Therefore

Type I error = Pr(Reject H0|H0 is true).

The type II error is the probability of failing to reject the null hypothesis
while the alternative hypothesis is correct. That is
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Type II error = Pr(Fail to reject H0|H1 is true).

Statistical power is the probability of correctly rejecting the null hypoth-
esis when the alternative hypothesis holds. That is:

Power = Pr(Reject H0|H1 is true) = 1 - Type II error.

We can summarize these in the table below.

Fail to reject H0 Reject H0

Null Hypothesis H0 is true Good Type I error
Alternative Hypothesis H1 is true Type II error Power

1.2 Factors Influencing Statistical Power

Statistical power depends on many factors. In particular, power nearly
always depends on the following three factors: the statistical signifi-
cance criterion (e.g., alpha level or type I error), the effect size and the
sample size. In general, power increases with larger sample size, larger
effect size, and larger alpha level.

1.2.1 Alpha level or significance level

A significance criterion is a value for us to determine whether the
observed statistic is extreme enough so that we can declare that H0

does not hold. The most commonly used criteria are alpha level, or
type I error rate 0.05 (5%, 1 in 20), 0.01 (1%, 1 in 100), and 0.001 (0.1%,
1 in 1000). If the alpha level is set at 0.05, the probability of obtaining
a significant effect when the null hypothesis is true should be around
0.051, and so on. The simplest way to increase the power of a test 1 In practice, the empirical probability

will not be exactly 0.05. A value greater
than 0.05 means the test would reject
the null hypothesis more than it should,
which might lead to inflated power.

is to carry out a less conservative test by using a larger significance
level. This increases the chance of obtaining a statistically significant
result (rejecting the null hypothesis) when the null hypothesis is false.
However, it also increases the risk of obtaining a statistically significant
result when the null hypothesis is true. By default, a significance level
of 0.05 is commonly used.

1.2.2 Effect size

In power analysis, effect size is used to quantify the magnitude of the
effect of interest in the population. An effect size can be a direct measure
of the quantity of interest, or it can be a standardized measure that
also accounts for the distribution of the population. For example, in an
analysis comparing outcomes in treatment and control, the difference
of outcome means µ1 − µ2 would be a direct measure of the effect
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size, whereas (µ1 − µ2)/σ is a standardized effect size, where σ is
the common standard deviation of the outcomes in the populations
under the conditions of treatment and control. When the population
distributions are known, a standardized effect size, along with the
sample size and alpha level, will completely determine the power such
as under the t-distribution or F-distribution. An unstandardized (direct)
effect size alone will rarely be sufficient to determine the power, as it
does not contain information about the variability in the measurements.

1.2.3 Sample size

Sample size is a primary factor that affects the power. Sample size is
related to the amount of sampling error inherent in the result of a test.
Other things being equal, effects are harder to detect in smaller samples.
Increasing sample size directly increases the statistical power of a test.
However, a large sample size would need more resources to achieve,
which might not be feasible at all in practice.

1.2.4 Other factors

Many other factors can influence statistical power. First, increasing the
reliability of data can increase power. The precision with which the
data are measured influences statistical power. Consequently, power
can often be boosted by reducing the measurement error in the data
(Yuan & Bentler, 2006). A related concept is to improve the "reliability"
of the measure being assessed (as in psychometric reliability).

Second, statistical power can also be improved by better design of
an experiment or observational study. For example, in a two-sample
testing situation with a given total sample size n, it is optimal to
have equal numbers of observations from the two populations being
compared (as long as the variances in the two populations are the
same). In regression analysis and Analysis of Variance (ANOVA), there
are extensive theories as well as practical strategies, for increasing
the power based on optimally setting the values of the independent
variables in the model.

Third, for longitudinal studies, power increases with the number
of measurement occasions (Zhang & Liu, 2018; Zhang & Wang, 2009).
Power may also be related to the time interval of measurements (Cain
et al., 2018).

Fourth, missing data reduce effective sample size and thus statistical
power (Zhang & Wang, 2009). Furthermore, different missing data
patterns can have different power.

Last but not least, statistical power analysis is often based on the as-
sumption that the collected data will be normally distributed. However,
real data are often nonnormally distributed, due to data contamination
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or ordinal measurements. It has been found that non-normality of
data will lead to decreased power especially when the normal based
statistical methods are used for data analysis (Yuan et al., 2015; Zhang,
2014).

1.3 Conducting Power Analysis and Sample Size Plan-
ning

To ensure that a statistical test will have adequate power, we usually
must perform special analyses by considering all possible factors prior
to running the experiment to calculate how large a sample size n is
required. Although there are no formal standards for power, most
researchers assess the power using 0.80 as a standard for adequacy.
This convention implies a four-to-one tradeoff between Type II error
and Type I error.

We now use a simple example to illustrate how to calculate power
and sample size. More complex power analysis can be conducted
similarly.

Suppose a researcher is interested in whether training can improve
mathematical ability. She can conduct a study to get the math test
scores from a group of students before and after training. The null
hypothesis here is that training does not improve math ability or the
change is 0. She would like to have enough power to detect a change
of one unit. Thus, with µ representing the population mean of change,
the alternative hypothesis is that the change is 1:

H0 : µ = µ0 = 0

H1 : µ = µ1 = 1.

Based on the definition of power, we have

Power = Pr(reject H0|µ = µ1)

= Pr(change (d) is larger than critical value under H0|µ = µ1)

= Pr(d > µ0 + c1−ασ/
√

n|µ = µ1)

where

• µ0 is the population value of change under the null hypothesis.

• µ1 is the population value of change under the alternative hypothesis.

• d is the observed change before and after training.

• σ is the population standard deviation under the null hypothesis.
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• cα is the critical value for a distribution, such as the standard normal
distribution or t-distribution.

• n is the sample size.

Note that to calculate the power, we need to know µ0, µ1, σ, cα, the sam-
ple size n, and the distributions of d under both the null hypothesis and
alternative hypothesis. Let us assume that α = .05 and the distribution
is normal with the same variance σ under both null and alternative
hypothesis. Then the above power is Calculate power

Power = Pr(d > µ0 + c1−ασ/
√

n|µ = µ1)

= Pr(d > µ0 + c1−α × σ/
√

n|µ = µ1)

= Pr
[

d− µ1

σ/
√

n
> − (µ1 − µ0)

σ/
√

n
+ c1−α|µ = µ1

]
, (1.3.1)

= 1−Φ
[
− (µ1 − µ0)

σ/
√

n
+ c1−α

]
= 1−Φ

[
− (µ1 − µ0)

σ

√
n + c1−α

]
= 1−Φ

[
− (µ1 − µ0)

σ

√
n + 1.645

]
. (1.3.2)

where Φ is the cumulative distribution function of a standard normal
random variable. Thus, power is related to sample size n, the signifi-
cance level α, and the effect size δ = (µ1 − µ0)/σ. Using the effect size
δ, Power = 1−Φ(−δ

√
n + c1−α). Since Φ is an increasing function, the

power

• increases with the increase of the sample size n,

• increases with the increase of the effect size δ, and

• increases with the increase of the alpha level α because it decreases
the critical value c1−α.

For example, if we assume σ = 2, then the effect size is 0.5 = (1− 0)/2. Using R:
> 1-pnorm(-.5*sqrt(100)+qnorm(.95))

[1] 0.9996
When the sample size is 100, the power from the above formulae is .999
by simply plugging in the numbers.

If we know the power, we can solve Equation 1.3.1 to get the corre-
sponding sample size Sample size planning

n =

[
c1−α −Φ−1(1− Power)

δ

]2

.

For example, when the power is 0.8, we can find a sample size of 25. Using R:
> ((qnorm(1-.05)-qnorm(1-.8))/.5)^2

[1] 24.73
In many situations, one might have a good idea on how many

subjects can be recruited in a study based on available resources, but
may not have much information on the effect size. In this case, the
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minimum detectable effect size can be calculated, which is the effect
size needed to get significant results based on expected power. For the
current example, we can obtain δ by Minimum detectable effect size

Using R:
> (qnorm(1-.05)-qnorm(1-.8))/sqrt(20)

[1] 0.55599δ =
c1−α −Φ−1(1− Power)√

n
.

For example, if one can only collect data from 20 participants, to get a
power 0.8 the effect size has to be at least 0.56.

Although it is very rare, one can also calculate the alpha level to
achieve certain power with known sample size and effect size. In this
case,

α = 1−Φ
[
δ
√

n + Φ−1(1− Power)
]

.

For example, to get a power 0.8 with the sample size 20 and effect size
0.5, the alpha level has to be increased to 0.08. Using R:

> 1-pnorm(.5*sqrt(20)+qnorm(1-.8))

[1] 0.081591
Generally speaking, if there is an analytical form for power calcula-

tion, any one unknown quantity can be quickly calculated when other
quantities are known. In the above example, given any three of the four
values – n, Power, δ and α – the fourth one can be calculated.

Practical power analysis can, and most likely will be, more complex
than the example above. This book aims to provide a general tool for
conducting power analysis for a variety of models used in practical
research. However, even for more complex power analysis, the basic
idea discussed here applies.

1.4 Retrospective or Post-hoc Power Analysis

Statistical power analysis or sample size planning generally should be
conducted before the beginning of a study by assuming the popula-
tion effect size is known. This kind of power analysis is also called
prospective power analysis or a priori power analysis. The use of retro-
spective or post-hoc power analysis, conducting a power analysis after
a non-significant hypothesis testing, is highly controversial.

Hoenig & Heisey (2001) argued that post-hoc power is a function of
the p-value. For example, they showed that for a two-tailed Z test, if
the p-value is 0.05, the post-hoc power would be 0.5. Therefore, once a
p-value is calculated, there is no need to calculate post-hoc power.

Yuan & Maxwell (2005) more concretely showed that the post-hoc
power is almost always a biased estimator of the true power. The
bias can be positive or negative, and does not become smaller as the
sample size increases. Thus, the calculation of post-hoc power does not
provide valuable information about the study under investigation and
is therefore not very useful.

In this book, all of the power analyses are prospective even though a
power analysis might be conducted based on an estimated effective size
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from an empirical or existing study. In particular, we need to assume
that the population effect size is at the given value regardless of how
such a value is obtained. A sample size based on such an assumption
will be obtained with the desired power. If the following study does
not yield a significant result at the suggested sample size, then we
may conclude that the real effect size is not as large as what we have
assumed/estimated.

1.5 Determination of Effect Size

As we have shown earlier, in calculating a statistical power, the pop-
ulation effect size needs to be provided. In practice, the population
effect size is rarely known and determining the population effect size
is always a subjective process. Therefore, we suggest the following
strategies concerning effect size when calculating power for planning a
study.

First, if there are well-accepted benchmark effect sizes, they can be
used in sample size planning. For example, for correlation it is well
established that 0.1, 0.3, and 0.5 represent small, medium, and large
effects (Cohen, 1988). If a researcher believes that the population effect
is medium, then he or she can use 0.3 as the population effect size in the
power calculation. If an effect between small and medium is expected,
one can generate a power curve by considering different effect sizes
within the interval [0.1, 0.3].

Second, an effect size can be estimated from a pilot study, published
research, or other empirical sources. This is the sample effect size.
In many scenarios, a sample effect size has been used as if it is the
population effect size. However, extreme caution should be used here
because (1) the sample effect size is influenced by sample size and
the population distribution, (2) the sample effect size can be greater
or smaller than the population effect size even in a random sample
(Du & Wang, 2016), and (3) publication bias can easily cause bias in
the sample effect size even based on meta-analysis (Du et al., 2017a).
Sampling errors cannot be avoided even when the estimated effect size
is unbiased, and any such error will be multiplied by N (the sample
size) or the square root of N in the power function (Yuan & Maxwell,
2005).

Third, there are situations where it is extremely difficult to come
up with an effect size. In this case, one can calculate the minimum
effect size to achieve certain power as we discussed earlier about the
minimum detectable effect size.
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2 Statistical Power Analysis for
Correlation

Lin Xing
Department of Psychology
University of Notre Dame

Correlation measures the direction and strength of the linear re-
lationship between two variables. The most widely used correlation
coefficient is the Pearson product moment correlation coefficient. Sam-
ple correlation coefficients (r) estimate the effect in the population (ρ).
Values of the correlation coefficient are always between -1 and +1. A
coefficient of +1 indicates that two variables are perfectly and positively
linearly related, a coefficient of -1 indicates that two variables are per-
fectly and negatively linearly related, and a coefficient of 0 indicates
that there is no linear relationship. This chapter focuses on how to
calculate power for testing the Pearson product moment correlation
between two continuous variables.

2.1 How to Conduct Power Analysis for Correlation

The primary software interface for power analysis of correlation is URL: http://w.psychstat.org/correlation

shown in Figure 2.1.1. Within the interface, a user can supply differ-
ent parameter values and select different options for power analysis.
Among the four parameters, Sample size, Correlation, Significance level,
and Power, one and only one can be left blank.

• The Sample size is the total number of subjects or participants in
a study. For example, if there are 100 participants in a study, the
sample size is 100. Multiple sample sizes can be provided in two
ways to calculate power for each sample size. First, multiple sample
sizes can be separated by spaces. For example, 100 150 200 will
calculate power for the sample sizes 100, 150, and 200. Second, a
sequence of sample sizes can be generated using the method s:e:i
with s denoting the starting sample size, e the ending sample size,
and i the interval. Note that the values are separated by a colon “:”.
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Figure 2.1.1: Software interface of power
analysis for correlation

For example, 100:150:10 will calculate power for the sample sizes
100, 110, 120, 130, 140, and 150. The default sample size, as shown
in Figure 2.1.1, is 100.

• The Correlation specifies the population correlation coefficient (ρ).
It could be input directly based on the theory or be left blank and
calculated given sample size, power and significance level. Multiple
correlation coefficients or a sequence of correlation coefficients can
be provided using the same way method as sample size. By default,
the value is 0.1.

• The Number of variables partialed out could be used to conduct partial
correlation analysis. For example, if there is one variable partialed
out, the application will calculate power for the partial correlation of
two variables while taking away the effect of the third variable. The
default value is 0, which is used to calculate the power for correlation
analysis without partialing out the effect of any other variables.

• The Significance level (Type I error rate or alpha level) for power
calculation is required, but usually is set at the default value of 0.05.

• The Power specifies the desired statistical power, usually 0.8, or can
be left blank to have power calculated given sample size, effect size,
and significance level.

• The H1 can be specified as “Two-sided”, “Less”, or “Greater” based
on the alternative hypothesis.

• In addition to the required input,a plot of the power curve can also
be requested if multiple sample sizes are provided.
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• A Note (less than 200 characters) can also be used to provide basic
information of the analysis for future reference.

2.1.1 Examples

To illustrate how to use the software WebPower for power analysis for
correlation, we provide several examples.

Example 2.1.1: Calculate power given
sample size and effect size

Suppose a student wants to study the relationship between stress and
health. Based on her prior knowledge, she expects the two variables
to be correlated with a correlation coefficient of 0.3. If she plans to
measure the stress and health of 50 participants, what is the power to
obtain a significant correlation?

The input and output for calculating power for this study are given
in Figure 2.1.2. The total number of participants, 50, and the expected
correlation, 0.3, are input into their corresponding fields. The default
number of variables partialed out, 0, is used. The default significance
level 0.05 is used although one can change it to a different value. The
field for Power is left blank because it will be calculated. The H1 is
“Two-sided” corresponding to the null hypothesis that the correlation is
0 and the alternative hypothesis that the correlation is not 0. A simple
note “Power for correlation” is also added in the Note field. By clicking
the “Calculate” button, the statistical power is given in the output
immediately. For the current design, the power is 0.5729.

Example 2.1.2: Power curveA power curve is a line plot of the statistical power as sample size
varies. In Example 2.1.1, the power is 0.5729 with the sample size 50.
What is the power for other sample sizes? One can investigate the
power of different sample sizes and plot a power curve.

The input and output for calculating power for the study in Example
2.1.1 with a sequence of sample sizes from 50 to 100 with an interval
of 10 are given in Figure 2.1.3. In the Sample size field, the input is
50:100:10, and we also choose “Show power curve” for the Power curve
field in the input. In the output, the power for each sample size from
50 to 100 with the interval 10 is listed, and the power curve is displayed
at the bottom of the output as shown in Figure 2.1.4. The power curve
can be used for interpolation. For example, to get a power 0.8, a sample
size of 85 is needed.

Example 2.1.3: Calculate sample size
given power and effect size

In practice, a power 0.8 is often desired. Given the desired power,
the sample size can also be calculated as shown in Figure 2.1.5. In this
situation, the Sample size field is left blank while in the Power field, the
value 0.8 is input. In the output, we can see that the sample size 84,
rounded to the nearest integer, is needed to obtain the power 0.8.
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Figure 2.1.2: Input and output for calcu-
lating power for correlation in Example
2.1.1.

Example 2.1.4: Minimum detectable ef-
fect size

Sometimes, it may be difficult to know the effect size in advance,
while the sample size and power can be easily pre-determined. In this
situation, one can calculate the minimum effect size required to obtain
a significant results with the desired power. The input and output for
this calculation are given in Figure 2.1.6. The Correlation field is left
blank. The desired power, 0.8, and the total number of participants,
50, are input into their corresponding fields. The output shows that a
correlation (effect size) of 0.3838 is needed to obtain a power 0.8. This
means that the population correlation has to be at least 0.3838 to obtain
a power 0.8 with the sample size 50.

Example 2.1.5: Calculate power for a par-
tial correlation

The time that people spend on doing exercise each week may affect
the correlation between stress and health. Therefore, the student might
want to investigate the correlation between stress and health after con-
trolling for the effect of time spent exercising. Suppose the correlation
after partialing out the effect of time is 0.24. In this example, the Number
of variables partialed out should be supplied with “1” as shown in Figure
2.1.7. In the output, the power for this partial correlation is 0.3889 with
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Figure 2.1.3: Input and output for power
curve for correlation in Example 2.1.2

a sample size 50.

2.2 Effect Size for Correlation

The Pearson product moment correlation coefficient itself has been used
as a standardized effect size (Cohen, 1988). It is defined as

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
.

Let rAB, rAC, rBC be the correlation between A and B, A and C, and B
and C, respectively. The partial correlation coefficient is defined as

rAB|C =
rAB − rACrBC√

(1− r2
AC)(1− r2

BC)
,
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Figure 2.1.4: Power curve for correlation
in Example 2.1.2

which is the correlation of A and B after controlling for the effect of C.
The correlation coefficient is a standardized metric, and effects reported
in the form of r can be directly compared across samples. According to
Cohen (1988), a correlation coefficient of .10 is considered to represent Effect size of correlation

a weak or small association; a correlation coefficient of .30 is considered
as a moderate effect size; and a correlation coefficient of 0.50 or larger
is considered to represent a strong or large effect size.

2.3 Using R WebPower for Power Analysis for Corre-
lation

The online power analysis is carried out using the R package WebPower
on our Web server. The package can be directly used within R for power
analysis for correlation. Specifically, the function wp.correlation is
used. The function input is

n: sample size
r: correlation or effect size
power: statistical power
p: number of variables to partial out
rho0: null correlation coefficient
alpha: significance level
alternative: alternative hypothesis

wp.correlation(n = NULL, r = NULL, power = NULL, p = 0, rho0 = 0,

alpha = 0.05, alternative = c("two.sided", "less", "greater

"))

The R function can be used to conduct the same power analysis
conducted by the online WebPower. For example, the R input and
output for calculating power in Example 2.1.1 are given below.
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Figure 2.1.5: Input and output for sample
size planning for correlation in Example
2.1.3

> wp.correlation(n=50, r=0.3, alternative = "two.sided")

Power for correlation

n r alpha power

50 0.3 0.05 0.5728731

WebPower URL: http://psychstat.org/correlation

The R input and output for generating the power curve in Example
2.1.2 are given below. Note that to generate the power plot, one

first saves the power analysis results to
example and then uses the plot function
to obtain the plot.

> example = wp.correlation(n=seq(50,100,10), r=0.3, alternative =

"two.sided")

> example

Power for correlation

n r alpha power

50 0.3 0.05 0.5728731

60 0.3 0.05 0.6541956

70 0.3 0.05 0.7230482

80 0.3 0.05 0.7803111



26 practical statistical power analysis

Figure 2.1.6: Input and output for calcu-
lating minimum detectable effect size in
Example 2.1.4

90 0.3 0.05 0.8272250

100 0.3 0.05 0.8651692

WebPower URL: http://psychstat.org/correlation

## to generate the power curve, simply use the plot function

> plot(example,type=’b’)

We could also use R to estimate both the sample size in Example
2.1.3 and the minimum detectable effect size in Example 2.1.4.

> wp.correlation(n=NULL,r=0.3, power=0.8, alternative = "two.

sided")

Power for correlation

n r alpha power

83.94932 0.3 0.05 0.8

WebPower URL: http://psychstat.org/correlation

> wp.correlation(n=50, r=NULL, power=0.8, alternative = "two.

sided")
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Figure 2.1.7: Input and output for calcu-
lating power of a partial correlation in
Example 2.1.5

Power for correlation

n r alpha power

50 0.3838075 0.05 0.8

WebPower URL: http://psychstat.org/correlation

Finally, to conduct power analysis for partial correlation in Example
2.1.5, the input and output are shown below.

> wp.correlation(n=50, r=0.3, p=1, alternative = "two.sided")

Power for correlation

n r alpha power

50 0.3 0.05 0.5640394

WebPower URL: http://psychstat.org/correlation
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2.4 Technical Details

The power calculation for correlation is conducted based on Fisher’s z
transformation of the Pearson correlation coefficient. Fisher’s z trans-
formation of the sample correlation rY,X|W is defined as

z =
1
2

log

(
1 + rY,X|W
1− rY,X|W

)
.

After transformation, the statistic z approximately follows a normal
distribution N(µ, σ2), where

µ =
1
2

log

(
1 + ρY,X|W
1− ρY,X|W

)
+

ρY,X|W
2(N − 1− p∗)

and
σ2 =

1
N − 3− p∗ ,

where N is the sample size, p∗ is the number of variables partialed out,
and ρY,X|W is the population partial correlation coefficient between Y
and X adjusting for the set of zero or more variables W.

The R function wp.correlation is based on the test statistic

z∗ = (N − 3− p∗)
1
2

[
z− 1

2
log
(

1 + ρ0

1− ρ0

)
− ρ0

2(N − 1− p∗)

]
,

where ρ0 is the null partial correlation coefficient. z∗ follows a normal
distribution N(δ, v) with δ and v defined as

δ = (N − 3− p∗)
1
2

{
1
2

log(
1 + ρY,X|W
1− ρY,X|W

) +
ρY,X|W

2(N − 1− p∗)

[
1 +

5 + ρ2
Y,X|W

4(N − 1− p∗) +
11 + 2ρ2

Y,X|W + 3ρ4
Y,X|W

8(N − 1− p∗)2

]

−1
2

log(
1 + ρ0

1− ρ0
)− ρ0

2(N − 1− p∗)

}

v =
N − 3− p∗
N − 1− p∗

[
1 +

4− ρ2
Y,X|W

2(N − 1− p∗) +
22− 6ρ2

Y,X|W − 3ρ4
Y,X|W

6(N − 1− p∗)2

]
.

For more details, see Kendall et al. (1994). Based on the normal distri-
bution, the statistical power is computed as

power =


Φ
[
(δ− z1−α)/

√
v
]

upper one-sided

Φ
[
(−δ− z1−α)/

√
v
]

lower one-sided

Φ
[
(δ− z1−α/2)/

√
v
]
+ Φ

[
(−δ− z1−α/2)/

√
v
]

two-sided

,

where Φ is the normal distribution function and zα is the 100αth per-
centile of the standard normal distribution.
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2.5 Exercises

1. A researcher plans to investigate the relationship between quality
of life and family income. Based on his prior knowledge, these two
variables are correlated at 0.2. What would be the required sample
size if he wants to get a power of 0.8 with the alpha level set at 0.05?

2. Using the same information in Exercise 1, generate a power curve
with the total sample size ranging from 100 to 300 with an interval
of 10. From the power curve, approximately how large a sample size
is needed to get a power 0.9?

3. Using the same information in Exercise 1, what would be the re-
quired sample size when the alpha level is set at 0.1 and 0.01, respec-
tively?

4. In addition to the relationship between quality of life and family
income, the expenditure on social services may also be correlated
with these two variables. After taking into account the effect of
expenditure on social services, the partial correlation between quality
of life and family income will be 0.14 based on the prior information.
What would be the power if he still uses the sample size obtained in
Exercise 1?





3 Statistical Power Analysis for
Tests of Proportions

Meghan K. Cain
Department of Psychology
University of Texas at San Antonio

Tests of proportions are a technique used to compare proportions
of success or agreement, p, in one or two samples. “Success” can
literally be successful completion of a test question, or the researcher
can designate one of the possible outcomes as success and model
the proportion of participants that choose or fall into that particular
outcome. It is not necessary to model the proportion choosing the other
option, as it must be 1− p. The one-sample test of proportion tests
the null hypothesis that the sample is drawn from a population with
the proportion of success under the null hypothesis, usually 0.5, and
the two-sample test of proportions tests the null hypothesis that the
two samples are drawn from populations with the same proportion of
success. In this book, the Z-test is often used to evaluate whether the
given difference in proportions is significantly different from the null,
although other methods are available.

3.1 One-sample Proportion Test

We first demonstrate how to conduct statistical power analysis for
the one-sample proportion test. The primary software interface of URL: http://psychstat.org/prop

WebPower for power analysis for a one-sample test of proportion is
shown in Figure 3.1.1. Within the interface, a user can supply differ-
ent parameter values and select different options for power analysis.
Among the four parameters, Sample size, Effect size, Significance level,
and Power, one and only one can be left blank.

• The Sample size is the total number of participants in the sample.
Multiple sample sizes can be provided in two ways. First, multiple
sample sizes can be supplied and separated by white spaces. For
example, “100 150 200” will calculate power for the three sample
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Figure 3.1.1: Interface of power calculator
for one-sample proportion

sizes 100, 150 and 200. A sequence of sample sizes can also be
generated using the method s:e:i with s denoting the starting sample
size, e denoting the ending sample size, and i as the interval. For
example, “100:150:10” will calculate power for the sample sizes
100, 110, 120, 130, 140 and 150. By default, the sample size is 100.
Alternatively, this field can be left blank and the required sample
size can be calculated for a given power, effect size, and significance
level.

• The Effect size is a measure of how different the proportion under
evaluation is from the proportion under the null hypothesis. It can
be input directly or can be calculated by clicking the “Show” button
and then inputting the proportions as in Figure 3.1.1. Note that the
proportion itself is not the effect size used in calculation. The ex-
pected proportion must be supplied in the “Proportion” box and the
proportion under the null hypothesis must be supplied in the “H0”
box. Once these two values have been supplied, the user can click
“Calculate” and the effect size will be automatically calculated and
filled in on the primary interface page. Cohen (1992) suggests that
effect size values of 0.2, 0.5, and 0.8 represent “small”, “medium”,
and “large” effect sizes, respectively, for tests of proportion. Multiple Effect size h for proportion

effect sizes can beprovided using the same method as sample sizes.
Alternatively, this field can be left blank to calculate the minimum
detectable effect size for a given sample size, significance level, and
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power.

• The Significance level, also called the alpha level or nominal type
I error rate, is specified as 0.05 by default as is a convention in
many fields. This means that a significant result will be found
only 5% of the time when the population proportion is equal to
the proportion under the null hypothesis. Smaller values may be
used with multiple comparisons to manage type I error rates across
analyses appropriately.

• The Power is the desired power level that a user would like to
obtain, usually 0.80. It can be left blank to have power calculated
given sample size, effect size, and significance level. Power is the
probability of obtaining a significant result when the population
proportion of success is not equal to the proportion under the null
hypothesis specified. The H1 can be specified as “Two-sided”, “Less”,
or “Greater” than the proportion under the null hypothesis. The
corresponding alternative hypotheses are:

“Two sided” : π 6= p0 (3.1.1)

“Less” : π < p0

“Greater” : π > p0,

where π is the population proportion and p0 is the proportion under
the null hypothesis. Research hypotheses containing the phrase “at
least as” usually refer to the “Greater” alternative hypothesis, and
those containing the phrase “at most as” usually refer to the “Less”
alternative hypothesis.

• Whether to generate a power curve can be specified in the drop-
down menu next to the Power curve option. Power curves are useful
when deciding on an appropriate sample size for a planned study
or when examining power at feasible effect sizes. They either show
corresponding powers for many sample sizes given an effect size, or
for many effect sizes given a sample size.

• The Note option will title and save the current power calculation for
future reference if the user has logged in to the website. This note
must be less than 200 characters.

Once all fields have been appropriately filled in, pressing the “Calculate”
button will create a table with the calculated results such as power,
effect size, sample size, and if specified, a power curve will appear
below the table.
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3.1.1 Examples

Example 3.1.1: Calculate power given
sample size and effect size

The mayor of Powerville is debating passing a new law in his town.
Suppose that 300 residents of this small town are surveyed and asked
whether they would support the passing of this law. What is the power
of the test if 168 residents are expected to report that they would
support the passing of the law?

The input and output for calculating power for this study are given
in Figure 3.1.2. The Sample size is specified as 300. The Effect size is
calculated to be 0.120 by inputting the proportion, 168/300=0.561, and 1 In practice, since the population value

is not known, it is often estimated using
the sample value. But the estimated value
might not be the same as the population
value.

the proportion under the null hypothesis, 0.5, after clicking the “Show”
button. The proportion under the null hypothesis is 0.5 because this
would correspond to an equal number of citizens supporting and not
supporting this law, as would be expected if there was no preference.
The default Significance level of 0.05 is used to maintain the alpha level at
0.05. The Power is left blank because this is what the mayor is interested
in calculating. He is just interested in whether there is a difference
so he keeps the H1 as two-sided. A simple note, “Powerville Bill”, is
added in the Note field in case he wants to refer back to this calculation
again in the future. He clicks “Calculate” and sees that he has a power
of 0.5472 in this test.

Example 3.1.2: Power curve with differ-
ent effect sizes

A student is wondering whether there are more republicans or
democrats at his school. For the purpose of this study, no other options
are provided. He is not sure how large of a difference there will be
or in what direction, but he knows he will only have time to poll 100
students. What will his power be for this study at different effect sizes?
Is it a study worth pursuing?

The input and output for calculating power for this study are given
in Figure 3.1.3. The Sample size is specified as 100. The Effect size ranges
from a small effect size of 0.2 to a large effect size of 0.8, since he is
unsure how large it will be. The default Significance level of 0.05 is used
to maintain his alpha level at 0.05. The Power is left blank since this
is what he’s interested in calculating. He is just interested in whether
there is a difference, so he keeps the H1 as two-sided. He selects “Show
power curve” so that he can use the curve to help him decide whether
the study is worthwhile. A simple note, “Repo vs. Demo” is added in
the Note field in case he wants to reference this calculation again in the
future. He clicks “Calculate” and sees from the power curve in Figure
3.1.4 that as long as the effect size is about 0.3, he should have enough
power. Given the proportion under the null hypothesis 0.50 (equal
amounts of republicans and democrats), this effect size corresponds to
a population proportion of about 65%. This proportion seems feasible
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Figure 3.1.2: Input and output for calcu-
lating power for a one-sample proportion
test in Example 3.1.1

for his school, so he decides to go ahead with his study.

Example 3.1.3: Calculate sample size
given power and effect size

A new drug needs to be tested before it can be put on the market.
The proportion of users reporting improvement with the best drug
already on the market is 60%, and drug-developers are interested in
whether their drug performs significantly better than this. Pilot clinical
trials have reported that 70% of users have shown improvement. How
many participants must be in this clinical trial to have a power of 0.80 of
finding a significant improvement over the drug already on the market?

The input and output for calculating power for this study are given
in Figure 3.1.5. The Sample size is left blank because the researchers
are interested in calculating how many participants are necessary for
this study. The Effect size is calculated as follows. The proportion of
effectiveness for the new drug is specified as 0.70 to match early clinical
trial estimates. The proportion under the null hypothesis is specified
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Figure 3.1.3: Input and output for cal-
culating power curve for a one-sample
proportion test in Example 3.1.2

as 0.60 to correspond to which we are interested in comparing to this
sample, the current best drug. After pressing the “Calculate” button,
we see that this corresponds to an effect size of 0.210. The default
Significance level of 0.05 is used to maintain his alpha level at 0.05. The
Power is specified as 0.80 to correspond to the desired power of this
study. The tail is specified as “Greater” because we only care whether
the new drug is better, not worse. A simple note, “New Drug” is added
in the Note field. After pressing “Calculate” we see that we will need
141 participants (rounded to an integer) to have adequate power for
this study.

3.1.2 Using R package WebPower

The online power calculator is based on the R function wp.prop in the
WebPower package. The function input is
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Figure 3.1.4: Power curve for a one-
sample proportion test in Example 3.1.2

wp.prop(h = NULL, n1 = NULL, n2 = NULL, alpha = 0.05, power =

NULL, type = c(’1p’, ’2p’, ’2p2n’), alternative = c("two.

sided", "less","greater"))

h: effect size
n1: sample size for group 1
n2: sample size for group 2
alpha: significance level
power: statistical power
type: type of analysis. 1p, one sample;
2p, two sample with equal sample size;
2p2n, two sample with unequal sample
size
alternative: alternative hypothesis

For one-sample proportion analysis, one can supply the sample size
using n1. The default type of analysis is the one-sample proportion test.
The R input and output below show how to conduct the power analysis
for the examples discussed in the previous section.

> ## Calculate power

> wp.prop(h=.120, n1=300)

Power for one-sample proportion test

h n sig.level power

0.12 300 0.05 0.54719

>

> ## Generate a power curve

> res <- wp.prop(h=seq(0.2,0.8,0.1), n1=100)

> res

Power for one-sample proportion test

h n sig.level power
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Figure 3.1.5: Input and output for calcu-
lating sample size for a one-sample pro-
portion test in Example 3.1.3

0.2 100 0.05 0.5160053

0.3 100 0.05 0.8508388

0.4 100 0.05 0.9793266

0.5 100 0.05 0.9988173

0.6 100 0.05 0.9999733

0.7 100 0.05 0.9999998

0.8 100 0.05 1.0000000

> plot(res, xvar=’h’, yvar=’power’)

>

> ## Estimate the sample size

> wp.prop(h=.210, n1=NULL, power=0.8, alternative=’greater’)

Power for one-sample proportion test

h n sig.level power

0.21 140.194 0.05 0.8
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3.1.3 Note on choosing a proportion under the null hypothe-
sis and deciding between a one- or two-tailed test

The first step in an analysis of one proportion is to figure out the pro-
portion under the null hypothesis of the population, p0. For example, if
two choices were presented to participants and under the null we would
expect each choice to be just as likely, the corresponding proportion
under the null hypothesis would be 0.5. If there were no hypothesis
about whether one answer would be more likely than the other, a two-
tailed test of proportion would be implemented. Otherwise, an upper
tail can be used to test whether the proportion of success is higher than
0.5, and a lower tailed test can be used to test whether the proportion
of success is lower than 0.5.

The proportion under the null hypothesis must not always be 0.5. For
example, if the research question is whether at least 75% of a population
can answer a certain question correctly, the corresponding statistical
test would be comparing the proportion of success to p0 = 0.75 and
testing only the upper tail. Using different proportions under the null
hypothesis with one- or two-tailed tests correspond to different research
questions, thus care is advised when making these decisions.

3.1.4 Technical details

Under a two-tailed test, the null hypothesis in a one-sample test of
proportion is that the population proportion of success, π, is equal to
some specified proportion under the null hypothesis, p0 (Eq. 3.1.2), and
the alternative hypothesis is that they are not equal (Eq. 3.1.3).

H0 : π = p0 (3.1.2)

Ha : π 6= p0 (3.1.3)

Alternative hypotheses under one-tailed tests appear in Equation 3.1.1.
The power calculation is based on the arcsine transformation of the

proportion (see Cohen, 1988; p548). Specifically, for a given proportion,
p, the transformation φ(p) is

φ(p) = 2× arcsin (
√

p) .

Given the proportion under the null hypothesis, p0, the effect size h is
defined by the difference after transformation,

h = φ(p)− φ(p0) (3.1.4)

= 2× arcsin (
√

p)− 2× arcsin (
√

p0) .
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The power is then calculated by

Power =


Φ
(
zα/2 − h

√
n
)
+ 1−Φ

(
z1−α/2 − h

√
n
)

two sided

1−Φ
(
z1−α − h

√
n
)

less

Φ
(
zα − h

√
n
)

greater

,

(3.1.5)
where n is the sample size, Φ is the standard normal cumulative distri-
bution function, and zα is the critical value from the standard normal
distribution. The higher the effect size, the lower Φ will be, and higher
the power will be.

3.2 Two-sample Proportion Test with Equal Sample
Sizes

The primary software interface for power analysis for a two-sample URL: http://psychstat.org/prop2p/

test of proportions with equal sample sizes is shown in Figure 3.2.1.
As with the one-sample proportion test, among the four parameters,
Sample size, Effect size, Significance level, and Power, one and only one
can be left blank.

Figure 3.2.1: Interface of power calculator
for two-sample proportions, equal sam-
ple sizes

• The Sample size is the number of participants in each sample. If
using this calculator, the sample sizes of each sample should be
the same. If they are not, please see Section 3.3 for the two-sample
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proportion test with unequal sample sizes. Multiple sample sizes
can be provided as in the one-sample method. The sample size field
can be left blank and the required sample size can be calculated for
a given power, effect size, and significance level.

• The Effect size is a measure of the difference between two proportions.
It can either be inputted directly or can be calculated by clicking the
“Show” button and then inputting the corresponding proportions.
The proportion of population 1, p1, must be supplied in the “Propor-
tion 1” box and the proportion of population 2, p2, must be supplied
in the “Proportion 2” box. If using a two-sided test, it is arbitrary to
decide which is Proportion 1 and which is Proportion 2. However,
if using one-sided test these labels must be assigned properly to
align with the research hypothesis. Once these boxes have been
filled out the user can click “Calculate” and the effect size will be
automatically calculated and filled in on the primary interface page.
Cohen suggests that effect size values of 0.2, 0.5, and 0.8 represent
“small”, “medium”, and “large” effect sizes, respectively, for tests
of proportion (Cohen, 1992). Multiple effect sizes can be provided
using the same method as with sample sizes. Alternatively, this field
can be left blank to calculate the minimum detectable effect size for
a given sample size, significance level, and power.

• The Significance level, otherwise called the alpha level or nominal
type I error rate, is specified as 0.05 by default as is a convention in
many fields.

• The Power is the desired power level the user would like to obtain,
usually 0.80, or can be left blank to have power calculated given
sample size, effect size, and significance level.

• The H1 can be specified as “Two-sided”, “Less”, or “Greater”. The
corresponding alternative hypotheses are:

“Two sided” : π1 = π2 (3.2.1)

“Less” : π1 < π2

“Greater” : π1 > π2,

where π1 is the population proportion 1, and π2 is the population
proportion 2.

• Whether to generate a power curve can be specified in the drop-
down menu next to the Power curve option. Power curves are useful
when deciding on an appropriate sample size for a planned study
or when examining power at feasible effect sizes. They either show
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corresponding powers for many sample sizes given an effect size, or
for many effect sizes given a sample size.

• The Note option will title and save the current power calculation for
future reference if the user has logged in to the website. This note
must be less than 200 characters.

Once all fields have been appropriately filled in, pressing the “Calculate”
button will create a table of results and, if specified, a power curve will
appear below the table.

Example 3.2.1: Calculate power given
two proportions with equal sample sizes

A public health researcher is curious to know how adolescent obesity
rates in California compare to that in New York. He believes that if he
surveys 100 students from various high schools in California and 100
students from high schools in New York, 25 students in California will
be reported to be obese and 35 students in New York will be reported
to be obese. What is the power of such a study?

The input and output for calculating power for this study are given
in Figure 3.2.2. Sample size is 100 because the researcher will survey 100
students from each region. The Effect size is calculated using the obesity
rates in California and New York. Note that since this is a two-tailed
test, it does not matter which is Proportion 1 and which is Proportion
2. The default Significance level of 0.05 is used to maintain the alpha
level at 0.05. The Power is left blank since the researcher is interested
in calculating the power for his study. The option H1 is specified as
“Two-sided” because prior to administering the survey, the researcher
is simply interested in whether the two obesity rates differ, not in a
specific rate being higher or lower. A simple note, “Obesity” is added
in the Note field in case he wants to refer to this calculation again in the
future. He clicks the Calculate button and sees that he has a power of
about .3406 in this study.

Example 3.2.2: Power curve with multi-
ple sample sizes

The public health researcher thus found that he needs to collect more
data on obesity rates if he wants to have enough power in his study.
Using the same effect size he found in Example 3.2.1, he wants to know
what the power would be at sample sizes up to 500 in increments of
100 to help him decide how many more students to survey.

The input and output for calculating power for this study are given
in Figure 3.2.3. Sample size is “100:500:100” because the researcher
is interested in calculating power for the sample sizes 100, 200, 300,
400, and 500. The Effect size is calculated using the obesity rates in
California and New York that he found in his first study. The default
Significance level of 0.05 is used to maintain the alpha level at 0.05. The
Power is left blank since the researcher is interested in calculating the
power for his study. The option H1 is specified as “Two-sided” because
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Figure 3.2.2: Input and output for calcu-
lating power for a balanced two-sample
proportion test in Example 3.2.1

the researcher is still only interested in whether the two obesity rates
differ. He specified that he wants to “Show power curve” so that he
can visually inspect the relationship between sample size and power in
his study. A simple note, “Obesity sample sizes” is added in the Note
field. He clicks the Calculate button and sees that the table of power
values in Figure 3.2.3 and the power curve in Figure 3.2.4. He wants to
have a power of at least .80, for which he sees he will need a sample
size between 300 and 400. He decides to collect data from 400 students
to be assured that he will have enough power for his study.
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Figure 3.2.3: Input and output for ob-
taining a power curve for a two-sample
proportion test in Example 3.2.2

3.2.1 Use R package for two-sample proportion test with
equal sample sizes

The analysis in Examples 3.2.1 and 3.2.2 can also be conducted in R
using the wp.prop function as shown below. Note that the type of
analysis is set to be “2p”.

> wp.prop(h=.219, n1=100, type=’2p’)

Power for two-sample proportion test (equal sample size)

h n alpha power

0.219 100 0.05 0.3406149

> res <- wp.prop(h=.219, n1=seq(100,500,100), type=’2p’)

> res

Power for two-sample proportion test (equal sample size)
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Figure 3.2.4: Power curve for a two-
sample proportion test in Example 3.2.2

h n alpha power

0.219 100 0.05 0.3406149

0.219 200 0.05 0.5909847

0.219 300 0.05 0.7649243

0.219 400 0.05 0.8722653

0.219 500 0.05 0.9335457

3.2.2 Technical details

Under a two-tailed test, the null hypothesis in a two-sample test of
proportions is that the population 1 proportion of success, π1, is equal
to the population 2 proportion of success, π2 (Eq. 3.2.2), and the
alternative hypothesis is that they are not equal (Eq. 3.2.3).

H0 : π1 = π2 (3.2.2)

Ha : π1 6= π2 (3.2.3)

Alternative hypotheses under one-tailed tests appear in Equation 3.2.1.
The effect size is calculated in the same way as in the one-sample test

using the arcsin transformation, except that the proportion from one
population, p1, is compared to another, p2, instead of to a proportion
under the null hypothesis. Therefore, the effect size, h, can be calculated
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as
h = 2× arcsin (

√
p1)− 2× arcsin (

√
p2) . (3.2.4)

Choosing which proportion is first or second will only affect power
calculations in the case of “Greater” or “Less” than tails, otherwise they
are arbitrary. The power calculation is performed in the same way as in
Equation 3.1.5:

Power =


Φ
(
zα/2 − h

√
n
)
+ 1−Φ
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(
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)
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Φ
(
zα − h

√
n
)

greater

,

(3.1.5; Reproduced)
where n is the sample size of each sample, Φ is the standard normal
cumulative distribution function, and zα is the critical value from the
standard normal distribution.

3.3 Two-sample Proportion Test with Unequal Sam-
ple Sizes

The primary software interface for power analysis for a two-sample
test of proportion with unequal sample sizes is shown in Figure 3.3.1. http://psychstat.org/prop2p2n

Within the interface, a user can supply different parameter values and
select different options for power analysis. Among the five parameters,
Sample size 1, Sample size 2, Effect size, Significance level, and Power, one
and only one can be left blank.

• Sample size 1 is the number of participants in the first sample, and
Sample size 2 is the number of participants in the second sample.
By default, both sample sizes are set to 100. Either Sample size 1 or
Sample size 2 can be left blank and the required sample size for a
group can be calculated.

• The Effect size is a measure of how different proportion 1 is from
proportion 2. It can either be inputted directly or can be calculated
by clicking the “Show” button and then inputting the proportions.
The proportion 1, p1, must be supplied in the “Proportion 1” box
and the proportion, p2, must be supplied in the “Proportion 2” box.
Once these boxes have been filled out, the user can click “Calculate”
and the effect size will be automatically calculated and filled in.
Cohen suggests that effect size h values of 0.2, 0.5, and 0.8 represent
“small”, “medium”, and “large” effect sizes, respectively, for tests of
proportion (Cohen, 1992). Multiple effect sizes can be inputted in
the same way that multiple sample sizes can. Alternatively, this field
can be left blank to calculate the least required effect size for a given
sample size, significance level, and power.
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Figure 3.3.1: Interface of power calcula-
tor for two-sample proportions, unequal
sample sizes

• The Significance level, otherwise called the alpha level or nominal
type I error rate, is specified as 0.05 by default as is a convention in
Psychology and other fields.

• The Power is the desired power level the user would like to obtain,
usually 0.80, or can be left blank to have power calculated given sam-
ple size, effect size, and significance level. Power is the probability
of obtaining a significant result when the population proportion of
success in Sample 1 is not equal to that of Sample 2. The H1 can be
specified as “Two-sided”, “Less”, or “Greater”. The corresponding
alternative hypotheses are:

“Two sided” :π1 = π2 (3.2.1, Reproduced)

“Less” :π1 < π2

“Greater” :π1 > π2,

where π1 is the population proportion of Sample 1, and π2 is the
population proportion of Sample 2.

• Whether or not to generate a power curve can be specified in the
drop-down menu next to the Power curve option. Power curves are
useful when deciding on an appropriate sample size for a planned
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study or when examining power at feasible effect sizes. They either
show corresponding powers for many sample sizes given an effect
size, or for many effect sizes given a sample size.

• The Note option will title and save the current power calculation for
future reference if the user has logged in to the website. This note
must be less than 200 characters.

Once all fields have been appropriately filled in, clicking “Calculate”
will create a table and, if specified, a power curve will appear below
the table.

3.3.1 Examples

Example 3.3.1: Calculate power given
two proportions with unequal sample
sizes

A teacher would like to know whether her honors class has learned
the material significantly better than another one of her classes. She has
designed a test and would like to compare how many pass in one class
compared to the other. She estimates that about 90% will pass in the
honors class and that 70% will pass in the other class. Unfortunately,
the class sizes are not equal. She has 35 students in the honors class,
and 50 students in the other class. Will she have enough power for her
study?

The input and output for calculating power for this study are given
in Figure 3.3.2. Sample size 1 is 35 because she has 35 students in her
honors class, and Sample size 2 is 50 because she has 50 students in her
other class. The Effect size is calculated using the expected pass rates
for each of the classes, which comes out to 0.52. Notice that Proportion
1 must match the class that has Sample size 1, and Proportion 2 must
match the class with Sample size 2. The default Significance level of 0.05
is used to maintain the alpha level at 0.05. The Power is left blank since
she is interested in calculating the power for her study. The option
H1 is specified as “Greater” because she would like to test whether
her honors class will have a greater pass rate than her other class. She
presses “Calculate” and sees that she will have a power of about 0.7626
for her study.

3.3.2 R code for power calculation

The R input and output for Example 3.3.1 is given below.

> wp.prop(h=.52, n1=35, n2=50, alternative="greater",

type="2p2n")

Power for two-sample proportion test (unequal sample size)
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Figure 3.3.2: Input and output for calcu-
lating power for two-sample proportion
with unequal sample sizes in Example
3.3.1

h n1 n2 alpha power

0.52 35 50 0.05 0.7625743

3.3.3 Technical details

Under a two-tailed test, the null hypothesis in a two-sample test of
proportions is that the population proportion of success of sample 1,
π1, is equal to the population proportion of success of sample 2, π2

(Eq. 3.2.2), and the alternative hypothesis is that they are not equal (Eq.
3.2.3). Alternative hypotheses under one-tailed tests appear in Equation
3.2.1. The effect size is calculated the same way as in the two-sample
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equal sample size case,

h = 2× arcsin (
√

p1)− 2× arcsin (
√

p2) . (3.2.4; Reproduced)

Because there are two sample sizes, the sample size of the first
sample n1 and the sample size of the second sample n2 are used to
calculate the harmonic sample size. The harmonic sample size can be
calculated as

ñ =
2n1n2

n1 + n2
. (3.3.1)

The power is then calculated as

Power =
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(3.3.2)
where ñ is the harmonic sample size, Φ is the standard normal cumula-
tive distribution function, and z is the critical value from the standard
normal distribution.

3.4 Exercises

1. A researcher plans to compare the proportions of female students in
two colleges, UCLA and USC. To help decide the sample size, he has
found the following data from corresponding school newspapers
that he can use to calculate the expected population effect size. What
would be the sample size needed for each school to get a power of
0.8 at the alpha level 0.05?

UCLA USC
Number of female students 26 42
Number of male students 35 39

2. Using the same information in Exercise 1, what would be the re-
quired sample sizes when the alpha level is set at 0.1? at 0.01?

3. If a researcher can collect two times more data from UCLA than
from USC, to get a power 0.8, how many participants are needed in
each sample?
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A t-test is a statistical hypothesis test in which the test statistic
follows a Student’s t-distribution if the null hypothesis is true and
follows a non-central t distribution if the alternative hypothesis is true.
The t-test can assess whether a population mean, the difference between
two independent population means, or the difference between means
of matched pairs (dependent population means) equals a specific value.

4.1 How to Conduct Power Analysis for t tests

Power analysis for t-tests can be conducted using the online software
WebPower with the interfaces shown in Figure 4.1.1 for one-sample or
two-sample paired/balanced t-test and in Figure 4.1.2 for two-sample http://psychstat.org/ttest

unbalanced t-test . There are four essential parameters, Sample size, http://psychstat.org/ttest2n

Effect size, Significance level, and Power, in both balanced and unbalanced
t-tests power analysis interfaces. With any three of them known, the
fourth one can be calculated. Therefore, in addition to power calcula-
tion, sample size planning can also be conducted.

• Sample size specifies the number of observations per group. Multiple
sample sizes can be provided in two ways. First, multiple sample
sizes can be supplied and separated by white spaces (e.g., 100 150
200). Then power will be calculated for all these sample sizes. Second,
a sequence of sample sizes can be generated using the method s:e:i

with s denoting the starting sample size, e the ending sample size,
and i the interval. For example, 100:150:10 will generate a sequence
100 110 120 130 140 150. For the one-sample t-test, paired t-test
and balanced t-test, only one sample size is required (Figure 4.1.1),
and for the unbalanced two-sample t-test, the sample sizes for both
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Figure 4.1.1: Software interface for one-
sample or two-sample paired/balanced t
test

groups should be specified (Figure 4.1.2). By default, the sample size
is 100 as shown in Figure 4.1.1.

• Effect size specifies the population difference. In practice, the popula-
tion effect size can be hypothesized at the sample effect size, which
should be used with caution. Multiple effect sizes or a sequence of
effect sizes can be supplied using the same method as for sample
size. By default, the value is 0.1. Without an effect size in hand,
one may need to calculate the effect size first by clicking the link
“Calculator”.

• Significance level (Type I error rate) tells the alpha level for power
calculation with the default value 0.05.

• Power specifies the required statistical power or can be left blank for
calculation.

• One-sample t-test, paired t-test, and balanced two-sample t-test can
be chosen through Type of test in the software interface of “Power
of t-test” (Figure 4.1.1). Unbalanced two-sample t-test is done in a
separate interface as shown in Figure 4.1.2.

• One can specify the alternative hypothesis through H1: “Two-sided”
(default), “Greater” or “Less”.

• A power curve can be plotted if multiple sample sizes or effect sizes
are provided by choosing “Show power curve” in the drop-list of
Power curve.
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Figure 4.1.2: Software interface for unbal-
anced two-sample t test

After providing the required information, a user can get the power
analysis output by clicking the Calculate button.

4.1.1 Examples

Example 4.1.1: Calculate power given
sample size and effect size in one-sample
t-test

A researcher is interested in whether the population mean (µ) of an
experimental group is different from 0. If the effect size is known as 0.2
and there are 150 participants in the experimental group, what is the
power to find the significant difference between µ and 0?

To determine a power, use the interface in Figure 4.1.1. Then, specify
Type of test to be “One sample” to conduct the analysis. The input and
output for calculating power for this study are given in Figure 4.1.3. In
the field of Sample size, input 150, and in the field of Effect size, input
0.2, the known effect size. The default significance level 0.05 is used.
Since we need to calculate power, the field for Power is left blank. By
clicking the “Calculate” button, the statistical power is given in the
output immediately. For this study, the power is 0.6822.

Example 4.1.2: Calculate power given
sample size and effect size in paired t-
test

Patients’ propensity scores are recorded before and after undergoing
a new therapy. If the effect size is known as -0.4 and there are 40
patients, what is the power to find a significant decrease in propensity
scores after the psychotherapy?

For this analysis, we need to use a paired t-test. Set Type of test to be
“Paired” and choose H1 to “Less”. The input and output for calculating
power for this study are given in Figure 4.1.4. In the field of Sample
size, input. 40, and in the field of Effect size, input -0.4, the known
effect size. The default significance level 0.05 is used. Since we need
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Figure 4.1.3: Input and output for cal-
culating power for one-sample t-test in
Example 4.1.1

to calculate power, the field for Power is left blank. By clicking the
“Calculate” button, the statistical power is given in the output, 0.7997
for this study.

Example 4.1.3: Calculate power given
sample size and effect size in two-sample
t-test

A study is designed with 70 participants completing a task with
disturbance and 70 participants without disturbance. If the effect size
is known as 0.3, what is the power to find that the participants without
disturbance perform significantly better than the ones with disturbance?

The two-sample t-test is used here by specifying Type of test to be
“Two sample” and choosing H1 to be “Greater”. The input and output
for calculating power for this study are given in Figure 4.1.5. In the
field of Sample size, input 70, and in the field of Effect size, input 0.3, the
known effect size. The default significance level 0.05 is used. Since we
need to calculate power, the field for Power is left blank. By clicking the
“Calculate” button, the statistical power is given in the output and it is
0.5483 for this study.

Example 4.1.4: Calculate power given
sample size and effect size in unbalanced
two-sample t-test

There are two groups of students. Students in group A use learning
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Figure 4.1.4: Input and output for calcu-
lating power for paired t-test in Example
4.1.2

strategy A and students in group B use learning strategy B. If the effect
size is known as 0.356 and one researcher plans to recruit 30 students
for group A and 40 students for group B, what is the power to find a
significant difference between the two groups in the study?

We need to use an unbalanced two-sample t-test in Figure 4.1.2 to
conduct the analysis. The input and output for calculating power for
this study are given in Figure 4.1.6. In the field of Sample size of group
1, input 30, and in the field of Sample size of group 2, input 40, and in
the field of Effect size, input 0.356, the known effect size. The default
significance level 0.05 is used. By clicking the “Calculate” button, we
obtain a power 0.3065.

Example 4.1.5: Power curve given sample
size and effect size in unbalanced two-
sample t-test

If the researcher does not know the effect size in Example 4.1.4 but
expects the effect size to be in the range of 0.2 to 0.8 (from small effect
size to large effect size according to Cohen, 1988), then the researcher
can obtain a power curve with each potential value of the effect size.

Figure 4.1.7 shows the input and output for a study with 30 par-
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Figure 4.1.5: Input and output for cal-
culating power for balanced two-sample
t-test in Example 4.1.3

ticipants in group A and 40 participants in group B. Note that in the
Effect size field, the input is 0.2:0.8:0.1, which generates a sequence of
effect sizes from 0.2 to 0.8 with the interval 0.1. In the output, the
power for each effect size is listed. The power curve (Figure 4.1.8) is
displayed at the bottom of the output. The power curve can be used for
interpolation. For example, to get a power at least 0.8, the effect size
should be somewhere between 0.6 and 0.7.

Example 4.1.6: Calculate sample size
given power and effect size in paired t-
test

In a pre-test and post-test design, one may be interested in whether
the post-test scores increase from pre-test scores (i.e., H1 : µD > 0).
When the effect size in a paired t-test is known, we can determine how
many participants are needed to attain the desired power level 0.8.

To conduct the power analysis, specify Type of test to be “Paired” and
leave the Sample size field blank. Suppose the effect size is 0.4, the input
and output for calculating the sample size are given in Figure 4.1.9.
In the field of Effect size, input 0.4, and in the field of power, input 0.8.
The default significance level 0.05 is used. By clicking the “Calculate”



power analysis for t-tests 57

Figure 4.1.6: Input and output for calcu-
lating power for unbalanced two-sample
t-test in Example 4.1.4

button, we conclude that the required sample size is 40.

4.2 Using R Package WebPower

The power analysis conducted in the online interfaces can be done
using the wp.t function in the R package WebPower. This function is
adapted from the functions pwr.t.test and pwr.t2n.test from the R
package pwr developed by Champely (2012). The detail of the function
is: n1: sample size for group 1

n2: sample size for group 2
d: effect size
alpha: significance level
power: statistical power
type: type of analysis. 1p, one sample;
2p, two sample with equal sample size;
2p2n, two sample with unequal sample
size
alternative: alternative hypothesis
tol: tolerance in root solver.

wp.t(n1 = NULL, n2 = NULL, d=NULL, alpha = 0.05, power = NULL,

type = c("two.sample", "one.sample", "paired", "two.sample.2n

"), alternative = c("two.sided", "less", "greater"), tol = .

Machine$double.eps^0.25)

The R input and output for the examples used above are given below:

> ## one sample t-test given sample size and effect size

> wp.t(n1=150, d=.2, type=’one.sample’)

One-sample t-test
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Figure 4.1.7: Input and output for power
curve for unbalanced two-sample t-test
in Example 4.1.5

n d alpha power

150 0.2 0.05 0.682153

>

> ## paired t-test given sample size and effect size

> wp.t(n1=40, d=-.4, type=’paired’, alternative=’less’)

Paired t-test

n d alpha power

40 -0.4 0.05 0.7997378

NOTE: n is number of *pairs*

>
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Figure 4.1.8: Power curve for unbalanced
two-sample t-test in Example 4.1.5

> ## paired t-test given power and effect size

> wp.t(power=.8, d=.4, type=’paired’, alternative=’greater’)

Paired t-test

n d alpha power

40.02908 0.4 0.05 0.8

NOTE: n is number of *pairs*

>

> ## balanced two-sample t-test given sample size and effect size

> wp.t(n1=70, d=.3, alternative=’greater’)

Two-sample t-test

n d alpha power

70 0.3 0.05 0.5482577

NOTE: n is number in *each* group

>

> ## unbalanced two-sample t-test given sample size and effect

size



60 practical statistical power analysis

Figure 4.1.9: Input and output for sample
size planning for paired t-test in Example
4.1.6

> wp.t(n1=30, n2=40, d=.356, type=’two.sample.2n’)

Unbalanced two-sample t-test

n1 n2 d alpha power

30 40 0.356 0.05 0.3064767

NOTE: n1 and n2 are number in *each* group

>

> ## unbalanced two-sample t-test given sample size and a

sequence of effect sizes

> res <- wp.t(n1=30, n2=40, d=seq(.2,.8,.05), type=’two.sample.2n

’)

> res

Unbalanced two-sample t-test

n1 n2 d alpha power

30 40 0.20 0.05 0.1291567
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30 40 0.25 0.05 0.1751916

30 40 0.30 0.05 0.2317880

30 40 0.35 0.05 0.2979681

30 40 0.40 0.05 0.3719259

30 40 0.45 0.05 0.4510800

30 40 0.50 0.05 0.5322896

30 40 0.55 0.05 0.6121937

30 40 0.60 0.05 0.6876059

30 40 0.65 0.05 0.7558815

30 40 0.70 0.05 0.8151817

30 40 0.75 0.05 0.8645929

30 40 0.80 0.05 0.9040910

NOTE: n1 and n2 are number in *each* group

>

> ## generate a power curve

> plot(res, xvar=’d’, yvar=’power’)

>

> ## unbalanced two-sample t-test given sample size for one group

, power and effect size

> wp.t(n1=50, power=.8, d=.5, type=’two.sample.2n’)

Unbalanced two-sample t-test

n1 n2 d alpha power

50 87.70891 0.5 0.05 0.8

NOTE: n1 and n2 are number in *each* group

4.3 Effect Size for t-tests

In WebPower, we use the statistic d (known as Cohen’s d) as the measure
of effect size for power analysis in t-tests (Cohen, 1988, p. 20). For the
one-sample case, the population effect size is defined as

δ =
µ− µ0

σ
,

where µ is the population mean of interest, µ0 is the population value
under the null hypothesis, and σ is the population standard deviation.
The sample effect size is

d =
y− µ0

s
with ȳ denoting the sample mean and s denoting the sample standard
deviation.

For matched pairs, the effect size is based on the difference scores
between all pairs, yDi = y1i − y2i. The population effect size is

δ =
µD
σD

=
µ1 − µ2

σD
,
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where σD is the population standard deviation of difference scores.
And the sample effect size is

d =
ȳD
sD

=
y1 − y2

sD
,

where ȳD denotes the sample mean of difference scores, and sD denotes
the sample standard deviation of difference scores.

For the independent two-sample t-test, the effect size is also called
the standardized mean difference. The population effect size is defined
as

δ =
µ1 − µ2

σ
, (4.3.1)

where µ1 and µ2 are the population means of two groups, and σ is
the population standard deviation assumed to be equal across the two
groups. δ is unknown but can be estimated by its sample effect size

d =
y1 − y2

sp
, (4.3.2)

where ȳ1 and ȳ2 denote the sample means of two groups. sp is the
unbiased estimator of the common variance (i.e., the square root of the
pooled variance),

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

s2
1 =

1
n1 − 1

i=n1

∑
i=1

(y1i − y1)
2,

s2
2 =

1
n2 − 1

i=n2

∑
i=1

(y2i − y2)
2

where n1 and n2 denote the sample sizes, and s1
2 and s2

2 denote the
sample variances of the two groups, respectively. A special case is the

balanced design where n1 = n2 = n, sp =
√
(s2

1 + s2
2)/2.

4.3.1 Examples

Given the importance of obtaining an effect size, we show how to cal-
culate an effect size under different conditions using several examples.

Example 4.3.1: Effect size of one-sample
t-test

Suppose we have data observed in Table 4.3.1. The null hypothesis
is H0 : µ = 0. From the data, we have the sample mean ȳ = 19.4. The
sample standard deviation is

s =
√

1
5− 1

[(22− 19.4)2 + (12− 19.4)2 + (25− 19.4)2 + (18− 19.4)2 + (20− 19.4)2] = 4.879.

Therefore, the sample effect size is d = ȳ/s = 19.4/4.879 = 3.976. We
might make a hypothesis that the population effect size is 3.976. The
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method of evaluating power by substituting the population effect size
with its sample estimate is called post hoc power, and the results can be
misleading regardless of how large the sample size is (Yuan & Maxwell,
2005).

Scores
22
12
25
18
20

Mean 19.4

Table 4.3.1: Example data for effect size
calculation of one-sample t-test

Example 4.3.2: Effect size of paired t-testSuppose we have the data shown in Table 4.3.2. Based on the pre-test
scores and post-test scores, we can calculate the difference scores. The
mean of the difference scores is ȳD = 2. The sample standard deviation
of the difference scores is

sD =

√
1

5− 1
[(3− 2)2 + (7− 2)2 + (0− 2)2 + (1− 2)2 + (−1− 2)2] = 3.162.

Therefore, the sample effect size is d = ȳD/sD = 2/3.162 = 0.633.

Pre-test score Post-test score Difference score
22 25 3
12 19 7
25 25 0
18 19 1
20 19 -1

Mean 19.4 21.4 2

Table 4.3.2: Example data for effect size
calculation of paired t-test

Example 4.3.3: Effect size of balanced
two-sample t-test

Suppose we have the data shown in Table 4.3.3. From the data, we
have the pooled variance s2

p = (s2
1 + s2

2)/2 = 17.3. The sample effect
size is d = (y1 − y2)/sp = (21.4− 19.4)/

√
17.3 = 0.481.

Group A scores Group B scores
22 25
12 19
25 25
18 19
20 19

Mean 19.4 21.4
Variance 23.8 10.8

Table 4.3.3: Example data for effect size
calculation of balanced two-sample t-test

Example 4.3.4: Effect size of unbalanced
two-sample t-test
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Suppose we have data shown in Table 4.3.4. From the data, we have
the pooled variance s2

p = [(6− 1)9.467 + (9− 1)13.278]/(6 + 9− 2) =
11.812. The sample effect size is d = (y1 − y2)/sp = 1.223/

√
11.812 =

0.356.

Group A scores Group B scores
13 20
20 15
14 16
19 15
18 16
20 23

20
17
25

Mean 17.333 18.556
Variance 9.467 13.278

Table 4.3.4: Example data for effect size
calculation of unbalanced two-sample t-
test

4.3.2 Effect size calculator

WebPower provides an online calculator to calculate the effect size for http://psychstat.org/ttesteffect

the one-sample t-test, paired t-test, and two-sample t-test based on the
user-provided information. The interface for the calculator is shown in
Figure 4.3.1, which can be brought up by clicking the link “Calculator”
in the power calculation interface.

For the one-sample t-test, one can provide the population mean for
null and alternative hypotheses as well as the standard deviation to
get the effect size. For the paired two-sample t-test, one would need
to provide the mean and standard deviation of the difference. For
the two-sample t-test, the means of the two groups and the common
standard deviation are required.

Effect size can also be estimated from individual/empirical data. In
this case, a registered user can upload a data set. For the one-sample
t-test, the data set should include a single column of data. For the
paired two-sample t-test, the data set should have two columns with
each row including data for a pair. For the two-sample independent
t-test, the data set also includes two columns but with the first column
representing data for both groups and the second column a grouping
variable. Some sample data are given in Table 4.3.5.

As an example, we saved the data for the two-sample example in
Table 4.3.5 into a file (http://psychstat.org/tdata). Using the data, we
obtained the results shown in Figure 4.3.2. Note that in addition to the
output of the effect size, a t-test was also conducted for the data and
the output of the t-test was provided.
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Figure 4.3.1: Effect size calculator for t-
test power analysis

4.4 Technical Details

4.4.1 One-sample t-test

In a one-sample t-test, we are interested in whether the population
mean µ is different from a specific value µ0 (usually µ0 = 0). Thus the
null hypothesis is

H0 : µ = µ0.

The alternative hypothesis can be either two-sided or one-sided to
indicate the difference:

H11 : µ 6= µ0,

or

H12 : µ > µ0,
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one-sample paired two-sample two-sample
y y1 y2 y group
22 22 25 13 0
12 12 19 20 0
25 25 25 14 0
18 18 19 19 0
20 20 19 18 0

20 0
20 1
15 1
16 1
15 1
16 1
23 1
20 1
17 1
25 1

Table 4.3.5: Format of data files for effect
size calculator for t-test

or
H13 : µ < µ0.

Let ȳ denote the sample mean and s2 denote the sample variance.
Assume that yi ∼ N(µ, σ2). The corresponding t test statistic given the
sample size n is

t =
ȳ− µ0

s/
√

n
=

(ȳ− µ) + (µ− µ0)

s/
√

n

=
[(ȳ− µ) + (µ− µ0)]/

√
σ2/n√

s2/σ2
(4.4.1)

=
(ȳ− µ)/

√
σ2/n + (µ− µ0)/

√
σ2/n√

(n−1)s2

σ2(n−1)

.

Because yi ∼ N(µ, σ2), (ȳ− µ)/
√

σ2/n ∼ N(0, 1), (n−1)s2

σ2 ∼ χ2(n− 1),
and ȳ − µ0 and s are independent, the t statistic in Equation 4.4.1
follows a t distribution t(n− 1, (µ− µ0)/

√
σ2/n). The non-centrality

parameter is

λ =
µ− µ0√

σ2/n
=
√

nδ,

with δ = (µ− µ0)/σ denoting the population effect size.
Under the null hypothesis, λ = µ−µ0√

σ2/n
= 0. The t statistic follows a

Student’s t distribution with degrees of freedom n− 1. If the t statistic
is larger than the critical value t1−α/2 or smaller than tα/2 in a two-sided
test, or larger than t1−α or smaller than tα in a one-sided tests, the null
hypothesis H0 is rejected.
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Figure 4.3.2: Effect size calculation for
two-sample t-test based on data

Under the alternative hypothesis, the t statistic in Equation 4.4.1
follows a non-central t distribution t(n − 1, µ−µ0√

σ2/n
). Power can be

calculated from this distribution as

π =


1− tn−1,λ(t−1

n−1,1−α/2) + tn−1,λ(t−1
n−1,α/2) H11

1− tn−1,λ(t−1
n−1,1−α) H12

tn−1,λ(t−1
n−1,α) H13

(4.4.2)

where t−1
n−1,1−α is the critical value of a Student’s t distribution given the

probability 1− α, and tn−1,λ is the cumulative non-central t distribution
function.

Since usually we do not know the population mean µ and population
variance σ2, the estimated λ̂ and the sample effect size d are used to
calculate power

λ̂ = d
√

n =
ȳ− µ0

s
√

n.

Again, if the population effect size is actually different from the sample
effect size, the power analysis results can be very misleading.
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4.4.2 Two-sample t-test

A two-sample t test is used to determine whether two independent
population means are equal. Thus the null hypothesis is

H0 : µ1 − µ2 = 0.

The alternative hypothesis can be either two-sided or one-sided to
indicate the difference:

H11 : µ1 − µ2 6= 0,

or
H12 : µ1 − µ2 > 0,

or
H13 : µ1 − µ2 < 0.

Let ȳ1 and ȳ2 denote the sample means and s1
2 and s2

2 denote the
sample variances of the two groups. Assume that y1i ∼ N(µ1, σ2) and
y2i ∼ N(µ2, σ2). The corresponding t test statistic given the sample
sizes n1 and n2 is

t =
ȳ1 − ȳ2

sp

√
1

n1
+ 1

n2

=
ȳ1 − ȳ2 − (µ1 − µ2) + (µ1 − µ2)

sp

√
1

n1
+ 1

n2

=

(ȳ1−ȳ2)−(µ1−µ2)

σ
√

1
n1

+ 1
n2

+ (µ1−µ2)

σ
√

1
n1

+ 1
n2√

s2
p

σ2

(4.4.3)

=

(ȳ1−ȳ2)−(µ1−µ2)

σ
√

1
n1

+ 1
n2

+ (µ1−µ2)

σ
√

1
n1

+ 1
n2√

(n1+n2−2)s2
p

σ2(n1+n2−2)

,

where sp is an unbiased estimator of the common variance,

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

With (ȳ1−ȳ2)−(µ1−µ2)

σ
√

1
n1

+ 1
n2

∼ N(0, 1) and
(n1+n2−2)s2

p
σ2 ∼ χ2(n1 + n2 − 2),

the t statistic in Equation 4.4.3 follows a non-central t distribution
t(n1 + n2 − 2, (µ1−µ2)

σ
√

1
n1

+ 1
n2

). The non-centrality parameter is

λ =
µ1 − µ2

σ
√

1
n1

+ 1
n2

=

√
n1n2

n1 + n2
δ,

with δ = µ1−µ2
σ denoting the population effect size.
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A special case is the balanced design where n1 = n2 = n,

sp =

√
s2

1 + s2
2

2
,

t =
ȳ1 − ȳ2√

s2
1+s2

2
n

,

λ =

√
n
2

δ.

Under the null hypothesis, λ = (µ1−µ2)

σ
√

1
n1

+ 1
n2

= 0. The t statistic follows a

Student’s t-distribution with degrees of freedom n1 + n2− 2. Otherwise,
it follows a noncentral t-distribution. Under the alternative hypothesis,
power can be calculated as

π =


1− tn1+n2−2,λ(t−1

n−1,1−α/2) + tn1+n2−2,λ(t−1
n1+n2−2,α/2) H11

1− tn1+n2−2,λ(t−1
n1+n2−2,1−α) H12

tn1+n2−2,λ(t−1
n−1,α) H13

.

In practice, the estimated λ̂ and sample effect size d are used to calculate
power by assuming the sample effect size is the same as the population
effect size:

λ̂ = d
√

n1n2

n1 + n2
=

(ȳ1 − ȳ2)

sp

√
n1n2

n1 + n2
.

4.4.3 Paired t-test

The paired t-test is used to test whether the matched pairs have equal
means. The difference scores between all pairs are calculated by yDi =

y1i − y2i (Cohen, 1988). The null hypothesis is

H0 : µD = µ1 − µ2 = 0.

The alternative hypothesis can be either two-sided or one-sided to
indicate the difference:

H11 : µD 6= 0,

or

H12 : µD > 0,

or

H13 : µD < 0.

Let ȳD denote the sample means of the difference scores, and sD
2

denote the sample variance of the difference scores. Assume that
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y1i − y2i ∼ N(µ, σ2
D) . The corresponding t test statistic given the

number of pairs n is

t =
ȳD − 0
sD/
√

n
=

ȳD − µD + µD

sD/
√

n

=
[(ȳD − µD) + µD]/

√
σ2

D
n√

s2
D

σ2
D

(4.4.4)

=
(ȳD − µD)/

√
σ2

D
n + µD/

√
σ2

D
n√

(n−1)s2
D

σ2
D(n−1)

,

where σ2
D = σ2

y1−y2 = σ2
1 + σ2

2 − 2ρσ1σ2, s2
D = s2

1−2 = s2
1 + s2

2 − 2rs1s2.
Using the assumption of equal variance σ2

y1 = σ2
y2 = σ2, σ2

D = 2σ2(1−
ρ).

The non-centrality parameter of the non-central t distribution is

λ =
µD√

σ2
D
n

=
µ1 − µ2√

σ2
D
n

=
√

nδ,

with δ = (µ1 − µ2)/σ2
D denoting the population effect size. Also λ̂ =

¯yD√
s2
D
n

=
√

nd. Under the alternative hypothesis, the power function is

same as the one used in one sample t-test 4.4.2.

4.5 Exercises

1. A researcher believes that the mean of a test is higher than 80. If he
collects data from 25 participants with mean and variance 100 and
30 respectively, what are the null hypothesis (H0) and the alternative
hypothesis (H1)? What is the statistical power when the alpha level
is set at 0.05?

2. The test scores from two classes with different textbooks are recorded.
If each class has 25 students, what is the sample effect size?

Class 1 Class 2
Mean 100 125
Variance 30 35

3. Using the same information in Exercise 2, what is the power for 25
participants per class at the alpha level 0.1 if assuming the population
effect size is the same as the sample effect size?

4. If the mean of a test of using A textbook is 120, the mean of using B
textbook is 140, and the common variance is 1225. Generate a power
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curve with the sample size per group ranging from 10 to 100 with an
interval of 10. What is the total sample size needed for a balanced
design to get a power 0.9 at the alpha level 0.05?





5 Statistical Power Analysis for
One-Way ANOVA

Zhiyong Zhang
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One-way analysis of variance (one-way ANOVA) is a technique used
to compare means of two or more groups (e.g., Maxwell & Delaney,
2004). The ANOVA tests the null hypothesis that samples in two or
more groups are drawn from populations with the same mean values.
The ANOVA analysis typically produces an F-statistic, the ratio of the
sample variance of the between-group to that of the within-group. If the
group means are drawn from populations with the same mean values,
the variance of the group means should not be too high when compared
with the variance within the groups. A higher ratio, therefore, implies
that the samples were drawn from populations with different mean
values.

5.1 How to Conduct Power Analysis for One-way ANOVA

The primary software interface for power analysis for one-way ANOVA
is shown in Figure 5.1.1.. Within the interface, a user can supply dif- http://psychstat.org/anova

ferent parameter values and select different options for power analysis.
Among the five parameters, Number of groups1, Sample size, Effect size, 1 Also called the number of levels

Significance level, and Power, one and only one can be left blank.

• The Number of groups tells how many groups are involved in the
study design.

• The Sample size is the total number of participants from all groups.
For example, if the sample size for each group is 25 for 4 groups,
the total sample size is 100. Multiple sample sizes can be provided
in two ways to calculate power for each sample size. First, multiple
sample sizes can be supplied and separated by white spaces, e.g.,
100 150 200 will calculate power for the three sample sizes 100, 150
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Figure 5.1.1: Software interface of power
analysis for one-way ANOVA

and 200. Second, a sequence of sample sizes can be generated using
the method s:e:i with s denoting the starting sample size, e as
the ending sample size, and i as the interval. Note the values are
separated by colon “:”. For example, 100:150:10 will generate a
sequence of sample sizes - 100 110 120 130 140 150. The default
sample size, as shown in Figure 5.1.1, is 100.

• The Effect size2 specifies the population group difference. Multiple 2 More on effect size will be provided in
Section 5.3effect sizes or a sequence of effect sizes can also be supplied using

the same method for sample size. By default, the value is 0.5. Deter-
mining the effect size is critical but not trivial work. To help a user
obtain effect sizes, a calculator has been developed and can be used
by clicking the link “Calculator”.

• The Significance level3 for power calculation is needed but usually set 3 Type I error rate or alpha level

at the default value 0.05.

• The Power specifies the desired statistical power.

• The software can calculate power for overall effect and for a specific
contrast. One can choose the type of analysis through the option
“Type of analysis”.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided.

• A note (less than 200 characters) can be provided to save basic
information on the analysis for future reference for registered users.
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5.1.1 Examples

Example 5.1.1: Calculate power given
sample size and effect size

A student hypothesizes that freshman, sophomore, junior and senior
college students have different attitudes towards obtaining arts degrees.
Based on his prior knowledge, he expects that the population effect size
is about 0.25. If he plans to interview 25 students on their attitude in
each student group, what is the power for him to find the significant
difference among the four groups?

The input and output for calculating power for this study are given
in Figure 5.1.2. In the field of Number of groups, input 4, the total number
of groups; in the field of Sample size, input 100 (= 25× 4), the total
sample size of the four groups; and in the field of Effect size, input
0.25, the expected effect size. The default significance level 0.05 is used
although one can change it to a different value. The field for Power
is left blank because it will be calculated. A simple note “One-way
ANOVA” is also added in the Note field. By clicking the “Calculate”
button, the statistical power is given in the output immediately. For the
current design, the power is 0.5182.

Figure 5.1.2: Input and output for cal-
culating power for one-way ANOVA in
Example 5.1.1
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Example 5.1.2: Power curveA power curve is a line plot of statistical power along with given
sample sizes. In Example 5.1.1, the power is 0.518 with the sample size
25 in each group. What is the power for a different sample size, say, 50
in each group? One can investigate the power of different sample sizes
and plot a power curve.

The input and output for calculating power for the study in Example
5.1.1 with a sample size from 100 to 200 (25 to 50 each group) with
an interval of 20 are given in Figure 5.1.3. Note that in the Sample
size field, the input is 100:200:20. In the output, the power for each
sample size from 100 to 200 with the interval 20 is listed. Especially,
with the sample size 180 (the sample size is 45 for each group), the
power is about 0.804. In the input, we also choose “Show power curve”
for the Power curve field. In the output, the power curve (Figure 5.1.4)
is displayed at the bottom of the output. The power curve can be used
for interpolation. For example, to get a power 0.8, about 45 students
are needed for each group.

Example 5.1.3: Calculate sample size
given power and effect size

In practice, a power 0.8 is often desired. Given the power, the sample
size can also be calculated as shown in Figure 5.1.5. In this situation,
the Sample size field is left blank while in the Power field, the value 0.8
is the input. In the output, we can see a sample size 179 is needed to
obtain a power 0.8, that is about 45 for each group.

Example 5.1.4: Minimum detectable ef-
fect

One can also calculate the minimum effect to achieve certain power
given a sample size. As shown in Figure 5.1.6, we leave the Effect size
field blank but provide information on Sample size (100) and Power (0.8).
In the output, we can see that the obtained effect size is 0.337. It means
that to get a power 0.8 with the sample size 100, the population effect
size has to be at least 0.337.

Example 5.1.5: Calculate power for a
given contrast

Suppose that in addition to the overall effect, the student is especially
interested in the difference between freshman and senior college stu-
dents. He hypothesizes that the effect size would be 0.25. To calculate
power for a total sample size 100, input 0.25 as the effect size (as shown
in Figure 5.1.7). Then, set the Type of analysis to be “Contrast, two-sided”.
In the output, the power is 0.6967 for detecting the difference of an
effect of 0.25 between freshman and senior college students.

5.2 Using R WebPower for Power Analysis for One-
way ANOVA

The online power analysis is carried out using the R package WebPower
on a Web server. The package can be directly used within R for power
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Figure 5.1.3: Input and output for power
curve for one-way ANOVA in Example
5.1.2

analysis for one-way ANOVA. Specifically, the function wp.anova is
used. This function is adapted from the function pwr.anova.test from
the R package pwr developed by Champely (2012). In addition to power
analysis for the main effect, we also improved the function to calculate
power for a contrast. The basic usage of the function is provided below. f: effect size

k: number of groups
n: sample size
alpha: significance level
power: statistical power
type: overall, contrast (two.sided, greater,
less)

wp.anova(k = NULL, n = NULL, f = NULL, alpha = 0.05, power = NULL

, type = c("overall", "two.sided", "greater", "less"))

For example, the R input and output for Example 5.1.1 are given
below. When the sample size is provided, the power will be calculated.

> wp.anova(f=0.25,k=4,n=100,alpha=0.05)

Power for One-way ANOVA

k n f alpha power



78 practical statistical power analysis

●

●

●

●

●

●

100 120 140 160 180 200

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Sample size

P
ow

er
Figure 5.1.4: Power curve for one-way
ANOVA in Example 5.1.2

4 100 0.25 0.05 0.5181755

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anova

The R input and output for generating the power curve in Example
5.1.2 are given below.

seq(100,200,10) generates a sequence
of sample sizes.
The function plot generates a power
curve similar to the one in Figure 5.1.4.

> example <- wp.anova(f=0.25,k=4,n=seq(100,200,10),alpha=0.05)

> example

Power for One-way ANOVA

k n f alpha power

4 100 0.25 0.05 0.5181755

4 110 0.25 0.05 0.5636701

4 120 0.25 0.05 0.6065228

4 130 0.25 0.05 0.6465721

4 140 0.25 0.05 0.6837365

4 150 0.25 0.05 0.7180010

4 160 0.25 0.05 0.7494045

4 170 0.25 0.05 0.7780286

4 180 0.25 0.05 0.8039869

4 190 0.25 0.05 0.8274169

4 200 0.25 0.05 0.8484718
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Figure 5.1.5: Input and output for sample
size planning for one-way ANOVA in
Example 5.1.3

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anova

> plot(example, type=’b’)

Furthermore, we can also use R to estimate both the sample size and
the minimum detectable effect size.

> wp.anova(f=0.25,k=4,n=NULL,alpha=0.05,power=0.8)

Power for One-way ANOVA

k n f alpha power

4 178.3971 0.25 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anova

> wp.anova(f=NULL,k=4,n=100,alpha=0.05,power=0.8)

Power for One-way ANOVA
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Figure 5.1.6: Input and output for min-
imum effect size determination for one-
way ANOVA in Example 5.1.4

k n f alpha power

4 100 0.3369881 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anova

Finally, to conduct power analysis for a contrast, the input and
output are shown below.

> wp.anova(f=.25, k=4, n=100, type=’two.sided’)

Power for One-way ANOVA

k n f alpha power

4 100 0.25 0.05 0.6967142

NOTE: n is the total sample size adding all groups (contrast, 2

side)

WebPower URL: http://psychstat.org/anova
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Figure 5.1.7: Input and output for calcu-
lating power of a contrast for one-way
ANOVA in Example 5.1.5

5.3 Effect Size for One-way ANOVA

We use the statistic f as the measure of effect size for one-way ANOVA
as in Cohen (1988, p. 275). The f is the ratio of the between-group
standard deviation of the effect to be tested σb (or the standard deviation
of the group means, or between-group standard deviation) and the
common within-group standard deviation σw:

f =
σb
σw

.

Given the two quantities σb and σw, the effect size can be determined.
Cohen defined the size of effect as: small 0.1, medium 0.25, and large
0.4.

The effect size can be determined based on the literature review or
empirical data. In doing so, we assume that the population effect size is
the same as the sample or empirical effect size, which may not be true.
For example, based on the literature, one can obtain the information
for each group in ANOVA as shown below:
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Group 1 2 ... G
Group size n1 n2 ... nG

Mean m1 m2 ... mG

Variance s2
1 s2

2 ... s2
G

G: number of groups
ng: sample size of group g
mg: mean of group g
s2

g: variance of group g
With such information, the between group standard deviation σb can

be calculated by

σb =

√√√√ G

∑
g=1

wg(mg − m̄)2

with

m̄ =
G

∑
g=1

wgmg

where wg is the weight

wg =
ng

∑G
i=1 ng

.

A special case is for the balanced design where ng = n which leads to
wg = 1/G and

σb =

√√√√ G

∑
g=1

(mg − m̄)2/G,

m̄ =
G

∑
g=1

mg/G.

Therefore, the effect size can be calculated for both balanced and unbal-
anced designs. For the within-group standard deviation, it is calculated
as

σw =

√
∑G

g=1 s2
g

G
.

5.3.1 Effect size for a specific contrast (comparing two se-
lected groups)

In addition to the power for the global F test, one can also conduct
power analysis for a specific contrast. In this case, the effect size has to
be calculated differently. Suppose we are interested in the difference
between two groups i and j. Then the effect size is

f =
σb
σw

=

√
(mi −mj)2/(1/wi + 1/wj)

σw
.

5.3.2 Examples

To show how to calculate the effect sizes under different conditions,
consider the following examples. Suppose the data are presented as
below.



power analysis for one-way anova 83

Group Freshman Sophomore Junior Senior
Group size 25 25 25 25

Balanced Mean 2.0 3.0 3.6 4
Variance 9 9 9 9
Group size 10 20 30 40

Unbalanced Mean 2.0 3.0 3.6 4
Variance 9 9 9 9

Table 5.3.1: Example data for effect size
calculation

Example 5.3.1: Overall effect size of the
balanced design

We first calculate the overall effect size for the balanced design.
From the data, we have the weight wg = w = 1/4. The grand mean
is m̄ = 1/4× (2 + 3 + 3.6 + 4) = 3.15. The between group variance is
σ2

b = 1
4 [(2− 3.15)2 + (3− 3.15)2 + (3.6− 3.15)2 + (4− 3.15)2] = .5675.

For the within group variance, σ2
w = (9 + 9 + 9 + 9)/4 = 9. Therefore,

the effect size is f =
√

σ2
b /σ2

w =
√

.5675/9 = .251.

Example 5.3.2: Overall effect size of the
unbalanced design

We then calculate the overall effect size for the unbalanced design.
From the data, we have the weight w1 = 0.1, w2 = 0.2, w3 = 0.4, w4 =

0.4. The grand mean is m̄ = .1× 2 + .2× 3 + .3× 3.6 + .4× 4 = 3.48.
The between group variance is σ2

b = .1× (2− 3.48)2 + .2× (3− 3.48)2 +

.3 × (3.6 − 3.48)2 + .4 × (4 − 3.48)2] = .3776. For the within group
variance, σ2

w = (9 + 9 + 9 + 9)/4 = 9. Therefore, the effect size is

f =
√

σ2
b /σ2

w =
√

.3776/9 = .205.

Example 5.3.3: Effect size for contrast
freshman and senior of the balanced de-
sign

We now calculate the effect size for comparing freshman and senior
students in the balanced design. From the data, we have the weight
wg = w = 1/4. The between group variance is σ2

b = (4− 2)2/(1/.25 +
1/.25) = 0.5. For the within group variance, σ2

w = (9+ 9+ 9+ 9)/4 = 9.

Therefore, the effect size is f =
√

σ2
b /σ2

w =
√

.5/9 = .236.

Example 5.3.4: Effect size for contrast
freshman and senior of the unbalanced
design

This example shows how to calculate the effect size for comparing
freshman and senior students using the unbalanced design. From
the data, we have the weight w1 = .1, w4 = .4. The between group
variance is σ2

b = (4− 2)2/(1/.1 + 1/.4) = 0.32. For the within group
variance, σ2

w = (9 + 9 + 9 + 9)/4 = 9. Therefore, the effect size is

f =
√

σ2
b /σ2

w =
√

.32/9 = .189.

Example 5.3.5: Effect size from empirical
data

The effect size can also be determined from a set of empirical data.
The data could come from a pilot study. From the empirical data, the
groups means and variances can be easily obtained. In this example,
the data set at http://psychstat.org/anovadata includes two variables -
an outcome variable y and a grouping variable group. From the data set,
one can calculate the between-group variance (14.58) and within-group
variance (4.70), from which the effect size can be obtained as 1.76.
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5.3.3 Effect size calculator

The specification of the effect size can be assisted by an online calculator.
In the interface in Figure 5.1.1, clicking the link “Calculator” brings up
the effect size calculator. The calculator allows the calculation of effect http://psychstat.org/anovaeffect

sizes using three methods as shown in Figure 5.3.1.
Method 1 determines an effect size based on the input of the between-

group variance and the within-group variance. With the two values,
the effect size is calculated and shown after clicking on the “Calculate”
button.

Method 2 allows a user to input group sample size4, mean, and 4 Note that both balanced and unbal-
anced sample sizes can be used.variance to calculate both the overall effect size and the effect size for

each contrast. By default, one can input data for three groups. However,
one can specify any number of groups by inputting it in the Number of
groups field and clicking the “Update” button to show more groups. For
example, to obtain the effect sizes based on the unbalanced design in
Table 5.3.1, one can input the data as in Figure 5.3.1. At the bottom, the
effect sizes for both overall effect and the contrast effects are presented
after clicking on the “Calculate” button.

Figure 5.3.1: Effect size calculation based
on the input of means

Method 3 allows a user to upload a set of data and calculates effect
sizes based on the data directly. Figure 5.3.2 shows the use of the data
in Example 5.3.5 and the output of the effect sizes. Note that only
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registered users can use this method to protect data privacy. The data
file has to be in text format where the first column of the data is the
outcome variable and the second is the grouping variable. The first line
of the data should be the variable names.

Example data:

y group

22.48831 1

15.48998 1

18.97749 1

16.32764 1

22.64907 1

19.14727 1

The output of Method 3 includes the overall effect size and the
effect sizes for all the contrasts. In addition, this method also conducts
ANOVA based on the data uploaded and presents the ANOVA output
as shown in Figure 5.3.2.

Figure 5.3.2: Effect size calculation based
on an empirical data set

Note that the methods for effect size calculation literally assume that
the population effect sizes are the same as the obtained sample effect
sizes, which might not be correct.

5.4 Technical Details

Suppose there exists a factor A with k levels or groups. The sample size
for each group is ng, g = 1, . . . k. The total sample size is n = ∑k

g=1 ng.
Let yig denotes the datum for the ith individual in the gth group.
Assume that yig ∼ N(µg, σ2) where µg is the group mean of the gth
group. ANOVA usually concerns the overall test of equality of the
means across groups with

H0 : µ1 = µ2 = . . . = µk = µ

indicating that all the group means are the same vs.

H1 : for at least a pair of j and l; µj 6= µl ,
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or there exist at least two groups with different means.
One can also conduct a test on any contrast

H0 :
k

∑
g=1

cgµg = c0

where c0 is often 0 and ∑k
g=1 cg = 0. The alternative hypothesis can be

either two-sided or one-sided

H11 :
k

∑
g=1

cgµg 6= c0

or

H12 :
k

∑
g=1

cgµg > c0

or

H13 :
k

∑
g=1

cgµg < c0.

The hypotheses can be tested by framing the ANOVA as a linear
model

y = Xβ + ε

where y = (yig) is a vector containing the outcome from all k groups
and X is a design matrix. For one-way ANOVA, X is a matrix of 0 and
1. Specifically,

X =


11 0 . . . 0
0 12 . . . 0

0 0
. . . 0

0 0 . . . 1k


with 1g represents a ng × 1 column vector of ones. The regression
coefficient β is a vector of group means µg. Estimating the regression
model gives

b = β̂ = (X′X)−1X′y

σ̂2 = (y− Xb)′(y− Xb)/(n− k).

A general hypothesis can be formed by

H0 : Cβ = c0

where C is a K × k contrast matrix with rank(C) = K ≤ k. Given the
normality assumption, the statistic

F =
(Cb− c0)

′[C(X′X)−1C′]−1(Cb− c0)

(G− 1)σ̂2 (5.4.1)

follows an F distribution with degrees of freedom K and n− r where r is
the rank of X. If the F statistic is larger than the critical value FK,n−r,1−α,
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one would reject the null hypothesis H0. For one-way ANOVA, K =

k− 1 and r = k.
Under the alternative hypothesis, the statistic F in Equation 5.4.1

follows a non-central F distribution with the non-central parameter

λ = (Cb− c0)
′[C(X′X)−1C′]−1(Cb− c0)/σ2 = n f 2,

with f denoting the effect size. Power can be readily calculated using
the non-central F distribution. For one-way ANOVA, we have

π = 1− Fk−1,n−k,λ(F−1
k−1,n−k,1−α),

where F is the cumulative distribution function, F−1
k−1,n−k,1−α is the

critical value of an F distribution given the probability 1− α, and F
gives the probability for a given quantile.

Similarly, power for a given contrast can be obtained. For the contrast,
power can be calculated based on either a t test or an F test. Depending
on the alternative hypothesis, the power is

π =


1− F1,n−k,κ2(F−1

1,n−k,1−α) H11

1− tn−k,κ(t−1
n−k,1−α) H12

tn−k,κ(t−1
n−k,α) H13

where t is the cumulative distribution function for a t distribution.
The non-centrality parameter κ for the t distribution and κ2 for the F
distribution are calculated as

κ =
√

n(Cb− c0)
′
√
[C(X′X)−1C′]−1/σ2

e =
√

n f ,

with f denoting the effect size.

5.5 Exercises

1. A researcher plans to design a study with 4 groups: a memory inter-
vention, a reasoning intervention, a processing speed intervention,
and a control group. To decide the sample size, he has found the
following data in the literature. What would be the total sample
size needed for a balanced design to get a power 0.8 at the alpha
level 0.05 if assuming the population effect is the same as the sample
effect?

Memory Reasoning Speed Control
Mean 26 25.8 26.2 25.6
s.d. 5.5 5.4 5.3 5.7

Using the same information, what would be the required sample
sizes when the alpha level is set at 0.1 and 0.01, respectively?
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2. Using the same information in Exercise 1, generate a power curve
with the total sample size ranging from 100 to 2000 with an interval
of 100. From the power curve, approximately how large is a sample
size needed to get a power 0.9?

3. If the researcher is especially interested in the difference between the
processing speed group and the control group, what would be the
sample size required to detect the speed group has a higher score
than the control group?

4. If a researcher can collect more data from the control group with
the sample size ratio 1:1:1:3 for the four groups, what would be the
power for a total of 1,800 participants?

5. If a researcher can collect more data from the control group with the
sample size ratio 1:1:1:3 for the four groups, to get a power 0.8, how
many participants are needed?
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Two-way analysis of variance (two-way ANOVA) is a generalization
of one-way ANOVA where two main effects and their interaction effect
can be studied. More general k-way ANOVA can be defined in the
same way. The power analysis for ANOVA with more than one factor
can be similarly conducted as for the one-way ANOVA. In this chapter,
we show how to conduct power analysis for main effects as well as
interaction effects in two-way and three-way ANOVA.

6.1 How to Conduct Power Analysis for Two-way and
Three-way ANOVA

The primary software interface for power analysis for two-way, three-
way and more general k-way ANOVA is shown in Figure 6.1.1.. Within http://psychstat.org/kanova

the interface, a user can supply different parameter values and select
different options for power analysis. Among the five parameters, Num-
ber of groups, Total sample size, Effect size, Significance level, and Power,
one and only one can be left blank. To illustrate the meaning of the
parameter, consider a three-way ANOVA with three factors A, B, and
C. The number of levels (categories or groups) for the three factors is J,
K, and L, respectively. As an example, let J = 3, K = 2, and L = 4.

• The Number of groups is the total number of groups in the design
calculated by J × K × L. For the three-way ANOVA example, the
total number of groups is 3× 2× 4 = 24. For two-way ANOVA with
the first two factors only, the number of groups is 3× 2 = 6.

• The Sample size is the total number of participants from all groups.
The power calculation assumes the equal sample size for all groups.
The total sample size is the product of the number of groups and the
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Figure 6.1.1: Software interface of power
analysis for two-way and three-way
ANOVA

sample size for each group. For example, if 5 subjects are in each
of the 24 (= 3× 2× 4) groups, then the total sample size would be
5× 24 = 120.

Multiple sample sizes can be provided in two ways to calculate power
for each sample size. First, multiple sample sizes can be supplied
and separated by white spaces, e.g., 100 150 200 will calculate power
for the three sample sizes 100, 150 and 200. Second, a sequence
of sample sizes can be generated using the method s:e:i with s

denoting the starting sample size, e as the ending sample size, and
i as the interval. Note the values are separated by colon “:”. For
example, 100:150:10 will generate a sequence of sample sizes - 100
110 120 130 140 150. The default sample size, as shown in Figure
6.1.1, is 100.

• The power is calculated based on an F distribution which requires the
numerator and denominator degrees of freedom (df ). The Numerator
df depends on the effect to be analyzed and needs to be provided.
For the main effect, it is the number of levels - 1. For example, if
power is calculated for the main effect of A, then the numerator df is
J − 1 = 3− 1 = 2. For B and C, the df s are 1 and 3, respectively. For
the interaction effect, the numerator df is calculated as (J− 1)× (K−
1)× (L− 1) for the three-way interaction. For two-way interaction, it
is calculated the same way. For example, for the interaction between
A and B, the numerator df is (J − 1)× (K− 1). Using the example,
the numerator df for the three-way interaction of A, B, and C is
(3− 1)× (2− 1)× (4− 1) = 6. For the two-way interaction A by B,
B by C, and A by C, the numerator df s are 2, 3, and 6, respectively.
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• The Effect size1 specifies the population group difference. Multiple 1 More on effect size will be provided in
Section 6.3effect sizes or a sequence of effect sizes can also be supplied using

the same format as for sample size. By default, the value is 0.5.
Determining the effect size is critical but not trivial work. To help
a user to obtain effect sizes, a calculator has been developed for
two-way ANOVA and can be used by clicking the link “Calculator”.

• The Significance level2 for power calculation is needed but usually set 2 Type I error rate or alpha level

at the default 0.05.

• The Power specifies the desired statistical power.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided.

• A note (less than 200 characters) can be provided to provide basic
information on the analysis for future reference for registered users.

6.1.1 Examples

Example 6.1.1: Power for a main effect of
two-way ANOVA

A researcher is interested in understanding whether education and
gender are related to the amount of technical knowledge. In order to
find it out, he plans to collect data from three education level groups
and two gender groups. For each combination of education and gender
groups, he plans to recruit 20 students. Based on the literature, he
knows the effect size for the education factor is about 0.2. What would
be his power to find the significant education effect?

The input and output for calculating power for this study are given
in Figure 6.1.2. In the field of Number of groups, input 6 (= 3× 2), the
total number of groups; in the field of Sample size, input 120 (= 20× 6),
the total sample size of the 6 groups; in the field of Numerator df, input
2 (= 3− 1), the total number of education groups minus 1; and in
the field of Effect size, input 0.2, the expected effect size. The default
significance level 0.05 is used although one can change it to a different
value. The field for Power is left blank because it will be calculated.
A simple note “2-way ANOVA main effect” is also added in the Note
field. By clicking the “Calculate” button, the statistical power is given
in the output immediately. For the current design, the power is 0.4758.
Note that in the output, the denominator degrees of freedom (ddf) were
calculated and provided in the output.

Example 6.1.2: Power for the interaction
effect of two-way ANOVA

The researcher in Example 6.1.1 is also interested in the power to
detect the interaction effect with the effect size 0.4. The input and
output for calculating power for the interaction are given in Figure 6.1.3.
Note that the Sample size and the Number of groups are the same. For
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Figure 6.1.2: Input and output for calcu-
lating power for two-way ANOVA main
effect in Example 6.1.1

the Numerator df, it is also 2 but calculated as (3− 1)× (2− 1) = 2. The
power for the interaction effect is 0.9789 as shown in 6.1.3.

Example 6.1.3: Power for three-way inter-
action in three-way ANOVA

Another researcher believes that in addition to education and gen-
der, the geographical location is also related to technical knowledge.
Therefore, she plans to expand the study in Example 6.1.1 to collect
data from three locations: Eastern, Western and Central US. She is
particularly interested in the interaction among education, gender and
geographical location. If she found that the effect size for the three-way
interaction would be 0.3 based on the existing literature. What would
be her power if she keeps collecting data from 20 participants in each
group?

The input and output for this analysis are given in Figure 6.1.4. In
the field of Number of groups, input 18 (= 3× 2× 3), the total number
of groups; in the field of Sample size, input 360 (= 20× 18), the total
sample size of the 18 groups; in the field of Numerator df, input 4
[= (3− 1)× (2− 1)× (3− 1)]; and in the field of Effect size, input 0.3.
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Figure 6.1.3: Input and output for calcu-
lating power of two-way ANOVA inter-
action effect in Example 6.1.2

Based on the input, the obtained power is 0.9983.
As in one-way ANOVA, we can also obtain a power curve and

estimate the minimum detectable effect size. However, power analysis
for contrasts is not currently available in WebPower.

6.2 Using R for Power Analysis for Two-way and Three-
way ANOVA

The online power analysis is carried out using the R package WebPower
on a Web server. The package can be directly used within R for power
analysis for k-way ANOVA. Specifically, the function wp.kanova is used.
The basic usage of the function is provided below. n: sample size

ndf: numerator degrees of freedom
f: effect size

ng: number of groups
alpha: significance level
power: statistical power

wp.kanova(n = NULL, ndf = NULL, f = NULL, ng = NULL, alpha =

0.05, power = NULL)

For example, the R input and output for the examples discussed in
the previous section are given below.
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Figure 6.1.4: Input and output for calcu-
lating power of three-way interaction in
ANOVA in Example 6.1.3

> ## Main effect of two-way ANOVA

> wp.kanova(n=120, ndf=2, f=0.2, alph=0.05, ng=6)

Multiple way ANOVA analysis

n ndf ddf f ng alpha power

120 2 114 0.2 6 0.05 0.4758

NOTE: Sample size is the total sample size

URL: http://psychstat.org/kanova

>

> ## Interaction effect of two-way ANOVA

> wp.kanova(n=120, ndf=2, f=0.4, alph=0.05, ng=6)

Multiple way ANOVA analysis

n ndf ddf f ng alpha power

120 2 114 0.4 6 0.05 0.9789

NOTE: Sample size is the total sample size

URL: http://psychstat.org/kanova
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>

>

> ## Interaction effect of three-way ANOVA

> wp.kanova(n=360, ndf=4, f=0.3, alph=0.05, ng=18)

Multiple way ANOVA analysis

n ndf ddf f ng alpha power

360 4 342 0.3 18 0.05 0.9983

NOTE: Sample size is the total sample size

URL: http://psychstat.org/kanova

6.3 Effect Size for Two-way and Three-way ANOVA

We use the statistic f as the measure of effect size for two-way and
more generally k-way ANOVA as in Cohen (1988, p. 275). The f is the
ratio between the standard deviation of the effect to be tested σb (or
the standard deviation of the group means, or between-group standard
deviation) and the common standard deviation within the populations
(or the standard deviation within each group, or within-group standard
deviation) σw such that

f =
σb
σw

.

Given the two quantities σb and σw, the effect size can be determined.
Cohen defined the size of effect as: small 0.1, medium 0.25, and large
0.4. We show how to calculate effect sizes for two-way and three-way
ANOVA through examples.

6.3.1 Effect size for two-way ANOVA

To show how to calculate the effect sizes, more precisely sample effect
sizes, under different conditions, consider the example on the relation-
ship between education and geographical location and the amount of
technical knowledge. Suppose there are three education levels: below
high school (<HS), high school (HS), and above high school (>HS)
and there are also three geographical locations: Eastern, Western, and
Central United States. Furthermore, for each combination of levels for
the two factors, there are data from 5 participants as shown in Table
6.3.1.

Based on the raw data, we can calculate different quantities related to
the calculation of effect size. The algebraic expression for each quantity We intentionally ignore the difference be-

tween population and sample effect sizes
here.

is given in Table 6.3.2 (using the notation in Maxwell & Delaney, 2003).
If we know these quantities, there is no need for raw data for the
calculation of effect size. If they are the population values, population
effect sizes are obtained. Otherwise, sample effect sizes are calculated.
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Eastern Western Central
<HS HS >HS <HS HS >HS <HS HS >HS
14 15 12 10 12 10 8 9 6
17 11 10 16 14 3 10 6 10
10 12 10 19 10 6 12 7 8
13 10 9 20 11 8 14 12 9
12 9 11 19 13 2 11 11 7

Table 6.3.1: Example data for effect size
calculation for two-way ANOVA.

Quantity Expression
µjk = 1

njk
∑

njk
i=1 yijk

µ.. = 1
JK ∑J

j=1 ∑K
k=1 µjk

µj. = 1
K ∑K

k=1 µjk

µ.k = 1
J ∑J

j=1 µjk

αj = µj. − µ..

βk = µk. − µ..

(αβ)jk = µjk − (µ.. + αj + βk)

Table 6.3.2: Algebraic expression for
some quantities used in two-way
ANOVA

With real data, the notations have to be replaced by the sample ones.
Based on the data in Table 6.3.1, we get the following information in
Table 6.3.3.

Eastern Western Central Average (µj.) αj

<HS 13.2(2.6) 11.4(2.3) 10.4(1.1) 11.67 0.82
HS 16.8(4.1) 12(1.6) 5.8(3.3) 11.53 0.69

<HS 11(2.2) 9(2.5) 8(1.6) 9.33 -1.51
µ.k 13.67 10.8 8.07 10.84
βk 2.82 -0.04 -2.78

Table 6.3.3: Summary data for effect size
calculation. Numbers in the parentheses
are standard deviations.

To get the effect size, we first need to calculate σw. It can be calculated
as the square root of the average of the variances of all groups. In this
case, it would be

σw =

√
∑ s2

jk

JK
=

√
2.62 + 2.32 + . . . + 1.62

9
= 2.53

Now we move on to the calculation of σb. Suppose we are interested
in the main effect of geographical location. Then, we need to calculate
the variance for the factor of geographical location using the marginal
means. That is

σb =

√
∑ β2

k
3

=

√
1
3
[(13.67− 10.84)2 + (10.8− 10.84)2 + (8.07− 10.84)2] = 2.29

Together, this will give the effect size

f =
σb
σw

=
2.29
2.53

= 0.9.
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For the interaction effect, we calculate

(ab)jk = µjk − (µ.. + αj + βk)

and then the standard deviation as

σb =

√
∑(ab)2

jk

JK
.

In this example, σb = 1.58. Thus, the effect size is f = 1.58/2.53 =

.62.

6.3.2 Effect size calculator

The specification of the effect size can be assisted by an online calculator.
In the interface in Figure 6.1.1, clicking the link “Calculator” brings
up the effect size calculator. The calculator allows the calculation of http://psychstat.org/anovaeffect

effect sizes using three methods as shown in Figure 6.3.1. The first and
second methods assume a balanced design.

Method 1 allows a user to input marginal means and common
variance (σ2

w) to calculate the effect size of the two main effects. By
default, one can input data for three groups for each factor. However,
one can specify any number of groups for the two factors by inputting
them and clicking the “Update” button.

For example, to obtain the effect sizes for the data given in Table
6.3.3, the input for Number of groups for factor A and Number of groups
for factor B are both 3. The inputs for Factor A are the marginal means,
11.67, 11.53 and 9.33, the input for Factor B are 13.67, 10.8 and
8.07. The inputs for Error variance is 2.532 = 6.4. By clicking the
“Calculate” button, the effect sizes are presented at the bottom as in
Figure 6.3.2. In the output, the effect size for factor A is f = 0.4236, and
the effect size for factor B is f = 0.9038.

Method 2 allows a user to input cell means and common variance
(σ2

w) to calculate the effect sizes for Factor A, Factor B and the interaction
between A and B. Similarly, the default number of groups for both
factors are 3 but one can specify any number of groups by changing
the inputs and clicking the “Update” button.

For example, to obtain the effect sizes for the data given in Table
6.3.3, the input for Number of groups for factor A and Number of groups
for factor B are both 3. The input for A1 line is 13.2, 11.4 and 10.4,
the input for A2 line is 16.8, 12 and 5.8, the input for A3 line is
11, 9 and 8. The input for Common variance is 6.4. By clicking the
“Calculate” button, the effect sizes are presented at the bottom as in
Figure 6.3.3. In the output, the effect size for factor A is f = 0.4229,
the effect size for factor B is f = 0.9038, and the effect size for the
interaction term is f = 0.6246.
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Figure 6.3.1: The interface for effect size
calculation for two-way ANOVA
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Figure 6.3.2: Effect size calculation based
on the input of marginal means
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Figure 6.3.3: Effect size calculation based
on the input of cell means
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Example data:

y group

22.48831 1

15.48998 1

18.97749 1

16.32764 1

22.64907 1

19.14727 1

Method 3 allows a user to upload a set of data and calculates effect
sizes from data directly. Figure 8.3.4 shows the use of the data in Table
8.3.2 and the output of the effect sizes. Note that only registered users
can use this method to protect data privacy. In addition to the effect
sizes, this method also conducts a two-way ANOVA analysis based on
the data uploaded.

The data file has to be in plain text format where the first column
of the data is the outcome variable, and the second and third columns
are the two factors. If the first line of the data contains variable names, One such data set can be seen at

http://psychstat.org/2anovadata.then one can choose “With variable names” from the drop-down menu
of the Data field. In the output, one can obtain the estimated effect sizes
and the numerator degrees of freedom.

Figure 6.3.4: Effect size calculation for
two-way ANOVA based on an empirical
set of data

6.3.3 Effect size for three-way ANOVA

We now illustrate how to calculate the main and interaction effect sizes
for a three-way ANOVA. Suppose we have the data in Table 6.3.4. Note
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that in addition to the gender and education factors, we consider a
third factor – geographical location as in Example 6.3.4.

Eastern Western Central
<HS HS >HS <HS HS >HS <HS HS >HS

Male

14 15 12 10 12 10 8 9 6
17 11 10 16 14 3 10 6 10
10 12 10 19 10 6 12 7 8
13 10 9 20 11 8 14 12 9
12 9 11 19 13 2 11 11 7

Female

17 16 14 11 14 11 11 10 9
18 14 13 16 14 5 13 9 13
13 15 13 20 11 8 12 8 10
13 10 9 20 11 11 15 15 9
13 12 13 20 16 4 11 13 7

Table 6.3.4: Example data for effect size
calculation for a three-way ANOVA. The
data are measures of technical knowl-
edge.

To calculate the effect sizes, we need to calculate some summary
statistics as in the two-way ANOVA analysis. The expressions for the
statistics are given in Table 6.3.5.

Quantity Expression
µjkl = ∑

njkl
i=1 yijkl/njkl

µ... = ∑J
j=1 ∑K

k=1 ∑L
l=1 µjkl/(JKL)

µj.. = ∑K
k=1 ∑L

l=1 µjkl/(KL)
µ.k. = ∑J

j=1 ∑L
l=1 µjkl/(JL)

µ..l = ∑J
j=1 ∑K

k=1 µjkl/(JK)
µjk. = ∑L

l=1 µjkl/L
µ.kl = ∑J

j=1 µjkl/J
µj.l = ∑K

k=1 µjkl/K
αj = µj.. − µ...

βk = µ.k. − µ...

γl = µ..l − µ...

(αβ)jk = µjk. − (µ... + αj + βk)

(αγ)jl = µj.l − (µ... + αj + γl)

(βγ)kl = µ.kl − (µ... + βk + γl)

(αβγ)jkl = µjkl − [µ... + αj + βk + γl + (αβ)jk + (αγ)jl + (βγ)kl ]

Table 6.3.5: Algebraic expression for
statistics used in three-way ANOVA

Based on the example data, the different statistics can be calculated
as shown in Table 6.3.6. Again, we do not distinguish population and
sample here. For power analysis, population values should be assumed
although they can be hypothesized to equal the estimated value.

Main effect of education
Suppose we are interested in the effect size of the main effect of

education. First, we need to get the within group or common variance
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7 Table 6.3.6: Summary statistics. Gender
(j), Location (k), Education (l)

σ2
w, which is

σ2
w =

1
JKL

J

∑
j=1

K

∑
k=1

L

∑
l=1

σ2
jkl =

1
18

(5.4 + 4.2 + . . . + 6.8 + 3.8) = 5.37.

For the effect size of the main effect of education, we then need to
calculate σ2

b . This can be calculated using the marginal means for
education as

σ2
b =

1
L

L

∑
l=1

(µ..l−µ...)
2 =

1
3
[(14.3− 11.6)2 +(11.7− 11.6)2 +(9.0− 11.6)2] = 4.69.

Therefore, the effect size is

f =
σb
σw

=

√
4.69
5.47

= 0.9345.

Interaction effect between gender and location
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We can calculate the interaction between any two factors. For the
interaction for gender and location, we first need to calculate (αβ)jk.
Then, we have

σ2
b =

1
JK

J

∑
j=1

K

∑
k=1

[(αβ)jk]
2 = [(−.1)2 + 0.22 + 02 + .12 +(−.2)2 + 02]/6 = 0.0156.

Therefore, the effect size is

f =
σb
σw

=

√
0.0156

5.47
= 0.054.

Three-way interaction effect size
To get the three-way interaction effect size, we calculate σ2

b as

σ2
b =

1
JKL

J

∑
j=1

K

∑
k=1

L

∑
l=1

[(αβγ)jkl ]
2 =

1
18

[(−.07)2 + 02 + . . .+ .12 +(−.17)2] = 0.0148.

Therefore, the effect size is

f =
σb
σw

=

√
0.0148

5.47
= 0.0525.

6.4 Technical Details

The power analysis for two-way, three-way ANOVA as well as k-way
ANOVA uses the same method as for the one-way ANOVA discussed
in section 5.4.

6.5 Exercises

1. Using the information in Table 6.3.3, calculate the power for the
two main effects and one interaction effect. Find the sample size to
obtain a power 0.8.

2. Using the information in Table 6.3.6, calculate the power for the
three main effects and all the interaction effects. Find the sample
size to obtain a power 0.8.



7 Statistical Power Analysis for
One-way ANOVA with Binary
or Count Data Part of the material in this chapter is from
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Comparison of population means is one of the essential statistical
analyses in quantitative research (Moore et al., 2013). For comparing
means of three or more groups, analysis of variance (ANOVA) is most
frequently used (Howell, 2012). Typically, it is used on continuous
data and produces an F-statistic as the ratio of the between-group
variance to the within-group variance that follows an F-distribution.
To use the F-test for ANOVA, three assumptions must be satisfied.
They are independence and normality of observations, and equality
of variances across groups. In practice, studies with even continuous
data cannot always meet all three assumptions. For binary or count
data, the assumption of normality is apparently violated. Therefore,
it is improper to use classical ANOVA to compare means of binary or
count data. Furthermore, the corresponding power analysis is expected
to be problematic. To address this issue, Mai & Zhang (2017) intro-
duced analogous ANOVA tables with a closed-form likelihood ratio
test statistics for comparing means with binary and count data, and
developed the corresponding power analysis methods. In this chapter,
we use the methods developed by Mai & Zhang (2017) to conduct the
power analysis for binary and count data.

7.1 How to Conduct Power Analysis for One-way ANOVA
with Binary Data

Figure 7.1.1 displays the primary software interface for power analysis
for one-way ANOVA with binary data. Within the interface, a user
can supply different parameter values and select different options for



106 practical statistical power analysis

power analysis. Among the five parameters, Number of groups1, Sample 1 Also called number of levels

size, Effect size, Significance level, and Power, one and only one can be left
blank.

Figure 7.1.1: Software interface of power
analysis for one-way ANOVA with bi-
nary data.

• The Number of groups tells how many groups are used in the study
design.

• The Sample size is the total number of participants from all groups.
For example, if the sample size for each group is 25 for 4 groups,
the total sample size is 100. Multiple sample sizes can be provided
in two ways to calculate power for each sample size. First, multiple
sample sizes can be supplied and separated by white spaces, e.g.,
100 150 200 will calculate power for the three sample sizes 100, 150,
and 200. A sequence of sample sizes can also be generated using
the method s:e:i with s denoting the starting sample size, e as
the ending sample size, and i as the interval. Note that the values
are separated by colons. For example, 100:150:10 will generate a
sequence of sample sizes - 100 110 120 130 140 150. The default
sample size, as shown in Figure 7.1.1, is 100.

• The Effect size specifies the population group difference. Multiple
effect sizes or a sequence of effect sizes can also be supplied in the
same way as sample size. By default, the value is 0.5. Determining
the effect size is critical but not trivial work. To help a user obtain
effect sizes, a calculator has been developed and can be used by
clicking the link “Calculator”.

• The Significance level for power calculation is required but usually set
at the default 0.05.
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• The Power specifies the desired statistical power. The software cur-
rently can calculate power only for the overall effect.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided.

• A note (less than 200 characters) can also be used to provide basic
information on the analysis which will be saved for a registered user
for future reference.

7.1.1 Examples

Example 7.1.1: Calculate power given
sample size and effect size

A student hypothesizes that freshman, sophomore, junior and senior
college students have different proportions of passing a reading exam.
Based on his prior knowledge, he expects that the effect size is about
0.15. If he plans to check the success-failure records of the reading
exam with 25 students in each student group, what is the power for
him to find the significant difference among the four groups?

The input and output for calculating the power for this study are
given in Figure 7.1.2. In the field of Number of groups, input 4, the total
number of groups; in the field of Sample size, input 100, the total sample
size of the four groups; and in the field of Effect size, input 0.15, the
expected effect size. The default significance level 0.05 is used although
one can change it to a different value. The field for Power is left blank
because it is to be calculated. A simple note “Binary ANOVA” is also
added in the Note field. By clicking the “Calculate” button, we obtain
the power 0.5723.

Example 7.1.2: Power curveA power curve is a line plot of statistical power along with given
sample sizes. In Example 7.1.1, the power is 0.572 with the sample size
25 in each group. What is the power for a different sample size, say, 50
in each group? One can investigate the power of different sample sizes
and plot a power curve.

The input and output for calculating power for the study in Example
7.1.1 with a sequence of sample sizes from 100 to 200 (25 to 50 each
group) with an interval of 20 are given in Figure 7.1.3. Note that in the
Sample size field, the input is 100:200:20. The output lists the power for
each sample size from 100 to 200 with the interval 20. Especially, with
the sample size 180 (45 for each group), the power is about 0.845. As we
choose “Show power curve” from the Power curve drop-down menu in
the input, the power curve is displayed at the bottom of the output as
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Figure 7.1.2: Input and output for calcu-
lating power for one-way ANOVA with
binary data in Example 7.1.1.

shown in Figure 7.1.4. The power curve can be used for interpolation.
For example, to get a power 0.8, about 45 students are needed for each
group.

Example 7.1.3: Calculate sample size
given power and effect size

In practice, a power 0.8 is often desired. Given the power, the sample
size can also be calculated as shown in Figure 7.1.5. In this situation,
the Sample size field is left blank while in the Power field, the value 0.8
is input. In the output, we can see a sample size 162 is needed to obtain
a power 0.8, that is about 41 for each group.

Example 7.1.4: Minimum detectable ef-
fect size

One can also calculate the minimum effect to achieve a certain power
given a sample size. As shown in Figure 7.1.6, we leave the Effect size
field blank but provide information on Sample size (100) and Power (0.8).
In the output, we can see the obtained effect size is 0.1906. Therefore,
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Figure 7.1.3: Input and output for power
curve of one-way ANOVA with binary
data in Example 7.1.2.

to get a power 0.8 with the sample size 100, the population effect size
has to be at least 0.191.

7.2 Using R WebPower for One-way ANOVA with Bi-
nary Data

The online power analysis is carried out using the R package WebPower
on a Web server. The package can be directly used within R for power
analysis for one-way ANOVA with binary data. Specifically, the func-
tion wp.anova.binary is used. For example, the R input and output
for Example 7.1.2 are given below. When the sample size is provided,
the power will be calculated. The basic usage of the function is given
below.
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ANOVA with binary data

wp.anova.binary(k = NULL, n = NULL, V = NULL, alpha = 0.05, power

= NULL)

V: effect size
k: number of groups
n: sample size
alpha: significance level
power: statistical power

The examples in the previous section are included below.

> wp.anova.binary(k = 4, n = 100, V = 0.15, alpha = 0.05, power =

NULL)

Power for One-way ANOVA with Binary Data

k n V alpha power

4 100 0.15 0.05 .5723443

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovabinary

>## power curve

> powers <- wp.anova.binary(k = 4, n = seq(100,200,10), V = 0.15,

alpha = 0.05, power = NULL)

> powers

Power for One-way ANOVA with Binary Data
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Figure 7.1.5: Input and output for sample
size calculation of one-way ANOVA with
binary data in Example 7.1.3.

k n V alpha power

4 100 0.15 0.05 0.5723443

4 110 0.15 0.05 0.6179014

4 120 0.15 0.05 0.6601594

4 130 0.15 0.05 0.6990429

4 140 0.15 0.05 0.7345606

4 150 0.15 0.05 0.7667880

4 160 0.15 0.05 0.7958511

4 170 0.15 0.05 0.8219126

4 180 0.15 0.05 0.8451603

4 190 0.15 0.05 0.8657970

4 200 0.15 0.05 0.8840327

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovabinary

> plot(powers) ## generate power curve

Furthermore, we can also use R to estimate either the required sample
size or the minimum detectable effect size.
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Figure 7.1.6: Input and output for effect
size of one-way ANOVA with binary data
in Example 7.1.4.

> wp.anova.binary(k = 4, n = NULL, V = 0.15, alpha = 0.05, power

= 0.8)

Power for One-way ANOVA with Binary Data

k n V alpha power

4 161.5195 0.15 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovabinary

> wp.anova.binary(k = 4, n = 100, V = NULL, alpha = 0.05, power =

0.8)

Power for One-way ANOVA with Binary Data

k n V alpha power

4 100 0.1906373 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)
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WebPower URL: http://psychstat.org/anovabinary

7.3 Calculate Effect Size for One-way ANOVA with
Binary Data

For the purpose of power analysis, in this study, we use a standardized
effect-size measure like Cramer’s V, which is a member of the r family
effect size (Ellis, 2010). It is also an adjusted version of phi coefficient φ

that is frequently reported as the measure of effect size for a chi-square
test (Cohen, 1988; Ellis, 2010; Fleiss, 1994). It can be viewed as the
association between two variables as a percentage of the maximum
possible variation in one variable accounted for by the other variable.
In the case of one-way ANOVA, the two variables are the outcome
variable and the grouping variable. We define the effect size V for
one-way ANOVA with binary data as

V =

√√√√−2
k

∑
j=1

wj
{

µj(ln µ0 − ln µj) + (1− µj)
[
ln(1− µ0)− ln(1− µj)

]}
/(k− 1),

where wj = nj/n is the weight of the jth group, and n = ∑k
j nj is the

total size. The small, medium, and large effect size can be defined as
0.10, 0.30, and 0.50, borrowed from Cohen’s effect size benchmarks
(Cohen, 1988; Ellis, 2010).

7.3.1 Empirical effect size for one-way ANOVA with binary
data

For a sample of data Y = (yj), j = 1, 2, · · · , k, and yj = {yij}, i =

1, 2, · · · , nj, where nj is the sample size of the jth group, given the
group sample size nj and the group mean, as well as the proportion,

ȳj = ∑
nj
i yij/nj, the sample effect size V for one-way ANOVA with

binary data can be calculated as

V̂ =
√

D̃/n(k− 1)

=

√√√√−2
k

∑
j=1

nj
{

ȳj(ln ȳ− ln ȳj) + (1− ȳj)
[
ln(1− ȳ)− ln(1− ȳj)

]}
/[n(k− 1)]

with the grand mean obtained by ȳ = ∑k
j ȳjnj/n, the total sample size

n = ∑k
j nj, and the weight wj = nj/n. A special case is for the balanced

design where n1 = n2 = · · · = nk = n/k, which leads to wj = 1/k and
the grant mean ȳ = ∑k

j ȳj/k. Then
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V̂ =

√√√√−2
k

∑
j=1

{
ȳj(ln ȳ− ln ȳj) + (1− ȳj)

[
ln(1− ȳ)− ln(1− ȳj)

]}
/[(k− 1)k].

The effect size can be determined based on the literature or empirical
data. For example, one can obtain the information for each group in
ANOVA as shown below and then use the above formulas to calculate
the empirical effect size.

Group Group size Group Mean
1 n1 ȳ1

2 n2 ȳ2
...

...
...

k nk ȳk

To show how to calculate the effect sizes under different conditions,
consider the following examples. For binary outcome, suppose the data
are present as below.

Group Freshman Sophomore Junior Senior

Balanced
Size 25 25 25 25
Mean .24 .28 .44 .56

Unbalanced
Size 24 30 26 20
Mean .24 .28 .44 .56

Table 7.3.1: Example data for effect size
calculation: One-way ANOVA with bi-
nary data

Example 7.3.1: Empirical effect size of the
balanced design: One-way ANOVA with
binary data

For the balanced design, we first calculate the grant mean ȳ = (.24 +

.28 + .44 + .56)/4 = .38, and then the effect size is

V̂ =
{
− 2× {.24× (ln .38− ln .24) + (1− .24)× [ln(1− .38)− ln(1− .24)]

+ .28× (ln .38− ln .28) + (1− .28)× [ln(1− .38)− ln(1− .28)]

+ .44× (ln .38− ln .44) + (1− .44)× [ln(1− .38)− ln(1− .44)]

+ .56× (ln .38− ln .56) + (1− .56)× [ln(1− .38)− ln(1− .56)]}/[(4− 1)× 4]
} 1

2

=0.1530.

Example 7.3.2: Empirical effect size of the
unbalanced design: One-way ANOVA
with binary data

For the unbalanced design, we first calculate the total sample size
n = 24 + 30 + 26 + 20 = 100 and the grant mean ȳ = (.24× 24 + .32×
30 + .04× 26 + .28× 20)/100 = .368. Then the effect size is
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V̂ =
{
− 2/100× {24× .24× (ln .368− ln .24) + 24× (1− .24)× [ln(1− .368)− ln(1− .24)]

+ 20× .28× (ln .368− ln .28) + 20× (1− .28)× [ln(1− .368)− ln(1− .28)]

+ 26× .44× (ln .368− ln .44 + 26× (1− .44)× [ln(1− .368)− ln(1− .44)]

+ 20× .56× (ln .368− ln .56) + 20× (1− .56)× [ln(1− .368)− ln(1− .56)]}/(4− 1)
} 1

2

=0.1465.

7.3.2 Effect size calculator for one-way ANOVA with binary
data

The specification of the effect size can be assisted with an online cal-
culator. For binary data, in the interface in Figure 7.5.1, clicking the
link “Calculator” brings up the calculator. The calculator allows the
calculation of effect sizes using two methods.

Method 1 allows a user to input group sample sizes and means
(proportions) to calculate the effect size. By default, one can input data
for three groups. However, one can specify any number of groups by
inputting it in the Number of groups field and clicking the “Update”
button to show more groups. For example, to obtain the effect sizes
based on the unbalanced design in Table 7.3.1, the data can be input as
in Figure 7.3.1. At the bottom, the effect size is presented after clicking
the “Calculate” button.

Method 2 allows a user to upload a data file and calculates the effect
size based on the data directly. Figure 7.3.2 shows the use of the raw
data of Example 7.1.1 in Table 7.3.2 and the output of the effect size.
Note that for the purpose of data privacy protection, only registered
users are eligible for using this method. The data file has to be in
text format where the first column of the data is the outcome variable
named y and the second is the grouping variable named A. The first
line of the data should be the variable names.

7.4 Technical Details

Let Y be a zero-one response/outcome variable, and A be a categorical
variable of k levels. The null hypothesis H0 assumes that samples in
different groups are drawn from populations with equal proportions,
while the alternative hypothesis H1 supposes that at least two groups
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Figure 7.3.1: Interface for effect size cal-
culator of one-way ANOVA with binary
data.

are from populations with different proportions. Let µj be the popula-
tion proportion of the jth group, j = 1, 2, · · · , k. The null and alternative
hypotheses can be denoted as follows:

H0 : µ1 = µ2 = . . . = µk = µ0,
H1 : ∃ µg 6= µj, where g 6= j and g, j ∈ [1, 2, · · · , k].
Consider the corresponding models with H0 and H1. The null model

M0 is

E{Y|A = j} = µ0,

where Y|(A = j) ∼ Bernoulli(µ0), and the alternative model M1 is

E{Y|A = j} = µj,

where Y|(A = j) ∼ Bernoulli(µj).
Given the sample data Y = (yj), j = 1, 2, · · · , k, and yj = (yij),

i = 1, 2, · · · , nj, where nj is the sample size of the jth group, the log-
likelihood ratio of M0 and M1 is
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Figure 7.3.2: Input and output for ef-
fect size calculator of binary one-way
ANOVA with user-provided data.

ln
LM0

LM1

= ln
L (µ0|Y)

L (µ1, µ2, . . . µk|Y)

= ln
∏k

j=1 ∏
nj
i=1 µ

yij
0 (1− µ0)

1−yij

∏k
j=1 ∏

nj
i=1 µ

yij
j (1− µj)

1−yij

=
k

∑
j=1

nj

∑
i=1

{[
yij ln µ0 + (1− yij) ln(1− µ0)

]
−
[
yij ln µj + (1− yij) ln(1− µj)

]}
=

k

∑
j=1

nj

∑
i=1

{
yij(ln µ0 − ln µj) + (1− yij)

[
ln(1− µ0)− ln(1− µj)

]}
.

The log likelihood ratio test statistic

D = −2 ln
L (µ0|Y)

L (µ1, µ2, . . . , µk|Y)

= −2
k

∑
j=1

nj

∑
i=1

{
yij(ln µ0 − ln µj) + (1− yij)

[
ln(1− µ0)− ln(1− µj)

]}
,

follows a chi-square distribution χ2(d f ) , d f = k− 1, according to the
Wilks’ theorem (Wilks, 1938).

Let the grand sample proportion ȳ = ∑k
j ∑

nj
i yij/n be the estimate

of µ0, where n = ∑k
j nj is the total sample size, and let the group

proportion ȳj = ∑
nj
i yij/nj be the estimate of µj, j = 1, 2, · · · , k. For the

given sample of data Y we can calculate the test statistic as
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y A y A y A y A
0 1 0 2 0 3 1 4
0 1 0 2 1 3 0 4
0 1 1 2 1 3 1 4
0 1 0 2 0 3 1 4
1 1 0 2 1 3 0 4
0 1 0 2 1 3 1 4
0 1 1 2 0 3 1 4
0 1 0 2 0 3 0 4
1 1 0 2 0 3 0 4
0 1 0 2 0 3 1 4
0 1 0 2 0 3 0 4
0 1 0 2 0 3 0 4
1 1 1 2 0 3 1 4
0 1 0 2 0 3 1 4
1 1 0 2 0 3 1 4
0 1 0 2 1 3 1 4
0 1 1 2 1 3 0 4
0 1 1 2 1 3 1 4
0 1 0 2 1 3 1 4
1 1 0 2 0 3 0 4
0 1 0 2 1 3 1 4
0 1 1 2 1 3 0 4
1 1 0 2 0 3 0 4
0 1 0 2 0 3 1 4
0 1 1 2 1 3 0 4

Note. y is the success-failure records, A=1 is the freshman, A=2 is the
sophomore, A=3 is the junior, and A=4 is the senior.

Table 7.3.2: Raw data for effect size calcu-
lation for One-way ANOVA with binary
data

D̃ = −2 ln
L (ȳ|Y)

L (ȳ1, ȳ2, . . . , ȳk|Y)

= −2
k

∑
j=1

nj

∑
i=1

{
yij(ln ȳ− ln ȳj) + (1− yij)

[
ln(1− ȳ)− ln(1− ȳj)

]}
= −2

k

∑
j=1

nj
{

ȳj(ln ȳ− ln ȳj) + (1− ȳj)
[
ln(1− ȳ)− ln(1− ȳj)

]}
.

When the null hypothesis H0 is true, the test statistic D follows a central
chi-squared distribution χ2(d f ), where d f = k − 1 is the degree of
freedom. If D̃ is larger than the critical value C = χ2

1−α(d f ) at the alpha
level α, one would reject the null hypothesis H0. When the alternative
hypothesis H1 is true, the test statistic D approximately follows a non-
central chi-squared distribution χ2(d f , λ), where d f = k − 1 is the
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degrees of freedom and λ = n(k− 1)V2 is the non-centrality parameter.
Let Φχ2(d f ,λ)(x) be the cumulative distribution function of the non-
central chi-square distribution. Then the statistical power of the test
can be calculated as

power = Pr{D ≥ C|H1}
= Pr{χ2(d f , λ) ≥ C}
= 1−Φχ2(d f ,λ)(C)

= 1−Φχ2[(k−1),n(k−1)V2]

[
χ2

1−α(k− 1)
]

.

7.5 How to Conduct Power Analysis for One-way ANOVA
with Count Data

Figure 7.5.1 displayed the primary software interface for power analysis
for one-way ANOVA with count data. Within the interface, a user
can supply different parameter values and select different options for
power analysis. Among the five parameters, Number of groups, Sample
size, Effect size, Significance level, and Power, one and only one can be
left blank. The usage of the interface for count data is similar to that
for binary data. Some examples on how to use the interface are given
below.

7.5.1 Examples

Figure 7.5.1: Software interface of power
analysis for one-way ANOVA with count
data.
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Example 7.5.1: Calculate power given
sample size and effect size for one-way
ANOVA with count data

A local police officer in a downtown area hypothesizes that there are
different numbers of crimes in the four seasons: spring, summer, fall,
and winter. Based on his prior knowledge, he expects that the effect
size is about 0.148. If he plans to investigate the criminal records from
25 years, what is the power for him to find the significant difference
among the four seasons?

The input and output for calculating power for this study are given
in Figure 7.5.2. In the field of Number of groups, input 4, the total number
of groups; in the field of Sample size, input 100, the total sample size of
the four groups; and in the field of Effect size, input 0.148, the expected
effect size. The default significance level 0.05 is used although one can
change it to a different value. The field for Power is left blank because
it will be calculated. By clicking the “Calculate” button, the statistical
power is given in the output. For the current design, the power is
0.5597.

Figure 7.5.2: Input and output for calcu-
lating power for one-way ANOVA with
count data in Example 7.5.1.
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Example 7.5.2: Power curveA power curve is a line plot of the statistical power along with given
sample sizes. In Example 7.5.1, the power is 0.56 with the sample size
25 in each group. What is the power for a different sample size, say, 50
in each group? One can investigate the power of different sample sizes
and plot a power curve.

The input and output for calculating power for the study in Example
7.5.1 with a sequence of sample sizes from 100 to 200 (25 to 50 each
group) with an interval of 20 are given in Figure 7.5.3. Note that in the
Sample size field, the input is 100:200:20. In the output, the power for
each of the sample sizes is in the list. Especially, with the sample size
180 (the sample size is about 45 for each group), the power is about
0.8344. In the input, we also choose “Show power curve” in the Power
curve drop-down menu. In the output, the power curve as shown in
Figure 7.5.4 is displayed at the bottom of the output.

Example 7.5.3: Calculate sample size
given power and effect size

In practice, a power 0.8 is often desired. Given a power, the sample
size can also be calculated as shown in Figure 7.5.5. In this situation,
the Sample size field is left blank while in the Power field, the value 0.8
is provided. In the output, we can see a sample size 166 is needed to
obtain a power 0.8, that is about 42 for each group.

Example 7.5.4: Minimum detectable ef-
fect size

One can also calculate the minimum effect size to achieve a certain
power given a sample size. As shown in Figure 7.5.6, we leave the Effect
size field blank but provide input on Sample size (100) and Power (0.8).
In the output, we can see the estimated minimum detectable effect size
is 0.1906. This means that to get a power 0.8 with the sample size 100,
the population effect size has to be at least 0.1906.

7.6 Using R WebPower for One-way ANOVA with Count
Data

The online power analysis is carried out using the R package WebPower
on a Web server. The package can be directly used within R for power
analysis for one-way ANOVA with count data. Specifically, the function
wp.anova.count is used. For example, the R input and output for
Example 7.5.2 are given below. When the sample size is provided, the
power will be calculated. The basic usage of the function is given below.
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Figure 7.5.3: Input and output for power
curve of one-way ANOVA with count
data in Example 7.5.2.

wp.anova.count(k = NULL, n = NULL, V = NULL, alpha = 0.05, power

= NULL)

V: effect size
k: number of groups
n: sample size
alpha: significance level
power: statistical power

The examples in the previous section are included below.

> wp.anova.count(k = 4, n = 100, V = 0.148, alpha = 0.05, power =

NULL)

Power for One-way ANOVA with Count Data

k n V alpha power

4 100 0.148 0.05 0.5597441

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovacount
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Figure 7.5.4: Power curve of one-way
ANOVA with count data in Example
7.5.2.

>## power curve

> powers <- wp.anova.count(k = 4, n = seq(100,200,10), V = 0.148,

alpha = 0.05, power = NULL)

> powers

Power for One-way ANOVA with Count Data

k n V alpha power

4 100 0.148 0.05 0.5597441

4 110 0.148 0.05 0.6049618

4 120 0.148 0.05 0.6470911

4 130 0.148 0.05 0.6860351

4 140 0.148 0.05 0.7217782

4 150 0.148 0.05 0.7543699

4 160 0.148 0.05 0.7839101

4 170 0.148 0.05 0.8105368

4 180 0.148 0.05 0.8344142

4 190 0.148 0.05 0.8557241

4 200 0.148 0.05 0.8746580

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovacount
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Figure 7.5.5: Input and output for sample
size determination of one-way ANOVA
with count data in Example 7.5.3.

> plot(powers) ## generate power curve

Furthermore, we can also use R to estimate either the required sample
size or the minimum detectable effect size.

> wp.anova.count(k = 4, n = NULL, V = 0.148, alpha = 0.05, power

= 0.8)

Power for One-way ANOVA with Count Data

k n V alpha power

4 165.9143 0.148 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovacount

> wp.anova.count(k = 4, n = 100, V = NULL, alpha = 0.05, power =

0.8)

Power for One-way ANOVA with Count Data
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Figure 7.5.6: Input and output for effect
size calculation of one-way ANOVA with
count data in Example 7.5.4.

k n V alpha power

4 100 0.1906373 0.05 0.8

NOTE: n is the total sample size adding all groups (overall)

WebPower URL: http://psychstat.org/anovacount

7.7 Calculate Effect Size for One-way ANOVA with
Count Data

Similar to binary ANOVA analysis, we define the effect size V for
one-way ANOVA with count data as

V =

√√√√−2 ∗
k

∑
j=1

wj
[
µj(ln µ0 − ln µj) + (µj − µ0)

]
/(k− 1),

where wj = nj/n is the weight of the jth group, and n = ∑k
j nj is the

total size. The small, medium, and large effect size can be defined as



126 practical statistical power analysis

0.10, 0.30, and 0.50, borrowed from Cohen’s effect size benchmarks
(Cohen, 1988).

7.7.1 Sample effect size for one-way ANOVA with count data

For a sample of data Y = (yj), j = 1, 2, · · · , k, and yj = (yij), i =

1, 2, · · · , nj, where nj is the sample size of the jth group. Let the group

mean ȳj = ∑
nj
i yij/nj. The sample effect size V for one-way ANOVA

with count data can be calculated as

V̂ =

√√√√−2×
k

∑
j=1

wj
[
ȳj(ln ȳ− ln ȳj) + (ȳj − ȳ)

]
/(k− 1)

where ȳ = ∑k
j mjnj/n is the grand mean, n = ∑k

j nj is the total sample
size, and wj = nj/n is the weight.

The effect size can be determined based on the literature or empirical
data. For example, one can obtain the information for each group in
ANOVA as shown below and then use the above formulas to calculate
the sample effect size.

Group Group size Group Mean
1 n1 ȳ1

2 n2 ȳ2
...

...
...

k nk ȳk

We illustrate how to calculate the effect size using two examples with
the information given in Table 7.7.1.

Group Freshman Sophomore Junior Senior

Balanced
Group size 25 25 25 25
Group mean 3.48 4.24 3.12 3.00

Unbalanced
Group size 30 24 26 20
Group mean 3.48 4.24 3.12 3.00

Table 7.7.1: Example data for effect
size calculation: One-way ANOVA with
count data

Example 7.7.1: Sample effect size of the
balanced design for one-way ANOVA
with count data

For the balanced design, we first calculate the grand mean ȳ =

(3.48 + 4.24 + 3.12 + 3.00)/4 = 3.46, and then the effect size
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V̂ =
{
− 2× [3.48× (ln 3.46− ln 3.48) + (3.48− 3.46)

+ 4.24× (ln 3.46− ln 4.24) + (4.24− 3.46)

+ 3.12× (ln 3.46− ln 3.12) + (3.12− 3.46)

+ 3.00× (ln 3.46− ln 3.00) + (3.00− 3.46)]/[(4− 1)× 4]
} 1

2

=0.1480.

Example 7.7.2: Sample effect size of the
unbalanced design for one-way ANOVA
with count data

For the unbalanced design, we first calculate the total sample size
n = 30 + 24 + 26 + 20 = 100 and the grand mean ȳ = (3.48× 30 +

4.24× 24 + 3.12× 26 + 3.00× 20)/100 = 3.4728. Then the effect size is

V̂ =
{
− 2/100× [30× 3.48× (ln 3.47− ln 3.48) + 30× (3.48− 3.47)

+ 24× 4.24× (ln 3.47− ln 4.24) + 24× (4.24− 3.47)

+ 26× 3.12× (ln 3.47− ln 3.12) + 26× (3.12− 3.47)

+ 20× 3.00× (ln 3.47− ln 3.00) + 20× (3.00− 3.47)]/(4− 1)
} 1

2

=0.1427.

7.7.2 Effect size calculator for one-way ANOVA with count
data

Two ways can be used to calculate the sample effect size. Method 1
allows a user to input group sample sizes and means to calculate the
effect size. By default, one can input data for three groups. However,
one can specify any number of groups by specifying it in the Number
of groups field and clicking the “Update” button to show more groups.
For example, to obtain the effect sizes based on the unbalanced design
in Table 7.7.1, the data can be input as in Figure 7.7.2. At the bottom,
the effect size for the overall effect size is presented after clicking on
the “Calculate” button.

Method 2 allows a user to upload a set of data and calculates effect
sizes based on the data directly. Figure 7.7.2 shows the use of the raw
data of Example 7.5.1 in Table 7.7.2 and the output of the effect size.
Note that only registered users can use this method to protect data
privacy. The data file has to be in text format where the first column
of the data is the outcome variable and the second is the grouping
variable. The first line of the data should be the variable names.
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Figure 7.7.1: Input and output for ef-
fect size calculator with group size and
means.

7.8 Technical Details

Let Y be the type of data in which the observations can only take
non-negative integer values, and A be a categorical variable of k lev-
els. The null hypothesis H0 assumes that samples in different groups
are drawn from populations with equal means, while the alternative
hypothesis H1 assumes that at least two groups are from populations
with different means. Let µj be the population mean of the jth group,
j = 1, 2, · · · , k, and µ0 be the grant population mean. The null and
alternative hypotheses can be denoted as follows:

H0 : µ1 = µ2 = . . . = µk = µ0,
H1 : ∃ µg 6= µj, where g 6= j and g, j ∈ [1, 2, · · · , k].

Consider the corresponding models with H0 and H1. The null model
M0 is

E{Y|A = j} = µ0,

where Y|(A = j) ∼ Poisson(µ0), and the alternative model M1 is

E{Y|A = j} = µj,
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y A y A y A y A
7 1 6 2 1 3 6 4
4 1 1 2 3 3 1 4
6 1 5 2 5 3 1 4
1 1 3 2 0 3 0 4
1 1 3 2 3 3 4 4
3 1 5 2 2 3 5 4
4 1 7 2 5 3 3 4
5 1 4 2 2 3 5 4
0 1 9 2 4 3 3 4
6 1 4 2 5 3 4 4
7 1 1 2 3 3 1 4
0 1 5 2 4 3 2 4
2 1 5 2 2 3 0 4
4 1 4 2 1 3 1 4
3 1 3 2 3 3 4 4
3 1 4 2 4 3 5 4
4 1 4 2 4 3 3 4
1 1 3 2 4 3 4 4
3 1 5 2 7 3 1 4
5 1 4 2 4 3 3 4
5 1 5 2 1 3 4 4
3 1 2 2 2 3 6 4
5 1 3 2 4 3 2 4
3 1 5 2 3 3 4 4
2 1 6 2 2 3 3 4

Table 7.7.2: Raw data for effect size cal-
culation for one-way ANOVA with count
data

where Y|(A = j) ∼ Poisson(µj), j = 1, 2, · · · , k.
Given the sample data Y = (yj), where j = 1, 2, · · · , k, and yj = (yij),

i = 1, 2, · · · , nj, where nj is the sample size of the jth group, the log
likelihood ratio of M0 and M1 is
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Figure 7.7.2: Input and output for effect
size calculator with empirical data.

ln
LM0

LM1

= ln
L (µ0|Y)

L (µ1, µ2, . . . , µk|Y)

= ln
∏k

j=1 ∏
nj
i=1

(
µ

yij
0 e−µ0 /yij!

)
∏k

j=1 ∏
nj
i=1

(
µ

yij
j e−µj /yij!

)
= ln

∏k
j=1 ∏

nj
i=1

(
µ

yij
0 e−µ0

)
∏k

j=1 ∏
nj
i=1

(
µ

yij
j e−µj

)
=

k

∑
j=1

nj

∑
i=1

yij (ln µ0 − µ0)−
k

∑
j=1

nj

∑
i=1

yij
(
ln µj − µj

)
=

k

∑
j=1

nj

∑
i=1

[
yij(ln µ0 − ln µj) + (µj − µ0)

]
.

The log-likelihood ratio test statistic is

D = −2 ∗ ln
L (µ0|Y)

L (µ1, µ2, . . . , µk|Y)

= −2 ∗
k

∑
j=1

nj

∑
i=1

[
yij(ln µ0 − ln µj) + (µj − µ0)

]
,

which follows a chi-square distribution χ2(d f , λ) , d f = k − 1, and
λ ≥ 0, according to the Wilks’ theorem (Wilks, 1938).

Let the grand mean ȳ = ∑k
j ∑

nj
i yij/n be the estimate of µ0, where n =

∑k
j nj is the total sample size, and let the group mean ȳj = ∑

nj
i yij/nj

be the estimate of µj, j = 1, 2, · · · , k. For a given sample of data Y we
can calculate the test statistic as
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D̃ = −2 ∗ ln
L (ȳ|Y)

L (ȳ1, ȳ2, . . . , ȳk|Y)

= −2 ∗
k

∑
j=1

nj

∑
i=1

[
yij(ln ȳ− ln ȳj) + (ȳj − ȳ)

]
= −2 ∗

k

∑
j=1

nj
[
ȳj(ln ȳ− ln ȳj) + (ȳj − ȳ)

]
.

For one-way ANOVA with count data, we define the effect size as

V =

√√√√−2 ∗
k

∑
j=1

wj
[
µj(ln µ0 − ln µj) + (µj − µ0)

]
/(k− 1),

where wj = nj/n is the weight of the jth group.
When the null hypothesis H0 is true, the test statistic D follows a

chi-squared distribution χ2(d f ), where d f = k − 1 is the degrees of
freedom. If D̃ is larger than the critical value C = χ2

1−α(d f ) at the alpha
level α, one would reject the null hypothesis H0. When the alternative
hypothesis H1 is true, the test statistic D approximately follows a non-
central chi-squared distribution χ2(d f , λ), where d f = k − 1 is the
degree of freedom and λ = n(k− 1)V2 is the non-centrality parameter.
Let Φχ2(d f ,λ)(x) be the cumulative distribution function of the non-
central chi-square distribution. Then the statistical power of the test
can be calculated as

power = Pr{D ≥ C|H1}
= Pr{χ2(d f , λ) ≥ C}
= 1−Φχ2(d f ,λ)(C)

= 1−Φχ2[(k−1),n(k−1)V2]

[
χ2

1−α(k− 1)
]

.

7.9 Exercises

1. A researcher is planning to study the correct rate of classification
with 4 groups: a memory intervention, a reasoning intervention,
a processing speed intervention, and a control group. To decide
the sample size, he has found the following proportion data from
the literature. What would be the total sample size needed for a
balanced design to get a power 0.8 at the alpha level 0.05?

Memory Reasoning Speed Control
Mean .34 .40 .28 .33
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2. Using the same information in Exercise 1, what would be the re-
quired sample sizes when the alpha level is set at 0.1 and 0.01,
respectively?

3. Using the same information in Exercise 1, generate a power curve
with the total sample size ranging from 100 to 2000 with an interval
of 100. From the power curve, approximately how large a sample
size is needed to get a power 0.9?
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Repeated-measures ANOVA can be used to compare the means of
a sequence of measurements. In a repeated-measures design, every
subject is exposed to all treatment conditions, or more commonly,
measured across different time points. If the subjects belong to one
group, repeated-measures ANOVA can test the differences in the means
of each condition, namely, the within-subject effects. If subjects are
from more than one group, repeated-measures ANOVA can also test
the differences between groups as well as the interaction effect between
groups and measurements. The three tests use the F-statistics, where a
large value implies that differences exist among the means of interest.

8.1 How to Conduct Power Analysis for Repeated-Measures
ANOVA

The primary software interface for power analysis for repeated-measures
ANOVA is shown in Figure 8.1.1. Within the interface, a user can sup- http://psychstat.org/rmanova
ply different parameter values and select different options for power
analysis. Among the four parameters, Sample size, Effect size, Significance
level, and Power, one and only one can be left blank.

• The Number of groups tells how many groups, or how many levels
of the between-subjects factor are used in the study design. At least
one group is required.

• The Number of measurements tells how many repeated measurements,
or how many levels of the within-subject factor are considered in the
study design. At least two measurements are required, otherwise,
regular ANOVA can be applied.
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Figure 8.1.1: Software interface of power
analysis for repeated-measures ANOVA

• The Sample size is the total number of participants from all groups.
If the study design involves multiple groups of subjects, the equal
sample size for each group is assumed for power calculation. The
total sample size is then the product of the number of groups and the
sample size for each group. For example, if 10 subjects are in each of
the 3 groups, the total sample size is 3×10=30. Multiple total sample
sizes can be provided in two ways to calculate power and produce
a power curve. First, multiple sample sizes can be supplied and
separated by white spaces, e.g., 100 150 200 will calculate power
for the three sample sizes 100, 150 and 200. Second, a sequence
of sample sizes can be generated using the method s:e:i with s

denoting the starting sample size, e as the ending sample size, and i

as the interval. Note that the values are separated by colon “:”. For
example, 100:150:10 will generate a sequence of sample sizes: 100
110 120 130 140 150. The default sample size, as shown in Figure
8.1.1, is 100.

• The Effect size specifies the magnitude of the population effect. Mul-
tiple effect sizes or a sequence of effect sizes can be supplied using
the same way for sample size. By default, the value is 0.5. Deter-
mining the effect size is critical for power calculation. To help a user
calculate effect sizes, a calculator has been developed and can be
brought out by clicking the link “Calculator”. http://psychstat.org/rmanovaeffect

• The Nonsphericity correction specifies the degree of departure from
sphericity. Repeated-measures ANOVA makes the assumption of
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sphericity about the population variance-covariance structure of the
data. When this assumption is violated, a correction is required,
called the non-sphericity correction. One can obtain some guidance
on how to calculate this parameter by clicking the link “Nonspheric-
ity”. The default value is 1.0, implying that the sphericity assumption
is met.

• The Significance level, or Type I error rate, for power calculation is
needed and is usually set at the default level 0.05.

• The Power specifies the desired statistical power (usually set at 0.80)
or can be left bank for calculation.

• The software can calculate power for between-subjects effects, within-
subject effects and between-within interaction effects for repeated-
measures ANOVA. The default analysis is for between-subjects ef-
fects. One can change that through “Type of effect”.

• In addition to the required input, one can also request the plot of
a power curve if multiple sample sizes or effect sizes are provided.
A note (less than 200 characters) can also be provided to add basic
information on the analysis for future reference for registered users.

8.1.1 Examples

Example 8.1.1: Calculate power given
sample size and effect size

A researcher collects data from 30 toddlers by recording their age-
normed general cognitive score at 30, 36, 42, and 48 months of age. The
30 children are raised in families with different socioeconomic status
(low, middle, high). The researcher hypothesizes that the cognitive
abilities of children with different SES are different (through the quality
of powder the families can provide, the number of toys, etc.). Based on
his prior knowledge, he expects that the effect size is about 0.36 and
the nonsphericity correction is about 0.7. What is the power for this
researcher to find a significant difference in cognitive abilities among
children with different SES?

To compute power for this study, one should identify that age is
the within-subject factor, SES is the between-subjects factor and the
research question is a test of between-subjects effects. The input and
output for calculating the power for this study are given in Figure 8.1.2.
In the field of Number of groups, input 3, the total levels of SES; in the
field of Number of measurements, input 4, the total number of time points;
in the field of Sample size, input 30, the total sample size of all groups,
and therefore, 10 in each SES group; in the field of Effect size, input
0.36, the expected effect size; and in the field of Nonsphericity correction,
input 0.7, the assumed correction parameter. The default Significance
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level 0.05 is used although one can change it to a different value. The
field for Power is left blank because it will be calculated. In the field
of Type of effect, specify “between effect”. By clicking the “Calculate”
button, the statistical power is given in the output immediately. For the
current design, the power is 0.2674.

To compute power for the test of within-subject effects or interaction
effects, specify “within effect” or “interaction effect” in the field
of Type of effect. Alter the value in Effect size if necessary and keep all
other fields unchanged.

Figure 8.1.2: Input and output for cal-
culating power for repeated-measures
ANOVA in Example 8.1.1

Example 8.1.2: Power curveA power curve is a line plot of statistical power along with given
sample sizes. In Example 8.1.1, the power is only 0.2674 with the sample
size 10 in each group. What is the power for a different sample size, say,
40 in each group? One can investigate the power of different sample
sizes and plot a power curve.

The input and output for getting a power curve for the study in
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Example 8.1.1 are given in Figure 8.1.3. The sample size ranges from 30
to 150 (10 to 50 each group) with an interval of 30. In the Sample size
field, the input is 30:150:30. We also choose “Show power curve” from
the drop-down menu of Power curve. In the output, the power for each
sample size from 30 to 150 with the interval 30 is listed. Particularly,
with the total sample size 120 (40 for each group), the power is about
0.8389. The power curve is displayed at the bottom of the output (see
Figure 8.1.4) and can be downloaded as a PDF file.

Figure 8.1.3: Input and output for power
curve for repeated-measures ANOVA in
Example 8.1.2

Example 8.1.3: Calculate sample size
given power and effect size

Prior to data collection, a researcher might be interested to know
how large a sample size is needed to obtain a certain level of power. In
practice, a power of 0.8 is often desired. Given the power, the sample
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Figure 8.1.4: Input and output for power
curve for repeated-measures ANOVA in
Example 8.1.2

size can be calculated as shown in Figure 8.1.5. In this situation, the
Sample size field is left blank while the input for the Power field is 0.8.
In the output, we can see a total sample size 109.3 is needed to obtain
a power of 0.8. Since the sample size has to be an integer and also
divisible by 3, the minimum sample size required is 111, 37 for each
group.

Example 8.1.4: Calculate effect size or
significance level

A researcher may also be interested in knowing the magnitude of
the effect size that can be detected if he wants to maintain a certain
level of power. In Example 8.1.1, one can leave the field of Effect size
blank and input the desired power, often 0.8, in the field of Power as in
Figure 8.1.6. In the output, the effect size is 0.7168, meaning that given
the sample size and power, the minimum population effect size that
can be detected is 0.7168.

The software also provides the users the option to compute a signif-
icance level given sample size and power. It may be useful when the
control of type I error is less important than the control of power. In
Example 8.1.1, the input for Power is 0.8 and the field of Significance
level is left blank. In the output, the significance level is 0.4917.
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Figure 8.1.5: Input and output for sam-
ple size planning for repeated-measures
ANOVA in Example 8.1.3

8.2 Using R Package WebPower for Power Calcula-
tion

The power calculation for repeated-measures ANOVA is conducted n: sample size
ng: number of groups
nm: number of measurements
f: effect size
nscor: Nonsphericity correction coeffi-
cient
alpha: significance level
power: statistical power
type: type of analysis. 0, between-effect;
1, within-effect; 2, interaction effect

using the R function wp.rmanova function. The detail of the function is:

wp.rmanova(n = NULL, ng = NULL, nm=NULL, f = NULL, nscor=1, alpha

= 0.05, power = NULL, type=0)

The R input and output for the examples in the previous section are
given below.

> ## power given sample size and effect size

> wp.rmanova(n=30, ng=3, nm=4, f=.36, nscor=.7)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power

30 0.36 3 4 0.7 0.05 0.2674167
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Figure 8.1.6: Input and output for deter-
mining effect size for repeated-measures
ANOVA in Example 8.1.4

NOTE: Power analysis for between-effect test

WebPower URL: http://psychstat.org/rmanova

>

> ## power curve

> res <- wp.rmanova(n=seq(30, 150, 20), ng=3, nm=4, f=.36, nscor

=.7)

> res

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power

30 0.36 3 4 0.7 0.05 0.2674167

50 0.36 3 4 0.7 0.05 0.4386000

70 0.36 3 4 0.7 0.05 0.5894599

90 0.36 3 4 0.7 0.05 0.7110142
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110 0.36 3 4 0.7 0.05 0.8029337

130 0.36 3 4 0.7 0.05 0.8691834

150 0.36 3 4 0.7 0.05 0.9151497

NOTE: Power analysis for between-effect test

WebPower URL: http://psychstat.org/rmanova

>

> plot(res)

>

> ## sample size given power and effect size

> wp.rmanova(n=NULL, ng=3, nm=4, f=.36, power=.8, nscor=.7)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power

109.2546 0.36 3 4 0.7 0.05 0.8

NOTE: Power analysis for between-effect test

WebPower URL: http://psychstat.org/rmanova

>

> ## effect size given power and sample size

> wp.rmanova(n=30, ng=3, nm=4, f=NULL, power=.8, nscor=.7)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power

30 0.716768 3 4 0.7 0.05 0.8

NOTE: Power analysis for between-effect test

WebPower URL: http://psychstat.org/rmanova

8.3 Effect Size for Repeated-measures ANOVA

We use the statistic f as the measure of effect size for repeated-measures
ANOVA as in Cohen (1988, p. 275). The effect size can be calculated in
similar ways for two-way ANOVA. The f is the ratio of the standard
deviation σm of the effect to be tested and the within-cell standard
deviation σ involved, multiplied by a coefficient such that

f =
σm

σ
∗ C. (8.3.1)

The value of C is related to the effect to be calculated. Suppose J
is the number of groups, K is the number of measurements and ρ is
the correlation across repeated measurements. For between-subjects
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effects,

C =

√
K

1 + (K− 1)ρ
,

and for within-subject effects and between-within interaction effects,

C =

√
K

1− ρ
.

Given the three quantities σm, σ and C, the effect size can be deter-
mined as in Equation 8.3.1. Cohen defined the size of effect as: small
0.1, medium 0.25, and large 0.4 (Cohen, 1988).

The value of effect size can be obtained based on prior knowledge
or calculated from empirical data in the literature. For example, the
following cell means in Table 8.3.1 are obtained from an empirical
repeated-measures study:

Measures
1 2 · · · K Average

Group

1 µ11 µ12 · · · µ1K µ1·
2 µ21 µ22 · · · µ2K µ2·
...

...
...

. . .
...

...
J µJ1 µJ2 · · · µJK µJ·

Average µ·1 µ·2 · · · µ·K µ··

Table 8.3.1: Cell means from empirical
studies

Note that µjk, j = 1, 2, ..., J, k = 1, 2, ..., K, are the means of the
participants in group j at measurement k. The row means and column
means are listed in the last column and the last row, respectively. With
such information, the three quantities σm, σ, C, as well as the effect size
f can be calculated. Assuming equal sample size for all groups, the
between-group standard deviation σb can be calculated as

σb =

√√√√∑J
j=1(µj· − µ··)2

J
,

where

µ·· =
J

∑
j=1

µj·/J =
K

∑
k=1

µ·k/K

is the grand mean. Similarly, the standard deviation of the within-
subject effects σw can be calculated as:

σw =

√
∑K

k=1(µ·k − µ··)2

K
.
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As for the interaction effects between the within-subject factor and
the between-subjects factor, one first needs to compute the term µjk −
µj· − µ·k + µ·· for each cell, and then the standard deviation σi can be
calculated as:

σi =

√√√√∑J
j=1 ∑K

k=1(µjk − µj· − µ·k + µ··)2

JK
.

The standard deviation in the denominator of Equation 8.3.1 is the
common within-cell standard deviation σ, which can be calculated as:

σ =

√√√√∑J
j=1 ∑K

k=1 s2
jk

JK
,

where s2
jk denotes the variance among the participants within the corre-

sponding cell.
The correlation ρ is typically calculated as the average of the K(K−

1)/2 correlation coefficients among K repeated measurements. Given
these quantities, the effect size is ready to be calculated. One can
replace the numerator σm in 8.3.1 with σb, σw or σi depending on
specific research questions.

8.3.1 Examples for effect size calculation

To show how to calculate the effect sizes for different effects, consider
the following example. In a visual experiment, response time (measured
in seconds) to a certain stimulus was recorded. The participants were
from three groups (training groups 1, 2 and control group) with 30
participants in each group. Each participant was measured at 3 time
points.

The table below summarizes the cell means in a similar way to Table
8.3.1. Suppose in the population, the common standard deviation is
2.66. Furthermore, we assume that the correlation across measurements
is 0.1.

Time points
1 2 3 Average

Groups
Training 1 13.2 11.4 10.4 11.67
Training 2 16.8 12 5.8 11.53

Control 11 9 8 9.33
Average 13.67 10.8 8.07 10.84

Table 8.3.2: Example data for effect size
calculation

Example 8.3.1: Effect size for the between-
subjects factor

From the data, we have calculated the grand mean to be µ·· =

1/3× (11.67 + 11.53 + 9.33) = 10.84. The between group variance is
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σ2
b = ∑J

j=1(µj·− µ··)2/J = [(11.67− 10.84)2 + (11.53− 10.84)2 + (9.33−
10.84)2]/3 = 1.15, so the standard deviation is σb =

√
1.15 = 1.07. The

common within-cell standard deviation is σ = 2.66 and the correlation
across measurements is ρ = 0.1. For the between-subjects effect size,
the ratio of the two standard deviations needs to be multiplied by
C =

√
K/[1 + (K− 1)ρ] =

√
3/[1 + 2 ∗ 0.1] = 1.58. Therefore, the

effect size is f = (σb/σ) ∗ C = (1.07/2.66) ∗ 1.58 = 0.6370.

Example 8.3.2: Effect size for the within-
subject factor

From the data, the within-subject variance is σ2
w = ∑K

k=1(µ·k −
µ··)2/K = [(13.67− 10.84)2 + (10.8− 10.84)2 + (8.07− 10.84)2]/3 =

5.23, so the standard deviation is σw =
√

5.23 = 2.29. For the within-
subject effect size, the coefficient to be multiplied is C =

√
K/(1− ρ) =√

3/(1− 0.1) = 1.83. Given σ = 2.66 and ρ = 0.1, the effect size is
f = (σw/σ) ∗ C = (2.29/2.66) ∗ 1.83 = 1.5693.

Example 8.3.3: Effect size for the interac-
tion effects

From the data, the term µjk − µj· − µ·k + µ·· need to be first calcu-
lated for each cell. The variance for the interaction effects is σ2

i =

∑J
j=1 ∑K

k=1(µjk − µj· − µ·k + µ··)2/JK = [(−1.29)2 + (−0.22)2 + 1.512 +

2.442 + 0.512 + (−2.96)2 + (−1.16)2 + (−0.29)2 + 1.442)]/9 = 2.50 and
the standard deviation is then σi =

√
2.50 = 1.58. For the interaction

effect size, the coefficient C to be multiplied is also 1.83. Therefore, the
effect size is f = (σi/σ) ∗ C = (1.58/2.66) ∗ 1.83 = 1.0845.

8.3.2 Effect size calculator

The specification of the effect size can be assisted by an online calculator. http://psychstat.org/rmanovaeffect

Given the required parameters, the online calculator would produce
the effect size accordingly. In the interface in Figure 8.3.1, clicking the
link “Calculate” brings up the calculator. The calculator allows the
calculation of effect sizes using four methods.

Example 8.3.4: Calculate effect size with
method 1

Method 1 (Figure 8.3.1) calculates the effect size based on Cohen′s f .
Given the required input, the effect size is calculated and shown at
the bottom. The input for Proportion of variance explained is σ2

m/σ2 in
Equation 8.3.1, the input for number of measurements is K and the input
for correlation across measurements is ρ. By default, the values for the
three parameters are 0.1, 1 and 0.5, respectively. However, the user
can change the values in the boxes and click the “Calculate” button to
update the result.

Example 8.3.5: Calculate effect size with
method 2

Method 2 allows a user to input marginal means, error variance
and the correlation across measurements to calculate the effect size
of the two main effects. By default, one can input marginal means
for three groups with each group measured three times. However,
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Figure 8.3.1: Effect size calculator for
repeated-measures ANOVA

one can specify any number of groups and any number of levels of
repeated measurements by inputting them and clicking the “Update”
button. Note that when there is only one group, the calculator will only
produce the effect size for the within-subject factor.

For example, to obtain the effect sizes for the data given in Table
8.3.2, the input for Number of groups for factor A (between) and Number
of groups for factor B (within, time) are both 3. The inputs for Factor A
are the marginal means, 11.67, 11.53 and 9.33, and the inputs for
Factor B are 13.67, 10.8 and 8.07. The input for Error variance is
2.662 = 7.0756. By default, the input for Correlation across measurements
is 0.7, but one can change it to 0.1 in this example. By clicking the
“Calculate” button, the effect sizes are presented at the bottom as in
Figure 8.3.2. In the output, the effect size for factor A is f = 0.6370, and
the effect size for factor B is f = 1.5693.

Example 8.3.6: Calculate effect size with
method 3

Method 3 allows a user to input cell means, error variance and the
correlation across measurements to calculate three types of effect size.
Similarly, the default number of groups and the number of repeated
measurements are both three but one can specify any number of groups
by changing the inputs and clicking the “Update” button.

For example, to obtain the effect sizes for the data given in Table
8.3.2, the input for Number of groups for factor A (between) and Number
of groups for factor B (within, time) are both 3. The input for A1 line
are 13.2, 11.4 and 10.4, the input for A2 line are 16.8, 12 and 5.8,
and the input for A3 line are 11, 9 and 8. The input for Error variance
is 7.0756 and the input for Correlation across measurements is 0.1. By
clicking the “Calculate” button, the effect sizes are presented at the
bottom as in Figure 8.3.3. In the output, the effect size for factor A is
f = 0.6370, the effect size for factor B is f = 1.5693, and the effect size
for the interaction term is f = 1.0845.

Example 8.3.7: Calculate effect size with
method 4
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Figure 8.3.2: Effect size calculation based
on the input of marginal means

Method 4 allows a user to upload a data file and calculates effect sizes
from the data directly. Figure 8.3.4 shows the use of the data in Table
8.3.2 and the output of the effect sizes. Note that only registered users
can use this method to protect data privacy. In addition to the effect
sizes, this method also conducts repeated-measure ANOVA analysis
on the data uploaded.

The data file has to be in plain text format where the first column
of the data is an index (id variable) column, the second is the outcome
variable, the third is the measurement variable and the fourth is the
grouping variable. If the first line of the data contains variable names, One such data set can be seen at

http://psychstat.org/rmanovadata.then one can choose “With variable names” from the drop-down menu
of the Data tab. In the output, one can obtain the estimated correlation,
estimated variance, and the three effect sizes. Results for repeated-
measures ANOVA analysis and Mauchly’s Test for Sphericity are also
included. Note that the differences in effect size calculation are due to
the use of estimated correlation and within-cell variance in Method 4.
Given the same quantities, methods 2-4 should yield identical effect
size estimates.
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Figure 8.3.3: Effect size calculation based
on the input of cell means

8.4 Technical Details

The method is based on Muller et al.
(1992) as used in Stata StataCorp (2013)Repeated-measures designs are traditionally analyzed using ANOVA.

When all assumptions are met, repeated-measures ANOVA is the most
powerful method (O’Brien & Kaiser, 1985). The advantage is gained
by the sphericity assumption that all repeated measures have equal
variance and are equally correlated with each other. If the sphericity
assumption is violated, approximated power can also be calculated by
introducing the nonsphericity correction factor. WebPower primarily
focuses on adjusted univariate approach with correction for nonspheric-
ity.

Consider a two-way repeated-measures design where the between-
subjects factor A has J levels and the within-subject factor B has K
levels. A one-way repeated-measures design is a special case of two-
way repeated-measures when J = 1. If there is more than one group,
repeated-measures ANOVA assumes equal sample size n0 for each
group j, j = 1, . . . J. The total sample size is N = n0 ∗ J.

There are three effects of interest: the two main effects of between-
subject factor and within-subject factor, and the between-within interac-
tion effects. The univariate tests of the three effects are easily computed
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once the corresponding multivariate tests have been computed. In mul-
tivariate approach, repeated-measures ANOVA is formed as a general
linear multivariate model (GLMM):

Y = XB + E, (2)

where Y is a N× K matrix that contains the responses of N participants
at K measurements, X is a N × J design matrix of rank J, B is a J × K
matrix that contains all fixed effects and the E is a N × K error matrix
with each row iid:

rowi(E)
d
= NK(0, Σ).

In the previously discussed example of a visual experiment in section
8.3.1, the subjects are randomly assigned to J = 3 groups and each
subject is measured at K = 3 time points, the GLMM can be expressed
as:


y11 y12 y13

y21 y22 y23
...

...
...

yN1 yN2 yN3

 =


1 x11 x12

1 x21 x22
...

...
...

1 xN1 xN2


 µ1 µ2 µ3

α11 α12 α13

α21 α22 α23

+


ε
′
1

ε
′
2
...

ε
′
N

 .

Here yik represents the response time (in seconds) of the ith subject
measured at the kth time point. The first column in the design matrix
X are all 1s in order to estimate the mean effects. The remaining
columns of the design matrix are filled with dummy coding of the
between-subjects factor:

xi1 =


1 if subject i is in training group 1

0 if subject i is in training group 2

−1 if subject i is in control group

and

xi2 =


0 if subject i is in training group 1

1 if subject i is in training group 2

−1 if subject i is in control group

The elements in B matrix are all fixed effects and will be used to
form the hypotheses. The µk in the top row are the mean response time
of all subjects at time period k, k = 1, . . . 3. The αjk represents the effect
of jth group, j = 1, 2, at time period k, and α3k = −α1k − α2k. The ε

′
i

is a vector that contains the errors of the ith subject at the three time
periods.
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8.4.1 Hypothesis testing

The usual null hypothesis in the multivariate model involves the sec-
ondary parameter Θ = CBU:

H0 : Θ = 0

where Θ is a a × b matrix whose dimensions depends on the two
contrast matrices C and U. The matrix C is a a× J matrix of full row
rank and U is a K× b matrix of full column rank. Each row of C defines
a row of Θ and forms a contrast among the between-subjects effects.
Each column of U defines a column of Θ and forms a contrast among
the within-subject effects. Together, C and U can be used to test the
between-within interaction effects. The contrasts in C and U can be
arbitrarily changed to accommodate different hypotheses.

Tests of the hypothesis are typically based on the following estimates:

B̂ = (X′X)−1X′Y

Θ̂ = CB̂U

Ĥ = Θ̂
′ {

C(X′X)−1C
′}−1

Θ̂

and

Ê = U′Σ̂U(N − r)

with r = rank(X). Note that in GLMM, the design matrix X might not
be full rank. When rank(X) = r < min(N, J), the generalized inverse
(X′X)− is used. In any of the two following conditions: (1) Compound
symmetry holds and U is orthonormal matrix, or (2) Sphericity holds, Sphericity and Compound symmetry

will be explained and compared later.a usual test statistic for testing the null hypothesis is given by:

Fobs =
tr(Ĥ)/ab

tr(Ê)/b(N − r)
,

which follows an exact F distribution with degrees of freedom of ab and
b(N − r) under the null. If all assumptions are met except sphericity,
the distribution of the Fobs can be approximated by an adjusted F
distribution:

Fobs
d→ F[abε, b(N−r)ε].

The ε can take values between 1/b and 1. When sphericity holds,
ε = 1, if not, ε < 1, thus often referred to as nonspericity correction.
The correction protects the test from being too liberal by reducing the
numerator and denominator degrees of freedom and increasing the
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critical value. Two viable approaches for computing empirical ε are
suggested for researchers. One is proposed by Greenhouse & Geisser
(1959):

ε̂ =
tr2(Σ̂)

b tr(Σ̂2
)
=

[
Σb

k=1λk

]
2

b Σb
k=1λ2

k
, (3)

where λk, k = 1, 2, ..., b are the ordered eigenvalues of Σ̂. The other is
suggested by Huynh & Feldt (1976):

ε̃ =
Nbε̂− 2

b(N − r− bε̂)
, (4)

which is based on Greenhouse-Geisser’s ε̂.
Under the alternative hypothesis, the distribution of Fobs is approxi-

mated by a noncentral F distribution with d f of abε and b(N− r)ε with
the noncentrality parameter λ as:

λ = abεFobs = Nε f 2, (5)

with f denoting the effect size defined in Section 8.3.

8.4.2 Power computation

Given the relevant quantities, power can be readily calculated for a spe-
cific test by referring Fobs to the approximate non-central F distribution
under the alternative:

Fobs
d→ F[abε, b(N−r)ε, λ].

Specifically, the power (π) can be calculated as:

π = 1− Fabε,b(N−r)ε,λ(F−1
abε,b(N−r)ε,1−α

) (6)

where Fd f1, d f2, λ is the cumulative distribution function of a non-central
F and F−1

d f1, d f2, 1−α gives the critical value of an F distribution given the
tail probability 1− α.

8.4.3 Sphericity

One of the major distinctions between repeated-measures designs and
two-way factorial designs is that the repeated measures are often cor-
related. The measurements between subjects are still independent,
but the measurements within a subject are often correlated. There-
fore, to use the traditional univariate ANOVA approach to analyze
repeated-measures data, the data must meet a set of rather restrictive
assumptions. Besides the usual assumptions of random sampling from
the population, independence of subjects, and normality, repeated-
measures ANOVA assumes that the population covariance matrix has
a certain form.
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This form, which is called sphericity (or interchangeably, circularity),
is the condition where the variances of the differences between all
combinations of related treatments are equal. This means that if we take
any two treatment levels, and subtract scores for one level from scores
for another level, the resulting score must have the same population
variance for every pair of levels.

Violation of sphericity is when the variances of the differences be-
tween all pairs of related measures are not equal. Failure to meet the
assumption can cause the F-test too liberal and increase the Type I
error rate. A special case of this assumption is compound symmetry, a
less stringent one. How well this assumption is met can be formally
tested and if the violations of sphericity do occur, corrections have been
proposed.

8.4.4 Compound symmetry

One form of sphericity that is often discussed is called compound sym-
metry. A covariance matrix is defined to possess compound symmetry
if and only if all variances of the repeated measurements are equal to
each other and all the covariances are equal to each other. An equivalent
property is that every measure has the same variance and all pairwise
correlations are equal.

Note that when compound symmetry holds, the variances and co-
variances are constant regardless of the levels of the treatments. Thus,
the variances of the differences between all pairs of related treatments
are equal. Compound symmetry implies that the sphericity assumption
is satisfied. However, compound symmetry is a sufficient condition
but not a necessary condition because it is a special case of sphericity.
Though it is not necessary, the absence of compound symmetry does
indicate that sphericity is unlikely.

Matrices that satisfy compound symmetry are a subset of those that
satisfy sphericity. In practice, there is only one related situation in
which the distinction between sphericity and compound symmetry
is of potential importance. When the within-subject factor has only
two levels, there is just one difference between levels, so sphericity
is always satisfied. However, the population covariance matrix does
not necessarily possess compound symmetry because the variance at
level 1 may not equal the variance at level 2. Besides this condition,
it would be highly unusual (although theoretically possible) to find a
matrix that possesses sphericity but not compound symmetry. Thus,
for practical purposes, compound symmetry is always required for
repeated-measures ANOVA any time the within-subject factor has
more than two levels.
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8.4.5 Sphericity test and nonsphericity correction

In most psychological studies, one would expect measurements taken
prior to a treatment to correlate more highly with one another than with
those taken after the treatment. Even in cases with no active treatment,
one would expect successive or adjacent measurements to covary more
highly than non-adjacent measurements. Clearly, the assumption of
equal variances and equal pairwise correlations is often unrealistic and
sphericity is unlikely to be valid under such conditions.

Mauchly’s test of sphericity is a formal way of testing the sphericity
assumption (Mauchly, 1940). The test is conducted in the same way as
hypothesis testing. If the associated p-value is greater than or equal to
the significance level, we could conclude that the assumption has not
been violated. It is commonly used although O’Brien & Kaiser (1985)
noted that such test can be quite sensitive to violations of normality as
well as small sample size.

When the sphericity assumption is not met, a variety of procedures,
generally involving reduction of the degrees of freedom through multi-
plication by some value ε, have been suggested to protect against liberal
F test. The procedures differ in the way they compute the nonsphericity
correction factor ε, which can be seen as a measure of the degree of
sphericity in the population. An ε of 1 means sphericity is met. If
the assumption is not met, ε < 1, and smaller value means a further
departure from sphericity. The lowest value of ε is 1/(K− 1) where K
is the total number of measurements.

8.5 Exercises

1. A developmental psychologist is interested in the role of the sound This example is based on the exercise of
Maxwell & Delaney (2003, p. 491)of a mother’s heartbeat in the growth of newborn babies. Fourteen

babies were randomly selected and placed in the nursery. Specifically,
the first seven babies were exposed to a rhythmic heartbeat sound
piped in over the PA system. The other seven babies were placed in
an identical nursery, but without the heartbeat sound. Infants were
weighed at the same time of day for four consecutive days, yielding
the following data (weight is measured in ounces):

What is the sample effect size of the between-subjects factor (heart-
beat sound)? Assuming the population effect size is identical to the
sample effect size, what is the power for the psychologist to find a
significant difference in weights between infants exposed to mother’s
heartbeat sound and the infants who are not using the sample effect
size as the population effect size?
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Day 1 Day 2 Day 3 Day 4
1 96 98 103 104
2 116 116 118 119
3 102 102 101 101
4 112 115 116 118
5 108 110 112 115
6 92 95 96 98
7 120 121 121 123
8 112 111 111 109
9 95 96 98 99
10 114 112 110 109
11 99 100 99 98
12 124 125 127 126
13 100 98 95 94
14 106 107 106 107

2. Using the same information in Exercise 1, what is the sample effect
size of the within-subject factor? Assuming the population effect
size is the same as the sample effect size, what is the power for
the psychologist to find a significant difference in weights between
different days?

3. If the researcher can collect more data for both groups, what would
be the power for a test of within-subject effects with a total of 100
participants?

4. Using the same information in Exercise 1, generate a power curve
with the total sample size ranging from 20 to 200 with an interval
of 10 for the test of within-subject effects. From the power curve,
approximately how large is a sample size needed to get a power 0.9?

5. Using the same information in Exercise 1, if the researcher is inter-
ested in the interaction effects between the heartbeat sound and the
days, what would be the sample size required to detect a significant
difference with a power of 0.8 (Assume the population effect size the
same as the sample effect size)?

6. Using the same information in Exercise 1, what would be the re-
quired sample sizes when the alpha level is set at 0.1 and 0.01,
respectively?
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Figure 8.3.4: Effect size calculation based
on empirical data for repeated-measures
ANOVA



9 Statistical Power Analysis for
Linear Regression
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Regression is a statistical technique for examining the relationship
between one or more independent variables and one dependent variable.
The independent variables are often called predictors or covariates,
while the dependent variable is also called an outcome variable or
criterion. Although regression analysis is commonly used to test the
linear relationship between continuous predictors and outcome, it may
also be used to test the interaction between predictors that are either
continuous or categorical by utilizing dummy or contrast coding.

Regression provides an F-statistic that can be formulated using the
ratio between the variance of the outcome variable explained by the
predictors and the unexplained variance (Maxwell & Delaney, 2003):

F =
SSregression/d fregression

SSresidual/d fresidual
(9.0.1)

where SSregression is the sum of squares of the outcome variable that
is explained by the predictors and SSresidual is the sum of squares of
the residuals. F-statistic can also be expressed in terms of comparison
between Full and Reduced models (Maxwell & Delaney, 2003):

F =
(SSEReduced − SSEFull)/(d f EReduced − d f EFull)

(SSEFull/d f EFull)
(9.0.2)

where SSEReduced is the unexplained variation of the reduced model
and SSEFull is the unexplained variation of the full model. The reduced
model is the one that has more parameters constrained than the full
model. The reduced model is nested within the full model.

The second expression is very useful in testing the effect of a set of
independent variables on an outcome variable controlling for the other
variables in the model. The effect of a set of independent variables given
the controlling variables can be expressed as the difference between the
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full model and the reduced model. Here, the reduced model consists
of only the outcome variable and the controlling variables, while the
full model also includes the independent variables. In other words,
the parameters of the independent variables of interest in the reduced
model are constrained to be zero, while in the full model, they are
freely estimated.

9.1 How to Conduct Power Analysis for Linear Re-
gression

The primary software interface for power analysis for linear regression
analysis is shown in Figure 9.1.1. There are several parameters in
the interface, namely Sample size, Number of predictors of the full model,
Number of predictors of the reduced model, Effect size, Significance level, and
Power. Only one field of Sample size, Effect size, or Power can be left
blank for each analysis depending on the interest of analysis.

Figure 9.1.1: Software interface for power
analysis for linear regression

• The Sample size is the number of participants in the study. Multiple
sample sizes can be provided to calculate power corresponding to
each of them. Two ways of inputting multiple sample sizes can be
used. First, multiple sample sizes can be typed, separated by white
space, e.g. 100 150 200, which will calculate power for three sample
sizes 100, 150 and 200. Second, a sequence of sample sizes can be
generated using the command s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. For
example, 100:150:10 will generate a sequence of sample sizes of
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100, 110, 120, 130, 140, and 150. The command will provide the
same result as inputting 100 110 120 130 140 150 but in a more
convenient way. The default sample size, as shown in Figure 9.1.1, is
100.

• The Number of predictors for both the full model and the reduced
model is needed. By default, the number of predictors for the
reduced model is 0.

• The Effect size specifies the size of the relationship between the
predictors and the criterion in term of f 2. Multiple effect sizes or a
sequence of effect sizes can also be supplied using the same method
as for the Sample size. The default value for the Effect size is .15.

• The Significance level is the type I error rate that will be used to test
the null hypothesis. Its default value is set to .05.

• Power specifies the desired statistical power.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided. A
note that is less than 200 characters can also be provided as the basic
information on the analysis for the future reference for registered
users.

9.1.1 Examples

Example 9.1.1: Calculate power given
sample size and effect size

A researcher wants to examine the effect of intelligence, hours of
study at home and parental support on students’ achievement. She
hypothesizes that at least one of the three predictors have a significant
relationship with students’ achievement. The type I error rate that she
allows to test the hypothesis is .05. The expected effect size is .10 based
on her literature review. She would like to know the power of the
analysis if she collects data from 100 students.

The input and output for calculating power for this study are given
in Figure 9.1.2. In the field of Sample size, input 100, the number of
students in the study; in the field of Number of predictors, input 3 for the
full model and 0 for the reduced model; and in the field of Effect size,
input 0.10, the expected effect size. The significance level is 0.05. The
field for Power is left blank because it will be calculated. By clicking the
“Calculate” button, the statistical power is given in the output. For the
current analysis, the power is 0.742.

Example 9.1.2: Power curveIf a researcher needs to look at the power of more than one sample
size to make a decision, he or she may consult a power curve. For exam-
ple, if the researcher in Example 9.1.1 is also interested in examining the
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Figure 9.1.2: Input and output for calcu-
lating power for regression in Example
9.1.1

power of the analysis across sample sizes ranging from 50 to 300 with
an interval of 50, she can investigate the power of the desired sample
sizes and plot a power curve. The input and output for calculating
power and producing the power curve for this purpose can be seen in
Figure 9.1.3.

Note that in the Sample size field, the input is 50:300:50. In the
output, the power for each sample size from 50 to 300 with the interval
50 is listed. The researcher can see that, for example, the power of
the analysis by using only 50 respondents is .4078, while using 300
respondents the power will increase to .9981.

We may ask the software to show a power curve by choosing “Show
power curve” in the drop-down menu of Power curve. The power curve is
displayed in Figure 9.1.4. The power curve can be used for interpolation.
For example, to obtain a power of .8, the researcher will need about 120
respondents. She can also see that adding more respondents will not
increase the power of the analysis substantially after the sample size
reaches 150.

Example 9.1.3: Calculate sample size
given power and effect size
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Figure 9.1.3: Input and output for calcu-
lating power and producing power curve
for regression in Example 9.1.2

One can also obtain the sample size given the desired power. In this
case, we left the Sample size field blank, and input .8 in the Power field
as shown in Figure 9.1.5. We can see that, in the output, the sample
size needed to obtain the power of .8 is 113.

9.2 Using R Package WebPower for Power Analysis
for Linear Regression

The power calculation for the linear regression is conducted using the
R function wp.regression. The detail of the function is: n: sample size

p1: number of predictors in the full
model
p2: number of predictors in the reduced
model, 0 by default
f2: effect size
alpha: significance level
power: statistical power

wp.regression(n = NULL, p1 = NULL, p2 = 0, f2 = NULL, alpha =

0.05, power = NULL)

The R input and output for some examples discussed earlier are



160 practical statistical power analysis

●

●

●

●

● ●

50 100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Sample size

P
ow

er
Figure 9.1.4: Power curve for a linear
regression analysis in Example 9.1.2

given below.

> ## calculate power given sample size and effect size

> wp.regression(n=100, p1=3, f2=.1)

Multiple regression power calculation

n p1 p2 f2 alpha power

100 3 0 0.1 0.05 0.7420463

WebPower URL: http://psychstat.org/regression

>

> ## power curve

> res <- wp.regression(n=seq(50, 300, 50), p1=3, f2=.1)

> res

Multiple regression power calculation

n p1 p2 f2 alpha power

50 3 0 0.1 0.05 0.4077879

100 3 0 0.1 0.05 0.7420463

150 3 0 0.1 0.05 0.9092082

200 3 0 0.1 0.05 0.9724593

250 3 0 0.1 0.05 0.9925216
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Figure 9.1.5: Input and output for calcu-
lating sample size for regression in Exam-
ple 9.1.3

300 3 0 0.1 0.05 0.9981375

WebPower URL: http://psychstat.org/regression

> plot(res) ## generate power curve

>

> ## sample size given effect size, sample size, power

> wp.regression(n=NULL, p1=3, f2=.1, power=0.8)

Multiple regression power calculation

n p1 p2 f2 alpha power

113.0103 3 0 0.1 0.05 0.8

WebPower URL: http://psychstat.org/regression

>

> ## calculate power given sample size and effect size and

controling two predictors

> wp.regression(n=100, p1=3, p2=2, f2=.1429)
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Multiple regression power calculation

n p1 p2 f2 alpha power

100 3 2 0.1429 0.05 0.9594695

WebPower URL: http://psychstat.org/regression

9.3 Effect Size for Linear Regression

We use the effect size measure f 2 proposed by Cohen (1988, p.410) as
the measure of the regression effect size. Cohen discussed the effect
size in three different cases, which actually can be generalized using
the idea of a full model and a reduced model as shown by Maxwell &
Delaney (2003). The f 2 is defined as

f 2 =
R2

Full − R2
Reduced

1− R2
Full

,

where R2
Full and R2

Reduced are R-squared for the full and reduced models
respectively. Cohen (1988) suggested that f 2 values of 0.02, 0.15, and
0.35 represent small, medium, and large effect sizes.

Example 9.3.1: Effect size of overall test
of regression coefficients

Suppose that a researcher wants to examine the effect of marital sta-
tus, self-esteem, and social support on depression. From the literature,
he concludes that the three variables can explain a small portion of the
variance in depression (R2 = .0196). What is the effect size in term of
f 2?

This example is from the Case 0 in Cohen (1988, p.409), which is the
most common case in research involving regression. In this case, the
reduced model does not contain any predictor, while the full model
contains all three predictors under investigation. The R2 of the full
model is .0196, while the R2 of the reduced model is 0. Therefore, the
effect size f 2 is

f 2 =
R2

Full − R2
Reduced

1− R2
Full

=
0.0196− 0
1− 0.0196

= .0199 ≈ 0.02.

We can also use WebPower to calculate f 2 for this example. In the
interface in Figure 9.1.1, first, we clicked on “Show” button after the
Effect Size field, to expand the effect size calculation window, which
is shown in Figure 9.3.1. We typed 0.0196 in the R-squared field in
the Full model box. We left the R-squared in the Reduced Model to be
zero. After clicking the “Calculate” button, the effect size calculation
window disappeared and the effect size, 0.02, was filled in the Effect
size field as in Figure 9.3.1.

Example 9.3.2: Calculating the effect size
for a subset of predictors in regression
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Figure 9.3.1: Input for calculating the ef-
fect size for regression in Example 9.3.1

A researcher is planning to study the effect of parental involvement
on students’ achievement. She realizes that some demographic vari-
ables also correlate with students’ achievement. Therefore, she wants
to control these variables out of the effect of parental involvement
on students’ academic achievement. She chooses two variables that
have shown significant relationship with students’ achievement from
previous studies: family income and parents’ education. She expects
the effect of parental involvement together with the two variables on
students’ achievement to be medium (R2 = .16), while the effect of the
two demographic variables alone on students’ achievement to be small
(R2 = .04). What is the effect size of parental involvement on students’
achievement controlling for family income and parents’ education?

This problem is from the example in Case 1 in Cohen (1988, p.409).
In this case, the reduced model contains two control variables, family
income, and parents’ education, while the full model contains all three
variables. Then R2

Full = .16 and R2
Reduced = 0.04. Therefore,

f 2 =
R2

Full − R2
Reduced

1− R2
Full

=
0.16− 0.04

1− 0.16
= .143.

WebPower can be similarly used to get the effect size in this example.
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9.4 Technical Details

Let yi denote the measurement of a dependent variable for the ith
individual, xij denote the measurement of the jth independent variable
for the ith individual, and β j denote the coefficient of the effect of the
jth independent variable on the dependent variable. The regression
model can be expressed as follows:

yi = β0 +
p

∑
j=1

β jxij + ei

or in the matrix form as:

y = Xβ + e

where y denotes an n× 1 vector of the dependent variable for n indi-
viduals, X denotes a n× (p + 1) matrix of p independent variables and
a column of 1, and e denotes an n× 1 vector of residuals.

The hypothesis test in regression can be considered as a tool for
choosing between a reduced model and the associated full model
(Rencher & Schaalje, 2008). In the case of the omnibus test, the null
hypothesis states that all parameters except for the intercept are zero:

H0 : β1 = β2 = · · · = βp = 0.

The alternative hypothesis states that at least one of the parameters is
not equal to zero:

H1 : ∃j; β j 6= 0, j = 1, 2, 3, . . . , p.

Estimating the model gives

β̂ = (X′X)−1X′y,

σ̂2 = (y−Xβ̂)′(y−Xβ̂)/n− p− 1.

An F statistic can be obtained to test H0 : β1 = β2 = · · · = βp = 0,

F =
SSR/p

SSE/(n− p− 1)

where

SSR = β̂′X
′
y− nȳ2,

SSE = y′y−β̂
′
X′y.

The F statistic follows an F distribution with degrees of freedom u = p
and v = n− p− 1 if the null hypothesis is true. If it is larger than the
critical value F1−α, one would reject the null hypothesis.
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Under the alternative hypothesis, the statistic follows a non-central
F distribution with the non-central parameter (Cohen, 1988, p.414):

λ = (u + v + 1) f 2 = n f 2.

More generally, we can test whether a set of regression coefficients are
equal to 0. Then the F statistic is

F =
(SSEReduced − SSEFull)/(d f EReduced − d f EFull )

(SSEFull/d fEFull )
(9.4.1)

and the non-central parameter is

λ = (u + v + 1) f 2 = (d fEFull + d fEReduced + 1) f 2

where v = d fEFull = n − p − 1 and u = d fEReduced = p − p∗ with p∗

denoting the number of control variables or the number of variables
in the reduced model. With the non-central parameter, the power is
obtained as

π = 1− Fu,v,λ(F−1
u,v,1−α).

9.5 Exercises

1. A study will be conducted to investigate the effect of internal mo-
tivation on student achievement controlling for intelligence, family
income, and parental involvement. From the literature review, the ef-
fect of internal motivation together with the controlling variables, are
expected to be medium to high (R2=0.5), while the effect of the three
controlling variables together on achievement is small (R2=0.14).
How many participants should this study recruit if we want to have
a power 0.8 to reject the null hypothesis with the α level 0.05? Make
a power curve to show the power of the analysis involving sample
size from 100 to 1000 (you can choose your own interval).

2. A researcher plans to conduct a study examining the effect of sleep-
ing hours on people’s well being. She also includes 2 other covariates
of psychological well being in the study: years of education and self-
esteem. The effect of sleeping hours, together with the other two
variables, on well being is expected to be moderate (R2=.39), while
from the literature it is known that the effect of years in education
and self-esteem together on psychological well being is also medium
(R2=0.3). Due to budget restriction, she can only recruit 50 partici-
pants for her study. Please help her calculate the power for her study.
Should she add more participants in your opinion? Why?
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Psychological Sciences
University of California, Merced

Logistic regression is a type of generalized linear models widely
used to model the association between a binary outcome variable
and predictors. Maximum likelihood estimation methods can be used
to obtain model parameter estimates of a logistic regression model.
To test the significance of the effect of a predictor, the Wald test is
commonly used. A Wald test is a statistical hypothesis test in which a
vector of parameter estimates is compared against the expected means
under the null hypothesis and weighted by the precision matrix. The
power analysis method in Demidenko (2007) is used in WebPower. To
compute the standard errors of parameter estimates for power analysis,
the distributions of the predictors are required under the population
level, for which the WebPower provides options including the widely
used distributions such as Bernoulli, exponential, lognormal, normal,
Poisson, and uniform distributions.

10.1 How to Conduct Power Analysis for Logistic Re-
gression

Power analysis for logistic regression can be conducted by using the
online software WebPower with the interface shown in Figure 10.1.1. http://psychstat.org/logistic

To conduct a power analysis, one needs to specify Prob(Y = 1|X = 0)
– the probability of Y = 1 when X = 0, Prob(Y = 1|X = 1) – the
probability of Y = 1 when X = 1, and the distribution of the predictor,
which are used to compute the population regression coefficients and
standard errors of the estimated regression coefficients. Through this
interface, one can compute either Sample size, Power, or Significance level
with any two of them known.

• Sample size represents the number of observations in the study. To
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Figure 10.1.1: Software interface of power
analysis for simple logistic regression
modeling

compute power, sample size needs to be specified before the analysis.
There are two ways to input the sample size. One is to input one
sample size each time and compute a power. The other is to input
multiple sample sizes, and output multiple power values simultane-
ously. To input multiple sample sizes, users can either separate the
multiple sample sizes by white spaces (e.g., 100 150 200 ) or use the
method s:e:i with s denoting the starting sample size, e as ending
sample size, and i as the interval. For example, 100:150:10 will
generate a sequence 100 110 120 130 140 150. A default sample
size 100 is filled in the interface as shown in Figure 10.1.1, which can
be replaced by users.

• Prob(Y = 1|X = 0) is the probability of observing 1 for the out-
come variable when the predictor X = 0, from which the intercept
parameter can be computed.

• Prob(Y = 1|X = 1) is the probability of observing 1 for the outcome
variable when the predictor X = 1. The regression coefficient of
the predictor X can be computed from Prob(Y = 1|X = 0) and
Prob(Y = 1|X = 1).

• Distribution of X specifies the population distribution of the pre-
dictor. Six options are provided: Bernoulli(π), Exponential(λ),
lognormal(µ, σ), normal(µ, σ), Poisson(λ), and uniform[L, R]. Through
Parameter of X Distribution, one can input the values of the parame-
ters of the distribution of the predictor. For the distributions with
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multiple parameters, for example, lognormal, normal, and uniform
distributions, the values of parameters are specified in the order as
they appear in the usual way and separated by white spaces. For
instance, for the Parameter of X Distribution, 0.5 1.2 are filled in and
separated by a white space. It means µ = 0.2, σ = 1.2 if the predictor
follows a lognormal/normal distribution, and L = 0.5, R = 1.2 if the
predictor follows a uniform distribution.

• The Significance level (Type I error rate) for power calculation is
needed (default 0.05).

• Alternative Hypothesis tells the type of the alternative hypothesis. It is
either “Two-sided” (default), “greater” or “less”.

• The Power specifies the statistical power of the analysis. It is left
empty if the power is going to be computed in the analysis (then the
sample size must be specified), or is specified a priori number (e.g.,
0.80) to compute the sample size.

• Power curve can be plotted if multiple sample sizes are provided and
“Show power curve” is set.

10.1.1 Examples

Example 10.1.1: Compute statistical
power given the sample size

Researchers are interested in the association between GPA, which is
assumed to follow a normal distribution N(0, 1) after standardization,
and marijuana use, whether a participant has used marijuana or not
before. For this study, the data could be analyzed by logistic regression
for its outcome variable is binary. If they already know that in the
population, students with standardized GPA scores 0 and 1 are expected
to use marijuana with probabilities 0.15 and 0.10, respectively. Then
what is the power to detect the effect of GPA on marijuana use in a
study with 200 participants?

The input and output for calculating the power for this study are
given in Figure 10.1.2. In the field of Sample size, input 200 and in the
field of Prob(Y = 1|X = 0), input 0.15, and in the field of Prob(Y =

1|X = 1), input 0.10. The default significance level 0.05 is used. In
the field of Distribution of X, choose “Normal” and the in the field
“Parameters of X Distribution”, input 0 1, indicating the mean of the
normal distribution is 0 and the standard error is 1. Since we need
to calculate power, the field for Power is left blank. By clicking the
“Calculate” button, the statistical power is given as 0.6299 in the output.

Example 10.1.2: Compute the sample size
given power

In this example, researchers are planning a study on the association
between GPA and marijuana use. They hope their study to have a
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Figure 10.1.2: Input and output for calcu-
lating power for logistic regression with
sample size 200 in Example 10.1.1

power at least 0.8. Then how many participants should they recruit?
The input and output for this analysis are given in Figure 10.1.3.

Leave the filed Sample size blank, and in the field “Power”, input 0.8 (the
desired power for the study). By clicking the “Calculate” button, the
sample size is given at the bottom. For this study, the sample size is
298.9. Thus, at least 299 participants are needed for the study to reach
a power 0.80.

Example 10.1.3: Generate a power curve
for logistic regression

In the case a researcher wants to explore the effect of sample size
on the desired power, he/she can generate a power curve according to
given sample sizes. The input and output for plotting a power curve are
given in Figure 10.1.4. In the Sample Size field, the input is 100:400:50,
indicating the smallest and largest sample sizes are 100 and 400. In
the output, the power for the sample sizes 100, 150, 200,· · · , and 400
is listed and the power curve is displayed at the bottom of the output
as shown in Figure 10.1.5. From the power curve, one can infer that to
reach power 0.80, the required sample size would be around 300.
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Figure 10.1.3: Input and output for cal-
culating the sample size for logistic re-
gression with the desired power 0.80 in
Example 10.1.2

10.2 Using R Package WebPower for Power Analysis
for Logistic Regression

The power calculation for logistic regression is conducted using the R
function wp.logistic. The detail of the function is:

wp.logistic(n = NULL, p0 = NULL, p1=NULL, alpha = 0.05, power =

NULL, alternative = c("two.sided", "less", "greater"), family

=c("Bernoulli", "exponential", "lognormal", "normal", "

Poisson", "uniform"), parameter=NULL)
n: sample size
p0: Prob(Y = 1|X = 0)
p1: Prob(Y = 1|X = 1)
alpha: significance level
power: statistical power
alternative: alternative hypothesis
family: distribution of the predictor.
parameter: corresponding parameter
for the predictor distribution. Default:
Bernoulli: 0.5; exponential: 1; lognormal
and normal: 0, 1; Poisson: 1; uniform: 0,
1.

The R input and output for the examples used in this chapter are
given below:

> ## calculate power given sample size and effect size

> wp.logistic(n=200, p0=.15, p1=.1,family="normal", parameter=c

(0,1))

Power calculation for logistic regression
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Figure 10.1.4: Input and output for plot-
ting a power curve of a simple logistic
regression of Example 10.1.3

p0 p1 beta0 beta1 n alpha power

0.15 0.1 -1.734601 -0.4626235 200 0.0125 0.6299315

WebPower URL: http://psychstat.org/logistic

>

> ## sample size given effect size, sample size, power

> wp.logistic(n=NULL, p0=.15, p1=.1,family="normal", parameter=c

(0,1), power=0.8)

Power calculation for logistic regression

p0 p1 beta0 beta1 n alpha power
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Figure 10.1.5: Power curve of a simple
logistic regression of Example 10.1.3

0.15 0.1 -1.734601 -0.4626235 298.9207 0.0125 0.8

WebPower URL: http://psychstat.org/logistic

>

> ## power curve

> res <- wp.logistic(n=seq(100, 500, 50), p0=.15, p1=.1,family="

normal", parameter=c(0,1))

> res

Power calculation for logistic regression

p0 p1 beta0 beta1 n alpha power

0.15 0.1 -1.734601 -0.4626235 100 0.0125 0.3672683

0.15 0.1 -1.734601 -0.4626235 150 0.0125 0.5098635

0.15 0.1 -1.734601 -0.4626235 200 0.0125 0.6299315

0.15 0.1 -1.734601 -0.4626235 250 0.0125 0.7264597

0.15 0.1 -1.734601 -0.4626235 300 0.0125 0.8014116

0.15 0.1 -1.734601 -0.4626235 350 0.0125 0.8580388

0.15 0.1 -1.734601 -0.4626235 400 0.0125 0.8998785

0.15 0.1 -1.734601 -0.4626235 450 0.0125 0.9302222

0.15 0.1 -1.734601 -0.4626235 500 0.0125 0.9518824

WebPower URL: http://psychstat.org/logistic
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> plot(res) ## generate power curve

10.3 Technical Details

The purpose of a logistic regression analysis is to model the conditional
probability of observing “1” given covariates X. For the simple logistic
regression, there is only one predictor, and

Pr(Y = 1|X) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
.

Let β = (β0, β1)
′ represent the column vector of parameters and

β̂ML = (β̂0, β̂1)
′ be its maximum likelihood (ML) estimates. Under

some regularity conditions, β̂ML is normally distributed,

√
n(β̂ML − β) MVN(0, I−1),

where I is the expected Fisher-information matrix and n is the sample
size. Let l(β) represent the log-likelihood function, and according to
the definition of Fisher-information matrix, we have

I = −E

 ∂2l(β)

∂β2
0
) ∂2l(β)

∂β0β1
)

∂2l(β)
∂β0β1

) ∂2l(β)

∂β2
1
)

 =

[
I00 I01

I01 I11

]
,

whose inverse matrix is I−1 = 1
I00 I11−I2

01

[
I11 −I01

−I01 I00

]
. As a conse-

quence, the estimated variance of β̂1 with n observations is 1
n

I00
I00 I11−I2

01

evaluated at (β̂0, β̂1).
To test the significance of the effect of X, we need to conduct the

following hypothesis testing,

H0 : β1 = 0

with the alternative hypothesis

Ha : β1 6= 0 (two sided).

In a Wald test, the variance of the parameter estimates is evaluated at
the parameter estimates under the alternative hypothesis. The Wald
test statistic

zw =
β̂1 − β1√

var(β̂1)|(β̂0,β̂1)

converges to the standard normal distribution.
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The statistical power of a hypothesis testing is defined as the probabil-
ity that the null hypothesis is rejected when the alternative hypothesis
is true. To compute the power, we adopted the procedure introduced
by Demidenko (2007). They computed power under the population
level by assuming the population value of β0 and β1 as well as the
distribution for predictors are known. According to the definition of
statistical power, we have

power = Pr(H0 is rejected|Ha is true)

def
= Pr(| β̂1 − β1|H0√

var(β̂1)|(β̂0,β̂1)

| > Z1− α
2
|Ha is true).

For given population values (β0, β1), because (β̂0, β̂1) are ML estimates,
and by Slusky Theorem,

var(β̂1)|(β̂0,β̂1)
→ var(β̂1)|(β0,β1)

as n goes to infinity.

As a consequence,

power ≈ Pr(| β̂1 − β1|H0√
var(β̂1)|(β0,β1)

| > Z1− α
2
|Ha is true)

= Pr(
β̂1 − β1|H0√
var(β̂1)|(β0,β1)

> Z1− α
2
|Ha is true)

+Pr(
β̂1 − β1|H0√
var(β̂1)|(β0,β1)

< −Z1− α
2
|Ha is true).

Because β̂1 is the ML estimate, β̂1 is normally distributed with mean β1

and variance var(β̂1)|(β0,β1)
. Under the alternative hypothesis, β1 6= 0,

power ≈ Pr(
β̂1 − β1|H1√
var(β̂1)|(β0,β1)

> Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

|Ha is true)

+Pr(
β̂1 − β1√

var(β̂1)|(β0,β1)

< −Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

|Ha is true)

≈ Φ(−Z1− α
2
+

β1|H1 − β1|H0√
var(β̂1)|(β0,β1)

) (10.3.1)

+Φ(−Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

) (10.3.2)

where var(β̂1)|(β0,β1)
= 1

n
I00

I00 I11−I2
01
|(β0,β1)

, computed from the Fisher-

information matrix for a given population model.
In the power expression in Equation (10.3.1), the power is related to

the following factors:
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1. The sample size n.

2. The significance level α.

3. (β0, β1) in the population: they could be obtained from Pr(Y =

1|X = 0) and Pr(Y = 1|X = 1), with

β0 = log
Pr(Y = 1|X = 0)

1− Pr(Y = 1|X = 0)

β1 = log
Pr(Y = 1|X = 1)/(1− Pr(Y = 1|X = 1))
Pr(Y = 1|X = 0)/(1− Pr(Y = 1|X = 0))

.

4. Fisher-information matrix I: obtained by taking the expectation
of both Y and X. As a consequence, the users need to specify the
distribution of the predictor X.

10.4 Exercises

1. A student believes that the number of friends is related to whether
a person smokes cigars or not. To test the theory, she plans to
collect data from 100 people to ask whether they smoke and how
many friends they have. Suppose after standardizing the data on the
number of friends, she estimates that the probability for a person to
smoke is 0.05 when the standardized number of friends is 0 and the
probability is 0.15 at the one standard deviation of the number of
friends. Based on the information, what is the power to detect the
relationship between smoking and the number of friends?

2. Using the information in Exercise 1, generate a power curve with the
sample size ranging from 100 to 300. What is the required sample
size to get a power at least 0.8 and 0.9?



11 Statistical Power Analysis for
Poisson Regression

Haiyan Liu
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University of California, Merced

Poisson regression belongs to the family of generalized linear models
and is used to model the count data. It assumes that the outcome vari-
able, which only takes non-negative integer values, follows a Poisson
distribution. The mean of a Poisson distribution is modeled as a linear
combination of predictors. To estimate the model, maximum likelihood
based methods can be used, from which both the parameter estimates
and their standard error estimates are obtained. To test the signifi-
cance of parameters, the Wald test is commonly used, which assumes
the estimated regression coefficient follows a normal distribution with
respective means under the null and alternative hypotheses. The stan-
dard error of the estimated regression coefficient is a function of both
parameter estimates and predictors. In WebPower, we compute the
standard errors of parameter estimates under the population level of
predictors for power analysis. The users have a wide range of options
for the distribution of the predictors including Bernoulli, exponential,
lognormal, normal, Poisson, and uniform distributions.

11.1 How to Conduct Power Analysis for Poisson Re-
gression

The Poisson regression model with one predictor is,

Pr(Y = y|λ, X) =
λy exp(−λ)

y!
(11.1.1)

log λ = β0 + β1X (11.1.2)

where λ is a parameter representing the average number of events/out-
comes. The primary interest of Poisson regression is to test whether
the predictor X is related to Y or not. In terms of hypothesis testing,
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the null and alternative hypotheses are

H0 : β1 = 0

H1 : β1 6= 0.

To conduct the hypothesis test, the Wald statistics, which is asymptoti-
cally normally distributed, can be used:

W =
β̂1

se(β̂1)

where β̂1 is the estimate of β1 and se(β̂1) is the standard error estimate
of β̂1.

Power analysis for the simple Poisson regression can be conducted
using the online software WebPower with the interface shown in Figure
11.1.1. In order to conduct power analysis, one needs to provide http://psychstat.org/poisson

two quantities: Exp0 and Exp1. For given regression coefficients, Exp0
takes the value of exp(β0), which represents the event rate under the
null hypothesis; and Exp1 is exp(β1), the ratio of exp[β0 + β1(x + 1)]
and exp[β0 + β1x], and it is the relative increase of the event rate
corresponding to one unit change in X under the alternative hypothesis.
Both Exp0 and Exp1 should be positive. Through the interface of
WebPower, one can compute Sample size, Power, or Significance level
given the rest of the information known.

Figure 11.1.1: Software interface of power
analysis for Poisson regression

• Sample size represents the number of observations in the study. To
compute power, sample size needs to be specified by users prior
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to the analysis. There are two ways to input sample sizes. One is
to input one sample size and compute the power each time. The
other is to input multiple sample sizes, and output multiple power
values simultaneously. To input multiple sample sizes, users can
either separate multiple sample sizes by white spaces (e.g., 100 150

200 ) or use the method s:e:i with s denoting the starting sample
size, e as the ending sample size, and i as the interval. For example,
100:150:10 will generate a sequence of values: 100 110 120 130

140 150.

• Exp0 is the base rate exp(β0) under the null hypothesis, which
always takes a positive value.

• Exp1 is the relative increase of the event rate, exp(β1), with respect
to one unit increase on X under the alternative hypothesis, which is
used to compute the effect size.

• Distribution of X specifies the population distribution of the pre-
dictor. Six options are provided: Bernoulli(π), Exponential(λ),
lognormal(µ, σ), normal(µ, σ), Poisson(λ), and uniform[L, R].

• Through Parameter of X Distribution, one can input the values of the
parameters of the distribution of the predictor. For the distributions
with multiple parameters, for example, lognormal, normal, and
uniform distributions, the values of parameters are specified in the
order as they appear in the usual way and separated by white spaces.
For instance, for the Parameter of X Distribution, if 0.5 1.2 are filled
in and separated by a white space, it means µ = 0.2, σ = 1.2 if the
predictor follows a lognormal/normal distribution, and L = 0.5, R =

1.2 if the predictor follows a uniform distribution.

• The Significance level (Type I error rate) for power calculation is
needed (default 0.05).

• Alternative Hypothesis tells the type of the alternative hypothesis. It is
either “Two-sided” (default), “greater” or “less”.

• The Power specifies the statistical power of the analysis. It is left
empty if the power is going to be computed in the analysis (then
the sample size must be specified), or specified a priori number
(e.g.,0.80) to compute the sample size.

• Power curve can be plotted if multiple sample sizes are provided and
“Show power curve” is set.

11.1.1 Examples

Example 11.1.1: Compute power given
the sample size
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This example uses the results from Deb et al. (1997). In that study,
researchers analyzed data on 4406 individuals, aged 66 and over, who
were covered by Medicare. The purpose of that study was to model
the relation between the demand of medical care, which was measured
by the number of physician office visits, and the covariates related to
the patients, for instance, gender of the patients. The outcome variable
is the number of the physician office visits. Assume in the population
Poisson regression model, the intercept and slope are 1.0289 and -0.1123
respectively. The predictor gender follows the Bernoulli distribution
with mean 0.53. The question is, with a sample size 4406, what is the
expected power?

The input and output for calculating the power for this study are
given in Figure 11.1.2. In the field of Sample size, input 4406 and in the
field of Exp0 input 2.798 , which is computed from Exp0 = exp(β0).
And in the field of Exp1, input 0.8938, which is computed by Exp1 =

exp(β1). In the field of Distribution of X, choose “Bernoulli”, and in the
field Parameters of X Distribution, input 0.53, indicating the mean of the
Bernoulli distribution is 0.53. The default significance level 0.05 is used.
A two-sided test is conducted by setting the Alternative Hypothesis to be
“Two-sided”. Since the power needs to be calculated, the field for Power
is left blank. By clicking the “Calculate” button, the statistical power is
given at the bottom, which is 1 for this example.

Example 11.1.2: Compute the sample size
given the desired power

In Example 11.1.1, the power is 1. Suppose a researcher wants to
have a power 0.8 with other information the same as in the previous
example, how many participants does she need to recruit?

The input and output for this study are given in Figure 11.1.3. Note
that the field Sample size is left blank and the power is set at 0.8. Based
on the output, to reach the power 0.8, a sample size 944 is needed.

Example 11.1.3: Power curve for Poisson
regression

Suppose in the example above, the researchers would like to know
how the power changes as the sample size increases, e.g., from 600 to
1400. Then, a power curve can be generated. The input and output
for plotting a power curve are given in Figure 11.1.4. In the Sample
Size field, the input is 600:1400:200, indicating the smallest and largest
sample sizes are 600 and 1400, respectively. In the output, the power
for the sample sizes 600, 800, ..., 1400 is listed as shown in Figure 11.1.4
and the power curve is displayed at the bottom of the output as shown
in Figure 11.1.5. From the power curve, one can infer that to reach a
power 0.80, the sample size must be around 950, and to reach a power
0.9, the sample size needs to be about 1300. The power curve offers
information on the relationship between the sample size and the power
of a study visually.
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Figure 11.1.2: Input and output for calcu-
lating power for Poisson regression with
known sample size in Example 11.1.1

11.2 Using R Package WebPower for Power Analysis
for Poisson Regression

The power calculation for Poisson regression is conducted using the R
function wp.poisson. The detail of the function is: n: sample size

exp0: exp(β0)
exp1: exp(β1)
alpha: significance level
power: statistical power
alternative: alternative hypothesis
family: distribution of the predictor.
parameter: corresponding parameter
for the predictor distribution. Default:
Bernoulli: 0.5; exponential: 1; lognormal
and normal: 0, 1; Poisson: 1; uniform: 0,
1.

wp.poisson(n = NULL, exp0 = NULL, exp1 = NULL, alpha = 0.05,

power = NULL, alternative = c("two.sided", "less", "greater")

, family = c("Bernoulli", "exponential", "lognormal", "normal

", "Poisson", "uniform"), parameter = NULL)

The R input and output for the examples in the chapter are given
below:

> wp.poisson(n=4406, exp0=2.798, exp1=.8938, family=’Bernoulli’,

parameter=.53)

Power calculation of Wald-test for poisson regression

n power alpha exp0 exp1 beta0 beta1 paremeter

4406 1 0.025 2.798 0.8938 1.0289 -0.1123 0.53
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Figure 11.1.3: Input and output for calcu-
lating sample size for Poisson regression
with the desired power 0.80 in Example
11.1.2

WebPower URL: http://psychstat.org/poisson

> wp.poisson(n=NULL, power=.8, exp0=2.798, exp1=.8938, family=’Bernoulli

’, parameter=.53)

Power calculation of Wald-test for poisson regression

n power alpha exp0 exp1 beta0 beta1 paremeter

943.2 0.8 0.025 2.798 0.8938 1.028905 -0.1123 0.53

WebPower URL: http://psychstat.org/poisson

> res <- wp.poisson(n=seq(800, 1500, 100), exp0=2.798, exp1=.8938, family

=’Bernoulli’, parameter=.53)

> res

Power calculation of Wald-test for poisson regression

n power alpha exp0 exp1 beta0 beta1 parameter

800 0.73 0.05 2.8 0.89 1.03 -0.11 0.53

900 0.78 0.05 2.8 0.89 1.03 -0.11 0.53

1000 0.82 0.05 2.8 0.89 1.03 -0.11 0.53

1100 0.86 0.05 2.8 0.89 1.03 -0.11 0.53

1200 0.88 0.05 2.8 0.89 1.03 -0.11 0.53
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Figure 11.1.4: Input and output for plot-
ting a power curve for Poisson regression
in Example 11.1.3

1300 0.91 0.05 2.8 0.89 1.03 -0.11 0.53

1400 0.93 0.05 2.8 0.89 1.03 -0.11 0.53

1500 0.94 0.05 2.8 0.89 1.03 -0.11 0.53

WebPower URL: http://psychstat.org/poisson

> plot(res) ## generate power curve

11.3 Technical Details

A simple Poisson regression model is

Pr(Yi = yi|λi, Xi) =
λ

yi
i exp(−λi)

yi!
log λi = β0 + β1Xi.
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Figure 11.1.5: Power curve for Poisson
regression in Example 11.1.3

The log-likelihood function of the model is

l =
n

∑
i=1

[yi log λi − λi − log(yi!)].

Let β = (β0, β1)
′ represent the column vector of parameters and β̂ML =

(β̂0, β̂1)
′ be its maximum likelihood (ML) estimates. β̂ML follows a

normal distribution with mean β,

√
n(β̂ML − β) BVN(0, I−1) (11.3.1)

where I is the expected Fisher-information matrix and n is the sample
size. The information matrix can be obtained as

I = −E

 ∂2l(β)

∂β2
0
) ∂2l(β)

∂β0β1
)

∂2l(β)
∂β0β1

) ∂2l(β)

∂β2
1
)

 =

[
I00 I01

I01 I11

]
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with

∂l(β0, β1)

∂β0
= [

y
λ
− 1]

∂λ

∂β0
= [y− λ]

∂l(β0, β1)

∂β1
= [

y
λ
− 1]

∂λ

∂β1
= [y− λ]x

I00 =
∂l2(β0, β1)

∂β2
0

= − exp(β0 + β1x)

I11 =
∂l2

i (β0, β1)

∂β2
1

= −x2 exp(β0 + β1xi)

I01 =
∂l2(β0, β1)

∂β0β1
= −x exp(β0 + β1xi).

Given the sample size n, the estimated covariance matrix of β̂ML is
1
n I−1. Especially, the estimated variance of β̂1 is 1

n
I00

I00 I11−I2
01
|(β̂0,β̂1)

.

For the hypothesis testing with the null hypothesis

H0 : β1 = 0

and the alternative hypothesis

Ha : β1 6= 0 (two sided),

the Wald test statistic is

zw =
β̂1 − β1|H0√
var(β̂1)|(β̂0,β̂1)

 N(0, 1).

To compute the power, we adopted the procedure introduced by
Demidenko (2007). They computed power based on the population
value of β0 and β1 as well as the distribution of the predictors. Accord-
ing to the definition of statistical power, we have

power def
= Pr(H0 is rejected|Ha is true).

= Pr(| β̂1 − β1|H0√
var(β̂1)|(β̂0,β̂1)

| > Z1− α
2
|Ha is true).

For given population values (β0, β1), because (β̂0, β̂1) are the ML esti-
mates, and by the Slusky Theorem,

var(β̂1)|(β̂0,β̂1)
→ var(β̂1)|(β0,β1)

as n tends to infinity.
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Therefore,

power ≈ Pr(

∣∣∣∣∣∣ β̂1 − β1|H0√
var(β̂1)|(β0,β1)

∣∣∣∣∣∣ > Z1− α
2
|Ha is true)

= Pr(
β̂1 − β1|H0√
var(β̂1)|(β0,β1)

> Z1− α
2
|Ha is true)

+Pr(
β̂1 − β1|H0√
var(β̂1)|(β0,β1)

< −Z1− α
2
|Ha is true).

Under the alternative hypothesis, β1 6= 0,

power ≈ Pr(
β̂1 − β1|H1√
var(β̂1)|(β0,β1)

> Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

|Ha is true)

+Pr(
β̂1 − β1|H1√
var(β̂1)|(β0,β1)

< −Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

|Ha is true)

≈ Φ(−Z1− α
2
+

β1|H1√
var(β̂1)|(β0,β1)

) + Φ(−Z1− α
2
− β1|H1 − β1|H0√

var(β̂1)|(β0,β1)

)(11.3.2)

where var(β̂1)|(β0,β1)
= 1

n
I00

I00 I11−I2
01
|(β0,β1)

, computed from the Fisher-

information matrix for a given population model.

11.4 Exercises

1. A school is interested in the relationship between the days of absence
in a year and the students’ language test scores. A researcher plans
to collect the academic information on 316 students. The response
variable is the days of absence during a school year and the predictor
is the standardized language test score, which is standardized to
follow a normal distribution with mean 0 and standard deviation 1.
A Poisson model will be used to analyze the data. Suppose at the
population level, the intercept and slope are 2.30 and -0.12. What
will be the power of this study?

2. With the same information as in the above exercise, what is the
sample size needed to achieve a power 0.90?
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Multilevel designs for cross-sectional studies typically contain cluster
randomized trials and multisite randomized trials (Liu, 2013). Cluster
randomized trials (CRT) are used when the entire cluster is randomly
assigned to either a treatment arm or a control arm. The data from
CRT can be analyzed in a two-level hierarchical linear model, where the
indicator variable for treatment assignment is included in the second
level. If a study contains multiple treatments, then multiple indicators
will be used. Our power analysis for CRT will focus on designs with 2
arms (i.e., a treatment and a control) and 3 arms (i.e., two treatments
and a control).

12.1 How to Conduct Power Analysis for CRT with 2
Arms

The primary software interface for power analysis for CRT with two
arms (i.e., one treatment and one control) is shown in Figure 12.1.1. http://psychstat.org/crt2arm

Within the interface, a user can supply different parameter values and
select different options for power analysis. Among the six parame-
ters, Sample size, Effect size, Number of clusters, Intra-class correlation,
Significance level, and Power, one and only one can be left blank.

• The Sample size is the number of individuals within each cluster. The
power calculation assumes a balanced design – equal sample size for
each cluster. To obtain power estimation with varied sample sizes,
multiple sample sizes can be provided in the following two ways.
First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. Second, a sequence of sample (or cluster)
sizes can be generated using the method s:e:i with s denoting
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the starting sample size, e as the ending sample size, and i as
the interval. Note that the values are separated by colon “:”. For
example, 100:150:10 will generate a sequence of sample sizes: 100
110 120 130 140 and 150. By default, the sample size is 100.

• The Effect size specifies the main effect of treatment, the mean differ-
ence between the treatment clusters and the control clusters. Multiple
effect sizes or a sequence of effect sizes can be supplied using the
same way as for sample size. The default value is 0.6. One can either
input the effect size directly or calculate it by clicking the “Calculator”
link in the parentheses. Note that the calculator also allows users to
obtain intra-class correlation given the required information.

• The Number of clusters tells how many clusters are considered in the
study design. More than two clusters are required. Multiple cluster
sizes or a sequence of cluster sizes can be supplied using the same
way for sample size.

• The Intra-class correlation is the ratio of between-cluster variance to the
total variance, which quantifies the degree to which two randomly
drawn observations within a cluster are correlated. The default value
of intra-class correlation is 0.15. One can either input the intra-class
correlation directly or calculate it by clicking the “Calculator” link
after Effect size.

• The Power specifies the desired statistical power, usually set at 0.80.

• The Type of analysis can be specified as “Two-sided test” and “One-
sided test”. The corresponding alternative hypotheses are:

”Two− sided” : µD 6= 0,

”One− sided” : µD > 0 or µD < 0,

where µD is the mean difference between the treatment clusters and
the control clusters.

• The Significance level for power calculation is needed but usually set
at the default value 0.05.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes, or cluster sizes, or effect sizes
are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.
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Once all fields have been filled in, pressing “Calculate” will create a
table of output and, if requested, a power curve will appear below the
table.

12.1.1 Examples

Figure 12.1.1: Software interface of power
analysis for CRT with 2 arms

Example 12.1.1: Calculate power given
sample sizes, effect size and intra-class
correlation

A group of education researchers developed a new teaching method
to help students improve their math ability. They plan to randomly as-
sign 5 classrooms to the new method and 5 classrooms to the standard
method. Each classroom has 20 students. Based on their prior knowl-
edge, they hypothesize that the effect size is 0.6 and the intra-class
correlation is 0.1. What is the power for them to find a significant dif-
ference between students from classrooms using the standard method
and the new teaching method?

The input and output for calculating the power for this study are
given in Figure 12.1.2. In the field of Sample size, input 20, the number
of students within each class; in the field of Effect size, input 0.6, the
expected effect size; in the field of Number of clusters, input 10, the
number of classrooms; and in the field of Intra-class correlation, input
0.1, the expected intra-class correlation. The field for Power is left blank
because it will be calculated. The default Significance level 0.05 is used
although one can change it to a different value. The default Type of
analysis is a two-sided test and one can change it to one-sided. By
clicking the “Calculate” button, we get a power 0.5902 for the current
study design.
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Figure 12.1.2: Input and output for cal-
culating power for CRT with 2 arms in
Example 12.1.1

Example 12.1.2: Power curve with differ-
ent sample sizes or cluster sizes

A power curve is a line plot of statistical power along with given
sample sizes. In Example 12.1.1, the power is 0.5902 with 20 students
in 10 classrooms. What is the power for a different sample size, say, 40
in each class? And what is the power for a different cluster size, say
20 classrooms? One can investigate the power of different sample or
cluster sizes and plot a power curve.

The input and output for plotting a power curve for the study in
Example 12.1.1 are given in Figure 12.1.3. The sample size ranges from
20 to 80 with an interval of 10. In the Sample size field, the input is
20:80:10. We also choose “Show power curve” from the drop-down menu
of Power curve. In the output, the power for each sample size from 20
to 80 with the interval 10 is listed. The power curve is displayed at the
bottom of the output as shown in Figure 12.1.4. The power curve can
be used for interpolation. For example, to get a power of 0.7, about 80
students are needed for each class. Similarly, one can obtain a power
curve with different cluster sizes by specifying a sequence of numbers
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in the field Number of clusters.

Figure 12.1.3: Input and output for power
curve for CRT with 2 arms in Example
12.1.2

Example 12.1.3: Calculate sample size (or
cluster size) given power, effect size and
intra-class correlation

In practice, a power of 0.8 is often desired. Given the power, the
number of clusters can be calculated as shown in Figure 12.1.5. In this
situation, the Number of clusters field is left blank while the input for
Power field is 0.8. In the output, we can see 15 classrooms are needed
to obtain a power of 0.8. One can also obtain the required sample size
by leaving Sample size field blank and specifying a cluster size in the
Number of clusters field.
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Figure 12.1.4: Power curve for CRT with
2 arms in Example 12.1.2

12.2 Use R Package WebPower

The power calculation for CRT with two arms is conducted using an R
function wp.crt2arm function. The detail of the function is: n: sample size

f: effect size
J: number of clusters/sites
icc: Intra-class correlation
alpha: significance level
power: statistical power
alternative: two-sided or one-sided
analysis

wp.crt2arm(n=NULL, f=NULL, J=NULL, icc=NULL, power=NULL,

alternative = c("two.sided", "one.sided"), alpha=0.05)

The R input and output for the examples in the above section are
given below:

> ## calculate power given sample size and effect size

> wp.crt2arm(f=0.6,n=20,J=10,icc=.1)

Multilevel model cluster randomized trials with two arms

J n f icc power alpha

10 20 0.6 0.1 0.5901684 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt2arm

>

> ## power curve

> res<-wp.crt2arm(f=0.6,n=seq(20,100,10),J=10,icc=.1)
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Figure 12.1.5: Input and output for sam-
ple size planning for CRT with 2 arms in
Example 12.1.3

> res

Multilevel model cluster randomized trials with two arms

J n f icc power alpha

10 20 0.6 0.1 0.5901684 0.05

10 30 0.6 0.1 0.6365313 0.05

10 40 0.6 0.1 0.6620030 0.05

10 50 0.6 0.1 0.6780525 0.05

10 60 0.6 0.1 0.6890755 0.05

10 70 0.6 0.1 0.6971076 0.05

10 80 0.6 0.1 0.7032181 0.05

10 90 0.6 0.1 0.7080217 0.05

10 100 0.6 0.1 0.7118967 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt2arm
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> plot(res) ## generate power curve

>

> ## number of clusters given effect size, sample size, power

> wp.crt2arm(f=0.6,n=20,J=NULL,icc=.1,power=.8)

Multilevel model cluster randomized trials with two arms

J n f icc power alpha

14.83587 20 0.6 0.1 0.8 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt2arm

12.3 Effect Size and Intra-class Correlation for CRT with
2 Arms

The effect size for CRT with two arms is defined as a ratio of the
treatment main effect to the total standard deviation:

f =
µD√

σ2
B + σ2

W

, (12.3.1)

where µD is the mean difference between the treatment clusters and the
control clusters, σ2

B is the between-cluster variance and σ2
W is the within-

cluster variance. Given the three quantities µD, σ2
B and σ2

W , the effect
size can be determined. The intra-class correlation (ICC) is defined as a
ratio of the between-cluster variance to the total variance:

ρ =
σ2

B
σ2

B + σ2
W

. (12.3.2)

The specification of the effect size and ICC can be assisted by an
online calculator . In the interface in Figure 12.1.1, clicking the link
“Calculator” brings up the calculator. The calculator, as shown in Figure
12.3.1, allows the following four methods of obtaining the effect size
and ICC.

1. Input the mean difference µD, between cluster variance σ2
B, and

within cluster variance σ2
W . This method calculates the effect size

and ICC directly based on equations 12.3.1 and 12.3.2. With the
three values, the effect size and ICC are calculated and shown after
clicking on the “Calculate” button. Consider the example in 12.1.1
that previous research shows a new teaching method would lead
to an increase of 2 in math scores. There are 10 classrooms with
20 students in each classroom. In addition, the between-classroom
variance is 1 and the within-classroom variance is 4. To obtain the
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effect size and ICC, the inputs for Mean difference, Between cluster
variance and Within cluster variance are 2, 1, and 4, respectively. By
clicking the “Calculate” button, the effect size and ICC are presented
at the bottom as in Figure 12.3.1.

Figure 12.3.1: Effect size and ICC calcula-
tion for CRT with 2 arms

2. Input within cluster variance σ2
W , sample size n, number of clusters

J, and cluster means. Based on the literature, one might decide on
the information for the cluster means as shown below.

Treatment Control
Cluster mean Cluster mean

1 Ȳ.1
T 1 Ȳ.1

C

2 Ȳ.2
T 2 Ȳ.2

C

... Ȳ.j
T ... Ȳ.j

C

J/2 Ȳ. J
2

T J/2 Ȳ. J
2

C

With such information, the mean difference can be calculated by

µ̂D = Ȳ..
T − Ȳ..

C, (12.3.3)

where Ȳ..
T
= ∑J/2

j=1 Ȳ.j
T/(J/2), Ȳ..

C
= ∑J/2

j=1 Ȳ.j
C/(J/2). The between-

cluster variance can be calculated by

σ̂B
2 =

∑J/2
j=1(Ȳ.j

T − Ȳ..
T
)2 + ∑J/2

j=1(Ȳ.j
C − Ȳ..

C
)2

J − 2
−

σ2
W
n

. (12.3.4)
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Consider the example that data are collected from 10 classrooms with
20 students in each classroom. The average scores for classrooms
receiving treatment are 2, 4, 1, 3, 4; and those for classrooms in
the control condition are 1, 2, 1, 3, 2. Further, the within-classroom
variance is 4. The data can be input as in Figure 12.3.2. At the
bottom, the effect size and ICC are presented.

Figure 12.3.2: Effect size and ICC calcu-
lation for CRT with 2 arms based on the
input of cluster means

3. One can calculate ICC if he/she knows the ratio of within cluster
variance to between cluster variance. With such information, the ICC
can be calculated by

ρ =
1

1 + ratio
. (12.3.5)

Suppose one knows the ratio is 4. Then, in the field Ratio of within and
between cluster variances, input 4. By clicking the “Calculate” button,
the ICC is 0.2. Note that this approach should be used to calculate
ICC only. The value for effect size is not valid under this approach.

4. The calculator also allows a user to upload a set of data and calcu-
lates effect size and ICC from the data directly.

Example data:

ID cluster score group

1 1 1 0

2 1 3 0

3 2 4 1

4 2 8 1

5 3 4 0

6 3 6 0

7 4 8 1

8 4 9 1
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Figure 12.3.3 shows the use of the data in http://psychstat.org/crt2data
and the output, including the estimated effect size of testing treat-
ment main effect, estimated intra-class correlation, and the results
from conducting a hypothesis test on the treatment main effect. Note
that only registered users can use this method to protect data privacy.
The data have to be in text format where the first column of the
data is the ID variable, the second column represents the cluster, the
third column is the outcome variable and the fourth column is the
condition variable with 0 being the control condition and 1 being the
treatment condition. The first line of the data should be the variable
names.

Figure 12.3.3: Effect size calculation
based on an empirical set of data

12.4 How to Conduct Power Analysis for CRT with 3
Arms

The primary software interface for power analysis for CRT with three
arms (i.e., two treatments and one control) is shown in Figure 12.4.1. http://psychstat.org/crt3arm

Within the interface, a user can supply different parameter values and
select different options for power analysis. Among the six parame-
ters, Sample size, Effect size, Number of clusters, Intra-class correlation,
Significance level, and Power, one and only one can be left blank.

• The Sample size is the number of individuals within each cluster. The
power calculation assumes a balanced design with equal sample size
for each cluster. To obtain power estimation with varied sample sizes,
multiple sample sizes can be provided in the following two ways.
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First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. Second, a sequence of sample (or cluster)
sizes can be generated using the method s:e:i with s denoting
the starting sample size, e as the ending sample size, and i as
the interval. Note that the values are separated by colon “:”. For
example, 100:150:10 will generate a sequence of sample sizes: 100
110 120 130 140 150. By default, the sample size is 80.

• The Effect size quantifies the effect of a specific test. Three types of
tests are available: 1) testing treatment main effect – the difference
between the average treatment arms and the control arm; 2) test-
ing the difference between the two treatment arms; and 3) testing
whether the three arms are all equivalent. One can choose a test
through “Type of analysis”. Multiple effect sizes or a sequence of
effect sizes can be supplied using the same way for sample size. The
default value is 0.6. One can either input the effect size directly or
calculate it by clicking the “Calculator” in the parentheses. Note
that the calculator also allows users to obtain intra-class correlation
given the required information.

• The Number of clusters tells how many clusters are considered in the
study design. More than three clusters are required. Multiple cluster
sizes or a sequence of cluster sizes can be supplied using the same
way for sample size.

• The Intra-class correlation is the ratio of between-cluster variance to the
total variance, which quantifies the degree to which two randomly
drawn observations within a cluster are correlated. The default value
of intra-class correlation is 0.15. One can either input the intra-class
correlation directly or calculate it by clicking the “Calculator” after
Effect size.

• The Power specifies the desired statistical power, usually set at 0.80.
The H1 can be specified as “Two-sided test” and “One-sided test”.

• The Significance level for power calculation is needed but usually is
set at the default 0.05.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes, or cluster sizes, or effect sizes
are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.
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Once all fields have been appropriately filled in, clicking “Calculate”
will create a table of output and, if specified, a power curve will appear
below the table.

12.4.1 Examples

Figure 12.4.1: Software interface of power
analysis for CRT with 3 arms

Example 12.4.1: Calculate power given
sample sizes, effect size and intra-class
correlation

A medical researcher plans to compare two sleep aids and a placebo
in helping people with sleep disorder. The outcome variable is self-
reported sleep quality. The researcher plans to conduct the study in 21
clinics, with one-third receiving treatment 1, one-third receiving treat-
ment 2, and the rest receiving placebo. Suppose there are 20 patients
in each clinic. Past study reveals that the effect size for comparing the
two sleep aids to the placebo is 0.5 and the intra-class correlation is 0.1.
What is the power for detecting a significant difference between the
average treatments and the placebo?
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The input and output for calculating power for this study are given
in Figure 12.4.2. In the field of Sample size, input 20, the number of
patients within each clinic; in the field of Effect size, input 0.5, the
expected effect size; in the field of Number of clusters, input 21, the total
number of clinics; and in the field of Intra-class correlation, input 0.1, the
expected intra-class correlation. The field for Power is left blank because
it will be calculated. The default Significance level 0.05 is used although
one can change it to a different value. The default H1 is a two-sided test
and one can change it to one-sided if a one-sided test is to be conducted.
In the field of Type of analysis, select “Average treatment v.s. control”.
By clicking the “Calculate” button, the statistical power 0.7651 is given
in the output.

Figure 12.4.2: Input and output for cal-
culating power for CRT with 3 arms in
Example 12.4.1

Example 12.4.2: Power curve with differ-
ent sample sizes or cluster sizes

A power curve is a line plot of statistical power along with given
sample sizes. In Example 12.4.1, the power is 0.7651 with 20 patients in
21 clinics. What is the power for a different sample size, say, 40 in each
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clinic? One can investigate the power of different sample or cluster
sizes and plot a power curve.

The input and output for plotting a power curve for the study in
Example 12.4.1 are given in Figure 12.4.3. The sample size ranges from
20 to 80 with an interval of 10. In the Sample size field, the input is
20:80:10. We also choose “Show power curve” from the drop-down menu
of Power curve. In the output, the power for each sample size from 20
to 80 with the interval 10 is listed. The power curve is displayed at the
bottom of the output as shown in Figure 12.4.4. The power curve can
be used for interpolation. For example, to get a power of 0.8, about 30
patients are needed for each clinic. Similarly, one can obtain a power
curve with different cluster sizes by specifying a sequence of numbers
in the field Number of clusters.

Example 12.4.3: Calculate sample size (or
cluster size) given power, effect size and
intra-class correlation

In practice, a power of 0.8 is often desired. Given the power, the
sample size can be calculated as shown in Figure 12.4.5. In this situation,
the Sample size field is left blank while the input for Power field is 0.8.
In the output, we can see 27 patients in each clinic are needed to obtain
a power of 0.8. One can also obtain the required cluster size by leaving
Number of clusters field blank and specifying a sample size in the Sample
size field.

12.5 Use R Rackage WebPower

The power calculation for CRT with three arms is conducted using an
R function wp.crt3arm function. The detail of the function is: n: sample size

f: effect size
J: number of clusters/sites
icc: Intra-class correlation
alpha: significance level
power: statistical power
alternative: two-sided or one-sided
analysis
type: main: the difference between the
average treatment arms and the control
arm, treatment: the difference between
the two treatment arms, omnibus: the
three arms are all equivalent.

wp.crt3arm(n=NULL, f=NULL, J=NULL, icc=NULL, power=NULL, alpha

=0.05, alternative = c("two.sided", "one.sided"), type=c("

main","treatment","omnibus"))

The R input and output for the examples discussed in the previous
section are given below:

> ## calculate power given sample size and effect size

> wp.crt3arm(n=20, f=.5, J=21, icc=.1, power=NULL)

Multilevel model cluster randomized trials with three arms

J n f icc power alpha

21 20 0.5 0.1 0.7650611 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt3arm

>

> ## power curve
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> res<-wp.crt3arm(n=seq(20,100,10), f=.5, J=21, icc=.1, power=

NULL)

> res

Multilevel model cluster randomized trials with three arms

J n f icc power alpha

21 20 0.5 0.1 0.7650611 0.05

21 30 0.5 0.1 0.8086098 0.05

21 40 0.5 0.1 0.8309582 0.05

21 50 0.5 0.1 0.8444483 0.05

21 60 0.5 0.1 0.8534438 0.05

21 70 0.5 0.1 0.8598585 0.05

21 80 0.5 0.1 0.8646589 0.05

21 90 0.5 0.1 0.8683838 0.05

21 100 0.5 0.1 0.8713572 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt3arm

> plot(res) ## generate power curve

>

> ## number of clusters given effect size, sample size, power

> wp.crt3arm(n=NULL, f=.5, J=21, icc=.1, power=.8)

Multilevel model cluster randomized trials with three arms

J n f icc power alpha

21 27.34175 0.5 0.1 0.8 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/crt3arm

12.6 Effect Size and Intra-class Correlation for CRT with
3 Arms

With a 3-arm CRT, one might be interested in three different types
of test: (1) testing treatment main effect – the difference between the
average treatment arms and the control arm, (2) testing the difference
between the two treatment arms, and (3) testing whether the three arms
are all equivalent (omnibus test). The corresponding effect sizes are

f1 =
µD1 + µD2

2
√

σ2
B + σ2

W

, (12.6.1)

f2 =
µD1 − µD2√

σ2
B + σ2

W

(12.6.2)
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f3 =

√
1

18 (µD1 + µD2)2 + 1
6 (µD1 − µD2)2

σ2
B + σ2

W
(12.6.3)

where µD1 is the mean difference between the first treatment and the
control, µD2 is the mean difference between the second treatment and
the control, σ2

B is the between-cluster variance and σ2
W is the within-

cluster variance. Given the four quantities µD1, µD2, σ2
B and σ2

W , the
effect sizes can be determined. The intra-class correlation (ICC) for all
three tests is defined as a ratio of the between-cluster variance to the
total variance:

ρ =
σ2

B
σ2

B + σ2
W

. (12.6.4)

The specification of the effect sizes and ICC can be assisted by an
online calculator. In the interface in Figure 12.4.1, clicking the link
“Calculator” brings up the calculator. The calculator, as shown in
Figure 12.6.1, allows the following four methods of obtaining the effect
size and ICC.

1. Input the mean differences µD1 and µD2, between cluster variance
σ2

B, and within cluster variance σ2
W . This method calculates the effect

sizes and ICC directly based on equations 12.6.1 to 12.6.4. With the
four values, the effect sizes and ICC are calculated and shown after
clicking the “Calculate” button. Consider the example that it shows
one sleep aid would increase 2 point scores in self-reported sleep
quality, and the other sleep aid would increase 1 point score. The
between-clinic variance is 1 and the within-clinic variance is 4. The
data can be input as in Figure 12.6.1. At the bottom, the effect sizes
for the three tests and the ICC are presented.

2. Input within-cluster variance σ2
W , sample size n, number of clusters

J, and cluster means. Based on the literature, one might decide on
the information for the cluster means as shown below.

Treatment1 Treatment2 Control
Cluster mean Cluster mean Cluster mean

1 Ȳ.1
T1 1 Ȳ.1

T2 1 Ȳ.1
C

2 Ȳ.2
T1 2 Ȳ.2

T2 2 Ȳ.2
C

... Ȳ.j
T1 ... Ȳ.j

T2 ... Ȳ.j
C

J/3 Ȳ. J
3

T1 J/3 Ȳ. J
3

T2 J/3 Ȳ. J
3

C

With such information, the mean differences can be calculated by

µ̂D1 = Ȳ..
T1 − Ȳ..

C, µ̂D2 = Ȳ..
T2 − Ȳ..

C, (12.6.5)
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where Ȳ..
T1

= ∑J/3
j=1 Ȳ.j

T1/(J/3), Ȳ..
T2

= ∑J/3
j=1 Ȳ.j

T2/(J/3), Ȳ..
C

=

∑J/3
j=1 Ȳ.j

C/(J/3). The between-cluster variance can be calculated by

σ̂B
2 =

∑J/3
j=1(Ȳ.j

T1 − Ȳ..
T1
)2 + ∑J/3

j=1(Ȳ.j
T2 − Ȳ..

T2
)2 + ∑J/3

j=1(Ȳ.j
C − Ȳ..

C
)2

J − 3
−

σ2
W
n

.

(12.6.6)

Consider the example that data are collected from 15 clinics with
5 patients in each clinic. The average scores in clinics receiving
treatment 1 are 1, 3, 2, 4, 5; those in clinics receiving treatment 2 are
2, 3, 4, 1, 2; and those in clinics under the control condition are 1, 1,
2, 2, 1. Furthermore, the within-clinic variance is 1. The data can be
input as in Figure 12.6.2. At the bottom, the effect sizes and ICC are
presented.

3. One can calculate ICC if he/she knows the ratio of within-cluster
variance to between-cluster variance. With such information, the
ICC can be calculated by

ρ =
1

1 + ratio
. (12.6.7)

Suppose one knows that the ratio is 4. Then, in the field Ratio of
within and between cluster variances, input 4. By clicking the “Calculate”
button, the ICC is 0.2. Note that this approach should be used to
calculate ICC only. The values for effect sizes are not valid under
this approach.

4. The calculator
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Figure 12.4.3: Input and output for power
curve for CRT with 3 arms in Example
12.4.2
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Figure 12.4.4: Power curve for CRT with
3 arms in Example 12.4.2
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Figure 12.4.5: Input and output for sam-
ple size planning for CRT with 3 arms in
Example 12.4.3
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Figure 12.6.1: Effect size and ICC calcula-
tion for CRT with 3 arms
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Figure 12.6.2: Effect size and ICC calcu-
lation for CRT with 3 arms based on the
input of cluster means
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Example data:

ID cluster score group

1 1 1.60 0

2 1 1.95 0

3 2 1.96 0

4 2 0.83 0

5 3 2.13 1

6 3 4.66 1

7 4 4.83 2

8 4 5.12 2

also allows a user to upload a set of data and calculate the sample
effect size and ICC from data directly. Figure 12.6.3 shows the use
of the data in http://psychstat.org/crt3data and the output of the
effect sizes. Note that only registered users can use this method
to protect data privacy. The data has to be in the plain text format
where the first column of the data is the ID variable, the second
column represents cluster, the third column is the outcome variable
and the fourth column is the condition variable with 0 being the
control condition, 1 being the first treatment and 2 being the second
treatment. The first line of the data should be the variable names.

The output of Method 4 includes the estimated intra-class correla-
tion and the estimated effect sizes of testing treatment main effect,
comparing two treatments, and the omnibus test. In addition, this
method also conducts hypothesis tests based on the data uploaded
and presents the output as shown in Figure 12.6.3.

Figure 12.6.3: Effect size calculation
based on an empirical set of data

12.7 Technical Details

In this section, we present the models for 2-arm CRT and 3-arm CRT,
and formulas for power estimation under the two models. Details
leading to power calculation can be found in Raudenbush (1997) and
Liu (2013).
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The model for a 2-arm CRT can be expressed as

Yij = β0j + eij, eij ∼ N(0, σ2
W) (12.7.1)

β0j = γ00 + γ01Xj + u0j, u0j ∼ N(0, σ2
B) (12.7.2)

where Yij is the ith outcome in the jth cluster (i = 1, 2, ..., N; j = 1, 2, ...J),
Xj is a treatment indicator of cluster j (0.5 for treatment and -0.5 for
control), γ00 is the grand mean, γ01 is the treatment main effect that can
be estimated by the difference between the averaged cluster mean in the
treatment group and the averaged cluster mean in the control group,
β0j is the cluster mean for cluster j, σ2

W represents the within-cluster
variance, and σ2

B represents the between-cluster variance.
The test for treatment main effect uses a t-test. Under H0 : γ01 = 0,

the test statistic follows a central t distribution with the degrees of
freedom J − 2. Under the alternative hypothesis, the test statistic
follows a non-central t distribution with the degrees of freedom J − 2
and the non-central parameter λ, which takes the form

λ =
γ01√

4(σ2
B +

σ2
W

σ2
B
)/J

. (12.7.3)

Therefore, the power for the t-test of the treatment effect can be
calculated by

Power =

1− P[TJ−2,λ < t0] + P[TJ−2,λ ≤ −t0] two− sided test,

1− P[TJ−2,λ < t0] one− sided test,
(12.7.4)

where t0 is the 100(1− α
2 )th percentile of the t distribution with J −

2 degrees of freedom for a two-sided test, and is the 100(1 − α)th
percentile of the t distribution with J − 2 degrees of freedom for a
one-sided test; and α is the significance level.

The model for a 3-arm CRT can be expressed as

Yij = β0j + eij, eij ∼ N(0, σ2
W) (12.7.5)

β0j = γ00 + γ01X1j + γ02X2j + u0j, u0j ∼ N(0, σ2
B) (12.7.6)

where Yij is the ith outcome in the jth cluster (i = 1, 2, ..., N; j = 1, 2, ...J),
X1j is used to compare the average outcome of the two treatment arms
with that of the control arm (1/3 for the first treatment, 1/3 for the
second treatment and -2/3 for the control condition), X2j is used to
contrast the average outcome between the two treatment arms (1/2 for
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the first treatment, -1/2 for the second treatment and 0 for the control
condition), β0j is the cluster mean, γ00 is the grand mean, γ01 is the
treatment main effect that can be estimated by the difference between
the average of the two treatment conditions and the control condition,
and γ02 is the mean difference between the two treatment arms. Power
for testing treatment main effect H0 : γ01 = 0 is calculated by

Power =

1− P[TJ−3,λ1 < t0] + P[TJ−3,λ1 ≤ −t0] two− sided test,

1− P[TJ−3,λ1 < t0] one− sided test,
(12.7.7)

where

λ1 =
γ01√

4.5(σ2
B +

σ2
W )
n )/J

, (12.7.8)

t0 is the 100(1− α
2 )th percentile for a two-sided test, and is the 100(1−

α)th percentile for a one-sided test of the t distribution with J − 3
degrees of freedom. Power for testing the difference between two
treatments H0 : γ02 = 0 is calculated by

Power =

1− P[TJ−3,λ2 < t0] + P[TJ−3,λ2 ≤ −t0] two− sided test,

1− P[TJ−3,λ2 < t0] one− sided test,

where

λ2 =
γ02√

6(σ2
B +

σ2
W )
n )/J

, (12.7.9)

t0 is defined as in Equation 12.7.7. Power for the omnibus test H0 :
γ01 = γ02 = 0 is calculated by

Power = P(F2,J−3,λ3 ≥ F0), (12.7.10)

based on the central and non-central F distribution where

λ3 = λ2
1 + λ2

2 =
γ2

01

4.5(σ2
B +

σ2
W )
n )/J

+
γ2

02

6(σ2
B +

σ2
W )
n )/J

, (12.7.11)

F0 is the 100(1− α)th percentile of the F distribution with degrees of
freedom 2 and J − 3.

12.8 Exercises

1. A medical investigator is interested in whether a newly developed
drug could lower blood pressure for patients with hypertension.
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He plans to collect data from 4 clinics, with patients in 2 clinics to
receive the new drug and those in the other 2 clinics to be in the
control condition. Each clinic is expected to have 20 patients. The
investigator hypothesizes that the new drug could lower patient’s
blood pressure by 8mmHg. The between-cluster variance is 2 and
the within-cluster variance is 4. What is the effect size of treatment
effect? What is the power for the investigator to find a significant
difference in patients who use the new drug and those who do not?

2. Using the same information in Exercise 1, what would be the re-
quired sample sizes when the alpha level is set at 0.1? at 0.01?

3. Using the same information in Exercise 1, generate a power curve
with the cluster size ranging from 4 to 8 with an interval of 1. From
the power curve, approximately how large a cluster size is needed
to get a power 0.9?

4. Using the same information in Exercise 1, generate a power curve
with the sample size ranging from 20 to 200 with an interval of 20.
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Multilevel designs for cross-sectional studies typically contain cluster
randomized trials and multisite randomized trials (Liu, 2013). Multisite
randomized trials (MRT) are used when individuals within a cluster
are randomly assigned to either a treatment arm or a control arm. The
data from MRT can be analyzed in a two-level hierarchical linear model,
where the indicator variable for treatment assignment is included in
the first level. If a study contains multiple treatments, then multiple
indicators will be used. Our power analysis for MRT focuses on designs
with 2 arms (i.e., a treatment and a control) and 3 arms (i.e., two
treatments and a control).

13.1 How to Conduct Power Analysis for MRT with 2
Arms

The primary software interface for power analysis for MRT with two
arms (i.e., one treatment and one control at each site) is shown in Figure
13.1.1. Within the interface, a user can supply different parameter values http://psychstat.org/mrt2arm

and select different options for power analysis. In a 2-arm MRT, one
might be interested in the following three types of tests:

• Testing treatment main effect.

– To obtain power for this test, users need to input Sample size,
Effect size, Number of clusters, Variance of treatment effects across sites,
Level-one error variance, Significance level.

• Testing site variability.

– To obtain power for this test, users need to input Sample size,
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Number of clusters, Variance of site means, Level-one error variance,
Significance level.

• Testing the variance of treatment main effect.

– To obtain power for this test, users need to input Sample size,
Number of clusters, Variance of treatment effects across sites, Level-one
error variance, Significance level.

Figure 13.1.1: Software interface of power
analysis for MRT with 2 arms

More information about each input is given below.

• The Sample size is the number of individuals within each cluster. The
power calculation only allows for balanced data. In other words,
all clusters contain an equal number of subjects and within each
cluster, an equal number of subjects are assigned to the treatment
condition and the control condition. To obtain power estimation
with varied sample sizes, multiple sample sizes can be provided in
the following two ways. First, multiple sample sizes can be supplied
and separated by white spaces, e.g., 100 150 200 will calculate power
for the three sample sizes 100, 150 and 200. Second, a sequence of
sample (or cluster) sizes can be generated using the method s:e:i

with s denoting the starting sample size, e as the ending sample size,
and i as the interval. Note that the values are separated by colon
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“:”. For example, 100:150:10 will generate a sequence of sample sizes:
100 110 120 130 140 150. By default, the sample size is 80.

• The Effect size specifies the main effect of treatment. Multiple effect
sizes or a sequence of effect sizes can be supplied using the same way
for the sample size. The default value is 0.6. One can either input
the effect size directly or calculate it by clicking the “Calculator” in
the parentheses. Note that only the first test (testing treatment main
effect) requires an input for effect size.

• The Number of clusters tells how many clusters are considered in the
study design. At least two clusters are required.

• The Variance of site means and the Variance of treatment effects across
sites are the level-2 residual variances.

• The Level-one error variance is the level-1 residual variance.

• The Power specifies the desired statistical power, usually set at 0.8.

• The Significance level for power calculation is needed but is usually
set at the default 0.05. The H1 can be specified as “Two-sided test”
and “One-sided test”.

• The Type of test specifies which test is conducted.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes, or cluster sizes, or effect sizes
are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.

Once all fields have been appropriately filled in, clicking “Calculate”
will create a table of output and, if specified, a power curve will appear
below the table.

13.1.1 Examples

Example 13.1.1: Calculate power given
sample size and effect size

A researcher plans to conduct a multisite randomized trial to evaluate
the efficacy of an intervention for alcohol abuse. Patients will be
recruited from 20 sites, and at each site half of the patients will be
assigned to the treatment condition and the other half will be assigned
to the control condition. The number of patients at each site is expected
to be 40. The outcome variable is the reduction in abuse symptoms. A
past study reveals that the effect size for the treatment is 0.5. Further,
the researcher estimates that the variance for individual error is 1.25,
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the variance of site means is 0.1 and the variance in treatment effect
across sites is 0.5. What’s the power for testing the treatment main
effect? What’s the power for testing the variance of treatment main
effect across sites? What’s the power for testing the site variability?

The input and output for calculating power for testing the treatment
main effect are given in Figure 13.1.2. In the field of Sample size, input
45, the number of patients within each site; in the field of Effect size,
input 0.5, the expected effect size; in the field of Number of clusters,
input 20, the number of sites; in the field of Variance of treatment effects
across sites, input 0.5; and in the field of Level-one error variance, input
1.25. The field for Power is left blank because it will be calculated. The
default Significance level 0.05 is used although one can change it to a
different value. The default H1 is a two-sided test. In the field of Type
of analysis, select “Treatment main effect”. By clicking the “Calculate”
button, the statistical power is given in the output, and for the current
design, the power is 0.8506.

The input and output for calculating power for testing the variance
of treatment main effect across sites are given in Figure 13.1.3. In the
field of Sample size, input 40; in the field of Number of clusters, input
20; in the field of Variance of treatment effects across sites, input 0.5; and
in the field of Level-one error variance, input 1.25. The field for Power
is left blank because it will be calculated. The default Significance level
0.05 is used. The default H1 is a two-sided test. In the field of Type of
analysis, select “Variance of treatment effects across sites”. By clicking
the “Calculate” button, the statistical power is given in the output:
0.9976.

The input and output for calculating power for testing site variability
are given in Figure 13.1.4. In the field of Sample size, input 45; in the
field of Number of clusters, input 20; in the field of Variance of site means,
input 0.1; and in the field of Level-one error variance, input 1.25. The
field for Power is left blank because it will be calculated. The default
Significance level 0.05is used. The default H1 is a two-sided test. In
the field of Type of analysis, select “Site variability”. By clicking the
“Calculate” button, the statistical power is given in the output as 0.9925.

Example 13.1.2: Power curve with differ-
ent sample sizes or cluster sizes

The input and output for plotting a power curve for testing the
treatment main effect in Example 13.1.1 are given in Figure 13.1.5. The
sample size of each site ranges from 10 to 50 with an interval of 10. In
the Sample size field, the input is 10:50:10. We also choose “Show power
curve” from the drop-down menu of Power curve. In the output, the
power for each sample size from 10 to 50 with the interval 10 is listed.
The power curve is displayed at the bottom of the output as shown
in Figure 13.1.6. The power curve can be used for interpolation. For
example, to get a power 0.8, about 25 patients are needed for each site.
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Figure 13.1.2: Input and output for cal-
culating power for testing the treatment
main effect using MRT with 2 arms in
Example 13.1.1

Similarly, one can obtain a power curve with different cluster sizes by
specifying a sequence of numbers in the field Number of clusters.

Example 13.1.3: Calculate sample size (or
cluster size) given power and effect size

In practice, a power of 0.8 is often desired. Given the power, the
sample size can be calculated as shown in Figure 13.1.7. In this situation,
the Sample size field is left blank while the input for the Power field is
0.8. In the output, we can see 24 patients are needed for each site to
obtain a power of 0.8 for testing treatment main effect. One can also
obtain the required site size by leaving Number of clusters field blank
and specifying a sample size in the Sample size field.
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Figure 13.1.3: Input and output for calcu-
lating power for testing variance of treat-
ment effects across sites using MRT with
2 arms in Example 13.1.1

13.2 Use R Package WebPower

The power calculation for MRT with two arms is conducted using an R
function wp.mrt2arm function. The detail of the function is: n: sample size

f: effect size
J: number of clusters/sites
tau00: Variance of site means
tau11: Variance of treatment effects
across sites
sg2: Level-one error variance
alpha: significance level
power: statistical power
alternative: two-sided or one-sided
analysis
type: main: testing treatment main effect;
site: testing site variability; variance: test-
ing the variance of treatment main effect.

wp.mrt2arm(n=NULL, f=NULL, J=NULL, tau00=NULL, tau11=NULL, sg2=

NULL, power=NULL, alpha=0.05, alternative = c("two.sided", "

one.sided"), type=c("main","site","variance"))

The R input and output for the examples used in the previous section
are given below:

> ## calculate power for main effect given sample size and effect

size

> wp.mrt2arm(n=45, f=0.5, J=20, tau11=.5, sg2=1.25, power=NULL)

Multilevel model multisite randomized trials with two arms
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Figure 13.1.4: Input and output for cal-
culating power for testing site variability
using MRT with 2 arms in Example 13.1.1

J n f tau11 sg2 power alpha

20 45 0.5 0.5 1.25 0.8583253 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt2arm

> ## for testing variance of treatment effect

> wp.mrt2arm(n=45, J=20, tau11=.5, sg2=1.25, power=NULL, type="

variance")

Multilevel model multisite randomized trials with two arms

J n tau11 sg2 power alpha
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Figure 13.1.5: Input and output for power
curve for testing the treatment main ef-
fect using MRT with 2 arms in Example
13.1.2

20 45 0.5 1.25 0.9987823 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt2arm

> ## for testing site variability

> wp.mrt2arm(n=45, J=20, tau00=.1, sg2=1.25, power=NULL, type="

site")

Multilevel model multisite randomized trials with two arms

J n tau00 sg2 power alpha

20 45 0.1 1.25 0.9958889 0.05
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Figure 13.1.6: Power curve for testing the
treatment main effect using MRT with 2
arms in Example 13.1.2

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt2arm

>

> ## power curve

> res<-wp.mrt2arm(n=seq(10,50,5), f=0.5, J=20, tau11=.5, sg2

=1.25, power=NULL)

> res

Multilevel model multisite randomized trials with two arms

J n f tau11 sg2 power alpha

20 10 0.5 0.5 1.25 0.6599499 0.05

20 15 0.5 0.5 1.25 0.7383281 0.05

20 20 0.5 0.5 1.25 0.7818294 0.05

20 25 0.5 0.5 1.25 0.8090084 0.05

20 30 0.5 0.5 1.25 0.8274288 0.05

20 35 0.5 0.5 1.25 0.8406659 0.05

20 40 0.5 0.5 1.25 0.8506049 0.05

20 45 0.5 0.5 1.25 0.8583253 0.05

20 50 0.5 0.5 1.25 0.8644864 0.05

NOTE: n is the number of observations in each cluster
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Figure 13.1.7: Input and output for sam-
ple size planning for MRT with 2 arms in
Example 13.1.3

WebPower URL: http://psychstat.org/mrt2arm

> plot(res) ## generate power curve

>

> ## sample size given effect size, sample size, power

> wp.mrt2arm(n=NULL, f=0.5, J=20, tau11=.5, sg2=1.25, power=.8)

Multilevel model multisite randomized trials with two arms

J n f tau11 sg2 power alpha

20 23.10086 0.5 0.5 1.25 0.8 0.05

NOTE: n is the number of observations in each cluster
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WebPower URL: http://psychstat.org/mrt2arm

13.3 Effect Size for MRT with 2 Arms

As noted previously, there are three types of tests that are of interest in
a 2-arm MRT: testing treatment main effect, testing site variability, and
testing the variance of treatment main effect. The corresponding effect
sizes are defined as

f1 =
µD√

σ2
, (13.3.1)

f2 =
τ00

σ2 , (13.3.2)

f3 =
τ11

σ2 , (13.3.3)

where µD is the mean difference between the treatment and control
across all the sites, σ2 is the level-1 error variance, τ00 is the variance of
site means, and τ11 is the variance of treatment effects across sites.

Note that the Effect size in the interface in Figure 13.1.1 refers to the
effect size for testing treatment main effect. Its specification can be
assisted by an online calculator, as shown in Figure 13.3.1. A user needs
to supply the Mean difference between the treatment and control as well
as the Level-one error variance. Once these fields have been filled out,
the user can click “Calculate” and the effect size will be given at the
bottom.

Figure 13.3.1: Effect size calculator for
MRT with 2 arms

Alternatively,

Example data:

ID cluster score group

1 1 1 0

2 1 2 0

3 1 4 1

4 1 6 1

5 2 3 0

6 2 3 0

7 2 2 1

8 2 6 1

one can upload a set of empirical data to obtain the effect size.
Only registered users can use this method to protect data privacy. The
data have to be in the plain text format where the first column of
the data is the ID variable, the second column represents a cluster
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variable, the third column is the outcome variable and the fourth col-
umn is the condition variable with 0 being the control condition and
1 being the treatment condition. The first line of the data should be
the variable names. Figure 13.3.2 shows the use of the data online
at http://psychstat.org/mrt2data and the output – including the esti-
mated effect size of testing treatment main effect and the results from
conducting the hypothesis testing.

Figure 13.3.2: Effect size calculation
based on an empirical set of data

13.4 How to Conduct Power Analysis for MRT with 3
Arms

The primary software interface for power analysis for MRT with three
arms (i.e., two treatments and one control at each site) is shown in Fig-
ure 13.4.1. Within the interface, a user can supply different parameter http://psychstat.org/mrt3arm

values and select different options for power analysis. In a 3-arm MRT,
one might be interested in the following three types of tests.

• Testing treatment main effect: whether there is a difference between
the average treatment arms and the control arm.

– To obtain power for this test, users need to input Sample size, Effect
size of treatment main effect, Number of clusters, Variance of treatment
effects across sites, Level-one error variance, Significance level, and
select “Test treatment main effect” after Type of analysis.

• Testing the difference between the two treatments.

– To obtain power for this test, users need to input Sample size,
Effect size of two treatment differences, Number of clusters, Variance of
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treatment effects across sites, Level-one error variance, Significance level,
and select “Compare two treatments” after Type of analysis.

• Omnibus test: testing whether there is any difference among all
three arms.

– To obtain power for this test, users need to input Sample size, Effect
size of treatment main effect, Effect size of two treatment differences,
Number of clusters, Variance of treatment effects across sites, Level-one
error variance, Significance level, and select “Omnibus test” after
Type of analysis.

Figure 13.4.1: Software interface of power
analysis for MRT with 3 arms

The details about the input are given below.

• The Sample size is the number of individuals within each cluster. The
power calculation only allows for balanced data. In other words, all
clusters contain an equal number of subjects and within each cluster,
an equal number of subjects are assigned to the three conditions. To
obtain power estimation with varied sample sizes, multiple sample
sizes can be provided in the following two ways. First, multiple
sample sizes can be supplied and separated by white spaces, e.g.,
100 150 200 will calculate power for the three sample sizes 100,
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150 and 200. Second, a sequence of sample (or cluster) sizes can
be generated using the method s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. Note
that the values are separated by colon “:”. For example, 100:150:10
will generate a sequence of sample sizes: 100 110 120 130 140 150. By
default, the sample size is 80.

• The Effect size of treatment main effect and the Effect size of two treatment
difference quantify the effect for comparing the average treatment
arms to the control arm, and the effect for comparing the two treat-
ment arms, respectively. Multiple effect sizes or a sequence of effect
sizes can be supplied using the same way for sample size. One can
either input the effect sizes directly or calculate them by clicking the
“Calculator” in the parentheses.

• The Number of clusters tells how many clusters are considered in the
study design. At least two clusters are required.

• The Variance of treatment effects across sites specifies the site variability
for the treatments.

• The Level-one error variance is the level-1 residual variance.

• The Power specifies the desired statistical power, usually set at 0.80.

• The H1 can be specified as “Two-sided test” and “One-sided test”.

• The Significance level for power calculation is needed but usually set
at the default 0.05.

• The Type of test specifies which test is to be conducted.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes, or cluster sizes, or effect sizes
are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.

Once all fields have been appropriately filled in, pressing “Calculate”
will create a table of output and, if specified, a power curve will appear
below the table.

13.4.1 Examples

Example 13.4.1: Calculate power given
sample size and effect size

A researcher plans to collect data from 20 clinics to examine the
effect of certain behavioral therapies on recovering from anorexia. At
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each clinic, 30 girls will be randomly assigned to therapy 1, therapy 2,
or the control group. Previous research suggests that therapy 1 might
lead to an increase of 0.5 in BMI and therapy 2 might lead to an increase
of 0.8 in BMI. Further, the person-specific error variance is 2.25 and
the variance in treatment effects across sites is 0.4. What’s the power
for testing the treatment main effect? What’s the power for testing
the difference between the two treatments? What’s the power for the
omnibus test?

Although the effect sizes are not provided, one can calculate them
based on the given information. In the next subsection, we will de-
fine the effect sizes and illustrate how to obtain them by using the
“Calculator”. It turns out that the effect size of treatment main effect is
0.43 and that of two treatment difference is 0.2.

The input and output for calculating power for testing the treatment
main effect are given in Figure 13.4.2. In the field of Sample size, input
30, the number of patients within each clinic; in the field of Effect size
of treatment main effect, input 0.43, the expected effect size of treatment
main effect; in the field of Number of clusters, input 20, the number of
clinics; in the field of Variance of treatment effects across sites, input 0.4;
and in the field of Level-one error variance, input 2.25. The field for Power
is left blank because it will be calculated. The default Significance level
0.05 is used. The default H1 is a two-sided test. In the field of Type of
analysis, select “Test treatment main effect”. By clicking the “Calculate”
button, the statistical power is 0.8067.

The input and output for calculating power for testing the difference
between the two treatments are given in Figure 13.4.3. In the field of
Sample size, input 30; in the field of Effect size of two treatment difference,
input 0.2; in the field of Number of clusters, input 20; in the field of
Variance of treatment effects across sites, input 0.4; and in the field of
Level-one error variance, input 2.25. The field for Power is left blank
because it will be calculated. The default Significance level 0.05 is used.
The default H1 is a two-sided test. In the field of Type of analysis, select
“Compare two treatments”. By clicking the “Calculate” button, the
statistical power is 0.2071.

The input and output for calculating power for the omnibus test is
given in Figure 13.4.4. In the field of Sample size, input 30; in the field
of Number of clusters, input 20; in the field of Effect size of treatment main
effect, input 0.43; in the field of Effect size of two treatment difference, input
0.2; in the field of Number of clusters, input 20; in the field of Variance of
treatment effects across sites, input 0.4; and in the field of Level-one error
variance, input 2.25. The field for Power is left blank because it will be
calculated. The default Significance level 0.05 is used. The default H1 is
a two-sided test. In the field of Type of analysis, select “Ominibus test”.
By clicking the “Calculate” button, the statistical power is 0.7951.
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Figure 13.4.2: Input and output for cal-
culating power for testing the treatment
main effect using MRT with 3 arms in
Example 13.4.1

Example 13.4.2: Power curve with differ-
ent sample sizes or cluster sizes

The input and output for plotting a power curve for testing the
difference between the two treatments in Example 13.4.1 are given in
Figure 13.4.5. The cluster size ranges from 20 to 120 with an interval of
20. In the field of Number of clusters, the input is 20:120:20. In the field
of Type of analysis, select “Compare two treatments”. We also choose
“Show power curve” from the drop-down menu of Power curve. In the
output, the power for each site size from 20 to 120 with the interval
20 is listed. The power curve is displayed at the bottom of the output
as shown in Figure 13.4.6. From the power curve, to get a power of
0.8, more than 110 clinics are required if each clinic has 30 patients.
Similarly, one can obtain a power curve for different sample sizes by
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Figure 13.4.3: Input and output for cal-
culating power for testing the difference
between two treatments using MRT with
3 arms in Example 13.4.1

specifying a sequence of numbers in the field Sample size. One can also
obtain power curves with different sample sizes or cluster sizes for the
other two tests (testing treatment main effect and omnibus test) in a
similar way.

Example 13.4.3: Calculate sample size (or
cluster size) given power and effect size

In practice, a power of 0.8 is often desired. For the test of comparing
the two treatments, given the power, the cluster size can be calculated
as shown in Figure 13.4.7. In this situation, the field of Number of
clusters is left blank while the input for the Power field is 0.8. In the
output, we can see 111 clinics are needed to obtain a power of 0.8 if
each clinic has 30 patients. One can also obtain the required sample
size by leaving Sample size field blank and specifying a cluster size in
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Figure 13.4.4: Input and output for calcu-
lating power for the omnibus test using
MRT with 3 arms in Example 13.4.1

the field of Number of clusters.

13.5 Use R Package WebPower

The power calculation for MRT with three arms is conducted using the
R function wp.mrt3arm function. The detail of the function is: n: sample size

f1: effect size for treatment main effect
f2: effect size for the difference between
two treatments
J: number of clusters/sites
tau: variance of treatment effects across
sites
sg2: level-one error variance
alpha: significance level
power: statistical power
alternative: two-sided or one-sided
analysis
type: main: the difference between the
average treatment arms and the control
arm; treatment: the difference between
the two treatment arms; omnibus: the
three arms are all equivalent.

wp.mrt3arm(n=NULL, f1=NULL, f2=NULL, J=NULL, tau=NULL, sg2=NULL,

power=NULL, alpha=0.05, alternative = c("two.sided", "one.

sided"), type=c("main","treatment","omnibus"))

The R input and output for the examples used in the previous section
are given below:
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Figure 13.4.5: Input and output for power
curve for testing the difference between
two treatments using MRT with 3 arms
in Example 13.4.2

> ## calculate power for main effect given sample size and effect

size

> wp.mrt3arm(n=30, f1=0.43, J=20, tau=.4, sg2=2.25, power=NULL)

Multilevel model multisite randomized trials with three arms

J n f1 tau sg2 power alpha

20 30 0.43 0.4 2.25 0.8066964 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt3arm

> ## for testing differences between treatment effects

> wp.mrt3arm(n=30, f2=0.2, J=20, tau=.4, sg2=2.25, power=NULL,

type="treatment")
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Figure 13.4.6: Power curve for testing the
difference between two treatments using
MRT with 3 arms in Example 13.4.2

Multilevel model multisite randomized trials with three arms

J n f2 tau sg2 power alpha

20 30 0.2 0.4 2.25 0.2070712 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt3arm

> ## for testing site variability

> wp.mrt3arm(n=30, f1=.43, f2=0.2, J=20, tau=.4, sg2=2.25, power=

NULL, type="omnibus")

Multilevel model multisite randomized trials with three arms

J n f1 f2 tau sg2 power alpha

20 30 0.43 0.2 0.4 2.25 0.7950757 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt3arm

>

> ## power curve
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Figure 13.4.7: Input and output for sam-
ple size planning for MRT with 3 arms in
Example 13.4.3

> res <- wp.mrt3arm(n=30, f2=0.2, J=seq(20,120,10), tau=.4, sg2

=2.25, power=NULL, type="treatment")

> res

Multilevel model multisite randomized trials with three arms

J n f2 tau sg2 power alpha

20 30 0.2 0.4 2.25 0.2070712 0.05

30 30 0.2 0.4 2.25 0.2953799 0.05

40 30 0.2 0.4 2.25 0.3804554 0.05

50 30 0.2 0.4 2.25 0.4603091 0.05

60 30 0.2 0.4 2.25 0.5337417 0.05

70 30 0.2 0.4 2.25 0.6001544 0.05
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80 30 0.2 0.4 2.25 0.6593902 0.05

90 30 0.2 0.4 2.25 0.7116052 0.05

100 30 0.2 0.4 2.25 0.7571648 0.05

110 30 0.2 0.4 2.25 0.7965644 0.05

120 30 0.2 0.4 2.25 0.8303690 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt3arm

> plot(res,’J’,’power’) ## generate power curve

>

> ## sample size given effect size, sample size, power

> wp.mrt3arm(n=NULL, f1=0.43, J=20, tau=.4, sg2=2.25, power=0.8)

Multilevel model multisite randomized trials with three arms

J n f1 tau sg2 power alpha

20 28.61907 0.43 0.4 2.25 0.8 0.05

NOTE: n is the number of observations in each cluster

WebPower URL: http://psychstat.org/mrt3arm

13.6 Effect Size for MRT with 3 Arms

As mentioned previously, there are three types of tests that may be
of interest in a 3-arm MRT: (1) testing the treatment main effect, (2)
testing the difference between two treatments, and (3) the omnibus test.
Given the mean difference between the treatment 1 and control (µD1),
mean difference between the treatment 2 and control (µD2), and the
level 1 error variance (σ2), the effect sizes of the first two tests can be
calculated as

f1 =
(µD1 + µD2)/2√

σ2
, (13.6.1)

f2 =
µD1 − µD2√

σ2
. (13.6.2)

Note that effect size is not defined under the omnibus test. To do power
estimation and sample size planning for the omnibus test, one needs to
specify the effect sizes for testing treatment main effect and testing the
difference between two treatments. The specification of the effect sizes
can be assisted by an online calculator. In the interface in Figure 13.4.1,
clicking the link “Calculator” brings up the calculator. The calculator,
as shown in Figure 13.6.1, calculates the effect sizes directly based on
equations 13.6.1 and 13.6.2.
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Figure 13.6.1: Effect size calculator for
MRT with 3 arms

Consider the problem in Example 13.4.1, the data can be input as
in Figure 13.6.1. At the bottom, the effect sizes for the two tests are
presented.

Alternatively,

Example data:

ID cluster score group

1 1 1 0

2 1 2 0

3 1 6 1

4 1 8 1

5 1 4 2

6 1 5 2

one can upload a set of empirical data to estimate the effect size.
Only registered users can use this method to protect data privacy. The
data have to be in the plain text format where the first column of
the data is the ID variable, the second column represents the cluster,
the third column is the outcome variable and the fourth column is
the condition variable with 0 being the control condition, 1 being the
first treatment and 2 being the second treatment. The first line of the
data should be the variable names. Figure 13.6.2 shows the use of the
data in http://psychstat.org/mrt3data and the output – including the
estimated effect sizes and the results from conducting the hypothesis
testing.

13.7 Technical Details

In this section, we present the models for 2-arm MRT and 3-arm MRT,
and formulas for power estimation under the two models. Details
leading to the power calculation can be found in Raudenbush & Liu
(2000) and Liu (2013).

The model for a 2-arm MRT can be expressed as

Yij = β0j + β1jXij + eij,

β0j = γ00 + u0j, β1j = γ10 + u1j.

eij ∼ N(0, σ2),

(
u0j

u1j

)
∼ N(0,

[
τ00 τ01

τ10 τ11

]
),
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Figure 13.6.2: Effect size calculation
based on an empirical set of data

where

• Yij is the ith outcome in the jth cluster (i = 1, 2, ..., N; j = 1, 2, ...J),

• Xij is the treatment indicator of subject i at site j (0.5 for treatment
and -0.5 for control),

• β0j is the mean of the outcome at the jth site,

• β1j is the mean difference between treatment and control at the jth
site,

• γ00 is the grand mean,

• γ10 is the grand mean difference between the treatment and control
across all the sites (treatment main effect),

• the level-one residual variance σ2 represents level-one error variance,

• and the level-2 residual variances τ00 and τ11represent site variability
and variance of the mean differences among sites, respectively.

Power for testing the treatment main effect H0 : γ10 = 0 is calculated
by

Power =

1− P[TJ−1,λ < t0] + P[TJ−1,λ ≤ −t0] two− sided test,

1− P[TJ−1,λ < t0] one− sided test,
(13.7.1)

where
λ =

γ10√
( 4σ2

n + τ11)/J
, (13.7.2)
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t0 is the 100(1− α
2 )th percentile for a two-sided test and the 100(1− α)th

percentile for a one-sided test of the t distribution with J − 1 degrees
of freedom, and α is the significance level. Power for testing the site
variability H0 : τ00 = 0 is

Power = P(FJ−1,J(n−2) ≥ F0
σ2

nτ00 + σ2 ), (13.7.3)

and for testing the variance of treatment effects across sites H0 : τ11 = 0

Power = P(FJ−1,J(n−2) ≥ F0
σ2

nτ11/4 + σ2 ), (13.7.4)

where F0 is the 100(1− α)th percentile of the F distribution with degrees
of freedom J − 1 and J(n− 2).

The model for a 3-arm MRT can be expressed as

Yij = β0j + β1jX1ij + β2jX2ij + eij,

β0j = γ00 + u0j, β1j = γ10 + u1j, β2j = γ20 + u2j,

Var(eij) = σ2, Var(u0j) = τ00, Var(u1j) = τ11, Var(u2j) = τ22,

where

• Yij is the ith outcome in jth cluster (i = 1, 2, ..., N; j = 1, 2, ...J),

• X1ij is used to compare the average outcome of the two treatment
arms with that of the control arm (1/3 for the first treatment, 1/3
for the second treatment and -2/3 for the control condition),

• X2ij is used to contrast the average outcome between the two treat-
ment arms (1/2 for the first treatment, -1/2 for the second treatment
and 0 for the control condition),

• β0j is mean of the jth site,

• β1j is the mean difference between average treatment and control of
the jth site,

• β2j is the mean difference between the two treatments of the jth site,

• γ00 is grand mean,

• γ10 is the contrast between average of the two treatments and control,

• and γ20 is the contrast between the two treatments.
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Power for testing the treatment main effect H0 : γ10 = 0 is calculated
by

Power =

1− P[TJ−1,λ1 < t0] + P[TJ−1,λ1 ≤ −t0] two− sided test,

1− P[TJ−1,λ1 < t0] one− sided test,
(13.7.5)

where
λ1 =

γ10√
(4.5 σ2

n + τ11)/J
, (13.7.6)

t0 is the 100(1− α
2 )th percentile for a two-sided test and the 100(1− α)th

percentile for a one-sided test of the t distribution with J − 1 degrees of
freedom, and α is the significance level. Power for comparing the two
treatments H0 : γ20 = 0 is calculated by

Power =

1− P[TJ−1,λ2 < t0] + P[TJ−1,λ2 ≤ −t0] two− sided test,

1− P[TJ−1,λ2 < t0] one− sided test,
(13.7.7)

where
λ2 =

γ20√
(6 σ2

n + τ22)/J
, (13.7.8)

t0 is the 100(1− α
2 )th percentile for a two-sided test and the 100(1− α)th

percentile for a one-sided test of the t distribution with J − 1 degrees
of freedom, and α is the significance level. Power for the omnibus test
H0 : γ10 = γ20 = 0 is calculated by

Power = P(F2,2(J−1),λ3
≥ F0), (13.7.9)

where

λ3 = λ2
1 + λ2

2 =
γ10√

(4.5 σ2

n + τ11)/J
+

γ20√
(6 σ2

n + τ22)/J
, (13.7.10)

F0 is the 100(1− α)th percentile of the F distribution with degrees of
freedom 2 and 2(J − 1).

13.8 Exercises

1. A researcher plans to design a multisite randomized trial for study-
ing the effects of aerobic exercise (specifically walking) on cognitive
improvement in Alzheimer’s disease. The data will be collected from
community-dwelling adults who have moderate Alzheimer’s disease
in 5 communities. To determine the sample size at each community,
the researcher has found in the literature that walking for 2 months
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increased scores on a test of cognitive abilities by 2.5. Further, the
variance of the treatment effects across communities is estimated
to be 2 and the person-specific variance is estimated to be 1. How
many subjects are needed in each community to get a power 0.8 at
the alpha level 0.05?

2. Using the same information in Exercise 1, generate a power curve
with the sample size ranging from 10 to 100 with an interval of 10.
What would be the power when the sample size is 60?





14 Statistical Power Analysis for
Simple Mediation via Sobel
Test

Zhiyong Zhang
Department of Psychology
University of Notre Dame

Mediation models are widely used in social and behavioral sciences
as demonstrated in recent books by Hayes (2013) and MacKinnon (2008).
Mediation models are useful because they can be used to investigate
the underlying mechanisms related to why an input variable influences
an output variable. We illustrate how to use WebPower to conduct
statistical power analysis for a simple mediation model based on the
Sobel test.

Figure 14.0.1 displays the path diagram of a simple mediation model.
In the figure, x, m, and y represent the input variable, the mediation
variable, and the outcome variable, respectively. In this model, the
total effect of x on y, c’+a*b, consists of the direct effect c’ and the
mediation effect θ=a*b, the multiplication of the direct effect of x on m

and the direct effect of m on y. The mediation effect is also called the
indirect effect because it is the effect of x on y indirectly through m.

Statistical power analysis for mediation can be viewed as concerning
a test whether the mediation effect (θ = ab) is significantly different
from 0. More specifically, we have the null and alternative hypotheses

H0 : θ = 0 vs. H1 : θ 6= 0.

To test the mediation effect, the Sobel test has been used in which the
test statistic

z =
âb̂

se(âb̂)

is assumed to follow a normal distribution. Based on the Sobel test,
statistical power analysis can be conducted.
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Figure 14.0.1: Path diagram of a simple
mediation model.

14.1 How to Conduct Power Analysis for Mediation
Analysis

The primary software interface for power analysis for mediation analy-
sis is shown in Figure 14.1.1. Within the interface, a user can supply http://psychstat.org/mediation

different parameter values and select different options for power analy-
sis.

• Sample size. The total number of participants. Multiple sample sizes
can be provided in two ways to calculate power for each sample size.
First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. A sequence of sample sizes can be generated
using the method s:e:i with s denoting the starting sample size, e
as the ending sample size, and i as the interval. Note that the values
are separated by colon “:”. For example, 100:150:10 will generate
a sequence of sample sizes - 100 110 120 130 140 150. The default
sample size, as shown in Figure 14.1.1, is 100.

• Path a. The coefficient from the input variable x to the mediator m.

• Path b. The coefficient from the mediator variable m to the outcome
variable y.

• Variance of x: σ2
x . The variance of the input variable x.

• Variance of m: σ2
m. The variance of the mediation variable m. Note

that σ2
m = σ2

em + a2σ2
x .

• Error variance of y: σ2
ey. The error or residual variance of the output

variable y.
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• Significance level. The type I error rate is used for power calculation,
and it is usually set at the default value 0.05.

• Power. The desired statistical power can be specified here.

• Power curve. One can also request the plot of a power curve if
multiple sample sizes or effect sizes are provided.

• Note. A note (less than 200 characters) can also be provided to
provide basic information on the analysis for future reference for
registered users.

Among the following input, Sample size, Path a, Path b, Variance of x,
Variance of m, Error variance of y, Significance level, and Power, one and
only one can be left blank. However, a solution is not guaranteed
when calculating a quantity other than power. The path coefficients are
combined to form the effect size of interest.

14.1.1 Examples

Figure 14.1.1: Software interface of power
analysis for simple mediation analysis

Example 14.1.1: Calculate power given
sample size and model parameter values

Suppose we want to investigate whether home environment (m) is
a mediator between the relationship of mother’s education (x) and
child’s mathematical ability (y). Furthermore, we know a = b = 0.5,
σ2

x = σ2
em = σ2

ey = 1. Then, we want to know the statistical power we
can achieve with a sample of 100 participants at the significance level
0.05.
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The input and output for calculating power for this study are given
in Figure 14.1.2. The parameter values specified above are input in
each field. The field for Power is left blank because it will be calculated.
By clicking the “Calculate” button, the statistical power is given in the
output. For the current design, the power is 0.9337. Therefore, a study
with a sample size 100 would achieve sufficient power.

Figure 14.1.2: Input and output for calcu-
lating power for simple mediation analy-
sis in Example 14.1.1

Example 14.1.2: Power curveA power curve is a line plot of statistical power along with the given
sample sizes. In Example 14.1.1, the power is 0.9337 with the sample
size 100. What is the power for a different sample size, say, 50? One can
investigate the power of different sample sizes and plot a power curve.

The input and output for calculating power for the study in Example
14.1.1 with a sample size from 50 to 100 with an interval of 10 are given
in Figure 14.1.3. Note that in the Sample size field, the input is 50:100:10.
In the output, the power for each sample size from 50 to 100 with the
interval 10 is listed. Especially, with the sample size 70, the power is
about 0.826. In the input, we also choose “Show power curve” for the
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Power curve parameter. In the output, the power curve is displayed at
the bottom of the output as shown in Figure 14.1.4. The power curve
can be used for interpolation. For example, to get a power 0.8, a sample
size about 65 is needed.

Figure 14.1.3: Input and output for ob-
taining power curve for simple mediation
analysis in Example 14.1.2

Example 14.1.3: Calculate sample size
given power and effect size

In practice, a power 0.8 or higher is often desired. Given the power,
the sample size can also be calculated as shown in Figure 14.1.5. In this
situation, the Sample size field is left blank while in the Power field, the
value 0.9 is input. In the output, we can see that a sample size 88 is
needed to obtain a power 0.9.

Example 14.1.4: Calculate an effect given
power and sample size

In studying the mediation effect, the researcher might not have
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Figure 14.1.4: Power curve for simple me-
diation analysis in Example 14.1.2

enough information to determine the size of an effect. In this case, the
researcher can estimate the minimum effect to achieve certain power
given a sample size. Such an effect can help the researcher determine
whether it is meaningful to conduct a study. For example, if a very
high effect is needed, it might be difficult to achieve significant results
in practical data collection anyway. In Figure 14.1.6, we calculate the
path a for the mediation model by proving both sample size and power
as well as other parameters. Note that the path a has to be at least 0.734
to have a power 0.9 with the sample size 100.

14.2 Using WebPower for Power Analysis for Simple
Mediation

The power calculation for the simple mediation analysis is conducted
using the R function wp.mediation. The detail of the function is: n: sample size

power: statistical power
a: coefficient from x to m
b: coefficient from m to y
varx: variance of x
varm: variance of y
vary: error variance for y
alpha: significance level

wp.mediation(n=NULL, power=NULL, a=.5, b=.5, varx=1, vary=1, varm

=1, alpha = 0.05)

The R input and output for the examples discussed in the previous
section are given below.

> wp.mediation(n=100, a=.5, b=.5, varx=1, varm=1, vary=1)
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Figure 14.1.5: Input and output for ob-
taining sample size for simple mediation
analysis in Example 14.1.3

Power calculation for simple mediation based on Sobel test

n power a b varx varm vary alpha

100 0.9337271 0.5 0.5 1 1 1 0.05

WebPower URL: http://psychstat.org/mediation

> wp.mediation(n=NULL, power=.9, a=.5, b=.5, varx=1, varm=1, vary

=1)

Power calculation for simple mediation based on Sobel test

n power a b varx varm vary alpha

87.56182 0.9 0.5 0.5 1 1 1 0.05

WebPower URL: http://psychstat.org/mediation

>
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Figure 14.1.6: Input and output for ob-
taining a minimum effect for simple me-
diation analysis in Example 14.1.3

> ## power curve

> res <- wp.mediation(n=seq(50,100,5), a=.5, b=.5, varx=1, varm

=1, vary=1)

> res

Power calculation for simple mediation based on Sobel test

n power a b varx varm vary alpha

50 0.6877704 0.5 0.5 1 1 1 0.05

55 0.7287681 0.5 0.5 1 1 1 0.05

60 0.7652593 0.5 0.5 1 1 1 0.05

65 0.7975459 0.5 0.5 1 1 1 0.05

70 0.8259584 0.5 0.5 1 1 1 0.05

75 0.8508388 0.5 0.5 1 1 1 0.05

80 0.8725282 0.5 0.5 1 1 1 0.05

85 0.8913577 0.5 0.5 1 1 1 0.05

90 0.9076417 0.5 0.5 1 1 1 0.05

95 0.9216744 0.5 0.5 1 1 1 0.05

100 0.9337271 0.5 0.5 1 1 1 0.05
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WebPower URL: http://psychstat.org/mediation

> plot(res) ## generate power curve

>

> wp.mediation(n=100, power=.9, a=NULL, b=.5, varx=1, varm=1,

vary=1)

Power calculation for simple mediation based on Sobel test

n power a b varx varm vary alpha

100 0.9 0.7335197 0.5 1 1 1 0.05

WebPower URL: http://psychstat.org/mediation

14.3 Technical Details

Consider a simple mediation model

mi = a0 + a ∗ xi + emi

yi = b0 + b ∗mi + c ∗ xi + eyi

where emi ∼ N(0, σ2
em) and eyi ∼ N(0, σ2

ey). The mediation effect is
ab = a ∗ b.

The Sobel test statistic is

Z =
âb̂
σ̂ab

where σ̂2
ab = â2 ∗ σ̂2

b + b̂2 ∗ σ̂2
a . From regression analysis, we have

σ̂2
a =

σ2
em

nσ2
x

σ̂2
b =

σ2
ey

nσ2
m(1− ρ2

xm)

where σ2
x and σ2

m are variance for x and m and ρxm is the correlation
between x and m.

Furthermore, because â = ρxm ∗ σm/σx, we have

ρxm = âσx/σm

σ2
em = σ2

m(1− ρ2
xm) = σ2

m − â2σ2
x .

Then

σ̂2
a =

σ2
m − a2σ2

x
nσ2

x
,

σ̂2
b =

σ2
ey

n(σ2
m − a2σ2

x)
.
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Therefore, the Sobel test depends on the sample size, the coefficients a
and b, the variances of x and m, and the residual variance of y denoted
by σ̂2

ey as in

Z =
âb̂√

â2 ∗
σ2

ey

n(σ2
m−a2σ2

x )
+ b̂2 ∗ σ2

m−a2σ2
x

nσ2
x

To calculate power using WebPower, one needs to provide information
on (1) sample size, (2) coefficient a, (3) coefficient b, (4) variance of x
(σ2

x ), (5) variance of m (σ2
m), (6) error variance for y (σ2

ey ), and (7) the
significance level α. If the power is provided, the needed sample size
can also be calculated.

14.4 Exercises

1. A study found that processing speed mediated the relationship
between age and everyday living in a negative but insignificant way.
A researcher believes a study with a larger sample size would lead to
significant results. From the current study, he decides the population
parameter values should be a = −0.3, b = 0.4, σ2

x = σ2
m = σ2

ey = 1.
What is the required sample size to achieve a power 0.8?

2. Suppose in Example 1, the researcher has resources to collect data
from 40 participants. What would be his power?
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Structural equation modeling (SEM) is one of the most widely used
methods in social and behavioral sciences. SEM is a multivariate
technique that is used to study relationships between observed and
latent variables as well as among observed and latent variables. It can
be viewed as a combination of factor analysis and path analysis. Two
methods are widely used in power analysis for SEM. The first one is
based on the likelihood ratio test proposed by Satorra & Saris (1985) and
the second one is based on the root mean square error of approximation
(RMSEA) proposed by MacCallum et al. (1996). We will show how to
conduct power analysis for both methods using WebPower.

15.1 Power Analysis Using the Satorra & Saris (1985)
Method

The primary software interface for SEM using the Satorra & Saris
(1985) method is shown in Figure 15.1.1. Within the interface, a user http://psychstat.org/semchisq

can supply different parameter values and select different options for
power analysis.

• Sample size is the total number of participants. Multiple sample sizes
can be provided in two ways to calculate power for each sample size.
First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. Second, a sequence of sample sizes can
be generated using the method s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. Note
that the values are separated by colon “:”. For example, 100:150:10
will generate a sequence of sample sizes - 100 110 120 130 140 150.
The default sample size is 100.
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• The degrees of freedom of the chi-squared test. Multiple degrees of
freedom can be provided as for the sample size.

• The Effect size specifies the population misfit of a SEM model.1 1 The effect size will be discussed in more
detail later.Multiple effect sizes or a sequence of effect sizes can also be supplied

using the same method for sample size. By default, the value is 0.1.
Determining the effect size is critical but not trivial work. To help a
user obtain effect sizes, a calculator has been developed and can be
used by clicking the link “Calculator”.

• The Significance level for power calculation is needed but usually set
at the default value 0.05. Multiple significance levels can be supplied
by separating them using white spaces.

• The Power specifies the desired statistical power. Multiple power
values can be supplied by separating them using white spaces.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.

Among the following input, Sample size, Degrees of freedom, Effect size,
Significance level, and Power, one and only one can be left blank. How-
ever, note that a solution is not guaranteed when calculating a quantity
other than power.

15.2 Examples

Satorra & Saris (1985) presented an example in which Y1, Y2, Y3, Y4, and
X satisfy the following population model

Y1 = γ1X + ζ1

Y2 = γ2X + β21Y1 + ζ2 (15.2.1)

Y3 = γ3X + ζ3

Y4 = β41Y1 + β42Y2 + β43Y3 + ζ4

where ζi, i = 1, 2, 3, 4, follows a normal distribution with mean 0 and
unknown variance ψi, and X has mean 0 and variance 1. The parameter
values are

Parameter γ1 γ2 γ3 β41 β42 β43 β21 ψ1 ψ2 ψ3 ψ4

value .4 .5 .4 .4 .4 .4 .2 .84 .61 .84 .27

Suppose a model is fitted without β21. Then, one can investigate the
power to detect the path β21 through the likelihood ratio test.

Example 15.2.1: Calculate power given
sample size and effect size
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Figure 15.1.1: Power for SEM with known
sample size and effect size in Example
15.2.1

The corresponding effect size for β21 = 0.2 is 0.054 and the degrees
of freedom for the test is 4.2 A researcher is interested in the power 2 The method for calculating the effect

size will be explained later.given that she can collect data from 100 participants.
The input and output for calculating power for this study are given in

Figure 15.1.1. In the Sample size field, we input 100 and in the Degrees of
freedom field, we input 4. The Effect size is 0.054. The default Significance
level 0.05 is used. The field for Power is left blank because it will be
calculated. By clicking the “Calculate” button, the statistical power is
given in the output. For the current analysis, the power is 0.4221.

Example 15.2.2: Calculate power with
different significance levels

Satorra & Saris (1985) evaluated the power with significance levels
at 0.001, 0.01, 0.025, 0.05 and 0.1. The same analysis can be conducted
using WebPower with the input and output given in Figure 15.2.1. Note
that in the Significance level field, multiple values are specified and
separated by white spaces. Power corresponding to each significance
level is shown in the output. Clearly, higher significance level leads to
higher power.

Example 15.2.3: Power curveSatorra & Saris (1985) also used two sample sizes, 100 and 600.
WebPower can generate a power curve with different sample sizes. For
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Figure 15.2.1: Power for SEM with differ-
ent significance levels in Example 15.2.2

example, the input and output in Figure 15.2.2 calculate power with
a sample size from 100 to 600 with an interval of 100. Note that in
the Sample size field, the input is 100:600:100. In the output, the power
for each sample size from 100 to 600 with the interval 100 is listed.
Especially, with the sample size 300, the power is about 0.9146. In the
input, we also choose “Show power curve” for the Power curve field. In
the output, the power curve is displayed at the bottom of the output as
shown in Figure 15.2.3. The power curve can be used for interpolation.
For example, to get a power 0.8, a sample size of about 250 is needed.

Example 15.2.4: Calculate sample size
given power and effect size

In practice, a power 0.8 or higher is often desired. Given the power,
the sample size can also be calculated as shown in Figure 15.2.4. In this
situation, the Sample size field is left blank while in the Power field, the
value 0.8 is input. In the output, we can see a sample size 231 is needed
to obtain a power 0.8.

Example 15.2.5: Calculate effect size
given power and sample size

Suppose a researcher does not have enough information to determine
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Figure 15.2.2: Input and output for ob-
taining power curve for SEM in Example
15.2.3

the size of effect. In this case, the researcher can find the minimum
effect to achieve certain power given the sample size. Such an effect
can help the researcher determine whether it is meaningful to conduct
a study. For example, if a very large effect is needed, it might be
difficult to achieve significant results. In Figure 15.2.5, we calculate the
effect size by providing both sample size and power as well as other
information. Note that the effect size has to be at least 0.1206 to have a
power 0.8 with the sample size 100.

15.3 Using WebPower for Power Analysis

The power calculation for the SEM based on the method developed by
Satorra & Saris (1985) is conducted using the R function wp.sem.chisq.
The detail of the function is: n: sample size

df: degrees of freedom
effect: effect size
power: statistical power
alpha: significance level

wp.sem.chisq(n = NULL, df = NULL, effect = NULL, power = NULL,

alpha = 0.05)
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Figure 15.2.3: Input and output for ob-
taining power curve for SEM in Example
15.2.3

The R input and output for the examples discussed in the previous
section are given below

> ## calculate power given sample size and effect size

> wp.sem.chisq(n = 100, df = 4, effect = .054, power = NULL,

alpha = 0.05)

Power analysis for SEM (Satorra & Saris, 1985)

n df effect power alpha

100 4 0.054 0.4221152 0.05

NOTE: Power analysis for SEM (Satorra & Saris, 1985)

WebPower URL: http://psychstat.org/semchisq

>

> ## Power with different alphas

> wp.sem.chisq(n = 100, df = 4, effect = .054, power = NULL,

alpha = c(.001, .005, .01, .025, .05))

Power analysis for SEM (Satorra & Saris, 1985)

n df effect power alpha

100 4 0.054 0.06539478 0.001
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Figure 15.2.4: Input and output for ob-
taining sample size for SEM in Example
15.2.4

100 4 0.054 0.14952768 0.005

100 4 0.054 0.20867087 0.010

100 4 0.054 0.31584011 0.025

100 4 0.054 0.42211515 0.050

NOTE: Power analysis for SEM (Satorra & Saris, 1985)

WebPower URL: http://psychstat.org/semchisq

>

> ## power curve

> res <- wp.sem.chisq(n = seq(100,600,100), df = 4, effect =

.054, power = NULL, alpha = 0.05)

> res

Power analysis for SEM (Satorra & Saris, 1985)

n df effect power alpha

100 4 0.054 0.4221152 0.05

200 4 0.054 0.7510630 0.05

300 4 0.054 0.9145660 0.05

400 4 0.054 0.9750481 0.05

500 4 0.054 0.9935453 0.05

600 4 0.054 0.9984820 0.05
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Figure 15.2.5: Input and output for ob-
taining a minimum effect size for SEM in
Example 15.2.4

NOTE: Power analysis for SEM (Satorra & Saris, 1985)

WebPower URL: http://psychstat.org/semchisq

> plot(res) ## generate power curve

>

> ## calculate the effect size given other information

> wp.sem.chisq(n = 100, df = 4, effect = NULL, power = 0.8, alpha

= 0.05)

Power analysis for SEM (Satorra & Saris, 1985)

n df effect power alpha

100 4 0.1205597 0.8 0.05

NOTE: Power analysis for SEM (Satorra & Saris, 1985)

WebPower URL: http://psychstat.org/semchisq
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15.4 Effect Size

The effect size used in this calculator is defined as the difference be-
tween two SEM models, a full model MF and a reduced model MR.
The full model includes all the parameters in the population such as
the one in Equation 15.2.1. The reduced model is nested within the
full model by setting certain relationship to be null. For example, the
reduced model of the full model in Equation 15.2.1 is the one by setting
β21 = 0. To get an effect size, one needs to specify a value for each
parameter in the full model.

The effect size can be calculated in the following way. First, from the
full model, the model implied covariance matrix can be obtained as ΣF.
Then, the reduced model can be fitted to ΣF. Suppose the estimated
covariance matrix for the reduced model is Σ̂R. The effect size δ is
obtained as

δ = log |Σ̂R|+ tr(ΣFΣ̂−1
R )− log |ΣF| − p,

where p is the number variables for both the full model and reduced
model.

A convenient way to get the effect size is to fit the reduced model
to ΣF through SEM software such as lavaan (Rosseel, 2012) with a
predefined sample size n. Suppose the obtained chi-squared statistic is
λ. Then the effect size is δ = λ/(n− 1).

There is an approximate connection between the effect size δ and the
RMSEA ε where

δ = dε2

with d denoting the degrees of freedom. MacCallum et al. (1996) have
used 0.01, 0.05, and 0.08 to indicate excellent, good, and mediocre fit,
respectively. Based on this, we can define small, medium, and large
effects as shown in Table 15.4.1. Note that the effect size δ depends on
degrees of freedom given the value of RMSEA.

WebPower provides an online calculator to obtain the effect size
defined here with two methods.

15.4.1 Method 1: through a predefined population model and
parameter values

An example input and output for using this method is given in Figure
15.4.1. Both the full model and the reduced model need to be specified
using the lavaan Rosseel (2012) syntax as shown in the figure. Note that
the population parameter values are also provided in the full model
directly. The reduced model is similar to the full model with the paths
to be tested removed. By clicking the “Calculate” button, both the effect
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RMSEA (ε) Degrees of freedom (d) Effect size (δ)

Small 0.05

1 0.0025
2 0.005
4 0.01
8 0.02
16 0.04

Medium 0.08

1 0.0064
2 0.0128
4 0.0256
8 0.0512
16 0.1024

Large 0.1

1 0.01
2 0.02
4 0.04
8 0.08
16 0.16

Table 15.4.1: Effect size for SEM

size and the degrees of freedom are shown in the output. For this
example, the effect size in this example is 0.054.

15.4.2 Method 2: through empirical data and a model

The effect size can also be estimated from an empirical set of data. In
this case, the full model is fitted to the data. The expected covariance
matrix based on the full model is used as the population covariance
matrix. Then, the reduced model will be fitted to the expected covari-
ance matrix. Therefore, to use the method, one needs to provide a set
of empirical data as well as the full and reduced models. The dataset
can be uploaded to the server directly. The data file has to be in text
format with each entry separated by white spaces. In addition, the first
row should be the variable names that match those used in the full and
reduced model. An example is given in Figure 15.4.2. The data used in
this example is available at http://psychstat.org/semdata.

15.5 Technical Details

Technical details behind the power calculation used here can be found
in Satorra & Saris (1985). We outline the basic idea in this book. Let S
denote an unbiased sample covariance matrix and θ denote parameters
in a SEM model. Let Σ be the covariance matrix defined by the model
with parameters θ. From SEM theory, we know that the statistic

Ŵ = (n− 1)
[
log |Σ(θ̂)|+ tr(SΣ(θ̂)−1)− log |S| − p

]
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Figure 15.4.1: Effect size calculation for
SEM with predefined population model
and parameter values

follows a chi-squared distribution with degrees of freedom d asymptot-
ically. The purpose is to test the hypothesis that

H0 : θ = θ0

vs

H1 : θ = θ1.

Under H0, we have P(χ2
d > cα) = α where cα is the critical value under

the chi-squared distribution with degrees of freedom d. Under H1,
Ŵ follows asymptotically a non-central chi-squared distribution with
the non-centrality parameter λ. The statistical power is defined as
Power = P(Ŵ > cα|H1). Satorra & Saris (1985) showed that λ can be
approximated by

λ ≈ (n− 1)[log |Σ̂R|+ tr(ΣFΣ̂−1
R )− log |ΣF| − p]
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Figure 15.4.2: Effect size calculation
for SEM using empirical data and a
model. The example data can be found
at http://psychstat.org/semdata

where ΣF and ΣR are defined under H1 and H0, respectively. With this,
we can define an effect size independent of sample size as

δ = λ/(n− 1).

15.6 Power Analysis Based on RMSEA Using the Mac-
Callum et al. (1996) Method

The primary software interface for SEM based on RMSEA (Browne
& Cudeck, 1992) using the MacCallum et al. (1996) method is shown
in Figure 15.6.1. Within the interface, a user can supply different http://psychstat.org/rmsea

parameter values and select different options for power analysis. We
now explain each input.

• Sample size is the total number of participants. Multiple sample sizes
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can be provided in two ways to calculate power for each sample size.
First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. Second, a sequence of sample sizes can
be generated using the method s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. Note
that the values are separated by colon “:”. For example, 100:150:10
will generate a sequence of sample sizes - 100 110 120 130 140 150.
The default sample size is 100.

• The degrees of freedom of the chi-squared test. Multiple degrees of
freedom can be provided as for the sample size.

• The RMSEA for H0 specifies the RMSEA under the null hypothesis.
Usually, it is 0 but can be larger than 0.

• The RMSEA for H1 specifies the RMSEA under the alternative hy-
pothesis. This RMSEA can be a value from a previous SEM analysis.

• The Significance level for power calculation is needed but usually set
at the default value 0.05. Multiple significance levels can be supplied
by separating them using white spaces.

• The Power specifies the desired statistical power. Multiple power
values can be supplied by separating them using white spaces.

• The use of RMSEA can test both close fit or not-close fit by setting
Type of analysis.

• The Power specifies the desired statistical power. Multiple power
values can be supplied by separating them using white spaces.

• In addition to the required input, one can also request the plot of a
power curve if multiple sample sizes or effect sizes are provided.

• A note (less than 200 characters) can also be provided to provide
basic information on the analysis for future reference for registered
users.

Among the following input, Sample size, Degrees of freedom, RMSEA for
H0, RMSEA for H1, Significance level, and Power, one and only one can
be left blank. However, note that a solution is not guaranteed when
calculating a quantity other than power.

15.7 Examples

Using the example in Satorra & Saris (1985), we show how to conduct
the power analysis based on RMSEA. In the example, Y1, Y2, Y3, Y4, and
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Figure 15.6.1: Power for SEM with known
sample size and effect size in Example
15.7.1

X satisfy the following population model

Y1 = γ1X + ζ1

Y2 = γ2X + β21Y1 + ζ2 (15.7.1)

Y3 = γ3X + ζ3

Y4 = β41Y1 + β42Y2 + β43Y3 + ζ4

where ζi, i = 1, 2, 3, 4 follows a normal distribution with mean 0 and
unknown variance ψi and X has mean 0 and variance 1. The parameter
values are

Parameter γ1 γ2 γ3 β41 β42 β43 β44 ψ1 ψ2 ψ3 ψ4

value .4 .5 .4 .4 .4 .4 .2 .84 .61 .84 .27

Suppose a model is fitted without β21. Then, one can investigate the
power to detect this using the likelihood ratio test.

Example 15.7.1: Calculate power given
sample size and RMSEA

For the example above, the full model fits perfect and thus the
RMSEA for H0 is 0. The RMSEA for H1 when β21 = 0.2 is 0.116 and
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the degrees of freedom for the test is 4.3 A researcher is interested in 3 The method for calculating RMSEA un-
der H1 will be explained later.the power given that she can collect data from 100 participants.

The input and output for calculating power for this study are given
in Figure 15.6.1. In the Sample size field, we input 100 and in the
Degrees of freedom field, we input 4. RMSEA for H0 and H1 are 0 and
0.116 respectively. The default Significance level 0.05 is used. The field
for Power is left blank because it will be calculated. By clicking the
“Calculate” button, the statistical power is given in the output. For the
current analysis, the power is 0.4208.

Example 15.7.2: Power curveSimilar to the Satorra & Saris (1985) method, WebPower can generate
a power curve with given sample sizes. For example, the input and
output in Figure 15.7.1 calculate power with a sample size from 100 to
600 with an interval of 100. Note that in the Sample size field, the input
is 100:600:100. In the output, the power for each sample size from 100
to 600 with the interval 100 is listed. In the input, we also choose “Show
power curve” for the Power curve field. In the output, the power curve is
displayed at the bottom of the output as shown in Figure 15.7.2. The
power curve can be used for interpolation. For example, to get a power
0.8, a sample size of about 250 is needed.

Example 15.7.3: Calculate sample size
given power and RMSEA

In practice, a power 0.8 or higher is often desired. Given the power,
the sample size can also be calculated as shown in Figure 15.7.3. In this
situation, the Sample size field is left blank while in the Power field, the
value 0.8 is input. In the output, we can see a sample size 223 is needed
to obtain a power 0.8.

Example 15.7.4: Calculate RMSEA for H1
given power and sample size

Suppose a researcher does not have enough information to determine
the size of RMSEA for H1. In this case, the researcher can find the
minimum RMSEA to achieve certain power given the sample size. Such
an effect can help the researcher determine whether it is meaningful to
conduct the study. For example, if a very large RMSEA is needed, it
might be difficult to achieve a significant result. In Figure 15.7.4, we
calculate the effect size by providing both sample size and power as
well as other information. Note that the RMSEA for H1 has to be at
least 0.1736 to have a power 0.8 with the sample size 100.

15.8 Using WebPower for Power Analysis

The power calculation for SEM based on the RMSEA method pro-
posed by MacCallum et al. (1996) is conducted using the R function
wp.sem.rmsea. The detail of the function is: n: sample size

df: degrees of freedom
rmsea0: RMSEA for H0, usually 0
rmsea1: RMSEA for H1
alpha: significance level
power: statistical power
type: close fit or non-close fit

wp.sem.rmsea(n = NULL, df = NULL, rmsea0 = NULL, rmsea1 = NULL,

power = NULL, alpha = 0.05, type=c(’close’,’notclose’))
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Figure 15.7.1: Input and output for ob-
taining power curve for SEM in Example
15.7.2

The R input and output for the examples discussed in the previous
section are given below.

> ## calculate power given sample size and rmsea

> wp.sem.rmsea(n = 100, df = 4, rmsea0 = 0, rmsea1 = .116, power

= NULL, alpha = 0.05)

Power analysis for SEM based on RMSEA

n df rmsea0 rmsea1 power alpha

100 4 0 0.116 0.4208173 0.05

NOTE: Power analysis for SEM based on RMSEA

WebPower URL: http://psychstat.org/rmsea

> ## power curve
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Figure 15.7.2: Input and output for ob-
taining power curve for SEM in Example
15.7.2

> res <- wp.sem.rmsea(n = seq(100,600,100), df = 4, rmsea0 = 0,

rmsea1 = .116, power = NULL, alpha = 0.05)

> res

Power analysis for SEM based on RMSEA

n df rmsea0 rmsea1 power alpha

100 4 0 0.116 0.4208173 0.05

200 4 0 0.116 0.7494932 0.05

300 4 0 0.116 0.9135968 0.05

400 4 0 0.116 0.9746240 0.05

500 4 0 0.116 0.9933963 0.05

600 4 0 0.116 0.9984373 0.05

NOTE: Power analysis for SEM based on RMSEA

WebPower URL: http://psychstat.org/rmsea

> plot(res) ## generate power curve

>

> ## calculate the sample size given power

> wp.sem.rmsea(n = NULL, df = 4, rmsea0 = 0, rmsea1 = 0.116,

power = 0.8, alpha = 0.05)
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Figure 15.7.3: Input and output for ob-
taining sample size for SEM in Example
15.7.3

Power analysis for SEM based on RMSEA

n df rmsea0 rmsea1 power alpha

222.7465 4 0 0.116 0.8 0.05

NOTE: Power analysis for SEM based on RMSEA

WebPower URL: http://psychstat.org/rmsea

>

> ## calculate the rmsea1 given other information

> wp.sem.rmsea(n = 100, df = 4, rmsea0 = 0, rmsea1 = NULL, power

= 0.8, alpha = 0.05)

Power analysis for SEM based on RMSEA

n df rmsea0 rmsea1 power alpha

100 4 0 0.1736082 0.8 0.05

NOTE: Power analysis for SEM based on RMSEA
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Figure 15.7.4: Input and output for ob-
taining a minimum RMSEA for SEM in
Example 15.7.3

WebPower URL: http://psychstat.org/rmsea

15.9 Effect Size

The effect size can be measured using RMSEA. According to Browne
& Cudeck (1992), an RMSEA smaller than 0.05 indicates a close fit of
the model. MacCallum et al. (1996) have used 0.01, 0.05, and 0.08 to
indicate excellent, good, and mediocre fit, respectively. Large misfit
indicates bigger effect in the power analysis sense. Therefore, we might
consider 0.05 as small, 0.08 as medium, and 0.1 as large effect.

RMSEA can be calculated in a similar way as for the effect size of
the Satorra & Saris (1985) method. First, from the full model, the model
implied covariance matrix can be obtained as ΣF. Then, the reduced
model can be fitted to ΣF. Suppose the estimated covariance matrix for
the reduced model is Σ̂R. The effect size δ is for the Satorra & Saris
(1985) method obtained as

δ = log |Σ̂R|+ tr(ΣFΣ̂−1
R )− log |ΣF| − p
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where p is the first dimension of ΣF. The RMSEA ε is

ε =

√
δ

d

with d denoting the degrees of freedom. Note that RMSEA used here
did not correct the sample size as in Browne & Cudeck (1992). This
makes it independent of sample size but will be slightly different from
the typically reported RMSEA although the difference should be small
in general. WebPower effect size calculator for the Satorra & Saris (1985)
method also outputs RMSEA.

15.10 Technical Details

Technical details behind the power calculation used here can be found
in MacCallum et al. (1996). We only outline the basic idea. Let ε0 and
ε1 be RMSEA under H0 and H1. Under H0, the test statistic

Ŵ = (n− 1)
[
log |Σ(θ̂)|+ tr(SΣ(θ̂)−1)− log |S| − p

]
follows a chi-squared distribution with degrees of freedom d and non-
centrality parameter λ0 = ndε2

0. Note that λ = 0 if the model fits
perfectly as the case in the Satorra & Saris (1985) method. Under H1,
the test statistic follows a chi-squared distribution with degrees of
freedom d and non-centrality parameter λ1 = ndε2

1. Therefore, the
statistical power for testing close fit is defined as

Power = P(Ŵ > cα|H1)

= 1− [χ2
d,λ1

(cα)]
−1

= 1− χ2
d,λ1

[(χ2
d,λ0,α)]

−1

where [χ2
d,λ0,α]

−1 is the 100αth percentile of the chi-squared distribution
under H0. For the not-close fit, the power is

Power = P(Ŵ < cα|H1)

= [χ2
d,λ1

(cα)]
−1

= χ2
d,λ1

[(χ2
d,λ0,α)]

−1.

In the not-close fit situation, we expect that ε1 < ε0.

15.11 Exercises

1. A researcher wants to understand the effect of school climate and
peer support on teacher burnout. The theoretical construct “burnout”
can be estimated by three measures of emotional exhaustion (EE1,
EE2, EE3). The construct of School Climate can be modeled by
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three measures (CC2, CC3, CC4). The construct of Peer Support can
be modeled by two measures (PS1 and PS2). School Climate has
an influence on Peer Support and Burnout. Peer Support has an
influence on Burnout. Burnout is the ultimate outcome of interest.
Based on the literature, the researcher sketches the following path
diagram.
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(a) Based on the path diagram, what is the effect size for the path
from peer support to burnout?

(b) If the researcher can collect data from 200 participants, what is
the power to detect the effect from peer support to burnout?

(c) Create a power curve for detecting the path from peer support to
burnout. How many participants are needed to get a power 0.9?
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16 Power Analysis for t-test with
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This chapter is based on Du et al. (2017b).
Power analysis is widely used for sample size determination (Cohen,

1988). With power analysis, an adequate but not “too large” sample
size is determined to detect an existing effect. The conventional method
for power analysis for the t-test is limited by two strict assumptions:
normality and homogeneity (two-sample pooled-variance t-test). The
two-sample separated-variance t-test (also known as the Welch’s t-
test; Welch, 1947) tolerates heterogeneity but still assumes normally
distributed data. Thus, the corresponding exact power solution for
the separated-variance t-test assumes normality with either numeri-
cal integration of noncentral density function or approximation (e.g.,
DiSantostefano & Muller, 1995; Moser et al., 1989).

Practical data in social, behavioral, and education research are rarely
normal or homogeneous (Blanca et al., 2013; Cain et al., 2017; Micceri,
1989). This poses challenges on statistical power analysis for the t-test
(Cain et al., 2017). To deal with the problems, we develop a general
method to conduct power analysis for t-test through Monte Carlo
simulation. The method can flexibly take into account non-normality in
the one-sample t-test, two-sample t-test, and paired t-test, and unequal
variances in two-sample t-test. We provide an R function as well as
an online interface for implementing the proposed Monte Carlo based
power analysis procedure.
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16.1 One-sample t-test

The one-sample t-test concerns whether the population mean µ is
different from a specific target value µ0 (usually µ0 = 0). Thus the null
hypothesis is

H0 : µ = µ0.

The alternative hypothesis can be either two-sided (Ha1) or one-sided
(Ha2 or Ha3):

Ha1 :µ 6=µ0,

Ha2 :µ > µ0, or

Ha3 :µ < µ0.

The statistic given a sample size n,

t =
ȳ− µ0

s/
√

n
,

follows a t distribution with degrees of freedom n− 1 under the nor-
mality assumption, where s is the sample standard deviation. When
the normality assumption is violated, the t statistic does not follow
a t distribution anymore. When sample size increases, the statistic
approximately follows a normal distribution. However, power analysis
is less meaningful with a huge sample size because the power would
be close to 1.

Non-normality can take many forms. In this study, we focus on
continuous variables with skewness and kurtosis different from those of
a normal distribution (e.g., Cain et al., 2017). For non-normal data with
an unknown distribution, it is extremely difficult to use an analytical
formula to calculate power as in traditional power analysis. Instead, a
Monte Carlo simulation method can be conveniently used (e.g., Muthén
& Muthén, 2002; Zhang, 2014). The basic procedure of the Monte
Carlo method is to first simulate the empirical null distribution of a
chosen test statistic with the first four moments (Zhang, 2018) under the
null distribution to get the empirical critical value for null hypothesis
testing. Then the distribution of the test statistic under the alternative
hypothesis can be simulated and the power can be estimated using
the empirical distribution under the alternative hypothesis and the
empirical critical value. The general method for SEM can be found in
Yuan et al. (2017).

To use the Monte Carlo method, information regarding the first four
moments is needed (Zhang, 2018). Specifically, we need the popula-
tion mean (µ) and standard deviation (σ). In addition, we need the
population skewness

γ1 = E

[(
x− µ

σ

)3
]
=

µ3

σ3
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and kurtosis

γ2 = E

[(
x− µ

σ

)4
]
=

µ4

σ4 .

For a normal distribution, the skewness is 0 and the kurtosis is 3. For
testing the population mean, the means under the null and alternative
hypotheses should be different, denoted by µ0 and µ1, respectively.
However, we assume that the shapes of distributions under the null and
alternative are the same with the same standard deviation, skewness,
and kurtosis although they can be different. In practice, the population
measures are unknown but they can be approximated based on meta-
analysis or literature review (e.g., Schmidt & Hunter, 2014).

For the one-sample test, the following step-by-step procedure can be
used to obtain the power for a given sample size n for testing

H0 : µ = µ0 vs. H1 : µ = µ1.

1. Given the mean (µ0), standard deviation (σ), skewness (γ1), and
kurtosis (γ2), generate R0 sets of non-normal data, each with the
sample size n. R0 should be sufficiently large and we recommend a
minimum value 100,000.

2. Calculate the mean and variance for each of the R0 datasets denoted
as ȳ0j and s2

0j, j = 1, . . . ., R0. Calculate the statistics

t∗0j =
ȳ0j − µ0

s0j/
√

n
.

Obtain the critical value cα according to the pre-specified type I error
rate α, typically 0.05, and the alternative hypothesis. For example, if
the alternative hypothesis is Ha2, cα is the 100(1− α)th percentile of
t∗0j.

3. Generate R1 sets of non-normal data, each with the sample size (n),
the mean (µ1), standard deviation (σ), skewness (γ1), and kurtosis
(γ2). We recommend a minimum value 1,000 for R1.

4. Calculate the mean and variance for each dataset in Step (3) and
denote them as ȳai and s2

ai, i = 1, . . . ., R1, and calculate the corre-
sponding statistic

t∗ai =
ȳai − µ0

sai/
√

n
.

5. The power is estimated as the proportion that t∗ai is greater than the
critical value cα:

π = #(t∗ai > cα)/R1.

The Monte Carlo procedure works equally for the normal data, in which
the data in Step (1) and (3) can be generated from normal distributions.
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The procedure above also works for the paired samples where the
population mean, standard deviation, skewness, and kurtosis of the
difference scores are used.

16.2 Two-sample t-test

The two-sample t-test is used to test whether two independent popula-
tion means are equal. The null hypothesis is

H0 : µ1 = µ2.

The alternative hypothesis can be either two-sided (Ha1) or one-sided
(Ha2 or Ha3):

Ha1 :µ1 6=µ2,

Ha2 :µ1 > µ2, or

Ha3 :µ1 < µ2.

The pooled-variance t statistic

tpooled =
ȳ1 − ȳ2√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 (1/n1 + 1/n2)

follows a t distribution with degrees of freedom n1 + n2 − 2, where n1

and n2 are sample sizes for the two independent samples. ȳ1 and ȳ2

are the sample means and s2
1 and s2

2 are the sample variances of the
two groups, respectively. The pooled t-test assumes homogeneity and
normality. When the variances of the two groups are not the same, the
separated-variance t-test should be used where the test statistic

t =
ȳ1 − ȳ2√

s2
1

n1
+

s2
2

n2

follows a t-distribution with the degrees of freedom

d f =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)2

n1−1 +
(s2

2/n2)2

n2−1

.

When the normality assumption is violated, the distribution of the
statistic is not a t distribution anymore. Therefore, the Monte Carlo
based method could be used for power analysis.

As in one-sample t-test, we assume that the shapes of the population
distribution for each group under the null and alternative hypotheses
are the same with the same standard deviation, skewness, and kurtosis.
The step-by-step procedure for the two-sample t-test power calculation
with given sample sizes n1 and n2 for the two groups is given below.
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1. Let µ10 and µ20 be the means of the two groups under the null
hypothesis, typically, µ10 − µ20 = 0. Given the population means
(µ10 and µ20), standard deviations (σ1 and σ2), skewness values (γ11

and γ12), and kurtosis values for two groups (γ21 and γ22), generate
R0 sets of non-normal data, one with sample size n1 and another
with sample size n2. We recommend a minimum value 100,000 for
R1.

2. For the R0 sets of data from previously simulated data pool, calculate
the mean and variance of each group for each dataset denoted as y01j

, y02j , s2
01j, and s2

02j, j = 1, . . . ., R0. Calculate the separated-variance
test statistics

t∗0j =
ȳ01j − ȳ02j√

s2
01j
n1

+
s2

02j
n2

.

Obtain the critical value cα according to the pre-specified type I error
rate α and the alternative hypothesis.

3. Let µ11 and µ21 be the means of the two groups under the alternative
hypothesis. Generate R1 sets of non-normal data, each with the
sample sizes (n1 and n2), means (µ11 and µ21), standard deviations
(σ1 and σ2), skewness values (γ11 and γ12), and kurtosis values (γ21

and γ22) for the two groups separately. We recommend a minimum
value 1,000 for R1.

4. Calculate the mean and variance of each group for each dataset
denoted as ȳa1i , ȳa2i , s2

a1i, and s2
a2i, i = 1, . . . ., R1. Calculate the

separated-variance test statistics

t∗ai =
ȳa1i − ȳa2i√

s2
a1i
n1

+
s2

a2i
n2

.

5. The power is estimated as the proportion that t∗ai is greater than the
critical value cα:

π = #(t∗ai > cα)/R1.

16.3 Power Analysis Using R Package WebPower

The Monte Carlo procedure for power analysis for the one-sample,
paired sample, and two-sample analyses is implemented in an R pack-
age WebPower. Specifically, the function wp.mc.t is utilized.

The basic usage of the function wp.mc.t has the following form:

wp.mc.t(n = NULL, R0 = 1e+05, R1 = 1000, mu0 = 0, mu1 = 0,

sd = 1, skewness = 0, kurtosis = 3, alpha = 0.05, type = c("

two.sample", "one.sample", "paired"), alternative =

c("two.sided", "less", "greater"))
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In the function, n is the sample size; mu0, mu1, sd, skewness, and
kurtosis are the mean under the null hypothesis, mean under the
alternative hypothesis, standard deviation, skewness, and kurtosis,
with the default values 0, 0, 1, 0, and 3, respectively. R0 and R1 specify
the total number of replications under null and alternative hypotheses
with the default values 100,000 and 1,000, respectively. alpha is the
significance level with the default value 0.05. type specifies the type
of analysis such as one-sample test or two-sample test, and alternative
specifies the direction of the alternative hypothesis.

Example 16.3.1: Calculate power for one
sample t-test

In a one-sample t-test, we are interested in whether the population
mean is equal to 0 with a two-sided alternative hypothesis. The pop-
ulation distribution follows a normal distribution with the mean 0.5
and the standard deviation 1. Therefore, the default skewness 0 and
kurtosis 3 are used here. To calculate the power with the sample size
20, the R input and output are given below. The power is 0.562 in this
example.

> wp.mc.t(n=20 , mu0=0, mu1=0.5, sd=1, skewness=0, kurtosis=3,

type = c("one.sample"), alternative = c("two.sided"))

One-sample t test power calculation

n power mu0 mu1 sd skewness kurtosis alpha

20 0.562 0 0.5 1 0 3 0.05

WebPower URL: http://psychstat.org/tnonnormal

Example 16.3.2: Calculate power for
paired t-test

In a paired t-test, we plan to test whether the matched pairs have
equal means with the one-sided alternative hypothesis (Ha : µD > 0).
The mean, standard deviation, skewness, and kurtosis of the difference
scores are 0.3, 1, 1, and 6 respectively. Therefore, the data are not
normally distributed. To calculate statistical power with the sample
size 40, the R input and output are given below. The obtained power is
0.664 in this example.

> wp.mc.t(n=40 , mu0=0, mu1=0.3, sd=1, skewness=1, kurtosis=6,

type = c("paired"), alternative = c("greater"))

Paired t test power calculation

n power mu0 mu1 sd skewness kurtosis alpha

40 0.664 0 0.3 1 1 6 0.05

NOTE: n is number of *pairs*

WebPower URL: http://psychstat.org/tnonnormal

Example 16.3.3: Calculate power for two-
sample t test
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In a two-sample independent t-test, we plan to examine whether two
independent population means are equal with the one-sided alternative
hypothesis (Ha : µ1 − µ2 < 0). The means for the two groups are
0.2 and 0.5, standard deviations for the two groups are 0.2 and 0.5,
skewnesses for the two groups are 1 and 2, and kurtoses for the two
groups are 4 and 6 respectively. To calculate the power with the sample
size equal to 15 per group, the specification of the R function is as
follows. The obtained power is 0.89 in this example.

> wp.mc.t(n=c(15, 15), mu1=c(0.2, 0.5), sd=c(0.2, 0.5), skewness=

c(1, 2), kurtosis=c(4, 6), type = c("two.sample"),

alternative = c("less"))

Two-sample t test power calculation

n1 n2 power mean1 mean2 sd1 sd2 skewness1 skewness2 kurtosis1

kurtosis2 alpha

15 15 0.89 0.2 0.5 0.2 0.5 1 2 4

4 0.05

NOTE: n is the sample size in *each* group

WebPower URL: http://psychstat.org/tnonnormal

16.4 Power Analysis Using WebPower Online Interface

An online interface can also be used to conduct the same power http://psychstat.org/tnonnormal

analysis as shown in Figure 16.4.1. The following information is needed
to conduct the Monte Carlo power analysis.

• Sample size is the total number of participants. Multiple sample sizes
can be provided in two ways to calculate power for each sample size.
First, multiple sample sizes can be supplied and separated by white
spaces, e.g., 100 150 200 will calculate power for the three sample
sizes 100, 150 and 200. Second, a sequence of sample sizes can
be generated using the method s:e:i with s denoting the starting
sample size, e as the ending sample size, and i as the interval. Note
the values are separated by colon “:”. For example, 100:150:10 will
generate a sequence of sample sizes - 100 110 120 130 140 150. The
default sample size is 100.

• Replication for H0 and H1 specifies the total number of replications
under null and alternative hypotheses with the default value 100,000
and 1,000, respectively.

• Mean for H0 provides the mean under the null hypothesis. For a
two-sample test, it should have two values separated by a space.
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• Mean for H1 provides the mean under the alternative hypothesis. For
a two-sample test, it should have two values separated by a space.

• Standard deviation, Skewness, and Kurtosis specify the corresponding
statistics under the population. They are assumed to be the same
under both null and alternative hypotheses but can be different.

• Significance level is set at the default value 0.05 but can be changed.

• Type of test can be a one-sample test or a two-sample test.

• H1 specifies the direction of the alternative hypothesis.

• Power curve controls whether to generate a power curve if multiple
sample sizes are used.

To use the interface, simply input the needed information and click
on “Calculate”. For example, using the information in Example 16.3.1,
we get a power of 0.557. Note that since the power is estimated based
on simulation, each time, one might get a slightly different value.
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Figure 16.4.1: Power analysis for t-test
with non-normal data





17 Statistical Power for SEM and
Mediation with Non-normal
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This chapter uses examples from Zhang
(2014).Structural equation modeling and mediation analysis are widely

used in the social and behavioral sciences. In previous chapters, we
have discussed how to conduct power analysis for SEM and a simple
mediation model based on analytical solutions. In this chapter, we
focus on how to deal with non-normal data and for a general set of
mediation models. Our discussion focuses on mediation models but
SEM can be viewed as a mediation model without a mediation effect
being investigated in this chapter. Therefore, the same procedure works
for SEM.

17.1 Monte Carlo Based Statistical Power Analysis

In this section, we first present the Monte Carlo based method. For
better illustration, we focus our discussion on a simple mediation model
even though the method applies to more complex models, as shown in
our examples. Figure 17.1.1 displays the path diagram of the simple
mediation model. In the figure, x, m, and y represent the independent or
input variable, the mediation variable, and the dependent or outcome
variable, respectively. In this model, the total effect of x on y, c’+ a*b,
consists of the direct effect c’ and the mediation effect θ = a*b, the
multiplication of the direct effect of x on m and the direct effect of m on
y. The mediation effect is also called the indirect effect because it is the
effect of x on y indirectly through m.

Statistical power analysis for mediation can be viewed as concerning



288 practical statistical power analysis

a b 

c' 
x

m

yσ 2
x

σ

σ

2

2

em

ey

Figure 17.1.1: Path diagram of a simple
mediation model.

a test whether the mediation effect (θ) is significantly different from 0.
More specifically, we have the null and alternative hypothesis

H0 : θ = θ0 vs. H1 : θ = θ1,

where θ0 is usually 0 and θ1 represents a given effect size. By its
definition, the statistical power (π) is

π = Pr(reject H0|H1). (17.1.1)

In addition to the use of null hypothesis testing, the power can be
calculated using the confidence intervals. This is based on the equiv-
alence of confidence intervals and null hypothesis testing for testing
a hypothesis (e.g., Hoenig & Heisey, 2001; Meehl, 1997). That is, if a
1-α confidence interval does not include the null hypothesis value, one
can infer a statistically significant result at the significance level α (e.g.,
Daly, 1991). More specifically, let [l, u] denote the confidence interval
of the mediation effect θ. The power is then

π = Pr(0 /∈ [l, u]|H1). (17.1.2)

In practice, the power π can be difficult to calculate analytically espe-
cially for complex mediation models. However, it can be estimated
using the relative frequency of rejecting the null hypothesis in Monte
Carlo simulation following Algorithm 1. The algorithm has been widely
applied in the literature of statistical power analysis for both mediation
analysis and other analysis (e.g., Cheung, 2007; Fritz & MacKinnon,
2007; Fritz et al., 2012; Hayes & Scharkow, 2013; MacKinnon et al., 2004;
Muthén & Muthén, 2002; Thoemmes et al., 2010; Zhang & Wang, 2009,
2013).

A critical component of such a Monte Carlo algorithm is the choice
of the method for constructing the confidence interval of the mediation
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Algorithm 1 Monte Carlo simulation algorithm for statistical power

1. Form a mediation model based on the hypothesized theory and set
up the population parameters for the mediation model. The parame-
ter values can be decided from previous studies in the literature or a
pilot study.

2. Generate a data set with sample size n based on the model and its
population parameter values.

3. Test the significance of a mediation effect by forming a confidence
interval using the generated data.

4. Repeat Steps 2 and 3 for R times where R is the number of Monte
Carlo replications.

5. Suppose among the R replications, the mediation effect is significant
for r times. Then the power for detecting the mediation effect given
the sample size n is r/R.

effect. Our R package allows three types of confidence intervals: the
normal confidence interval, the robust confidence interval, and the
bootstrap confidence interval although we recommend the use of the
bootstrap confidence interval.

17.1.1 Normal confidence interval

In mediation analysis, model parameters and their covariance can be
estimated using the maximum likelihood method. Under the normal
data assumption, the estimated model parameters follow a multivariate
normal distribution. For example, for the simple mediation model,
â and b̂, estimates of a and b, have a bivariate normal distribution

with the covariance matrix

(
σ̂2

a σ̂ab

σ̂ab σ̂2
b

)
where σ̂2

a , σ̂2
b , and σ̂ab are

the estimated variances and covariance of â and b̂. Using the delta
method, θ̂ = âb̂ is normally distributed with mean θ = ab and variance
b̂2σ̂2

a + 2âb̂σ̂ab + â2σ̂2
b (p.298, Sobel, 1982). The 1− α confidence interval

for ab can be constructed as

[âb̂ + Φ−1(α/2)× ŝe(âb̂), âb̂ + Φ−1(1− α/2)× ŝe(âb̂)], (17.1.3)

where Φ is the standard normal cumulative distribution function and
therefore Φ−1(α) gives the 100αth percentile of the standard normal
distribution. For example, for the 95% confidence interval, Φ−1(α/2) =
Φ−1(.05/2) = Φ−1(.025) ≈ −1.96 and Φ−1(1− α/2) = Φ−1(.975) ≈
1.96. ŝe(âb̂) =

√
b̂2σ̂2

a + 2âb̂σ̂ab + â2σ̂2
b is the standard error of âb̂. We
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refer to this interval as the normal confidence interval. Note a power
analysis based on the normal confidence interval is the same as the use
of the Sobel test.

17.1.2 Robust confidence interval

When data are not normally distributed, the standard error estimates
of the parameter estimates of the mediation models are not consistent.
Therefore, the confidence interval in Equation (17.1.3) is problematic.
However, if the fourth moments (or kurtosis) of the non-normal data
still exist, the robust Sandwich-type standard errors are consistent
and can be used (Zu & Yuan, 2010). Therefore, replacing the normal
standard error with the Sandwich-type standard error in Equation
(17.1.3), we obtain a robust confidence interval for the mediation effect.

17.1.3 Bootstrap confidence interval

Both the normal and robust confidence intervals are based on asymp-
totic theory and they might not perform well in finite sample experi-
ments (e.g., MacKinnon et al., 2004; Zu & Yuan, 2010). In the literature,
confidence intervals constructed using the bootstrap method have been
shown to perform better under many studied conditions (e.g., Cheung,
2007; Fritz & MacKinnon, 2007; Fritz et al., 2012; Hayes & Scharkow,
2013; MacKinnon et al., 2004; Preacher & Hayes, 2004; Shrout & Bolger,
2002). Algorithm 2 can be followed to construct a bootstrap confidence
interval.

Algorithm 2 Bootstrap confidence interval algorithm

1. Using the original data set (Sample size = n) as a population, draw
a bootstrap sample of n persons randomly with replacement.

2. With the bootstrap sample, estimate model parameters and compute
estimated mediation effects.

3. Repeat Steps 1 and 2 for a total of B times. B is the number of
bootstrap samples.

4. The bootstrap confidence intervals of model parameters and media-
tion effects are constructed.

Different bootstrap confidence intervals have been used for the boot-
strap method in the literature of mediation analysis (e.g., Cheung,
2007; Fritz & MacKinnon, 2007; Fritz et al., 2012; Hayes & Scharkow,
2013; MacKinnon et al., 2004). Let θ denote a population media-
tion effect, θ̂ denote the estimate of θ from the original data, and
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θ̂b, b = 1, . . . , B denote its estimate for the bth bootstrap sample. A
100(1 − α)% bootstrap confidence interval is formed in the follow-
ing ways. First, the percentile bootstrap confidence interval can be
constructed by [θ̂b(α/2), θ̂b(1− α/2)] for a parameter with θ̂b(α) de-
noting the 100αth percentile of the B bootstrap estimates. Second,
the bias-corrected bootstrap confidence interval can be constructed as
[θ̂b(α̃l), θ̂b(α̃u)] where α̃l and α̃u are used to get the quantiles and are
calculated by

α̃l = Φ[2z0 + Φ−1(α/2)] (17.1.4)

and
α̃u = Φ[2z0 + Φ−1(1− α/2)] (17.1.5)

with

z0 = Φ−1

[
number of times that θ̂b < θ̂

B

]
. (17.1.6)

17.2 R Package

The proposed method in the above section is implemented in the
free, open-source R package WebPower. The package can conduct
power analysis based on the normal, robust, and bootstrap confidence
intervals. We now illustrate the use of the package through a simple
mediation model shown in Figure 17.2.1. The values in the figure are
population parameters that can be decided from a pilot study or the
existing literature. In this example, we choose the parameter values to
represent a medium mediation effect. Some of the values are labeled
using a, b, and cp. For demonstration, suppose we are interested in the
power of the mediation effect ab=a*b and the total effect abc=a*b+cp.

a=0.39 

1 

b=0.39 

1 
cp=0 

1 x

m

y

Figure 17.2.1: An example mediation
model with population parameters

There are two functions in WebPower for power analysis with non-
normal data for SEM and mediation: wp.mc.sem.basic and wp.mc.sem.boot.
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The first function wp.mc.sem.basic estimates power based on the Sobel
test either with regular standard error estimates or the robust standard
error estimates. Since it does not require bootstrap, it runs much faster
than the second function which is based on the bootstrap method for
testing the significance of the mediation effects and model parameters.

To use the functions, one needs to specify the mediation model and
the mediation effect. The package uses the lavaan (Rosseel, 2012)

model specification method but with some specific requirements. For
example, for the simple mediation model, it is specified as below.

demo = "

y ~ cp*x + start(0)*x + b*m + start(.39)*m

m ~ a*x+start(.39)*x

x ~~ start(1)*x

m ~~ start(1)*m

y ~~ start(1)*y

"

First, the name of the model is demo in R. Everything about the model is
given in a pair of quotation marks. Each path in the model is described
using a line of statement. For example, m ~ a*x + start(.39)*x

means that m regresses on x with the coefficient 0.39 as in start(0.39).
Because the coefficient has a label a, it is also specified in the equa-
tion. The statement x ~~ start(1)*x means that the variance for x is
1. More generally, the regression relationships are specified using ~

and variance and covariance are specified using ~~. More about model
specification can be found in Rosseel (2012).

For SEM, only the model is needed. But for mediation analysis, we
also need to tell the package the mediation effects under evaluation.
In this example, the mediation effect ab and the total effect abc are of
interest to us. They can be specified as

mediation = "

ab := a*b

abc:= a*b + cp

"

The notation := means to calculate the indirect effect ab as the product
of parameter a and b, where the labels on the right hand of “:=” should
be consistent with those used in the model statement demo. Similarly,
the total effect is calculated.

Only the labels for the parameters that will appear in the calculation
of the mediation effect are necessary to use in the model specification
part. For example, for the variance parameters, no labels are used. By
default, the variance parameters will be set at 1. Therefore, in this
example, the specifications of the three variance parameters are not
required.

To conduct power analysis based on Sobel test, the following R code
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can be used. Note that the only difference between the regular and
robust method is the use of the argument se=”robust”.

sobel.regular = wp.mc.sem.basic(model=demo, indirect=mediation,

nobs=100, nrep=1000, parallel="snow", skewness=c(0, 0, 1.3),

kurtosis=c(0, 0, 10), ovnames=c("x", "m", "y"))

sobel.robust = wp.mc.sem.basic(model=demo, indirect=mediation,

nobs=100, nrep=1000, se="robust", parallel="snow", skewness=c

(0, 0, 1.3), kurtosis=c(0, 0, 10), ovnames=c("x", "m", "y"))

To use the bootstrap method, the following R code is used.

mediation.boot = wp.mc.sem.boot(model=demo, indirect=mediation,

nobs=100, nrep=1000, nboot=2000, parallel="snow", skewness=c

(0, 0, 1.3), kurtosis=c(0, 0, 10), ovnames=c("x", "m", "y"))

The two functions have many arguments.

• model tells the mediation or SEM model to be used. It is required.

• indirect specifies the mediation effects of interest. It is not required.

• nobs is the sample size used. By default, the power is calculated for
a sample size of 100.

• nrep specifies the number of Monte Carlo simulation replications in
the calculation of power with a default 1000.

• nboot is the number of bootstrap with a default 1000 if the bootstrap
method is used.

• parallel allows parallel computing. By setting parallel=’snow’, it
uses the R package snowfall for automatic parallelization. By default,
all cores available on a computer are used to speed up calculation.

• If one suspects the data will be non-normal, the skewness and
kurtosis for the observed variables can be provided using skewness

and kurtosis.

• When specifying non-normal data, the observed variable names
(ovnames) should also be provided to match the order of the skewness
and kurtosis statistics.

The results of the power analysis for both functions are similar and can
be summarized into a table using the function summary(mediation.boot).
The results include the following information for each parameter and
mediation effect in the model.

• The column True lists the population parameter values.

• The column Estimate presents the average parameter estimates
across all replications.
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• The column MSE is the average bootstrap standard error.

• The column SD is the standard deviation of the parameter estimates
across all replications.

• The column Power gives the power to detect whether a parameter is
significant.

• The column Power.se provides the standard error of the estimated
statistical power. The power for the mediation effect is listed at the
end of the table entitled “Indirect/Mediation effects”.

• The column Coverage presents the empirical coverage probability of
the bias-corrected bootstrap confidence interval.

For the current example, the power to detect the mediation effect with a
sample size 100 is about 0.935 using the percentile bootstrap confidence
interval . If a researcher targets a power of 0.8, he/she can reduce the
current sample size for another power calculation.

True Estimate MSE SD Power Power.se Coverage
Regressions:
math ~
ME (cp) 0.000 0.001 0.107 0.111 0.070 0.008 0.930
HE (b) 0.390 0.395 0.109 0.119 0.971 0.005 0.928

HE ~
ME (a) 0.390 0.394 0.101 0.103 0.966 0.006 0.938

Variances:
math 1.000 0.975 0.262 0.351 1.000 0.000 0.791
HE 1.000 0.982 0.135 0.140 1.000 0.000 0.915

Indirect/Mediation effects:
ab 0.152 0.156 0.061 0.064 0.935 0.008 0.933
abc 0.152 0.158 0.108 0.111 0.346 0.015 0.927

17.3 Examples

Example 17.3.1: Simple Mediation Analy-
sis

In this example, the model with its population parameter values
in Figure 17.2.1 is used to explore whether the relationship between
mothers’ education (ME) and children’s mathematical achievement
(math) is mediated by home environment (HE; Zhang & Wang, 2013).
In generating the non-normal data, the skewness is set at -0.3, -0.7, and
1.3, and the kurtosis is set at 1.5, 0, and 5 for ME, HE, and math, respec-
tively. The skewness and kurtosis statistics are determined according
to real data used in Zhang & Wang (2013). The power for the sample
size 100 is estimated. The focus is the mediation effect ab. The R input
and output for the power analysis are given below. From the output,
we can see that the power for the mediation effect is 0.963.

> ex1model<-’
+ math ~ c*ME+start(0)*ME + b*HE+start(.39)*HE
+ HE ~ a*ME+start(.39)*ME
+ ’
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>
> indirect<-’ab:=a*b’
>
> boot.non.normal<-wp.mc.sem.boot(ex1model, indirect, 100, nrep=2000, nboot=2000,

parallel=’snow’, skewness=c(-.3, -.7, 1.3), kurtosis=c(1.5, 0, 5), ovnames=c(’
ME’, ’HE’, ’math’), ncore=60)

[1] 0.0665 0.9750 0.9695 0.9970 1.0000 1.0000 0.9630
> summary(boot.non.normal)
Basic information:

Esimation method ML
Standard error standard
Number of requested bootstrap 2000
Number of requested replications 2000
Number of successful replications 2000

True Estimate MSE SD Power Coverage
Regressions:
math ~
ME (c) 0.000 0.000 0.108 0.112 0.067 0.933
HE (b) 0.390 0.389 0.101 0.103 0.975 0.928

HE ~
ME (a) 0.390 0.390 0.101 0.103 0.970 0.930

Variances:
math 1.000 0.974 0.213 0.260 0.997 0.869
HE 1.000 0.980 0.136 0.143 1.000 0.922

Indirect/Mediation effects:
ab 0.152 0.152 0.057 0.058 0.963 0.942

Example 17.3.2: Mediation analysis with
a latent mediator (Power curve)

A power curve is useful to graphically display how power changes
with sample size (e.g., Zhang & Wang, 2009). Using the model shown in
Figure 17.3.1, we show how to generate a power curve. The substantive
idea of the model in Figure 17.3.1 is that the relationship between age
and eduction and the performance on the everyday problem solving
test (ept) is mediated by memory ability measured by the Hopkins
Verbal Learning Test (hvltt) and reasoning ability measured by three
reasoning tests including word series (ws), letter sets (lt), and letter
series (ls) tests (see Zhang & Wang, 2013). The population model
parameter values are also displayed in the figure. The R input and
output for the analysis are given below.

> ex2model<-’

+ ept ~ start(.4)*hvltt + b*hvltt + start(0)*age + start(0)*edu

+ start(2)*R

+ hvltt ~ start(-.35)*age + a*age + c*edu + start(.5)*edu

+ R ~ start(-.06)*age + start(.2)*edu

+ R =~ 1*ws + start(.8)*ls + start(.5)*lt

+ age ~~ start(30)*age

+ edu ~~ start(8)*edu

+ age ~~ start(-2.8)*edu

+ hvltt ~~ start(23)*hvltt

+ R ~~ start(14)*R

+ ws ~~ start(3)*ws

+ ls ~~ start(3)*ls

+ lt ~~ start(3)*lt

+ ept ~~ start(3)*ept

+ ’
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>

> indirect<-’ind1 := a*b + c*b’

>

> nobs <- seq(100, 2000, by=200)

>

> res <- wp.mc.sem.power.curve(model=ex2model, indirect=indirect,

nobs=nobs, type=’boot’, parallel=’snow’, ncore=60)

The power curve displays the power in detecting the effect of age
and education on ept that is mediated by hvltt (a*b+c*b) for sample
size from 100 to 1900 with an interval of 200. The plot shows that to
get a power 0.8, a sample size about 1,500 is needed. Note that a power
curve can be used to obtain power for a given sample size through
interpolation, although the results might not be as accurate.

23 

R

ws lslt

age

ept
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hvltt

b=.4

0
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14
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Figure 17.3.1: A multiple-mediator medi-
ation model with population parameter
values used in Example 17.3.2.

Example 17.3.3: Calculate power for mul-
tiple group mediation analysis

Thoemmes et al. (2010) considered a multiple group mediation model
shown in Figure 17.3.3. Different from the simple mediation model in
Figure 17.2.1, the mediator m is measured as a latent variable by three
observed variables, m1, m2, and m3. Furthermore, two groups are
considered with varying mediation effects. Specifically, the mediation
effect for the first group is a1*b1 = 0.26 and for the second group
is a2*b2 = 0.10. This implies a moderated mediation because the
mediation effects are different for the two groups. The moderated
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Figure 17.3.2: Power curve for testing the
mediation effect in Example 17.3.2. To
get a power 0.8, a sample size around
1500 is needed based on the power curve.

mediation can be evaluated using a1*b1 - a2*b2. The sample size for
the first group is 400 and for the second group 200.
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Figure 17.3.3: The path diagram of a mul-
tiple group mediation model with popu-
lation parameter values.

Suppose in this example, we are interested in the power to detect
the mediation effect med1 = a1*b1 and med2 = a2*b2 as well as their
difference diffmed = a1*b1 - a2*b2. The R input and output for the
analysis are given below. Clearly, the power is 1 for med1, 0.444 for
med2, and 0.473 for diffmed.

> ex3model<-"
+ y ~ start(c(.283, .283))*x + c(c1,c2)*x + start(c(.36, .14))*m +c(b1,b2)*m
+ m ~ start(c(.721, .721))*x + c(a1,a2)*x
+ m =~ c(1,1)*m1 + start(c(.8,.8))*m2 + start(c(.8,.8))*m3
+ x ~~ start(c(.25, .25))*x
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+ y ~~ start(c(.81, .95))*y
+ m ~~ start(c(.87, .87))*m
+ m1 ~~ start(c(.36, .36))*m1
+ m2 ~~ start(c(.36, .36))*m2
+ m3 ~~ start(c(.36, .36))*m3
+ "
>
> indirect<-’
+ med1 := a1*b1
+ med2 := a2*b2
+ diffmed := a1*b1 - a2*b2
+ ’
>
> bootstrap<-wp.mc.sem.boot(ex3model, indirect, nobs=c(400,200), nrep=2000,
nboot=1000, parallel=’snow’, ncore=60)

> summary(bootstrap)
Basic information:

Esimation method ML
Standard error standard
Number of requested bootstrap 1000
Number of requested replications 2000
Number of successful replications 2000

Group 1 [1]:

True Estimate MSE SD Power Coverage
Latent variables:
m =~
m1 1.000 1.000 0.000 0.000 1.000 0.000
m2 0.800 0.799 0.047 0.048 1.000 0.938
m3 0.800 0.801 0.047 0.048 1.000 0.944

Regressions:
y ~
x (c1) 0.283 0.282 0.099 0.100 0.810 0.943
m (b1) 0.360 0.361 0.055 0.055 1.000 0.949

m ~
x (a1) 0.721 0.720 0.104 0.100 1.000 0.958

Intercepts:
m1 0.000 0.000 0.055 0.056 0.054 0.946
m2 0.000 0.000 0.048 0.049 0.053 0.947
m3 0.000 0.001 0.048 0.050 0.061 0.939
y 0.000 0.000 0.048 0.048 0.051 0.949
x 0.000 -0.000 0.025 0.025 0.056 0.945
m 0.000 0.000 0.000 0.000 0.000 0.000

Variances:
x 0.250 0.250 0.018 0.017 1.000 0.951
y 0.810 0.803 0.058 0.059 1.000 0.946
m 0.870 0.869 0.088 0.092 1.000 0.930
m1 0.360 0.358 0.047 0.046 1.000 0.947
m2 0.360 0.359 0.036 0.036 1.000 0.946
m3 0.360 0.358 0.036 0.035 1.000 0.955

Group 2 [2]:

True Estimate MSE SD Power Coverage
Latent variables:
m =~
m1 1.000 1.000 0.000 0.000 1.000 0.000
m2 0.800 0.801 0.069 0.070 1.000 0.940
m3 0.800 0.802 0.069 0.068 1.000 0.944

Regressions:
y ~
x (c2) 0.283 0.285 0.151 0.154 0.469 0.941
m (b2) 0.140 0.138 0.083 0.084 0.393 0.943

m ~
x (a2) 0.721 0.724 0.148 0.147 0.998 0.938

Intercepts:
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m1 0.000 -0.000 0.078 0.079 0.052 0.948
m2 0.000 0.001 0.068 0.067 0.051 0.949
m3 0.000 0.001 0.068 0.067 0.052 0.948
y 0.000 0.001 0.070 0.070 0.051 0.949
x 0.000 0.001 0.035 0.036 0.057 0.943
m 0.000 0.000 0.000 0.000 0.000 0.000

Variances:
x 0.250 0.248 0.024 0.024 1.000 0.945
y 0.950 0.937 0.093 0.094 1.000 0.946
m 0.870 0.863 0.125 0.125 1.000 0.944
m1 0.360 0.355 0.068 0.068 1.000 0.939
m2 0.360 0.356 0.051 0.052 1.000 0.934
m3 0.360 0.354 0.051 0.052 1.000 0.933

Indirect/Mediation effects:
med1 0.260 0.260 0.054 0.052 1.000 0.952
med2 0.101 0.100 0.065 0.065 0.444 0.939
diffmed 0.159 0.160 0.085 0.085 0.473 0.947

Example 17.3.4: Calculate power for a
longitudinal mediation model

Maxwell & Cole (2007) have recommended the use of longitudinal
mediation models in mediation analysis because of the involvement of
causal process in mediation. Figure 17.3.4 is a longitudinal mediation
model derived from Figure 3 of Maxwell & Cole (2007) with population
parameter values calculated from Table 2 of Maxwell and Cole. In this
example, each variable in the mediation model is measured three times
repeatedly. The idea of longitudinal mediation is that the input variable
at time 1 influences the mediator at time 2 which in turn affects the
outcome variable at time 3. The mediation effect is then measured by
a*b as in the cross-sectional mediation models. The power is 0.892
when the bootstrap method is utilized for a sample size of 50.
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Figure 17.3.4: The path diagram for a
longitudinal mediation model with pop-
ulation parameter values.

The R input and output for the analysis are given below.

> ex4model<-’
+ x2 ~ start(.9)*x1 + x*x1
+ x3 ~ start(.9)*x2 + x*x2
+ m2 ~ start(.3)*x1 + a*x1 + start(.3)*m1 + m*m1
+ m3 ~ start(.3)*x2 + a*x2 + start(.3)*m2 + m*m2
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+ y2 ~ start(.3)*m1 + b*m1 + start(.7)*y1 + y*y1
+ y3 ~ start(.3)*m2 + b*m2 + start(.7)*y2 + y*y2 + start(0)*x1 + c*x1
+ x1 ~~ start(.37)*m1
+ x1 ~~ start(.27)*y1
+ y1 ~~ start(.2278)*m1
+ x2 ~~ start(.19)*x2
+ x3 ~~ start(.19)*x3
+ m2 ~~ start(.7534)*m2
+ m3 ~~ start(.7534)*m3
+ y2 ~~ start(.3243)*y2
+ y3 ~~ start(.3243)*y3
+ ’
>
> indirect<-’ab:=a*b’
>
> bootstrap<-wp.mc.sem.boot(ex4model, indirect, nobs=50, nrep=1000, nboot=1000,

parallel=’snow’, ncore=60)

> summary(bootstrap)
Basic information:

Esimation method ML
Standard error standard
Number of requested bootstrap 1000
Number of requested replications 1000
Number of successful replications 1000

True Estimate MSE SD Power Coverage
Regressions:
x2 ~
x1 (x) 0.900 0.898 0.045 0.045 1.000 0.934

x3 ~
x2 (x) 0.900 0.898 0.045 0.045 1.000 0.934

m2 ~
x1 (a) 0.300 0.300 0.098 0.096 0.868 0.953
m1 (m) 0.300 0.293 0.096 0.099 0.843 0.932

m3 ~
x2 (a) 0.300 0.300 0.098 0.096 0.868 0.953
m2 (m) 0.300 0.293 0.096 0.099 0.843 0.932

y2 ~
m1 (b) 0.300 0.301 0.064 0.062 0.994 0.946
y1 (y) 0.700 0.694 0.063 0.064 1.000 0.935

y3 ~
m2 (b) 0.300 0.301 0.064 0.062 0.994 0.946
y2 (y) 0.700 0.694 0.063 0.064 1.000 0.935
x1 (c) 0.000 -0.001 0.089 0.090 0.062 0.938

Covariances:
x1 ~~
m1 0.370 0.369 0.142 0.150 0.777 0.911
y1 0.270 0.261 0.138 0.145 0.467 0.920

m1 ~~
y1 0.228 0.220 0.137 0.147 0.343 0.897

x3 ~~
m3 1.000 -0.001 0.051 0.054 0.049 0.000
y3 1.000 0.001 0.034 0.036 0.054 0.000

m3 ~~
y3 1.000 -0.002 0.066 0.069 0.058 0.000

Variances:
x2 0.190 0.184 0.036 0.035 1.000 0.933
x3 0.190 0.187 0.036 0.039 1.000 0.919
m2 0.753 0.717 0.142 0.152 1.000 0.903
m3 0.753 0.718 0.140 0.144 1.000 0.926
y2 0.324 0.311 0.061 0.064 1.000 0.911
y3 0.324 0.306 0.060 0.065 1.000 0.890
x1 1.000 0.979 0.185 0.190 1.000 0.928
m1 1.000 0.984 0.188 0.201 1.000 0.911
y1 1.000 0.980 0.187 0.194 1.000 0.923

Indirect/Mediation effects:
ab 0.090 0.090 0.036 0.035 0.892 0.953
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This chapter is based on Zhang & Liu
(2018).Longitudinal data collection and data analysis are becoming a norm

for psychological research (e.g., Grimm et al., 2016; McArdle & Nessel-
roade, 2014). Proposed by McArdle and colleagues, latent change score
models (LCSMs) combine difference equations with growth curves to
study change in longitudinal studies (e.g., McArdle, 2000; McArdle &
Hamagami, 2001; Hamagami & McArdle, 2007; Hamagami et al., 2010).
In such models, change is directly modeled, which is often the focus of
a longitudinal study. In addition to the univariate LCSMs, bivariate LC-
SMs have also been proposed to model the inter-relationship between
two growth processes (e.g., McArdle & Hamagami, 2001). Zhang & Liu
(2018) proposed a Monte Carlo based method to determine the required
sample size and/or the number of measurement occasions for both
univariate and bivariate LCSMs. This method can obtain the power for
testing each individual parameter of the models including the change
rate and the coupling parameters. In this chapter, we illustrate how to
conduct statistical power analysis for LCSMs in WebPower.

18.1 A Univariate Latent Change Score Model

Let Y[t]n denote the data from the nth (n = 1, . . . , N) participant at time
t (t = 1, . . . , T) of a sample consisting of N participants measured for
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T times. The first part of a LCSM is the measurement error model in
which an observed score Y[t]n is the sum of the latent true score y[t]n
and the measurement error/uniqueness score ey[t]n:

Y[t]n = y[t]n + ey[t]n.

It is generally assumed that the error follows a normal distribution with
mean 0 and variance varey. The second part of the model builds the
relationship between consecutive latent true scores so that the current
score at time t is equal to the sum of the true score at the previous time
t− 1 and the change, dy[t]n, from time t− 1 to time t:

y[t]n = y[t− 1]n + dy[t]n.

This effectively defines the change score as

dy[t]n = y[t]n − y[t− 1]n.

Note that in the classic LCSM, the relationship between consecutive
latent true scores is deterministic although it is not required to be so.
The third part of the model concerns the modeling of the difference
scores. One way is to model the difference score at time t as the sum of
a linear constant effect ys and the proportional change from time t− 1
such that

dy[t]n = ysn + βy × y[t− 1]n,

where βy is a compound rate of change.
The initial latent score and the linear constant change can be cor-

related. In the model, they are assumed to have a bivariate normal
distribution(

y0n

ysn

)
∼ MN

[(
my0
mys

)
,

(
vary0 vary0ys

vary0ys varys

)]

with MN denoting a multivariate, here bivariate, normal distribution.
Therefore, the initial latent score follows a normal distribution with
mean my0 and variance vary0 and the constant change also follows a
normal distribution with mean mys and variance varys. The covariance
between them is vary0ys. Using a path diagram, this model is portrayed
in Figure 18.1.1.

18.2 A Bivariate Latent Change Score Model

A bivariate LCSM is first a combination of two univariate LCSMs.
Above and beyond that, it allows the two processes represented by
the LCSMs to interact with each other. Let Y[t]n and X[t]n denote
the observed data on two variables, respectively, from the nth (n =
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1, . . . , N) participant at time t (t = 1, . . . , T) of a sample consisting of N
participants measured for T times. For the measurement error part of
the model, we have

Y[t]n = y[t]n + ey[t]n
X[t]n = x[t]n + ex[t]n,

where ey[t]n follows a normal distribution with mean 0 and variance
varey and ex[t]n follows a normal distribution with mean 0 and variance
varex. For the latent score from time t− 1 to time t, we have

y[t]n = y[t− 1]n + dy[t]n
x[t]n = x[t− 1]n + dx[t]n,

with dy[t]n and dx[t]n denoting the latent change score for the two
variables respectively.

The innovative part of the bivariate LCSM is to allow the latent
score of one variable to influence the change score of another variable.
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Specifically, we model the change scores as

dy[t]n = ysn + βy × y[t− 1]n + γyx[t− 1]n

dx[t]n = xsn + βx × x[t− 1]n + γxy[t− 1]n

where γy and γx are called coupling parameters. γy represents the
effect of x on the change score of y and γx represents the effect of y on
the change score of x. We let x0 be the initial latent score and xs be the
constant change for x. A multivariate normal distribution is assumed
for the initial latent scores and constant changes for the two variables
such that

y0n

ysn

x0n

xsn

 ∼ MN




my0
mys
mx0
mxs

 ,


vary0 vary0ys varx0y0 vary0xs

vary0ys varys varx0ys varxsys
varx0y0 varx0ys varx0 varx0xs
vary0xs varxsys varx0xs varxs


 .

Using a path diagram, a bivariate LCSM is portrayed in Figure 18.2.1.
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Figure 18.2.1: The path diagram for a
bivariate latent change score model.



power analysis for latent change score models 305

18.3 Conducting Power Analysis for Latent Change Score
Models

18.3.1 R package

There are three functions in the package WebPower for power analysis
for LCSM: wp.lcsm, wp.blcsm, plot.

The function wp.lcsm is used to conduct power analysis for univari-
ate LCSMs. The basic usage of the function is given below:

wp.lcsm(N = 100, T = 5, R = 1000, betay = 0, my0 = 0, mys = 0,

varey = 1, vary0 = 1, varys = 1, vary0ys = 0,alpha = 0.05,

...)

In the function, N is the sample size and T is the number of measure-
ment occasions. Both of them can be a single value or a vector. For
example, using N=c(100,200,500) will calculate power for the three
provided sample sizes. R is the number of Monte Carlo simulations
used to estimate the power. A larger R will provide more accurate
power estimation but also take longer to compute. As a rule of thumb,
at least 1,000 should be used. alpha is the significance level for testing
the hypothesis of the model parameters. The default value is 0.05.

To obtain power, the population parameter values have to be pro-
vided. These values can be decided based on literature review, pilot
study, expert opinions, etc. By default, all the mean, intercept and co-
variance parameters are set to 0 and all the variance parameters are set
at 1. Those values typically have to be changed in real power analysis.
Note that the name of each parameter corresponds to that used in the
path diagram in Figure 18.1.1.

The output of the R function includes 4 main pieces of information
for each parameter in the model. The first is the Monte Carlo estimate
(mc.est), the mean of the R sets of parameter estimates from the sim-
ulated data. Note that the Monte Carlo estimates should be close to
the population parameter values used in the model. The second is the
Monte Carlo standard deviation (mc.sd), the standard deviation of the
R sets of parameter estimates. The third is the Monte Carlo standard
error (mc.se), the average of the R sets of standard error estimates of
the parameter estimates. Lastly, mc.power is the statistical power for
each parameter.

The function wp.blcsm is used to conduct power analysis for bivariate
LCSMs. The basic usage of the function is given below. It is the same
as for the univariate LCSMs.

wp.blcsm(N=100, T=5, R=1000, betay=0, my0=0, mys=0, varey=1,

vary0=1, varys=1, vary0ys=0, betax=0, mx0=0, mxs=0, varex=1,

varx0=1, varxs=1, varx0xs=0, varx0y0=0, varx0ys=0, vary0xs=0,

varxsys=0, gammax=0, gammay=0, alpha=0.05, ...)
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The function plot is used to generate a power curve, which has
the form plot(x, parameter, ...). The first input of the function,
x, is the output from either wp.lcsm or wp.blcsm. In the input of the
function for power analysis, either the sample size N or the number of
occasions T should be a vector. The second input is the name of the
parameter to plot its power curve. Since there are multiple parameters
in an LCSM, one can generate a plot for each model parameter. The
name of a parameter should match the one in wp.lcsm or wp.blcsm.
This function will generate one or multiple line plots in which power
is shown on the y-axis and the sample size or number of occasions is
shown on the x-axis.

18.3.2 Online interface

We also provide a Web-based interface for power analysis for LCSMs.
The URL for the univariate LCSMs is http://psychstat.org/lcsm and
for the bivariate LCSMs is http://psychstat.org/blcsm.

The Web interface for the univariate LCSMs is shown in Figure 18.3.1.
Since the interface is built on the R function shown earlier, it requires
the same input information and gives the same output. For both sample
size and number of occasions, multiple values can be provided in two
ways to calculate power for each given value. We discuss this using
the sample size as an example since the same method is used for the
number of occasions. First, multiple sample sizes can be provided and
separated by spaces. For example, inputting 100 150 200 will calculate
power for the three sample sizes 100, 150 and 200. Second, a sequence
of sample sizes can be generated using the method s:e:i with s denoting
the starting sample size, e as the ending sample size, and i as the
interval. Note that the values are separated by a colon “:”. For example,
100:150:10 will generate a sequence of sample sizes: 100 110 120 130
140 and 150.

18.4 Examples

We now show how to carry out power analysis for both univariate and
bivariate LCSMs through several examples.

Example 18.4.1: Type I error for a univari-
ate LCSM

If the null hypothesis is true, the Monte Carlo procedure will yield
the type I error rate. For example, if the parameter βy = 0 in the popu-
lation, then the estimated power should be the same as the significance
level, typically 0.05. For illustration, we set the population parameter
values to those shown in the second column of Table 18.4.1. Therefore,
if we conduct a power analysis based on those parameter values, we
will obtain the type I error rates for betay, my0, mys and vary0ys.
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Figure 18.3.1: The online interface for
power analysis for univariate latent
change score models.

The R input and output for conducting the analysis are shown
below. First, the estimate for each parameter is very close to the true
population parameter values as shown in the column labelled mc.est.
This indicates the power calculation procedure runs well. Second, the
Monte Carlo standard errors are close to the corresponding Monte
Carlo standard deviations, another indicator that the power calculation
is trustworthy. Third, as expected, the power for betay, my0, mys,
and vary0ys is close to 0.05, the nominal type I error rate. Overall,
this suggests that the Monte Carlo based method can provide well-
controlled type I error rate.

> res <- wp.lcsm(N = 100, T = 5, R = 1000, betay = 0, my0 = 0,

mys = 0, varey = 1, vary0 = 1, varys = 1, vary0ys = 0,alpha =

0.05)

> res
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Example 18.4.1 Example 18.4.2
betay 0 0.1
my0 0 20
mys 0 1.5

varey 1 9
vary0 1 2.5
varys 1 0.05

vary0ys 0 0

Table 18.4.1: Population parameter values
used in Examples

pop.par mc.est mc.sd mc.se mc.power N T

betay 0 0.0017944 0.05687 0.05583 0.062 100 5

my0 0 -0.0058133 0.12747 0.12555 0.051 100 5

mys 0 0.0006548 0.10283 0.10491 0.054 100 5

varey 1 0.9944460 0.08107 0.08120 1.000 100 5

vary0 1 0.9841522 0.23257 0.22956 1.000 100 5

vary0ys 0 -0.0045323 0.13427 0.13607 0.037 100 5

varys 1 0.9999032 0.22491 0.22618 1.000 100 5

Example 18.4.2: Power analysis for a uni-
variate LCSM

Zhang et al. (2015) included an example of using a univariate LCSM
model to analyze the WISC data. In order to plan a future study with
the sample size 100 and the number of measurement occasion 5, we use
the estimates as our population parameter values. Column 3 in Table
18.4.1. shows the parameter values being used in our example.

The R input and output for conducting the analysis are given below.
From the output, we can see that the power to detect the parameter
betay to be significant with the sample size 100 and the number of mea-
surement occasions 5 is about 0.664. The power for another parameter,
the constant change mys, is 0.274. Since oftentimes one hopes to get a
power at least 0.8, a larger sample size is needed for both parameters
in this study. In addition, for studying different parameters, different
sample sizes are often required.

> wp.lcsm(N = 100, T = 5, R = 1000, betay = 0.1, my0 = 20, mys =

1.5, varey = 9, vary0 = 2.5, varys = .05, vary0ys = 0, alpha

= 0.05)

pop.par mc.est mc.sd mc.se mc.power N T

betay 0.10 0.10269 0.04425 0.04363 0.665 100 5

my0 20.00 20.01389 0.31495 0.31906 1.000 100 5

mys 1.50 1.42893 1.14013 1.12052 0.284 100 5

varey 9.00 8.93260 0.72561 0.72934 1.000 100 5

vary0 2.50 2.52038 1.14866 1.14455 0.604 100 5

vary0ys 0.00 -0.03072 0.41406 0.40477 0.052 100 5

varys 0.05 0.06324 0.17373 0.17594 0.044 100 5

Example 18.4.3: Power curve for different
sample sizes for a univariate LCSM

Example 18.4.2 showed that a larger sample size is needed to obtain
sufficient power for parameters betay and mys. To find what sample
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size is required, we can generate a power curve with multiple sample
sizes. The R input and output for the analysis are given below. Note
that seq(100, 200, 10) generates a sequence of sample sizes, and in
the output power for each sample size is provided. In the plot function,
we refer to a specific parameter using its name. Figure 18.4.1 shows
the power curves for the two parameters betay and mys with sample
sizes ranging from 100 to 200 with an interval 10. From the plot, we
can easily see that to get a power 0.8 for the parameter betay, a sample
size about 150 is needed. On the other hand, a sample size larger than
200 is needed for the parameter mys to have a power 0.8, with the exact
number undecided based on the plot.

> res <- wp.lcsm(N = seq(100, 200, 10), T = 5, R = 1000,

betay = 0.1, my0 = 20, mys = 1.5, varey = 9, vary0 =

2.5, varys = .05, vary0ys = 0, alpha = 0.05)

> res

>

> plot(res, ’betay’)

> plot(res, ’mys’)

$‘N100-T5‘

pop.par mc.est mc.sd mc.se mc.power N T

betay 0.10 0.100 0.044 0.044 0.627 100 5

my0 20.00 20.002 0.331 0.319 1.000 100 5

mys 1.50 1.505 1.136 1.119 0.287 100 5

varey 9.00 8.970 0.744 0.732 1.000 100 5

vary0 2.50 2.489 1.218 1.146 0.599 100 5

vary0ys 0.00 -0.009 0.413 0.403 0.059 100 5

varys 0.05 0.054 0.176 0.175 0.050 100 5

....

$‘N200-T5‘

pop.par mc.est mc.sd mc.se mc.power N T

betay 0.10 0.100 0.031 0.031 0.915 200 5

my0 20.00 20.002 0.225 0.226 1.000 200 5

mys 1.50 1.505 0.790 0.791 0.487 200 5

varey 9.00 8.971 0.532 0.518 1.000 200 5

vary0 2.50 2.480 0.803 0.808 0.904 200 5

vary0ys 0.00 0.005 0.283 0.283 0.049 200 5

varys 0.05 0.051 0.125 0.122 0.054 200 5

Example 18.4.4: Power analysis for a bi-
variate LCSM
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Figure 18.4.1: Power curve for betay and
mys along with the sample size in the
univariate latent change score model

Power analysis can be similarly conducted for bivariate LCSMs. As
an example, we use the parameter estimates from a bivariate latent
change score model in Zhang et al. (2015) with some modification as
the population parameter values (see Table 18.4.2).

Parameter value Parameter value
betay 0.08 betax 0.2

gammax 0 gammay −0.1
my0 20 mx0 20
Mys 1.5 mxs 5

varey 9 varex 9
vary0 3 varx0 3
varys 0.05 varxs 0.6

vary0ys 0 varx0xs 0
varx0y0 1
vayx0ys 0
vary0xs 0
varxsys 0

Table 18.4.2: Population parameter values
used in Example 18.4.4

The R input and output for the power analysis for a bivariate LCSM
with the sample size 500 are given below. For example, for the coupling
parameters gammax and gammay, the power (type I error for gammax) is
0.057 and 0.271, respectively.

> wp.blcsm(N=500, T=5, R=1000, betay=0.08, my0=20, mys=1.5, varey

=9, vary0=3, varys=1, vary0ys=0, alpha=0.05, betax=0.2, mx0

=20, mxs=5, varex=9, varx0=3, varxs=1, varx0xs=0, varx0y0=1,

varx0ys=0, vary0xs=0, varxsys=0, gammax=0, gammay=-.1)

pop.par mc.est mc.sd mc.se mc.power N T

betax 0.20 0.199522 0.03010 0.03066 1.000 500 5

betay 0.08 0.083244 0.06676 0.06808 0.195 500 5
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gammax 0.00 -0.001327 0.02854 0.02878 0.053 500 5

gammay -0.10 -0.098653 0.07013 0.07251 0.249 500 5

mx0 20.00 20.001958 0.14185 0.14549 1.000 500 5

mxs 5.00 4.979377 0.90537 0.94072 1.000 500 5

my0 20.00 19.998072 0.14744 0.14645 1.000 500 5

mys 1.50 1.461848 0.85601 0.88326 0.411 500 5

varex 9.00 8.994425 0.33337 0.32861 1.000 500 5

varey 9.00 8.991055 0.31327 0.32810 1.000 500 5

varx0 3.00 3.002250 0.53695 0.52353 1.000 500 5

varx0xs 0.00 -0.017027 0.23050 0.23004 0.055 500 5

varx0y0 1.00 1.014856 0.36635 0.36125 0.808 500 5

varx0ys 0.00 -0.003731 0.19780 0.20088 0.041 500 5

varxs 1.00 1.029183 0.18922 0.19046 1.000 500 5

varxsys 0.00 0.001206 0.15489 0.16238 0.043 500 5

vary0 3.00 3.027044 0.54374 0.54995 1.000 500 5

vary0xs 0.00 -0.012093 0.29175 0.29602 0.048 500 5

vary0ys 0.00 -0.025796 0.25551 0.25791 0.049 500 5

varys 1.00 1.021738 0.24698 0.25133 1.000 500 5

18.5 Exercises

1. Using the parameter values of Example 18.4.2, compare the statistical
power of the following two conditions:

(a) The sample size is 200 and the number of occasions is 5.

(b) The sample size is 250 and the number of occasions is 4.

2. Using the parameter values of Example 18.4.4, generate a power
curve for the coupling parameters with the sample size ranging from
500 to 1000.
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Structural equation modeling (SEM) is a statistical technique that
can be used to evaluate relations among observed and latent variables
(Hoyle, 1995). An SEM model typically consists of observed and latent
variables where an observed variable can be measured directly but
a latent variable has to be assessed using observed variables. The
relations between two variables can be non-directional as correlation
relationship or directional as regression relationship (Hoyle, 1995; Kline,
2011). SEM generalizes many commonly used statistical models such
as confirmatory factor models, path models, latent regression models,
and growth curve models (Kline, 2011). Over the past few decades, the
use of SEM has been rapidly growing in many disciplines (Kline, 2011;
Nachtigall et al., 2003; Westland, 2015), especially in education (Khine,
2013), psychology (MacCallum & Austin, 2000), management (Shook
et al., 2004), and marketing (Babin et al., 2008), benefiting from the fact
that an SEM can be represented graphically as a path diagram.

19.1 Traditional Path Diagrams

Figure 19.1.1 shows a typical path diagram for SEM. An SEM path
diagram consists of two types of graphical components: variables and
paths. The variables are also called vertices/nodes and the paths are
also called edges in graph theory.

19.1.1 Variables

Three types of variables are allowed in a regular SEM path diagram:
observed, latent and constant variables. An observed variable is rep-
resented by a rectangle, a latent variable is represented by an ellipse
node, and a constant variable is represented by a triangle. The constant
variable is a special variable with value 1. It is used to represent a mean
or an intercept.
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Figure 19.1.1: A typical SEM path dia-
gram example

19.1.2 Paths

Two types of paths, a directed one and an undirected one, are allowed
to define the relationship between the variables in a model or diagram.
A directed path, represented by a single-headed arrow, is used to
indicate that one variable can predict another variable. It usually means
a regression relationship. A directed path points from the predicting
variable toward the outcome variable. More specifically in SEM, a
directed path from an ellipse (a latent variable) to a rectangle (an
observed variable) represents a factor loading, otherwise, it represents
a regression coefficient.

An undirected path is represented by a double-headed arrow. If an
undirected path connects two variables, it is the covariance between
the two variables. An undirected path can start from one variable and
end on the same variable. Such a path can represent either a variance
or a residual variance in a structural equation model. For a variable
with such a path, if there is no directed path pointing to it, the path
represents a variance; otherwise, a residual variance.

Both variables and paths can be labeled or named. The labels should
be as meaningful as possible. A number on a path is simply the value
of the coefficient represented by the path.

19.1.3 Basic rules for drawing SEM path diagram

To ensure consistency and improve usability, the following rules are
imposed in constructing path diagrams. First, no more than one triangle
variable can be created in one diagram. Second, if existing, a directed
path can only be drawn starting from the triangle variable. Third, either
a directed or an undirected path can be drawn between an observed
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variable and a latent variable. Fourth, an undirected path (double-
headed arrow) is automatically created for a variable that is predicted
by one or more variables. The path is also automatically removed
when the involved variable disconnects from all its predicting variables.
Finally, when a variable is removed, all paths connecting to it will be
removed automatically.

19.2 Path Diagram in WebPower

WebPower can conduct statistical power analysis by drawing a path
diagram directly online. The path diagram application is developed
using JavaScript with the library d3js (Myatt & Johnson, 2011) and the
library jQuery (Resig et al., 2009). The path diagrams can be saved in
the format of scalable vector graphics (SVG) (Ferraiolo et al., 2000). In
addition to the variables and paths used in the regular path diagrams,
we also provide the support of non-normal data, missing data, and
multilevel model representations as we will discuss later.

19.2.1 Interface and buttons

The overall path diagram interface is shown in Figure 19.2.1. Intuitively,
a path diagram is constructed using the buttons on the left panel.
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Figure 19.2.1: WebPower path diagram
interface

The table displays the buttons in the diagram and their functionali-
ties.

Button Functionalities
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Open an existing path diagram

Start a new diagram

Save a diagram as a SVG image

Save a diagram

Run power analysis based on a diagram

View the power analysis result

Process LaTeX equations

Save a SVG diagram with LaTeX equations

Add a square to the canvas, representing an ob-
served variable.
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Add a circle to the canvas, representing a latent
variable.

Add a hexagon to the canvas. It should have the
same name as an observed variable since it is used
to specify how data in the variable are missing.

Add a triangle to the canvas, representing either
a mean or an intercept.

Add a diamond to the canvas. It is used to specify
the non-normality of data. On the path, the skew-
ness and kurtosis for a variable can be specified.

Add any text to the canvas.

Draw a single-headed arrow between two shapes
using one of the two ways. Firstly, one can start
by clicking the line button, then drag from the
start node to the end node. Secondly, one can first
select the start node, then click the line button,
and finally click the end node.
Draw a double-headed arrow between two shapes
using one of the two ways. Firstly, one can start
by clicking the line button, then drag from the
start node to the end node. Secondly, one can first
select the start node, then click the line button,
and finally click the end node.

Set the level of variables. Each number can be
clicked as a separated button to set a variable to
be a 1st, 2nd, 3rd or 4th level variable.

Delete a selected shape from the canvas.
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Copy selected shape(s). To select multiple shapes,
drag the mouse around the shapes.

Add a line to the canvas.

Change the color of the selected shapes.

Change the lines or shapes from solid to dashed
or vice versa.

Hide or show the labels on the paths.

Hide or show the grid lines on the canvas.

Align selected shapes according to the sides.

Resize the selected shapes to have the same width.

Resize the selected shapes to have the same height.
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Change the size of the double-headed arrow on
a variable. Clicking “+” to increase and “-” to
decrease the size. The size as a number is shown
on the bottom left corner. One can also change
the size by inputting a number and then click-
ing the icon on the top-left corner to apply the
modification.
Change the size of the selected shapes. Clicking
“+” to increase and “-” to decrease the size. The
size as a number is shown on the bottom left
corner. One can also change the size by inputting
a number and then clicking the icon on the top-left
corner to apply the modification.
Change the size of the text. Clicking “+” to in-
crease and “-” to decrease the size. The size as a
number is shown on the bottom left corner. One
can also change the size by inputting a number
and then clicking the icon on the top-left corner
to apply the modification.
Change the size of the paths. Clicking “+” to
increase and “-” to decrease the size. The size as
a number is shown on the bottom left corner. One
can also change the size by inputting a number
and then clicking the icon on the top-left corner
to apply the modification.

Position the double-headed arrow on a variable.
Eight different positions are allowed.

Move shapes on a canvas around. The four arrows
tell the direction to move. One can also move a
shape by dragging it using the mouse.
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19.2.2 How to draw a path diagram

Using the buttons on the interface, one can draw a new or edit an
existing path diagram interactively.

• To create a new diagram, click the button ( ) and to edit an

existing diagram, click the button ( ) to first open it.

• A rectangle/square variable ( ) or an ellipse/circle variable ( )
can be created by clicking their corresponding buttons in the inter-

face. A hexagon ( ) can also be created in the same way.

• A new path can be drawn in two ways. Firstly, one can start by
clicking the path button, then drag from the start variable to the
end variable. Secondly, one can first select the start variable, then
click the path button, and finally click the end variable. Both the

single-headed ( ) and double-headed ( ) arrows can be drawn
in this way. For the double-headed arrow on a variable itself, the
start variable and the end variable are the same. The position of the
double-headed arrow on a variable itself can be changed by dragging

it around or use this button ( ).

• A line can be changed between a solid line and a dotted line using

the button ( ).

• To create a triangle shape ( ), one needs to first select a rectangle,
ellipse, or a hexagon shape and then click on the triangle button.
A single-headed path will also be added automatically from the
triangle shape to the shape selected.

• Both shapes and paths can be duplicated easily. To duplicate one
shape, simply select it by clicking it and then click the copy button

( ). To copy and paste multiple shapes, one can select all of them
together first.

• Select multiple items on the canvas. There are two ways to do it.
First, one can hold the “Ctrl” button on the keyboard and then click
the items to be selected. Second, one can hold the left button of the
mouse and drag a square on the canvas to include all the items to be
selected.
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• Both shapes and paths can be named. To name a shape or path, first
double-click it and then change or add a name in the pop-up dialog
window as shown below.
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Edit Text

X1

OK Cancel

• To add text to the canvas, click the button ( ) and then type in
the text in the pop-up dialog window.

• To draw a line anywhere on the canvas, click the button ( ).

• Everything within a path diagram can be moved freely by one of the
two ways. Firstly, one can simply drag it around. Secondly, one can

first select a shape and then use the buttons ( ) on the left-hand
panel to move it around. To move multiple shapes, one can select all
of them and then drag them to the desired location.

• The properties of a selected shape or path can be modified by clicking

the property buttons such as color ( ), font size ( ) and stroke

width ( ). Clicking “+” to increase and “-” to decrease the size.
The size as a number is shown on the bottom left corner. One can
also change the size by inputting a number and then clicking the
icon on the top-left corner to apply the modification.

• To delete a shape or path, simply select it and then click the delete

button ( ).

• One can align multiple selected shapes on their four sides by using

the button ( ).

• To set the selected shapes to have the same width using ( ) and

same height using ( ).

• LaTeX equation. Math formulas can be put anywhere on the canvas
through LaTeX notation. First, type in the equation as you would do
in LaTeX, e.g., $\alpha$ for α, and $\alpha^2 +\beta^2$ for α2 + β2.

Then click the button ( ) to show the equations. Note that when
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clicking the canvas, the equation will go back to text. To save the

diagram with the math equations, click the button ( ). The path
diagram will be saved into an HTML file that can be viewed in a
web browser.

• To save the path diagram on the server to use in the future, click

the button ( ). The saved diagram can be opened for edits in the
future.

• The diagram can also be saved to local storage by clicking the button

( ). This saves the diagram into an SVG figure that can be used
in publication or converted to other format such as PDF, JPEG, or
PNG.



20 Power Analysis based on Monte
Carlo Simulation through Di-
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Except for some statistical tests, it is generally difficult to get the
analytically traceable distribution for a statistic under the alternative
hypothesis even though it is possible to get its distribution under
the null hypothesis. Therefore, statistical power analysis for complex
models has to rely on Monte Carlo simulation. The typical Monte Carlo
based power analysis method assumes that the sampling distribution
of a statistic is known under the null hypothesis, which we refer to
as regular Monte Carlo method. It is also possible to conduct power
analysis while the sampling distribution is not known under the null
hypothesis, which we refer to as a double Monte Carlo method in
this chapter (Yuan et al., 2017). Both methods are implemented in
WebPower. We illustrate how to use them in this chapter.

20.1 A Regular Monte Carlo Based Method

20.1.1 Basic idea

For a given statistics T, by definition, its power

π = Pr(reject H0|H1) = Pr(T > c1−α|H1)

where H0 and H1 are null and alternative hypothesis, respectively, and
c1−α is a critical value from the sampling distribution of T under the
null hypothesis with α denoting the significance level. The regular
Monte Carlo based method works when the critical value c1−α can
be obtained. Then we can approximate the power using the relative
frequency to reject the null hypothesis given the alternative hypothesis
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is true so that

π̂ =
1
R

R

∑
i=1

(T̂i > c1−α)

where R is the total number of Monte Carlo simulation and T̂i is
the sample statistic under the ith replication. More specifically, the
following procedure can be used.

1. Decide the significance level. Usually, the default 0.05 can be used.
Based on that, get the critical value c1−α.

2. Specify a model with the hypothesized population parameter values
(θ).

3. Generate a set of data with the sample size N from the model using
random number generation techniques.

4. Fit the hypothesized model to the generated data and obtain the
statistic T̂.

5. If T̂ > c1−α, the null hypothesis H0 is rejected.

6. Repeat Steps (2)–(5) for a total of R(R ≥ 1000) times.

7. Suppose out of the R replications, the null hypothesis H0 is rejected r
times. Then the statistical power with the sample size N is estimated
by π̂ = r

R .

8. For sample size planning, if π̂ is smaller than the desired power,
say 0.8, one can increase the sample size to repeat Steps 2 and 7 to
recalculate the power. Otherwise, the sample size can be set to a
smaller value.

We discuss several issues regarding the Monte Carlo based method.
Critical value c1−α. In SEM and multilevel modeling, when testing

individual parameter in the model, it is often assumed that a parameter
follows a normal distribution under the null hypothesis. Therefore, in
WebPower, we decide the critical value based on normal distribution
assumption. For example, if the significance level α = 0.05 is used,
the critical value c0.95 = 1.96 is used based on the normal distribution
function.

Multiple parameters. Although a single parameter from a model
might be the focus of power analysis, using the Monte Carlo based
procedure, one can obtain the power for every parameter in the model
under investigation. Therefore, WebPower outputs the power for each
parameter in a model.

Missing data. The influence of missing data on power can be eval-
uated by specifying how missing data are generated. To do so, add
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a ( ) to the diagram and give it the same name as the variable
with missing data. Then, the missingness can be specified in a logistic
regression way as shown in the example below.

Non-normal data. The influence of non-normal data on power can

be evaluated. To do so, add a ( ) to the diagram. First select the non-

normal variable, and then click ( ). On the path from the diamond
to the non-normal variable, one can input skewness and kurtosis for
the variable. The values for skewness and kurtosis are separated by “;”.

20.1.2 Examples

We now illustrate the Monte Carlo based power analysis using the path
diagram interface of WebPower. http://psychstat.org/diagram

Example 20.1.1: Power for a simple me-
diation effect in the simple mediation
model

Figure 20.1.1 shows the path diagram and other information for
conducting power analysis for a simple mediation model. In this model,
X, M, and Y are the predictor, mediator, and output, respectively. A
label on the path represents the population value of the parameter.
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Figure 20.1.1: A simple mediation model
example

For a given path, different labels can be used. A label can consist of
letters, numerical values and one of the symbols: “@”, “?” and “;”. The
general rules are given below.

• No label or a text label: the population parameter for the path is
fixed at 0 for single-headed arrows. For double-headed arrow, if it is
a variance, it is fixed at 1, otherwise, 0 for covariance. A text label
can consist of letters and numbers but has to start with a letter. For
example, “p1” can be a text label but “1p” cannot.

• A numerical value: the population parameter takes the numerical
value.
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• A symbol “@” or “?” and a numerical value such as @1 or ?1. The
numerical value is set as the population value in the model. If it is
preceded by “@”, when estimating the model, the parameter is set
to be a fixed one at the value. If it is preceded by “?”, the parameter
is freely estimated.

• A text label + either “@” or “?” + a numerical value such as p1@0.5

or p2?0.3. This is similar to the case of a symbol with a numerical
value. However, the path is given a name as the text and can be used
in other situation.

• If multiple paths are given the same label (name), the corresponding
parameters are constrained to be equal in estimation.

• The symbol “;” is typically used in multiple group analysis. For
example, a1;a2@.5;.3 means that for the first group, a1 fixed at 0.5
and for the second group a2 fixed at 0.3 when estimating the model.
b1;b2?0;0 set the population values at 0 and the corresponding
parameters will be estimated for both groups. d1;d1 means the
parameters for both groups are set to be the same when estimating
the model.

Therefore, for the mediation model, the effect of X on M is 0.39 and the
parameter is called a; and the effect of M on Y after controlling X is
also 0.39 and the parameter is called b. The direct effect is 0 with the
name cp. All the variance parameters are set at 1. All the parameters
will be freely estimated when calculating statistical power.

As with any power calculation, we also need to provide some basic
information. For example, the sample size under evaluation is always
required. Here, we evaluate power for a sample size 100 as specified
in the field called Sample Size on the left panel below all the buttons.
Furthermore, we also need to specify the significance level, 0.05 by
default, and the number of Monte Carlo replications (MC replications),
with 1,000 as the default.

Typically, power is estimated for every parameter in a model. For a
mediation effect, it is a combination of multiple parameters. Therefore,
to calculate power for it, one has to construct a new parameter. The new
parameter is constructed using the symbol “:=” where the new param-
eter is on the left, and on the right regular mathematical operations can
be used. For this specific example, we are interested in the mediation
effect via M. So we define the new parameter ab using ab := a*b. The
newly defined parameter is put in the field “Power parameters”. Each
line in this field can represent a newly defined parameter.

Once the path diagram is created with all the information, clicking

the button will initialize the power calculation on the server.
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Clicking the button will open the output window. Be patient as the
calculation takes a relatively long time due to the involvement of Monte
Carlo simulation. For the simple mediation example, the calculation
took about 139 seconds based on 1,000 Monte Carlo replications.

The output for the analysis is in Figure 20.1.2. The main result is
shown in the middle of the output. In addition, it provides the time
used to run the analysis. The path diagram used to conduct the analysis
can be viewed and edited for a new power analysis by clicking the

button at the bottom.

WebPower started at 10:05:33 on Mar 06, 2017.
=====================================
Please refresh your browser if you are expecting more output.

Basic information: 

  Esimation method                                  ML 
  Standard error                              standard 
  Number of requested replications                1000 
  Number of successful replications               1000 
  Sample size                                      100 

                       True  Estimate      MSE      SD     Power Power.se Coverage 
Regressions: 
  M ~
    X         (a)      0.390    0.389    0.100    0.101    0.969    0.005    0.950 
  Y ~
    M         (b)      0.390    0.387    0.100    0.105    0.961    0.006    0.934 
    X        (cp)      0.000    0.005    0.108    0.110    0.060    0.008    0.940 

Intercepts: 
    M                  0.000   ­0.001    0.099    0.099    0.045    0.007    0.955 
    Y                  0.000    0.003    0.099    0.101    0.059    0.007    0.941 
    X                  0.000   ­0.003    0.099    0.099    0.059    0.007    0.941 

Variances: 
    M                  1.000    0.979    0.138    0.143    1.000    0.000    0.926 
    Y                  1.000    0.970    0.137    0.143    1.000    0.000    0.895 
    X                  1.000    0.986    0.139    0.143    1.000    0.000    0.928 

Indirect/Mediation effects: 
    ab                 0.152    0.151    0.056    0.059    0.872    0.011    0.919 

=====================================
WebPower ended at 10:07:49 on Mar 06, 2017

Time spent on the analysis 

   user  system elapsed  
135.990   0.545 136.539  

To see the input diagram:

Figure 20.1.2: Complete output of the
simple mediation example
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The results of the analysis consist of the following information.

• The “Estimation method” is used to estimate the model in each
replication.

• The “Standard error” estimation method for the parameter estimates,
can be the regular normal based method or the robust method.

• The “Number of requested replications” and the “Number of suc-
cessful replications”.

• The “Sample size” provides the sample size used in the analysis.

• The column “True” lists the population values of parameters used in
the simulation.

• The column “Estimate” is calculated as the mean of the parameter
estimates from the simulated data based on the “Number of success-
ful replications”. Note that the Monte Carlo estimates should be
close to the population parameter values used in the model.

• The column “MSE”, mean standard error, is the average of the
standard error estimates of the parameter estimates based on the
“Number of successful replications”.

• The column “SD”, empirical standard deviation, is calculated as the
standard deviation of the parameter estimates from the successful
replications.

• The column “Power” provides the statistical power for each parame-
ter.

• The column “Power.se” provides the standard error of the power
estimate. It is simply calculated as

Power.se =

√
π(1− π)

R
,

where π is the estimated power and R is the number of successful
replications.

• The column “Coverage” provides the coverage rate of confidence
interval constructed based on the estimated standard error and
normal approximation.

In the result, the information for each individual parameter is first
provided on each row. Then the newly defined parameters are listed
under the heading of “Indirect/Mediation effects”. Specifically for this
example, the power to detect the mediation effect is about 0.878 with a
sample size 100.
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Example 20.1.2: Power for a mediation
effect with latent variable, non-normal
data and missing data

Statistical power analysis can be conducted by taking into account
of both non-normal data and missing data. Figure 20.1.3 shows a
mediation model where the outcome variable F1 is a latent variable
measured by X3, X4 and X5. Both X1 and X2 are non-normal variables.
The variable X5 has missing data and the missingness is related to X1.

Currently, only continuous data with skewness and kurtosis different
from normal distribution can be used. To specify the skewness and

kurtosis for a given variable, draw a path from the diamond to
the variable. Then, on the path, use the label with two values separated
by “;”. The first value is the skewness and the second is kurtosis.
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Figure 20.1.3: Mediation model with non-
normal and missing data

Missing data are specified through logistic models. Current, only
missing completely at random (MCAR) and missing at random (MAR)
mechanisms are supported. To specify how missing data are generated,

first draw a hexagon ( ) on the canvas and give it the same name
as the variable with missing data. Note that missing data are only
allowed in the manifest variables. Our software will generate missing
data according to the logistic model

log
pi

1− pi
= β0 + β1x1i + . . . + βkxki

where pi is the probability for a datum to be missing in the observed
data and x’s are the variables related to the missingness. Note that if
β1 = . . . = βk = 0, the missing probability is a constant and

pi =
exp(β0)

1 + exp(β0)
.
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This also indicates that the missing mechanism is MCAR. With co-
variates in the MAR case, the missing probability can be calculated
similarly.

The output for the power analysis based on the model in Figure
20.1.3 is shown in Figure 20.1.4. Note that since there are non-normal
data, the robust procedure (robust.huber.white) is used to estimate
the standard errors for hypothesis testing. From the output, the power
for detecting the mediation effect is about 0.582.

WebPower started at 10:47:38 on Mar 06, 2017.
=====================================
Please refresh your browser if you are expecting more output.

Basic information:

Esimation method ML
Standard error robust.huber.white
Number of requested replications 1000
Number of successful replications 1000
Sample size 100

True  Estimate MSE SD Power Power.se Coverage
Latent variables:
F1 =~
X3 0.800 0.800 0.000 0.000 NaN NaN 0.000
X4 0.800 1.831 0.315 31.273 0.896 0.010 0.934
X5 0.800 0.827 0.293 0.298 0.882 0.010 0.935

Regressions:
X2 ~
X1 (a) 0.390    0.395    0.099    0.102    0.971    0.005    0.926

F1 ~
X2 (b) 0.390    0.393    0.149    0.158    0.757    0.014    0.918
X1 0.000 ­0.002 0.149 0.146 0.053 0.007 0.947

Intercepts:
X2 2.000 2.003 0.099 0.100 1.000 0.000 0.936
X3 0.000 ­0.008 0.270 0.280 0.069 0.008 0.931
X4 0.000 0.000 0.270 0.275 0.080 0.009 0.920
X5 0.000 ­0.009 0.321 0.341 0.081 0.009 0.919
F1 0.000 0.000 0.000 0.000 NaN NaN 0.000

Variances:
X2 (e_X2) 1.000 0.981 0.138 0.139 1.000 0.000 0.913
F1 1.000 1.029 0.515 0.497 0.767 0.013 0.915
X3 (e_X3) 1.000 0.939 0.334 0.309 0.880 0.010 0.955
X4 (e_X4) 1.000 0.451 0.302 16.042 0.877 0.010 0.938
X5 (e_X5) 1.000 0.921 0.319 0.324 0.851 0.011 0.903

Indirect/Mediation effects:
ab 0.152 0.154 0.072 0.075 0.582 0.016 0.914

=====================================

Figure 20.1.4: Power analysis results for
mediation model with non-normal and
missing data

Example 20.1.3: Power for a two-level
model

Power analysis can also be conducted for multilevel models. Figure
20.1.5 shows the path diagram for a two-level model. In its mathemati-
cal format, the model can be written as:

Level 1 : Y1ij = bi0 + bi1X1ij + eij

Level 2:
bi0 = β1 + β2Z1i + vi0

bi1 = β3 + β4Z1i + vi1

.
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Note that in the path diagram, the random-effects bi0 and bi1 are used
as labels in the first level and plotted as latent variables in the second
level. Based on the path diagram, we have the population values of
parameters for the fixed-effects parameters β1 = 0.3 (the path from
the triangle to b0), β3 = 0 (the path from the triangle to b1), β2 = 0.45
(the path from Z1 to b0) and β4 = 0.3 (the path from Z1 to b1). For the
random-effects parameters, the variance of eij is 0.6 as shown on the
double-headed path related to Y1, the variance of Xij is 0.9, the variance
of vi0 is 0.8, the variance of vi1 is 0.9, and the covariance between vi0

and vi1 is 0. Since no variance is specified for Z, it is set at 1 by default.
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Figure 20.1.5: Path diagram for a two-
level model

Based on the model input, we conduct a power analysis with 30
groups (level 2 sample size) and 100 participants in each group (level
1 sample size). This is provided in the “Sample size” field with the
format 100,30. We then set the Monte Carlo replications to be 1,000.
The output for the power analysis is shown in Figure 20.1.6.

For the multilevel models, only power for the fixed-effects parameters
is produced because these parameters are often of interest. Currently,
lmer package used by WebPower does not provide standard errors for
random-effects parameters and therefore no power values are provided
for those parameters. Second, the power is estimated based on the
standard error estimates from the REML estimation method. Third,
as for SEM, the power for each fixed-effects parameters is provided
together with other information. Especially, to detect the effect of Z1
on b0, the random intercept, the power is about 0.74, while to detect
the effect of Z1 on b1, the random slope, the power is about 0.41.

Example 20.1.4: Power for a two-level
model with missing data

Missing data can also be considered when calculating power for
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WebPower started at 13:12:19 on Mar 21, 2017. 
===================================== 
Please refresh your browser if you are expecting more output.

Power Analysis Results 

Esimation method REML
Number of requested replications 1000
Number of successful replications 1000
Number of levels 2
Sample size for different levels 100,30

Level Equation Label    True Estimate MSE SD Power Power.se Coverage
Fixed effects

2 b0~1 0.3 0.290 0.165 0.167 0.428 0.016 0.947
2 b1~1 0 ­0.011 0.175 0.181 0.063 0.008 0.937
2 b0~Z1 0.45 0.441 0.170 0.175 0.740 0.014 0.942
2 b1~Z1 0.3 0.299 0.180 0.182 0.410 0.016 0.948

Random effects
1 Y1~~Y1 .6 0.599 0.016
2 b0~~b0 .8 0.798 0.209
2 b1~~b1 .9 0.898 0.241
2 b0~~b1 0 ­0.005 0.166

===================================== 
WebPower ended at 13:35:51 on Mar 21, 2017

Time spent on the analysis 

user   system  elapsed
1411.811    1.145 1412.139

To see the input diagram:

Last modified: April 26 2015 06:12:48.

Figure 20.1.6: Power analysis results for
the two-level model in Figure 20.1.5.

multilevel models. To include missingness, one needs to specify the
missing data mechanism. For example, in the diagram in Figure 20.1.7,
we draw a hexagon named Y1 and then draw a directed path from X1
to predict it. This means that the missingness in Y1 is related to X1 as
in a logistic regression

logit[Pr(Y1 is missing)] = 0.2× X1.

Therefore, if X1 takes a greater value, Y1 is more likely to be unobserved
during data collection.
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Figure 20.1.7: Path diagram for a two-
level model with missing data

For the model specified in Figure 20.1.7, the power analysis is shown
in Figure 20.1.8.

Example 20.1.5: Power for a two-level
model with missing data and non-normal
data

Non-normal data is also allowed in conducting power analysis. For
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Power Analysis Results

Esimation method REML
Number of requested replications 1000
Number of successful replications 1000
Number of levels 2
Sample size for different levels 100,30

Level Equation Label    True Estimate MSE SD Power Power.se Coverage
Fixed effects

2 b0~1 0.3 0.503 0.167 0.162 0.851 0.011 0.759
2 b1~1 0 ­0.002 0.176 0.178 0.066 0.008 0.934
2 b0~Z1 0.45 0.447 0.172 0.176 0.738 0.014 0.944
2 b1~Z1 0.3 0.301 0.182 0.196 0.399 0.015 0.930

Random effects
1 Y1~~Y1 .6 0.600 0.023
2 b0~~b0 0.8 0.807 0.226
2 b1~~b1 0.9 0.899 0.241
2 b0~~b1 0 ­0.001 0.166

=====================================
WebPower ended at 16:43:39 on Mar 21, 2017

Figure 20.1.8: Power analysis results for
the two-level model with missing data in
Figure 20.1.7.

example, the model in Figure 20.1.9 includes a diamond shape with D
on it. This indicates that Y1 is non-normally distributed with skewness
1.5 and kurtosis 0.8. By such specification, the power is calculated by
simulating non-normal data for Y1. However, the typical normal-based
estimation method is still used here. Therefore, the estimated power is
often not reliable and we do not show the output here.
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Figure 20.1.9: Power analysis results for
the two-level model with missing data
and non-normal data.

Example 20.1.6: Power for a three-level
model

Power analysis can be similarly conducted for three-level models.
Figure 20.1.10 shows the diagram of a three-level model, which can be
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expressed mathematically as

Level 1 : Y1ijk = bik0 + bik1X1ijk + eijk

Level 2:
bik0 = β1 + dkZ1ik + vik0

bik1 = β2 + β3Z1ik + vik1

Level 3: dk = β4 + β5W1k + wk

.

Note that the relationship between Z1 and the random intercept b0
varies in the second level of the model. It is therefore specified as a
latent variable in the third level. Furthermore, it is predicted by the
third level predictor W1.
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Figure 20.1.10: A three-level model exam-
ple

The output for the power analysis is given in Figure 20.1.11. The
output has the same format as for the two-level models.

20.2 A Double Monte Carlo Procedure for Power Anal-
ysis

The regular Monte Carl method used in the previous section 20.1
requires that the distribution of a test statistic under the null hypothesis
is known. However, the null distribution can be difficult to derive when
the models become more complex. For instance, in the example in
Figure 20.1.9, the distribution of parameters under the null hypothesis
is not clear because of missing data and non-normal data. When
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Power Analysis Results

Esimation method REML
Number of requested replications 1000
Number of successful replications 520
Number of levels 3
Sample size for different levels 50,30,30

Level Equation Label    True Estimate MSE SD Power Power.se Coverage
Fixed effects

2 b0~1 0.3 0.299 0.034 0.032 1.000 0.000 0.954
2 b1~1 0 ­0.000 0.032 0.032 0.048 0.009 0.952
3 d~1 0.3 0.306 0.155 0.158 0.510 0.022 0.935
3 d~W1 0.4 0.412 0.155 0.161 0.744 0.019 0.933
2 b1~Z1 0.3 0.301 0.032 0.034 1.000 0.000 0.944

Random effects
1 Y1~~Y1 e_Y1 .6 0.600 0.004
2 b0~~b0 0.8 0.800 0.040
2 b1~~b1 0.9 0.904 0.042
2 b0~~b1 ­0.002 0.030
3 d~~d 0.7 0.677 0.197

=====================================

0

Figure 20.1.11: Power analysis results for
the two-level model with missing data in
Figure 20.1.10.

conducting power analysis, the population information about a model
is supposed to be known. Therefore, the null distribution can be
similarly simulated based on Monte Carlo methods.

Using the idea, we first estimate the empirical distribution of a
parameter of interest and the desired critical value through the first
Monte Carlo simulation under the null hypothesis. Then, we estimate
the statistical power using the relative frequency of rejecting the null
hypothesis in a second Monte Carlo simulation based on the critical
values obtained in the first Monte Carlo simulation. We call the new
method a double Monte Carlo procedure for power analysis.

Specifically, the following procedure can be used to obtain power for
a parameter in a model. Let M0 and M1 be the models under the null
hypothesis H0 and the alternative hypothesis H1, respectively.

1. Simulate the critical value c1−α

(a) Specify Model M0 under H0 with hypothesized population pa-
rameter values (θ) but setting γ = γ0 with γ0 being the parameter
values under the null hypothesis.

(b) Generate Q sets of data with sample size N from M0. Missing
data and non-normal data can be generated so that their effects
on the statistic T are accounted for. Q should be at least 1,000. By
default, Q = 10, 000 in WebPower.

(c) Fit Models M0 and M1 to the generated data and obtain a sample
test statistic T̂. Then, Q values of the test statistic are available,
which characterize the empirical distribution of T under H0.

(d) Get the critical value c1−α as the 100(1− α)th percentile of the
empirical distribution of T.

2. Simulate the statistical power π
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(a) Specify Model M1 under H1 with hypothesized population pa-
rameter values (θ).

(b) Generate a set of data with sample size N from the model using
random number generation techniques. Missing data and non-
normal data can be generated so that their influences on the
statistic T under H1 are accounted for.

(c) Fit Models M0 and M1 to the generated data and obtain the
sample test statistic T̂.

(d) If T̂ > c1−α, where c1−α is from Step 1, the null hypothesis H0 is
rejected.

(e) Repeat Steps (b)-(d) for a total of R(R ≥ 1000) times.

(f) Suppose out of the R replications, the null hypothesis H0 is
rejected r times. Then the statistical power with the sample size
N is estimated by π̂ = r/R.

3. For sample size planning, if π̂ is smaller than the desired power,
say 0.8, one can increase the sample size to repeat Steps 1 and 2 to
recalculate the power. Otherwise, the sample size can be set to a
smaller value.

Note that the double Monte Carlo method works for evaluating the
power for a single parameter. If one needs to calculate power for more
than one parameter, separate analysis has to be conducted. We use two
examples to show how to use the method in WebPower.

20.2.1 Example 1. A structural equation model

Example 20.2.1: Power for an SEM modelSuppose in the SEM model in Figure 20.1.3, we are particularly
interested in the path from X1 to X2. Then, we can conduct a power
analysis based on the double Monte Carlo method for the parameter. In
the path diagram, the path or parameter is labeled as a. To request the
power analysis, we would need to provide certain information using
the input fields on the left panel as shown in Figure 20.2.1.

Note that in the field of “MC replications”, two numbers are provided.
The first is the number of replications (Q) in the first Monte Carlo
to get the sampling distribution under the null hypothesis and the
second is the number of replications (R) in the second Monte Carlo to
get the sampling distribution under the alternative hypothesis. The
two numbers are separated by a comma (,). In addition, in the “Power
parameters” field, we use “test=a” to let WebPower know that the
parameter of interest is a. Currently, WebPower can only conduct
double Monte Carlo for one parameter at a time.
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Figure 20.2.1: Power analysis for the pa-
rameter a based on double Monte Carlo.

For the model specified in Figure 20.2.1, the output of the power
analysis is shown in Figure 20.2.2. Note that on the top of the output,
the power for the particular path a is provided. Based on the likelihood
ratio test, the power is 0.975. The second part of the output is actually
Monte Carlo based power estimates for each parameter in the model.
Note that the power from the two methods is slightly different. This
is likely due to the method based on the single Monte Carlo has a
stronger assumption than the double Monte Carlo method.

20.2.2 Example 2. A two-level model

Example 20.2.2: Power for a two-level
model

Similarly, double Monte Carlo based power analysis can be con-
ducted for multilevel models. Figure 20.2.3 shows the input for the
two-level model with missing and non-normal data. Again, test=a is
specified for testing the single parameter a in the model.

For the model specified in Figure 20.2.3, the power analysis is shown
in Figure 20.2.4. The power for the parameter a is given at the bottom
of the output, which is 0.405.
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8/18/2017 https://webpower.psychstat.org/show.php?date=20170818&base=c2147bf2cc3b9119890922770a90fb59

https://webpower.psychstat.org/show.php?date=20170818&base=c2147bf2cc3b9119890922770a90fb59 1/1

Power for parameter a based on simulated critical value 
 Power 0.974975 

 s.e. 0.004941983 
 

Power results based on normal Monte Carlo simulation 
 

Basic information: 
 
  Esimation method                                  ML 
  Standard error                            robust.huber.white 
  Number of requested replications                1000 
  Number of successful replications               1000 
  Sample size                                      100 
 
                       True  Estimate      MSE      SD     Power Power.se Coverage 
Latent variables: 
  F1 =~ 
    X3                 0.800    0.800    0.000    0.000      NaN      NaN    1.000 
    X4                 0.800    0.856    0.339    0.350    1.000    0.000    0.954 
    X5                 0.800    0.852    0.527    0.932    1.000    0.000    0.960 
 
Regressions: 
  X2 ~ 
    X1        (a)      0.390    0.396    0.099    0.101    1.000    0.000    0.953 
  F1 ~ 
    X2        (b)      0.390    0.398    0.149    0.150    1.000    0.000    0.951 
    X1                 0.000   -0.003    0.147    0.148    0.954    0.007    0.954 
 
Intercepts: 
    X2                 2.000    2.005    0.099    0.100    1.000    0.000    0.953 
    X3                 0.000   -0.016    0.270    0.275    0.950    0.007    0.950 
    X4                 0.000   -0.012    0.272    0.269    0.962    0.006    0.962 
    X5                 0.000    0.005    0.317    0.328    0.950    0.007    0.950 
    F1                 0.000    0.000    0.000    0.000      NaN      NaN    1.000 
 
Variances: 
    X2     (e_X2)      1.000    0.981    0.138    0.142    1.000    0.000    0.947 
    F1                 1.000    1.020    0.457    0.464    1.000    0.000    0.942 
    X3     (e_X3)      1.000    0.944    0.295    0.301    0.999    0.001    0.961 
    X4     (e_X4)      1.000    0.946    0.308    0.303    0.997    0.002    0.952 
    X5     (e_X5)      1.000    0.917    0.518    0.824    0.998    0.001    0.956 
 
Indirect/Mediation effects: 
    ab                 0.152    0.157    0.072    0.071    1.000    0.000    0.951 

Figure 20.2.2: Power analysis results for
the two-level model with missing data in
Figure 20.2.1.
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Figure 20.2.3: Path diagram for a two-
level model with missing data
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8/15/2017 https://webpower.psychstat.org/show.php?date=20170724&base=d7314afeea3d874f58e11b7938d7f8fe

https://webpower.psychstat.org/show.php?date=20170724&base=d7314afeea3d874f58e11b7938d7f8fe 2/3

Power Analysis Results

Regular Monte Carlo Power:
Esimation method REML
Number of requested replications 1000
Number of successful replications 1000
Number of levels 2
Sample size for different levels 100,30

Level Equation Label    True Estimate MSE SD Power Power.se Coverage
Fixed effects

2 b0~1 0.3 0.298 0.165 0.162 0.458 0.016 0.942
2 b1~1 0 -0.010    0.174    0.178    0.069    0.008    0.931
2 b0~Z1 0.45 0.448 0.169 0.172 0.744 0.014 0.948
2 b1~Z1 a 0.3 0.305 0.178 0.183 0.435 0.016 0.944

Random effects
1 Y1~~Y1 e_Y1 .6 0.600 0.015
2 b0~~b0 e_b0 .8 0.795 0.208
2 b1~~b1 e_b1 .9 0.885 0.239
2 b0~~b1 0 -0.002 0.162
Monte Carlo Power Based on Empirical Distribution of Likelihood Ratio
Parameter Power

a 0.405
Monte Carlo Power Based on Empirical Distribution of Parameter Estimation
Parameter Power

a 0.393
Replication= 10000 

===================================== 
WebPower ended at 21:23:22 on Jul 24, 2017

Figure 20.2.4: Power analysis results for
the two-level model with missing data in
Figure 20.2.3.
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