
Multiprocessor Mapping of Process Networks:
A JPEG Decoding Case Study

E. A. de Kock
Philips Research, Prof. Holstlaan 4, 5656 AA, Eindhoven, The Netherlands

Erwin.de.Kock@philips.com

ABSTRACT
We present a system-level design and programming method for
embedded multiprocessor systems. The aim of the method is to
improve the design time and design quality by providing a
structured approach for implementing process networks. We use
process networks as re-usable and architecture-independent
functional specifications. The method facilitates the cost-driven
and constraint-driven source code transformation of process
networks into architecture-specific implementations in the form of
communicating tasks. We apply the method to implement a JPEG
decoding process network in software on a set of MIPS
processors. We apply three transformations to optimize
synchronization rates and data transfers and to exploit data
parallelism for this target architecture. We evaluate the impact of
the source code transformations and the performance of the
resulting implementations in terms of design time, execution time,
and code size. The results show that process networks can be
implemented quickly and efficiently on embedded multiprocessor
systems.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures. C.3
[Special-Purpose and Application-Based Systems]: Real-time
and embedded systems, signal processing systems. C.4
[Performance of Systems]: Design studies. D.1.3 [Programming
Techniques]: Concurrent Programming – parallel programming.
D.2.13 [Software Engineering]: Reusable Software. D.3.4
[Programming Languages]: Processors – optimization. J.7
[Computers in Other Systems]: Consumer products.

General Terms
Algorithms, performance, design, standardization, languages.

Keywords
Multiprocessor mapping, process network, code transformation,
system design method, data parallelism, task-level parallelism.

1. INTRODUCTION
The complexity of designing and programming embedded
multimedia systems is growing rapidly. In order to reduce the

complexity and, hence, manage the design effort and the time-to-
market, the system’s function and architecture need to be
separated [9] in the design process. The separation allows the re-
use of functions for implementation on different architectures as
well as the re-use of architectures for implementation of different
functions. We address the re-use of functions for implementation
on different architectures.

A key issue of our design method is that application designers
model system functions in terms of process networks [8] and not
in terms of a platform interface. Consequently, they are not
bothered with implementation decisions concerning the
architecture costs and architecture constraints. Subsequently,
system designers can transform the functions for a specific
architecture taking into account its costs and constraints, such that
the functions can be implemented efficiently in hardware and
software. Since the functions are free of implementation
decisions, system designers do not have to perform reverse
engineering to obtain a suitable functional specification that can
be implemented on a specific architecture. This saves valuable
design effort and design time. After transformation the networks
consist of tasks which inter-operate through a platform interface
using concepts such as described in [2], [7], [12], and [14]. We
apply these transformations on source code such that the resulting
code can be used as input for existing silicon and software
compilers.

The transformations encode system-level design decisions in
the source code. Typical design decisions concern task-level and
data parallelism such as the minimization of the number of run-
time tasks [5][13], task concurrency management [11], and data
transfer and storage [3][4]. A survey of data and memory
optimization techniques for embedded systems is given in [10].
Our method differs from those mentioned above by the fact that
we start from an inherently parallel functional model in the form
of a process network and by the fact that we target multiprocessor
implementations. The advantage of using process networks is that
task-level parallelism is already made available in the function.
Unlike procedural programs, process networks do not contain
global data structures that have to be broken down to obtain a
parallel program, which usually is a hard problem. The fact that
we target multiprocessor implementations implies that minimizing
the number of run-time tasks is not necessarily the best solution
because we need to consider the binding of tasks to processors
and the resulting communication between the processors.

In this paper we apply the proposed method in order to
implement JPEG decoding on a multiprocessor architecture. In
Section 2 we model JPEG decoding as a process network. In
Section 3 we present the multiprocessor architecture. In Section 4
we discuss the design decisions and present the corresponding
code transformations. In Section 5 we show the results of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

68

transformations. In Section 6 we conclude with some remarks and
discuss future work.

2. JPEG DECODING NETWORK
We have modeled JPEG decoding functionality as described in
[15] as a process network using the Y-chart Applications
Programmers Interface (YAPI) [6]. The process network is shown
in Figure 1. It consists of 26 processes that communicate using
FIFO channels.

dmx

down
scale

front
end vld

sos

sof

iq izz up
scale

idct
row

idct
col

trans
pose

trans
poseraster

hs
Y

hs
Cb

hs
Cr

vs
Y

vs
Cb

vs
Cr

color
matrix

back
end

i2l
Y

i2l
Cb

i2l
Cr i2l

dmx

down
scale

front
end vld

sos

sof

iq izz up
scale

idct
row

idct
col

trans
pose

trans
poseraster

hs
Y

hs
Cb

hs
Cr

vs
Y

vs
Cb

vs
Cr

color
matrix

back
end

i2l
Y

i2l
Cb

i2l
Cr i2l

Figure 1. JPEG decoding process network.
The frontend process reads a file in JPEG File Interchange Format
(JFIF) from disk and writes it as a byte stream to the DMX
process. The DMX process de-multiplexes the byte stream into
the DHT, DQT, SOF and SOS segments of JFIF. The SOF
process parses the frame headers that are contained in the SOF
segment and writes the frame header data to its outputs. The SOS
process parses the scan headers that are contained in the SOS
segment and writes the scan header data to its outputs. The
variable length decoding (VLD) process decodes the run length
and Huffman encoded minimum coding units using the Huffman
tables that are contained in the DHT segment. It writes the
decoded pixel blocks (8x8 matrices) as a pixel stream to the
inverse quantization (IQ) process. The IQ process multiplies the
pixels by the quantization factors that are contained in the DQT
segment. Subsequently, the pixel blocks undergo inverse zigzag
(IZZ), and two-dimensional inverse discrete cosine transformation
(IDCT). The two-dimensional IDCT operation is modeled using
two one-dimensional IDCT processes and two matrix
transposition (transpose) processes. The IDCT operation contains
two bit-scaling processes (upscale and downscale) to increase and
decrease the bit precision from 8 to 11 bits and back. Next, the
raster process reorders the pixels from their order in pixel blocks,
minimum coding units, and stripes into scan order in pixels, lines,
and frames. The raster process de-multiplexes the pixel stream
with the interleaved luminance (Y) and chrominance (Cb and Cr)
pixels into three separate streams for Y, Cb, and Cr pixels.
Subsequently, the vertical (VS) and horizontal scaling (HS)
processes duplicate pixels such that each stream contains the
number of pixels that has been specified in the frame header data.
Hence, the resulting streams are in 4:4:4 format. The image-to-
line (i2l) processes glue the frame-based output interfaces of the
vertical scaling processes to the line-based input interfaces of the
horizontal scaling processes. The color matrix process converts
the Y, Cb, and Cr streams to R, G, and B streams. Finally, the

backend process reads the R, G, and B streams and writes them in
sun raster file format to disk.
Each process has an input/output relation such that its latency,
i.e., the number of pixels that is read before the first pixel is
written, is minimal. The minimum latency minimizes the memory
requirements of the process. Furthermore, the minimum latency of
each process minimizes the communication constraints with its
environment and, therefore, maximizes the re-usability of the
process. For example, the horizontal scaling processes have a
latency of one pixel. If we re-use them in another process network
in which we only need to scale the luminance pixels, then one
pixel delay suffices to delay the chrominance pixels accordingly.
If the horizontal scaling on luminance pixels would have a latency
of one frame of pixels, then this would impose significant frame
memory requirements in order to match the delay in the
chrominance pixels. Similar arguments apply for feedback loops.

3. MULTIPROCESSOR ARCHITECTURE
We have implemented the JPEG decoding process network on a
single tile of the CAKE multiprocessor architecture [14]. A tile
consists of a heterogeneous set of processors and memories that
communicate through a snooping interconnection network. Each
processor has its own cache. The snooping protocol ensures that
the caches have a coherent view on the single uniform shared
memory space. In our tile configuration we have used a
homogeneous set of MIPS processors and four memory banks to
implement the memory space. All processors in the tile operate on
a single queue of runable tasks. A small operating system, called
tile run-time system, dynamically assigns tasks to processors. If
one processor suspends a task, then another processor can resume
this task. The YAPI process network library has been
implemented in software on top of the tile run-time system. In this
library, each process is implemented as a separate task.

4. MAPPING
In order to efficiently implement the JPEG decoding process
network on the CAKE multiprocessor architecture we have
exploited three observations. The first observation is that pixel-
based communications, i.e., read and write calls that are used to
communicate single pixels, are expensive in software due to the
large number of synchronization actions. The second observation
is that fine-grain tasks, i.e., tasks that perform little computation
compared to communication, are expensive in software due to the
relatively large overhead of data transfer between the tasks. The
third observation is that RISC processors such as MIPS
processors cannot exploit data parallelism unlike, for instance,
VLIW processors. To exploit data parallelism, we use multiple
RISC processors and we transform data parallelism into task-level
parallelism. Based on these observations we apply three types of
transformations that we call data packaging, task fusion, and task
unrolling.
We do not focus on context switching. Context switching can only
occur during execution of read and write calls because the tile
run-time system schedules its tasks non-preemptively. We do not
exploit the tradeoff between the buffer capacity of the FIFO
channels between the tasks and the amount of context switching
as discussed in [1]. To minimize the amount of context switching,
we allocate a large buffer of 8K per FIFO channel. Hence, context
switching only occurs during execution of read calls on empty
FIFO channels.

69

4.1 Data Packaging
In the first transformation, called data packaging, we decrease the
number of read and write calls of a process by increasing the
number of communicated pixels per call. As a consequence we
have to increase both the internal memory requirements of the
process and the latency of the process, which decreases its re-
usability. An example of data packaging is shown in Figure 2 and
Figure 3, where we have increased the maximum packet size in
the IQ process from 1 pixel before transformation to 64 pixels
after transformation. We furthermore applied data packaging in
the variable length decoding, upscale, downscale, horizontal
scaling, color matrix, and backend processes.

void IQ::main() {
 ...
 for(int i=0; i<nrOfScanComponents; i++) {
 int hi = H[scanComponentId[i]];
 int vi = V[scanComponentId[i]];
 int ti = tid[scanComponentId[i]];
 for(int j=0; j<vi; j++) {
 for(int k=0; k<hi; k++) {
 for(int l=0; l<64; l++) {
 VYApixel Cin;
 VYApixel Cout;
 read(CinP, Cin);
 Cout = QTable[ti][l]*Cin;
 write(CoutP, Cout);
 }
 }
 }
 }
 ...
}

Figure 2. Pixel-based inverse quantization process.

void IQ::main() {
 ...
 for(int i=0; i<nrOfScanComponents; i++) {
 int hi = H[scanComponentId[i]];
 int vi = V[scanComponentId[i]];
 int ti = tid[scanComponentId[i]];
 for(int j=0; j<vi; j++) {
 for(int k=0; k<hi; k++) {
 VYApixel Cin[64];
 VYApixel Cout[64];
 read(CinP, Cin, 64);
 for(int l=0; l<64; l++) {
 Cout[l] = QTable[ti][l]*Cin[l];
 }
 write(CoutP, Cout, 64);
 }
 }
 }
 ...
}

Figure 3. Block-based inverse quantization process.
The advantage of data packaging is that the system can transfer
the data in larger packets if the FIFO channels between the
processes have sufficient buffer capacity. This reduces the number
of synchronization actions.

4.2 Task Fusion
In the second transformation, called task fusion, we combine two
or more processes in one process in order to avoid the data

transfer overhead of fine-grain tasks. As an example we show the
inverse zigzag process in Figure 4 that we have combined with the
block-based IQ process shown in Figure 3. The resulting process
is shown in Figure 5.

void IZZ::main() {
 while (true) {
 VYApixel Cin[64];
 VYApixel Cout[64];
 read(CinP, Cin, 64);
 for (unsigned int i=0; i<64; i++) {
 Cout[zigzag[i]] = Cin[i];
 }
 write(CoutP, Cout, 64);
 }
}

Figure 4. Inverse zigzag process.

void IQ_IZZ::main() {
 ...
 for(int i=0; i<nrOfScanComponents; i++) {
 int hi = H[scanComponentId[i]];
 int vi = V[scanComponentId[i]];
 int ti = tid[scanComponentId[i]];
 for(int j=0; j<vi; j++) {
 for(int k=0; k<hi; k++) {
 VYApixel Cin[64];
 VYApixel Cout[64];
 read(CinP, Cin, 64);
 for(int l=0; l<64; l++) {
 Cout[zigzag[l]] = QTable[ti][l]*Cin[l];
 }
 write(CoutP, Cout, 64);
 }
 }
 }
 ...
}

Figure 5. Inverse quantization and zigzag process.
The advantage of task fusion is that the system has to transfer less
data if the data can be kept locally in registers and caches. This
can improve the performance since the processors sequentially
perform the computation and the communication of a process. If
computation and communication can be done in parallel, then task
fusion can be used to balance the computation and
communication load. Furthermore, task fusion reduces the amount
of context switching.

idct
row

idct
col raster back

end
front
end

idct
row

idct
col raster back

end
front
end

Figure 6. Coarse-grain process network.

We repeatedly apply task fusion until we obtain the coarse-grain
process network shown in Figure 6. In Figure 6, the frontend
process contains the original frontend, DMX, SOF, SOS, VLD,
IQ, IZZ, and upscale processes. Each IDCT process is a
combination of the original IDCT process and its subsequent
transpose process. The raster process contains the original
downscale, raster, vertical scaling, image-to-line, and horizontal
scaling processes. The backend process contains the original
backend and color matrix processes.

70

4.3 Task Unrolling
Next we have optimized the coarse-grain process network shown
in Figure 6 both for execution on a single processor and for
execution on multiple processors. In order to optimize for
execution on a single processor, we apply task fusion to combine
the five coarse-grain processes into a single process. This removes
all multi-tasking overhead, since the resulting process is executed
as a single task by the tile run-time system. To optimize the
execution on multiple processors, we have made the available data
parallelism explicit as task-level parallelism by unrolling the
IDCT and raster processes; see Figure 7. Each of the resulting
IDCT and raster processes handles only one of the color
components Y, Cb, and Cr, whereas the original processes
handled all color components.

idct
row
Cb

idct
col
Cb

raster
Cr

back
end

front
end

idct
row
Y

idct
row
Cr

idct
col
Y

idct
col
Cr

raster
Y

raster
Cb

idct
row
Cb

idct
col
Cb

raster
Cr

back
end

front
end

idct
row
Y

idct
row
Cr

idct
col
Y

idct
col
Cr

raster
Y

raster
Cb

Figure 7. Data parallel process network.

The advantage of task unrolling is that the system can process data
in parallel without the overhead of additional data transfers
associated with pipelining.

5. RESULTS
We compare the implementations of the JPEG decoding process
network with an implementation of JPEG decoding in the form of
a C program that has been developed in a procedural
programming style. We have labeled the different JPEG programs
in Table I such that we can easily refer to them.
Table I. The characteristics of the JPEG decoding programs.

Program Style #T DP TF TU

JPEG 1 C 1

JPEG 2 PN 26 No No No

JPEG 3 PN 26 Yes No No

JPEG 4 PN 5 Yes Yes No

JPEG 5 PN 11 Yes Yes Yes

JPEG 6 PN 1 Yes Yes No

The procedural program has label JPEG 1. The functional process
network shown in Figure 1 has label JPEG 2. The process
network that results from applying data packaging has label JPEG
3. The coarse-grain process network that results from task fusion
and that is shown in Figure 6 has label JPEG 4. The data parallel
process network that is shown in Figure 7 has label JPEG 5.
Finally, the single process that is the result of combining the five
processes of Figure 6 has label JPEG 6. Table I provides an

overview of the programs and their characteristics in terms of
design style (procedural C or process networks), number of run-
time tasks (#T), and applied transformations (data packaging
(DP), task fusion (TF), and task unrolling (TU)). We have
compared these six JPEG programs in terms of design time,
execution time, and code size.
Both the design of the procedural program (JPEG 1) and the
design of the functional process network (JPEG 2) have taken
three person weeks. Two different persons have developed the
programs using the same data structures and implementations for
the basic functionality such as VLD and IDCT. They were not
familiar with JPEG. The transformations of JPEG 2 into JPEG 3
up to JPEG 6 have taken two weeks and have been done by the
designer of JPEG 2.

Figure 8. The execution times of the JPEG programs.

Figure 8 shows the execution times of the different programs in
number of cycles per pixel. We have executed JPEG 1 and JPEG
6 on only one processor because they consist of only one process.
We have executed the other programs also on 2, 3, 4, and 8
processors. We express the execution times in the number of
cycles per pixel in the input file. The JPEG picture “shuttle.jpg”
has a dimension of 669x1004 pixels in 4:2:0 format, which results
in a resolution of 1,007,514 pixels. To obtain the number of
cycles per pixel we divide the execution time in cycles by the
resolution in pixels.

Figure 9. The impact of synchronization rate reduction.

Figure 9 shows the execution time in cycles per process for JPEG
2 and JPEG 3 on one processor. The transformation to reduce the
synchronization rate for the variable length decoding, upscale,
downscale, horizontal scaling, color matrix, and backend
processes accelerates the execution of these processes.

71

Figure 10. The impact of data transfer reduction.

Figure 10 shows the execution time in cycles per process for
JPEG 4 on one processor. We have compared the execution time
of each process with the sum of the execution times of the
corresponding processes of JPEG 3 and JPEG 5. For instance, the
backend process in JPEG 4 is a combination of the color matrix
process and the backend process in JPEG 3. Similarly, the
idctRow process in JPEG 4 is a combination of the idctRowY,
idctRowCb, and idctRowCr processes in JPEG 5. The comparison
between JPEG 3 and JPEG 4 shows that the removal of fine-grain
tasks accelerates the execution. The acceleration is due to less
data transfer overhead since more data can be kept locally in
registers and caches of the processors. The comparison between
JPEG 4 and JPEG 5 shows that the acceleration is not due to less
context switching since they have similar execution times while
JPEG 4 contains only half of the number of processes of JPEG 5.
Note that we have allocated a large buffer of 8K for each FIFO
channel to minimize the amount of context switching due to full
FIFO channels.

Figure 11. The impact of data parallelism.

Figure 11 shows the execution time in cycles per process for
JPEG 5 on tiles with multiple processors. Furthermore, it shows
the total execution time of JPEG 5 on these tiles. We note that the
execution times of the processes are largely independent of the
number of processors. We also note that we can fully exploit the
data parallelism of JPEG 5 with three or more processors because
the execution of the frontend process determines the total
execution time. In the frontend process, the variable length
decoding takes most of the execution time as shown in Figure 9.
The reading of the JPEG file from disk, which was done in the
frontend process of JPEG 2, is not a bottleneck.

Figure 12. Code sizes of the JPEG programs.
Figure 12 shows the size in number of bytes of the object code
and source code of the JPEG programs. We have compiled the
programs with a gcc 2.8.1 based cross-compiler for MIPS using
the -O3 option. The size of the object code of the process network
programs is large compared to the size of the object code of the
single process programs JPEG 1 and JPEG 6. This is due to the
fact that all code in the YAPI process network software library is
inline code in order to improve the execution times of the
programs. The disadvantage is that there is a lot of duplicate code
in the object code. In order to execute the programs, we link them
to the tile run-time system and other system libraries such as the
C++ library. The size of the combined system libraries is 530K.

6. CONCLUSION
We have presented a system design method to implement process
networks on multiprocessor architectures. There are two
advantages of using process networks as functional specifications.
Firstly, it shields application designers from implementation
details and, hence, it improves the re-usability of functional
specifications. Secondly, it reduces the design complexity because
system designers start from clean functional specifications that do
not contain architecture-specific implementation decisions.
The JPEG decoding case study shows that process networks can
be implemented efficiently on multiprocessor architectures in a
systematic way by reasoning on costs and constraints. The
transformation of the functional process network accelerates the
execution with almost a factor of three both on a single processor
as well as on a tile of three processors. Furthermore, we have
shown that the transformations on process networks are relatively
simple. Our experience is that transformations on procedural
programs that achieve similar results are much harder to perform.
Future work includes transformations to efficiently implement
process network communication on multiprocessor systems with
shared memory architectures. These architectures typically have
platform instances such as described in [7] which have separate
synchronization and data transfer primitives. This separation
allows the reduction of synchronization rates without additional
memory requirements. Furthermore, this separation can reduce the
amount of data transfer between communicating tasks if these
tasks have access to the same memory space. Future work
furthermore includes the development of tools to automate the
presented code transformations.

72

7. ACKNOWLEDGMENTS
We would like to thank Paul Stravers and Jan Hoogerbrugge for
providing the CAKE multiprocessor architecture simulator to
evaluate the performance of the JPEG programs.

8. REFERENCES
[1] Basten, T., and J. Hoogerbrugge, “Efficient Execution of

Process Networks,” In A. Chalmers, M. Mirmehdi and H.
Muller, editors, Proceedings Communicating Process
Architectures, pp. 1-14, 2001.

[2] Brunel, J.-Y., W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, L.
Pasquier, E.A. de Kock, and W.J.M. Smits, “COSY
Communication IP’s,” Proceedings 37th Design Automation
Conference, pp. 406-409, 2000.

[3] Catthoor, F., K. Danckaert, S. Wuytack, N.D. Dutt, “Code
transformations for data transfer and storage exploration
preprocessing in multimedia processors,” IEEE Design &
Test of Computers, vol. 8, issue 3, pp. 70-82. 2001.

[4] Chung, E-Y., L. Benini, G. De Micheli, “Source code
transformation based on software cost analysis,” Proceedings
Int. Symposium on System Synthesis (ISSS), pp. 153-158,
2001.

[5] Cortadella, J., A. Kondratyev, L. Lavagno, M. Massot, S.
Moral, C. Passerone, Y. Watanabe, A. Sangiovanni-
Vincentelli, “Task generation and compile-time scheduling
for mixed data-control embedded software,” Proceedings
37th Design Automation Conference, pp. 489-494, 2000.

[6] De Kock, E.A., G. Essink, W.J.M. Smits, P. van der Wolf,
J.-Y. Brunel, W.M. Kruijtzer, P. Lieverse, K.A. Vissers,
“YAPI: Application Modeling for Signal Processing
Systems,” Proceedings 37th Design Automation Conference,
pp. 402-405, 2000.

[7] Gangwal, O.P., A.K. Nieuwland, P.E.R. Lippens, “A scalable
and flexible data synchronization scheme for embedded HW-
SW shared-memory systems,” Int. symp. on system synthesis
(ISSS), pp. 1-6, 2001.

[8] Kahn, G., “The semantics of a simple language for parallel
programming,” Information Processing, J.L. Rosenfeld (ed.),
North-Holland Publishing Co. 1974.

[9] Keutzer, K., S. Malik, A.R. Newton, J.M. Rabaey, and A
Sangiovanni-Vincentelli, “System-Level Design:
Orthogonalization of Concerns and Platform-Based Design,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, 2000.

[10] Panda, P.R., F. Catthoor, N.D. Dutt, K. Danckaert, E.
Brockmeyer, C. Kulkarni, A. Vandercappelle, and P.G.
Kjeldsberg, “Data and Memory Optimization Techniques for
Embedded Systems,” ACM Transactions on Design
Automation of Electronic Systems, vol. 6, no. 2, pp. 149-
206, 2001.

[11] Prayati, A., Chun Wong, P. Marchal, N. Cossement, F.
Catthoor, R. Lauwereins, D. Verkest, H. De Man, A. Birbas,
“Task concurrency management experiment for power-
efficient speed-up of embedded MPEG4 IM1 player,”
Proceedings International Workshops on Parallel Processing,
pp. 453-460, 2000.

[12] Rutten, M.J., J.T.J. van Eijndhoven, E.J.D. Pol, “Design of
Multi-Tasking Coprocessor Control for Eclipse,”
Proceedings 10th Int. symposium on Hardware/Software
Codesign (CODES), 2002.

[13] Sgroi, M., L. Lavagno, Y. Watanabe, A. Sangiovanni-
Vincentelli, “Synthesis of embedded software using free-
choice Petri nets,” Proceedings 36th Design Automation
Conference, pp. 805-810, 1999.

[14] Stravers, P., and J. Hoogerbrugge, “Homogeneous
multiprocessing and the future of silicon design paradigms,”
Proceedings International symposium on VLSI Technology,
Systems, and Applications (VLSI-TAS), pp. 184-187, 2001.

[15] Wallace, G.K., “The JPEG still picture compression
standard,” IEEE Transactions on Consumer Electronics, vol.
38, issue 1, pp. xviii-xxxiv, 1992.

73

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

