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Abstract 
 

This paper describes a behavioral synthesis tool called the 
MATCH compiler developed as part of the DARPA 
Adaptive Computing Systems program. The MATCH 
compiler reads in high-level descriptions of DSP 
applications written in MATLAB, and automatically 
generates synthesizable RTL models in VHDL. The RTL 
models can be synthesized using commercial logic 
synthesis tools and place and route tools onto FPGAs.  By 
linking the two design domains of DSP and FPGA 
hardware design, the MATCH compiler provides DSP 
design teams a significant reduction in design labor and 
time, elimination of misinterpretations and costly design 
rework, automatic verification of the hardware 
implementation, and the ability of systems engineers and 
algorithm developers to perform architectural exploration 
in the early phases of their development cycle.  The paper 
describes how powerful directives are used to provide 
high-level architectural tradeoffs for the DSP designer.  
The MATCH compiler has been transferred to a startup 
company called AccelChip which has developed a 
commercial version of the compiler called AccelFPGA. 
Experimental results are reported using AccelFPGA on a 
set of nine MATLAB benchmarks that are mapped onto 
the recent Xilinx Virtex II and Altera Stratix FPGAs.  The 
benchmark programs range in complexity from 20 lines to 
170 lines of MATLAB code and produce VHDL code 
ranging from 1500 to 4500 lines of code.  The 
compilation times range from 3 seconds to 40 seconds.   
 
1. Introduction 
 
The performance requirements of today’s communication 
systems, such as 3G and 4G wireless communication 
systems, MPEG4 video and Video over IP, now exceed 
the capabilities of general-purpose processors. With the 
introduction of advanced Field-Programmable Gate Array 
(FPGA) architectures such as the Xilinx Virtex-II [14], 
and the Altera Stratix [2], a new hardware alternative is 
available for DSP designers that combines all the benefits 

of general-purpose processors with the performance 
advantage of ASICs.  
 
DSP design has traditionally been divided into two types 
of activities – systems/algorithm development and 
hardware/software implementation. The majority of DSP 
system designers and algorithm developers use the 
MATLAB language [9].  The first step in this flow is the 
conversion of the floating point MATLAB algorithm, into 
a fixed point version using quantizers from the Filter 
Design and Analysis (FDA) Toolbox for MATLAB.  
Algorithmic tradeoffs such as the precision of filter 
coefficients and the number of taps used in a filter are 
performed at the MATLAB level.  Hardware design 
teams take the specifications created by the systems 
engineers and algorithm developers (in the form of a fixed 
point MATLAB code) and create a physical 
implementation of the DSP design. If the target is an 
FPGA, PLD or ASIC, the first task is to create a register 
transfer level (RTL) model in a hardware description 
language (HDL) such as VHDL and Verilog.  The RTL 
HDL is synthesized by a logic synthesis tool, and placed 
and routed onto an FPGA using backend tools. The 
process of creating an RTL model and a simulation 
testbench takes about one to two months with the tools 
currently used today.   

 
Figure 1. Automated design using MATCH 

 



 

 

This paper described the MATCH compiler developed at 
Northwestern University under sponsorship of the 
DARPA Adaptive Computing Systems program.  The 
MATCH compiler reads in fixed point MATLAB 
behavioral models and automatically outputs 
synthesizable RTL models in VHDL.  The resultant RTL 
VHDL is bit-true with the original fixed point MATLAB 
specification. The current manual and new automated 
flow is shown in Figure 1.  MATCH also allows users to 
perform quick iterations of hardware designs, allowing 
area and speed trade offs and architecture exploration.   
 
2. Related Work 
 
The problem of translating a high-level or behavioral 
language description into a register transfer level 
representation is called high-level synthesis [6].  
Synopsys developed one of the first successful 
commercial behavioral synthesis tools in the industry, the 
Behavioral Compiler [12], which took behavioral VHDL 
or Verilog and generated RTL VHDL or Verilog.  
Recently, there has been a lot of work in the use of the C 
programming language and other high-level languages to 
generate synthesizable HDL codes or hardware 
implementations [7,10]. There have been several 
commercial efforts to develop compilers taking C/C++ 
into VHDL or Verilog.  Examples are CoWare, Adelante 
[1], Celoxica [3], C Level Design [4] and Cynapps [5].  
SystemC is a new language developed by the SystemC 
consortium which allows users to write hardware system 
descriptions in a language similar to C++ [11].  Synopsys 
has a tool called Cocentric which takes SystemC and 
generates RTL VHDL/Verilog.  
 
While there are some companies which develop related 
tools from C or C++ to VHDL and Verilog, this paper 
describes the MATCH compiler [8] from Northwestern 
University that takes behavioral MATLAB descriptions 
(the default language of DSP design) and generates RTL 
VHDL for FPGA design.    Some of the unique and 
challenging features of the MATLAB language are the 
support for array operations (operating on matrices 
instead of scalars), an interpretive environment where the 
types and shapes of variables are not declared at compile 
time but inferred at runtime, and a very powerful set of 
built in library functions.  
 
3. Directives in MATCH Compiler 
 
MATCH compiler directives are used to bridge the gap 
between the MATLAB source and the synthesis of the 
computational structures created by MATCH. The most 
important role of the directives is for the user to provide 
the tool domain specific knowledge as well as 
opportunities of many optimizations.  Every compiler 

directive is prefixed by “%!ACCEL”. This makes the 
directives appear as comments to other environments 
dealing with MATLAB since all comments in MATLAB 
start with %.  Some of these directives are described in 
more detail below. 
 
3.1. TARGET Directive 
 
By specifying the %!MATCH  TARGET XC2V250 
directive, the compiler becomes aware of the 
characteristics of that target Virtex II architecture, namely 
that it can support 1536 Combinational Logic Blocks, 48 
Kbits of distributed RAM, 24 embedded multipliers, 24 
embedded RAM blocks. By specifying the %!MATCH  
TARGET EP1S10 directive, the compiler becomes aware 
of the characteristics of the Altera Stratix architecture, 
namely that it consists of 94 M512 RAM Blocks, 60 M4K 
RAMs, 1 MegaRAM Blocks, 6 DSP Blocks, and a 40 X 
30 array of Logic Array Blocks.  

 
Figure 2. Illustration of the TARGET directive. 

 
3.2. BEGIN_HARDWARE Directive 
 
MATCH allows the user to use hardware partitioning 
directive to demarcate parts of the input source that are 
targeted for hardware synthesis and parts that are not. The 
BEGIN_HARDWARE and END_HARDWARE 
directives indicate a section of MATLAB code that is 
intended for hardware synthesis.  
 
3.3. SHAPE Directive 
 
MATLAB is designed to be an interpretive environment 
where the types and shapes of variables are determined at 
run time.  For the purpose of compiling MATLAB 
programs to hardware in order to generate VHDL or 
Verilog, it is necessary to determine the types and shapes 
of all variables at compile time.  The shape directives are 
used to convey necessary shape information with respect 
to the variables that appear within the hardware section of 



 

 

the source code that is being mapped into hardware. For 
example, %!MATCH  SHAPE a(30,40,50) defines a 3-
dimensional array ‘a’ with 30, 40, and 50 elements in the 
corresponding dimensions. The shape information is 
required for array variables that appear in the hardware 
section (for MATLAB programs enclosed within the 
BEGIN_HARDWARE and END_HARDWARE 
directives).  The compiler attempts to infer the shapes of 
many dependent variables.  
 
3.3. STREAM Directive 
 
The purpose of the STREAM directive is the specification 
of the type of data flow that inputs and outputs of the 
synthesized hardware will handle. Streaming data is 
defined as data with a regular rate of flow through the 
hardware. For systems that will handle streaming data, 
MATCH supports the automatic creation of ports with the 
required buffering mechanisms to sustain the regular flow 
of data with the use of the STREAM directive. These 
mechanisms include ‘double-buffering’ to allow 
concurrent processing of data and buffering of new data 
samples. The syntax of the STREAM directive is as 
follows. 
%!MATCH  STREAM <stream-index> 
for stream-index = STARTVAL:STRIDE:ENDVAL 
 BEGIN_HARDWARE indata 
 in_buf = indata(stream-index); 
 … 
 outdata(stream-index) = out_buf; 
 END_HARDWARE outdata 
end 
 
where stream-index is the index in the control statement 
of a ‘for’ loop 
 

 
Figure 3. Illustration of the UNROLL directive. 

 
3.4. UNROLL Directive 
 

The UNROLL directive is a mechanism to expand the 
source MATLAB to create more copies of loop  bodies, 
thereby increasing performance optimizations.   Let us 
consider an example MATLAB for loop. 
 
%!MATCH  UNROLL  4 
for  i = 1: 16 
    sum = sum + b(i) * c(i) ; 
end; 
 
Without the UNROLL directive, the MATLAB code has 
one addition and one multiplication operation in the data 
flow graph of its basic block hence the MATCH compiler 
will generate an RTL VHDL or Verilog which will use 
one adder and one multiplier to schedule this computation 
which will take 16 cycles.  If the code were to be unrolled 
as shown, the loop body will be replicated four times and 
the loop index in successive copies are incremented. In 
addition, scalars that carry values from one iteration to 
another iteration are renamed. For example, the scalar 
“sum” would be renamed in successive copies. This 
exposes opportunities to chain operations to the compiler. 
 
for i = 1:4:16 
  sum1  =  sum  + b(i)  * c(i); 
  sum2  =  sum1 + b(i+1)* c(i+1); 
  sum3  =  sum2 + b(i+2)* c(i+2); 
  sum   =  sum3 + b(i+3)* c(i+3); 
end; 
 
MATCH now recognizes four addition and four 
multiplication operations in each basic block hence it will 
schedule it across four cycles using four adders and four 
multipliers in parallel.  The UNROLL directive is 
therefore used by the user to generate different area-delay 
hardware alternatives.  It is illustrated in Figure 3. 
 

 
Figure 4. Illustration of the PIPELINE directive. 

 
3.5. PIPELINE Directive 



 

 

 
Pipelining increases the throughput of a datapath by 
introducing registers in the datapath. This increase in 
throughput is particularly important when the datapath is 
iterated in the overall design.  The PIPELINE directive is 
placed just before the loop, whose body is to be pipelined. 
For pipelining function bodies the directive is placed just 
above the function definition. 
 
%!MATCH   PIPELINE 
for i =  init:  end 
     for body …….. 
end; 
 
%!MATCH  PIPELINE 
function    x = foo( y ) 
    function body ….. 
end; 
 
The PIPELINE directive is illustrated in Figure 4. 
 
4. Results on Benchmarks 
 
The MATCH compiler has been commercialized by a 
company called AccelChip [15] in a product called 
AccelFPGA 
 
We now report some experimental results on various 
benchmark MATLAB programs using the AccelFPGA 
compiler. 

• A 16 tap Finite Impulse Response Filter 
• A 64 tap memory mapped tiled FIR filter 
• A Decimation in Time FIR filter 
• A 64 point Fast Fourier Transform 
• A Least Mean Square adaptive LMS filter 
• An Infinite Impulse Response Filter of type DF1 
• An Interpolation FIR filter 
• A Block Matching Algorithm  
• A Digital Subscriber Line (DSL) algorithm 

 
Table 1 shows some benchmark characteristics of the 
MATLAB programs.  It can be seen that the MATLAB 
programs vary in size from 20 lines to 175 lines with an 
average length of 60. We also show the number  of 
directives used in the 9 benchmark programs.  The 
corresponding synthesizable RTL Verilog versions of the 
designs are quite large, varying in size from 883 lines to 
4188 lines with an average length of 2265.  We also 
include the compile times of AccelFPGA version 1.4 for 
each of the benchmarks.  All execution times were 
measured on a Dell Latitude Model C610 laptop with a 
1.2GHz Pentium III CPU, 512 MB RAM, and 80 GB hard 
drive running Windows 2000.   It can be seen that the 
execution time varies from 2.5 seconds to 39 seconds.  
We also include the compile times of the backend logic 

synthesis tool, namely, Synplify Pro 7.1 [13] where the 
times vary from 2.1 seconds to 872.4 second.   
 
Table 2 shows the experimental results of the AccelFPGA 
version 1.4 compiler on nine MATLAB benchmarks on a 
Xilinx Virtex II device XC2V250.  Results are given in 
terms of resources used, and performance obtained as 
estimated by the Synplify Pro 7.1 tool executed on the 
RTL Verilog that was output by AccelFPGA.  The 
resource results are reported in terms of  LUTS, 
Multiplexers, embedded multipliers, ROMS and 
BlockRAMS used.  The performance was measured in 
terms clock frequency of the design as estimated by the 
internal clock frequency inferred by the Synplify Pro 7.1 
tool, and the latency and throughput of the design in terms 
of clock cycles by using the ModelSim 5.5e RTL 
simulator. 
 
Table 3 shows similar results for the nine MATLAB 
benchmark examples on an Altera Stratix EP1S10 device.  
Resources are measured in LUTS, ATOMS, MACs, and 
DSP Blocks, and performance is again measured in clock 
frequency, latency and throughput.   
 
 
5. Conclusions 
 
This paper described a behavioral synthesis tool called 
MATCH which reads in high-level descriptions of DSP 
applications written in MATLAB, and automatically 
generates synthesizable RTL models and simulation 
testbenches in VHDL or Verilog. The RTL models can be 
synthesized using commercial logic synthesis tools and 
place and route tools onto FPGAs.  By linking the two 
design domains of DSP and FPGA hardware design, 
MATCH provides DSP design teams a significant 
reduction in design labor and time, elimination of 
misinterpretations and costly design rework, automatic 
verification of the hardware implementation, and the 
ability of systems engineers and algorithm developers to 
perform architectural exploration in the early phases of 
their development cycle.   The paper described how 
powerful directives are used to provide high-level 
architectural tradeoffs for the DSP designer.  
Experimental results were reported on a set of nine 
MATLAB benchmarks that are mapped onto the recent 
Xilinx Virtex II and Altera Stratix FPGAs. 
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Table 1. MATLAB Benchmark Characteristics.   
 

Benchmark fir16tap fir64tap fft64 dec_fir lms iirdf1 int_fir bma dsl 
MATLAB 
Lines 20 40 98 38 39 33 38 63 175 
Directives 
Used 6 8 9 6 6 6 7 10 9 
Verilog 
Lines 957 1312 4188 1333 2219 883 1084 2758 5654 
MATCH 
Time (sec) 4.0 39.0 10.2 8.9 20.8 2.7 2.5 12.3 38.8 
Synplify 
Time (sec) 3.6 248.7 698.8 32.6 872.4 2.1 9.5 11.9 382.1 

 



 

 

Table 2. Results of the AccelFPGA 1.4 compiler on a Xilinx Virtex2 XC2V250 device for nine MATLAB 
benchmarks. 

 
Benchmark Resources Performance 

 LUTS MUX MULTs ROMS RAMS 
Freq 

(MHz) 
Latency 
(cycles) 

Thruput 
(1/cycle)

fir16tap 373 326 8 8 0 134.2 20 1
         
fir64tap 1654 330 16 8 16 79.7 59 55
         
fft64 4212 1473 4 16 2 66.8 5722 4
         
dec_fir 1356 1209 0 0 0 61.2 8 5
         
lms 10735 5377 4 0 0 44.2 328 324
         
iirdf1 119 47 2 0 0 107.1 11 7
         
int_fir 254 49 1 6 0 75.3 79 75
         
bma 929 512 0 0 3 72.3 230072 228342
         
dsl 7145 3055 5 16 0 38.8 3114 2883

 
Table 3. Results of the AccelFPGA 1.4 compiler on a Altera Stratix EP1S10 device for nine MATLAB 

benchmarks. 
 

Benchmark Resources Performance 

 LUTS ATOMS 
DSP 
MAC 

DSP 
BLOCK ROMS RAMS

Frequency 
(MHz) 

Latency 
(cycles) 

Throughput 
(1/cycles) 

fir16tap 287 547 4 1 1 0 129.8 20 1
          
fir64tap 2125 2702 16 2 0 16 78.1 59 55
          
fft64 4439 8361 4 1 0 2 84.3 5722 4
          
dec_fir 570 1166 1 1 0 0 78.9 8 5
          
lms 12667 20447 3 3 0 0 48.9 328 324
          
iirdf1 103 170 3 1 0 0 103.4 11 7
          
int_fir 311 578 1 1 0 0 67.6 79 75
          
bma 905 1037 0 0 0 3 57.4 230072 228342
          
dsl 8514 19905 5 2 0 0 50.3 3114 2883
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