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Research Question and Contribution

Candidate axiom scoring is key to automatic axiom discovery.

We deal with the problem of learning a surrogate model of a
very accurate but computationally heavy scoring heuristics

We got good results using a kernel-based representation of
formulas

⇒ How can we obtain scalability for large ontologies?

train a classifier against a set of scored axioms

kernel-based representation of axioms

ontological semantic similarity measure
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Motivation: RDF Mining

Problem:

How to test OWL axioms under the open-world assumption?
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Axiom Scoring

Axiom Scoring

Axiom Testing
given a hypothesis about the relations holding among some entities
of a domain, evaluate its credibility based on the available evidence

h
?⇐= e

| |
OWL RDF

Fundamental problem in epistemology, with ramifications in
statistical inference, data mining, inductive reasoning, medical
diagnosis, judicial decision making, and even the philosophy of
science.
Confirmation is central to this problem
Extended hypothetico-deductivism:

e confirms h if h |= e
e disconfirms h if e |= ¬h
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Axiom Scoring

Content of an Axiom

Definition (Content of Axiom φ)

Given an RDF datset K, contentK(φ), is defined as the set of all
the basic statements of DK(φ), the development of φ.

E.g., φ = dbo:LaunchPad v dbo:Infrastructure

Let us assume K = DBpedia; then

t(φ; x , y) = ∀x(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure(x))

DK(φ) =
∧

c∈I (K)

(¬dbo:LaunchPad(c) ∨ dbo:Infrastructure(c))

content(φ) = {¬dbo:LaunchPad(c) ∨ dbo:Infrastructure(c) :

c is a resource occurring in DBPedia}

By construction, for all ψ ∈ content(φ), φ |= ψ.
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Axiom Scoring

Confirmation and Counterexample of an Axiom

Given ψ ∈ content(φ) and an RDF dataset K, three cases:

1 K |= ψ: −→ ψ is a confirmation of φ;

2 K |= ¬ψ: −→ ψ is a counterexample of φ;

3 K 6|= ψ and K 6|= ¬ψ: −→ ψ is neither of the above

Selective confirmation: a ψ favoring φ rather than ¬φ.
φ = Raven v Black −→ ψ = a black raven (vs. a green apple)

Idea

Restrict content(φ) just to those ψ which can be counterexamples
of φ. Leave out all ψ which would be trivial confirmations of φ.
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Support, Confirmation, and Counterexample

Support, Confirmation, and Counterexample of an Axiom

Definition

Given axiom φ, let us define

uφ = ‖content(φ)‖ (a.k.a. the support of φ)

u+
φ = the number of confirmations of φ

u−φ = the number of counterexamples of φ

Some properties:

u+
φ + u−φ ≤ uφ (there may be ψ s.t. K 6|= ψ and K 6|= ¬ψ)

u+
φ = u−¬φ (confirmations of φ are counterexamples of ¬φ)

u−φ = u+
¬φ (counterexamples of φ are confirmations of ¬φ)

uφ = u¬φ (φ and ¬φ have the same support)
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Possibility Theory

Possibility Theory

Definition (Possibility Distribution)

π : Ω→ [0, 1]

Definition (Possibility and Necessity Measures)

Π(A) = max
ω∈A

π(ω);

N(A) = 1− Π(Ā) = min
ω∈Ā
{1− π(ω)}.

For all subsets A ⊆ Ω,

1 Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;
2 Π(A) = 1− N(Ā) (duality);
3 N(A) > 0 implies Π(A) = 1, Π(A) < 1 implies N(A) = 0.

In case of complete ignorance on A, Π(A) = Π(Ā) = 1.
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Possibility and Necessity of an Axiom

Possibility and Necessity of an Axiom
with conjunctive development

If uφ > 0 and D(φ) is conjunctive,

Π(φ) = 1−

√√√√1−

(
uφ − u−φ

uφ

)2

; (1)

N(φ) =


√

1−
(

uφ−u+
φ

uφ

)2

, if u−φ = 0,

0, if u−φ > 0;

(2)
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Possibility and Necessity of an Axiom

Possibility and Necessity of an Axiom
with disjunctive development

If uφ > 0 and D(φ) is disjunctive,

Π(φ) =


1−

√
1−

(
uφ−u−φ

uφ

)2

, if u+
φ = 0,

1, if u+
φ > 0;

(3)

N(φ) =

√√√√1−

(
uφ − u+

φ

uφ

)2

; (4)

(5)
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Possibility and Necessity of an Axiom

Acceptance/Rejection Index

Definition

ARI(φ) = N(φ)− N(¬φ) = N(φ) + Π(φ)− 1

−1 ≤ ARI(φ) ≤ 1 for all axiom φ
ARI(φ) < 0 suggests rejection of φ (Π(φ) < 1)
ARI(φ) > 0 suggests acceptance of φ (N(φ) > 0)
ARI(φ) ≈ 0 reflects ignorance about the status of φ
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Surrogate Model

Idea:

if we can train a model to predict Π(φ) and Π(¬φ)

then we have enough information to estimate ARI(φ)
henceforth

without having to perform computations involving K!

We can use a set of candidate axioms whose ARI is known to
construct a training set consisting of axioms and their negations,
labeled with their Π, which may be regarded formally as a label to
be predicted through regression.
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A Step Back—Why Do Surrogate Models Work?

Can an agent guess if a formula is true or false?

given the current knowledge,
in the current state of the world (not necessarily in general)

No reasoning!

⇒ Classification problem

train a classifier against the knowledge base

kernel-based representation of formulas

model-theoretic semantic similarity measure
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Problem Statement

Let Φ be a set of formulas in a logical language L
Let I be an interpretation φ1, φI1

φ2, φI2
...

...

 ,
φi ∈ Φ ⊂ L, for i = 1, 2, . . . .

The open world hypothesis holds!

ψI = ? ψ /∈ Φ
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Semantic Similarity

Definition (Language)

Let A be a finite set of atomic propositions and let L be the
propositional language such that A ∪ {>,⊥} ⊆ L, and, ∀φ, ψ ∈ L,
¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

Universe: Ω = {0, 1}A

The semantics of a formula φ ∈ L is the set of its models, [φ].
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Semantic Similarity

Definition

sim(φ, ψ) =
1

‖Ω‖
∑
I∈Ω

[φI = ψI ] =
1

‖Ωφ,ψ‖
∑
I∈Ωφ,ψ

[φI = ψI ].

Properties:

1 sim(φ, φ) = 1

2 sim(φ,¬φ) = 0

3 if Aφ ∩ Aψ = ∅, sim(φ, ψ) = 1
2

4 sim(φ, ψ) = 1− sim(¬φ, ψ)
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Approximating Similarity

1 Randomly sample n interpretations from Ωφ,ψ

2 Count for how many of them φI = ψI .

(1− α) confidence interval for sim(φ, ψ):

ŝφ,ψ ± zα/2

√
ŝφ,ψ(1− ŝφ,ψ)/n, (6)

zc is the 1− c quantile of N (0, 1).

Example (99% confidence, worst case ŝφ,ψ = 0.5)

n = 30, ⇒ ŝφ,ψ ± 0.2351 (= 2.576
√

1/120)
n = 100, ⇒ ŝφ,ψ ± 0.1288
n = 1000 ⇒ ŝφ,ψ ± 0.0407

A precise computation of the similarity between formulas is not
really required for the proposed approach to work!
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An Example from the Block World

Individual constants: A, B, C , Table
Unary predicate: covered(·),
Binary predicate on(·, ·).

A12 = { covered(A), on(A,B), on(A,C ), on(A,Table),
covered(B), on(B,A), on(B,C ), on(B,Table),
covered(C ), on(C ,A), on(C ,B), on(C ,Table) }.

‖Ω12‖ = 212 = 4, 096
‖Ω20‖ = 220 = 1, 048, 576
‖Ω30‖ = 230 = 1, 073, 741, 824
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Reference Interpretations

A

B

C A

B

C

D

A

B

C

D

E

I∗12 I∗20 I∗30

I∗12 = {on(A,Table), on(C ,Table), on(B,A), covered(A)}

etc.
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Baseline Experiment

1 Generate 500 random formulas for each universe

2 Label each formula with its truth, based on the reference
interpretation of its universe

3 Compute the similarity matrix (exact)

Truth Formula φ0 φ1 . . . φm
Truth0 φ0 1 S0,1 . . . S0,m

Truth1 φ1 S1,0 1 . . . S1,m
...

...
...

...
. . .

...
Truthm−1 φm−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

Truthm φm Sm,0 Sm,1 . . . 1

4 Train and test an SVM classifier (20-fold x-validation)

20 / 43



Introduction Background Possibilistic Scoring Surrogate Model Problem Statement Semantic Similarity Experiments and Results Conclusion Axiom Similarity Method Experiments Conclusion

Generating Random Formulas

function random formula(A, level)
. Recursive; the nesting level is initially = 0

if randrange(level + 4) then . level+3
level+4

probability of stopping

return choice(A)
end if
if randrange(3) = 0 then . with probability 1

3
return ¬random formula(A, level + 1)

end if
return random formula(A, level + 1) · choice(∧,∨)·

random formula(A, level + 1)
end function
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Sample training set made of 10 formulas from universe Ω12

Formula Label
(on(C ,B) ∧ on(B,C)) ∨ (¬¬¬¬on(A,B) ∨ on(B,A)) True
¬(¬(on(A,B) ∧ ((on(C ,Tbl) ∨ ¬¬on(C ,B)) ∧ covered(A))) ∨ (on(C ,A) ∨ on(B,C))) False
¬(((covered(B) ∨ ¬on(B,A)) ∨ (on(B,Tbl) ∧ (on(B,A) ∧ on(C ,A)))) ∧ covered(B)) True
¬¬¬on(A,C) True
(on(B,C) ∨ covered(A)) ∨ covered(A) True
¬(¬on(A,C) ∧ ¬covered(C)) False
(on(A,C) ∨ on(C ,A)) ∧ ¬(covered(C) ∧ on(A,Tbl)) False
on(C ,Tbl) ∧ on(C ,B) False
on(C ,B) ∨ on(B,C) False
¬on(C ,B) ∧ (¬¬¬on(C ,B) ∧ covered(B)) False
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Sampling Experiment

1 We compute 3 new similarity matrices for each set of
formulas, with n = 30, n = 100, and n = 1000

2 We study how the sample size n affects classification
performance
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Results

Universe Training set Size sample size Accuracy score MCC

Ω12 10

no sampling 0.77 0.56
30 0.76 0.54

100 0.77 0.56
1000 0.77 0.55

Ω20 20

no sampling 0.81 0.63
30 0.81 0.62

100 0.82 0.63
1000 0.82 0.65

Ω30 30

no sampling 0.83 0.66
30 0.79 0.56

100 0.82 0.62
1000 0.83 0.64
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Sample of test set from universe Ω12.

Formula Actual Predicted
¬(¬(¬(on(B,A) ∧ covered(B)) ∨ ((covered(C) ∨ on(A, )B) ∧
on(C ,Tbl))) ∨ ¬((on(B,A) ∧ on(A,Tbl)) ∧ ¬covered(A)))

False False

(on(A,Tbl)∧ on(B,A))∨¬¬((on(A,C)∧ ((on(A,Tbl)∨ covered(A))∧
covered(A))) ∨ on(C ,B))

True True

covered(B) ∧ on(A,Tbl) False True
((covered(B) ∨ (¬on(A,B) ∧ on(C ,Tbl))) ∧ (((on(B,A) ∧ (on(A,C) ∧
on(C ,Tbl))) ∨ (on(C ,A) ∨ on(A,Tbl))) ∧ on(A,Tbl))) ∨ on(C ,A)

True True

((covered(A)∧covered(B))∨(covered(A)∨¬(((covered(A)∨on(B,C))∨
(on(B,C) ∧ on(B,Tbl))) ∨ on(C ,A)))) ∨ ((on(B,A) ∨ on(A,C)) ∧
(((on(C ,Tbl) ∧ on(B,C)) ∧ on(A,C)) ∧ covered(A)))

True True

covered(B)∧ (((on(C ,B)∨ ((on(C ,B)∧on(B,Tbl))∧ ((¬covered(B)∨
(on(A,B)∧¬on(A,C)))∨ (¬¬on(B,C)∧ (covered(C)∨on(A,B))))))∨
covered(C)) ∧ (¬(on(A,C) ∨ on(B,C)) ∧ ((covered(A) ∨ on(C ,B)) ∨
(on(A,Tbl) ∧ (on(A,Tbl) ∨ on(C ,B))))))

False False
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Confusion Matrices

(a) Ωbase
12 (b) Ω30

12 (c) Ω100
12 (d) Ω1000

12

(e) Ωbase
20 (f) Ω30

20 (g) Ω100
20 (h) Ω1000

20

(i) Ωbase
30 (j) Ω30

30 (k) Ω100
30 (l) Ω1000
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Wrap-Up on Truth Guessing (i.e., Surrogate Models)

Framework to train a classification model that predicts the
truth-value of a formula.

Semantic similarity between formulas

Tested an implementation of this framework using SVM

Accuracy around 80%, even when similarity is approximated

⇒ Approach is tractable!

No guarantee that all the predictions made by a model be
altogether consistent.

When knowledge is incomplete, any prediction would be
acceptable for some formulas

Now we can apply this idea to OWL axioms!
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Axiom Similarity

Our kernel-based representation requires a kernel function which,
for our purposes, is the similarity between two candidate axioms.

Based on the ontological distance

∀(t1, t2) ∈ H2,

DH(t1, t2) = mint(lH(〈t1, t〉) + lH(〈t2, t〉))

= mint

 ∑
{x∈<t1,t>,x 6=t1}

1/2dH (x) +
∑

{x∈<t2,t>,x 6=t2}

1/2dH (x)


i.e., the minimum of the sum of the lengths of the subsumption
paths between t1 and t2 and a common super type in hierarchy H.
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Concept Similarity Matrix

Concepts C0 C1 . . . Cn

C0 1 S0,1 . . . S0,n

C1 S1,0 1 . . . S1,n
...

...
...

. . .
...

Cn−1 Sn−1,0 Sn−1,1 . . . Sn−1,n

Cn Sn,0 Sn,1 . . . 1
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From Concept to Axiom Similarity

1 Compare each axiom with all other axioms in the dataset.

2 When comparing two axioms, retrieve from the concept
similarity matrix the similarity/distance between the concepts
on the left side of the axiom.

3 Repeat the previous step for the right side.

4 In case of symmetric axiom types (disjointness/equivalence)
repeat the comparison between the left concept from the first
axiom and the right concept of the second axiom, and then
between the right concept from the first axiom and the left
concept from the second one. Keep the maximum of either.

5 Take the average of the two resulting values.

6 Store that value in the axiom similarity matrix (see next slide)
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Axiom Similarity Matrix

Axioms A0 A1 . . . Am

A0 1 S0,1 . . . S0,m

A1 S1,0 1 . . . S1,m
...

...
...

. . .
...

Am−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

Am Sm,0 Sm,1 . . . 1
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Objectives

Our objective is to develop a scalable method to predict a score for
atomic candidate OWL class axioms by learning from a set of
previously scored axioms of the same type.

To this aim, we exploit the hierarchy of concepts formed by the
subsumption rdfs:SubClassOf axioms.

To obtain scalability we perform feature selection.

N.B.: A separate model is required for each type of axiom
addressed.
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Overview of the Method

1 Axiom extraction and scoring: we create a set of scored
axioms of a certain type.

2 Axiom similarity calculation, already explained.

3 Kernel-based representation: represent an axiom as the
vector of similarities to a set of base axioms.

4 Vector-space dimensionality reduction, by feature
selection.

5 Candidate axiom encoding: how a new candidate axiom is
introduced into the vector-space, including the case where the
axiom consists of concepts not available in the concept
similarity matrix.

6 Prediction: we train a machine learning model with the
dataset and predict the scores of new candidate axioms.
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Axiom Extraction and Scoring

Two approaches:

1 Query K for existing axioms of one type (accepted) +
generate random axiom φ of same type s.t. K 6|= φ (rejected)

2 Query K for existing subClassOf axioms (accepted for
subClassOf and rejected fof disjointWith);
then query K for existing disjointWith axioms (accepted for
disjointWith and rejected fof subClassOf)

The latter approach looks more judicious.
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Dimension Reduction

We consider our dimensions (axioms) as features

We apply a supervised filter-type feature selection method
such as mutual information.

This works by taking as input the axiom similarity matrix
along with the scores of the axioms and returning a ranking of
the dimensions from the most to the least impactful.

We then keep z of these dimensions according to their ranks
and discard the rest.

The axiom similarity matrix becomes m × z (from m ×m)

We also drop the unused concepts from the concept similarity
matrix.
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Benefits of Dimension Reduction

This reduction is beneficial in many ways:

Reduction in the error rate due to the reduction in noise and
redundancy.

Reduction in the size of our vector-space and storage space
for the axiom similarity matrix.

Reduction in the size of our concept similarity matrix.

Reduction in the computational complexity.

A reduction in the look-up time when retrieving concept
similarity.

A better dataset for training our ML model.
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Candidate Axiom Encoding

Two cases:
1 Candidate axiom comprises concepts already in the concept

similarity matrix:

it goes straight through encoding, as we did with the training
set.

2 Candidate axiom comprises concepts not found in the concept
similarity matrix:

invoke a new similarity measure retrieval query;
this produces at most two new rows to be added to the
concept similarity matrix;
then the candidate proceeds through encoding.
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Prediction

Now that we have our reduced vector space, we can apply any
ML method.

We chose to use k-NN to highlight the strength of our
similarity measure.

We compare it to more sophisticated methods such as
random-forest regressors.

This allows us to compare with previous literature.
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Experimental Protocol

We use the following h/w configuration:

CPU: Intel(R) Xeon(R) CPU W-11955M @ 2.60GHz base and
4.5 GHz all core boost. With 8 cores and 16 threads.

A total of 128 GB of RAM memory with frequency 3200 MHZ.

1 TB of NVME SSD storage with read and write speeds of up
to 2000 MB per second.

The code uses Python multiprocessing package.

We use the following ontologies of different sizes and domains:

DBpedia, 762 concepts.

Gene Ontology (GO), 29,575 concepts.

Cell Ontology (CL), 78,835 concepts.
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Results on DBpedia
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Results on DBpedia (cont’d)

Comparison of computational cost in seconds as well as storage
cost in number of values for CSM using using the DBpedia scored
subClassOf dataset.

Method # axioms Initial Concepts Processing Encoding
processed CSM size queried time time

SOTA 722 580,644 762 13.72 0.019
Ours 722 85,264 292 3.86 0.005
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Results on GO and CL

Comparison of computational cost in seconds as well as storage
cost in MB for ASM and number of values for CSM using the GO
disjointWith dataset. Time out error: TO.

Method # axioms ASM Initial Concepts Processing Encoding
processed size CSM size queried time time

SOTA 600 62,000 6,214,957,225 78,835 TO TO
Ours 600 5.1 95,481 309 312.54 0.034

Comparison of computational cost in seconds as well as storage
cost in MB for ASM and number of values for CSM using the CL
disjointWith dataset. Time out error: TO.

Method # axioms ASM Initial Concepts Processing Encoding
processed size CSM size queried time time

SOTA 600 8,000 874,680,625 29,575 TO TO
Ours 600 2.05 216,225 465 103.7 0.015
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Conclusions and Future Work

Scalable method for the score prediction of atomic candidate OWL
class axioms of different types. It relies on:

an ontological semantic similarity measure

feature selection for vector-space dimension reduction

Results support the effectiveness of the proposed method:

scalable, consistent and stable w/ ontologies of different sizes

suited to deal wuth large real-world ontologies.

Some research paths emerge, including:

Coping with complex candidate axioms.

Incorporating active learning.

43 / 43


	Introduction
	
	

	Background
	Axiom Scoring
	Support, Confirmation, and Counterexample

	Possibilistic Scoring
	Possibility Theory
	Possibility and Necessity of an Axiom

	Surrogate Model
	

	Problem Statement
	

	Semantic Similarity
	

	Experiments and Results
	

	Conclusion
	

	Axiom Similarity
	

	Method
	

	Experiments
	

	Conclusion
	


