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Motivation: RDF Mining

Problem:

How to test OWL axioms under the open-world assumption?
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Agenda

⇒ A possibilistic scoring heuristic
(joint work with Catherine Faron-Zucker and Fabien Gandon)

Basic Intuition

Evaluate the credibility of OWL axioms based on RDF evidence.

Theory of a possibilistic framework for OWL axiom testing
1 Development and logical content of an axiom
2 Support, confirmation and counterexample of an axiom
3 Possibility and necessity of an axiom
4 Acceptance/rejection index (ARI) combining them

Practical application: test SubClassOf axioms against
DBpedia.

3 / 41



Introduction Principles Possibilistic Scoring Framework Subsumption Testing Scalable Testing Conclusion

Problem Statement

Problem Statement

Axiom Testing
given a hypothesis about the relations holding among some entities
of a domain, evaluate its credibility based on the available evidence

h
?⇐= e

| |
OWL RDF

Fundamental problem in epistemology, with ramifications in
statistical inference, data mining, inductive reasoning, medical
diagnosis, judicial decision making, and even the philosophy of
science.
Confirmation is central to this problem
Extended hypothetico-deductivism:

e confirms h if h |= e
e disconfirms h if e |= ¬h
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Development and Content

Hempel’s Development

Given a body of evidence, a hypothesis h can be developed into a
finite ground formula.

Definition (Development of a hypothesis)

Let C be a finite set of individual constants of L. The
development DC (h) of hypothesis h ∈ L according to C , such that
h |= DC (h), is defined recursively as follows: for φ, ψ ∈ L,

1 if C = ∅ or φ is atomic, then DC (φ) = φ;
2 otherwise,

1 DC (¬φ) = ¬DC (φ);
2 DC (φ ∨ ψ) = DC (φ) ∨ DC (ψ);
3 DC (φ ∧ ψ) = DC (φ) ∧ DC (ψ);
4 DC (∀xφ) =

∧
c∈C DC (φ{c/x});

5 DC (∃xφ) =
∨

c∈C DC (φ{c/x}).

φ{c/x}: φ with all free occurrences of x replaced by constant c.
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Development and Content

Development of an OWL 2 Axiom

We define a transformation which translates an OWL 2 axiom into
a FOL formula based on the OWL direct semantics.

Definition (OWL 2 to FOL Transformation)

Let t(·; x , y) be recursively defined as follows:

Entities:

if d is a data value (a literal), t(d ; x , y) = (x = d);
if a is an individual name (an IRI), t(a; x , y) = (x = a);
if C is an atomic concept, t(C ; x , y) = C (x);
if D is an atomic datatype, t(D; x , y) = D(x);
if R is an atomic relation, t(R; x , y) = R(x , y);

. . . continued on the following slides
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Development and Content

Development of an OWL 2 Axiom (continued)

Definition (OWL 2 to FOL Transformation (continued))

Expressions:

t(R−; x , y) = t(R; y , x);
t(C1 u . . . u Cn; x , y) = t(C1; x , y) ∧ . . . ∧ t(Cn; x , y);
t(C1 t . . . t Cn; x , y) = t(C1; x , y) ∨ . . . ∨ t(Cn; x , y);
t(¬C ; x , y) = ¬t(C ; x , y);
t({a1, . . . , an}; x , y) = t(a1; x , y) ∨ . . . ∨ t(an; x , y);
t(∃R.C ; x , y) = ∃y(t(R; x , y) ∧ t(C ; y , z));
t(∀R.C ; x , y) = ∀y(¬t(R; x , y) ∨ t(C ; y , z));
t(∃R.{a}; x , y) = t(R; x , a);
t(∃R.Self; x , y) = t(R; x , x);
t(≥ nR.>; x , y) = (‖{y | t(R; x , y)}‖ ≥ n);
t(≤ nR.>; x , y) = (‖{y | t(R; x , y)}‖ ≤ n);
t(= nR.>; x , y) = (‖{y | t(R; x , y)}‖ = n);
t(≥ nR.C ; x , y) = (‖{y | t(R; x , y) ∧ t(C ; y , z)}‖ ≥ n);
t(≤ nR.C ; x , y) = (‖{y | t(R; x , y) ∧ t(C ; y , z)}‖ ≤ n);
t(= nR.C ; x , y) = (‖{y | t(R; x , y) ∧ t(C ; y , z)}‖ = n);

. . . continued on the following slides
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Development and Content

Development of an OWL 2 Axiom (continued)

Definition (OWL 2 to FOL Transformation (continued))

Axioms:

t(C1 v C2; x , y) = ∀x(¬t(C1; x , y) ∨ t(C2; x , y));
t(C1 ≡ C2; x , y) =
∀x((t(C1; x , y) ∧ t(C2; x , y)) ∨ (¬t(C1; x , y) ∧ ¬t(C2; x , y)));
t(Dis(C1, . . . ,Cn); x , y) =∧n

i=1

∧n
j=i+1(¬t(Ci ; x , y) ∨ ¬t(Cj ; x , y));

t(S v R; x , y) = ∀x∀y(¬t(S ; x , y) ∨ t(R; x , y));
t(S1 . . . Sn v R; x , y) = ∀x∀z1 . . . ∀zn−1∀y(¬t(S1; x , z1) ∨
¬t(S2; z1, z2) ∨ . . . ∨ ¬t(Sn; zn−1, y) ∨ t(R; x , y));
t(R1 ≡ R2; x , y) =
∀x∀y((t(R1; x , y)∧ t(R2; x , y))∨ (¬t(R1; x , y)∧¬t(R2; x , y)));
t(Dis(R1, . . . ,Rn); x , y) =∧n

i=1

∧n
j=i+1(¬t(Ri ; x , y) ∨ ¬t(Rj ; x , y));

etc.
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Development and Content

Development of an OWL 2 Axiom (continued)

Let us consider the following OWL 2 axiom:

φ = SubClassOf(dbo:LaunchPad dbo:Infrastructure),

Its transformation into FOL is:

t(φ, x , y) =
t(dbo:LaunchPad v dbo:Infrastructure, x , y) =
∀x(¬t(dbo:LaunchPad, x , y) ∨ t(dbo:Infrastructure), x , y)) =
∀x(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure)(x))

9 / 41



Introduction Principles Possibilistic Scoring Framework Subsumption Testing Scalable Testing Conclusion

Development and Content

Development of an OWL 2 Axiom (continued)

Definition (Development of an Axiom)

Let φ be an OWL 2 axiom and let K be an RDF dataset. The
development DK(φ) of φ wrt K is defined as follows:

1 Let φ̂ = t(φ; x , y);

2 Let I (K) be the finite set of individuals in K;

3 DK(φ) = NF (D̂(φ̂)), where

D̂(·) is recursively defined as follows:

1 if φ̂ is atomic, then D̂(φ̂) = φ̂,
2 D̂(¬φ̂) = ¬D̂(φ̂),
3 D̂(φ̂ ∨ ψ̂) = D̂(φ̂) ∨ D̂(ψ̂),
4 D̂(φ̂ ∧ ψ̂) = D̂(φ̂) ∧ D̂(ψ̂),
5 D̂(∀xφ̂) =

∧
c∈I (K) D̂(φ̂{c/x}),

6 D̂(∃xφ̂) =
∨

c∈I (K) D̂(φ̂{c/x});
NF (·) transforms its input into either CNF or DNF (whichever
has the greatest number of basic statements).
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Development and Content

Content of an Axiom

Definition (Content of Axiom φ)

Given an RDF datset K, contentK(φ), is defined as the set of all
the basic statements of DK(φ).

E.g., φ = dbo:LaunchPad v dbo:Infrastructure

Let us assume K = DBpedia; then

t(φ; x , y) = ∀x(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure(x))

DK(φ) =
∧

c∈I (K)

(¬dbo:LaunchPad(c) ∨ dbo:Infrastructure(c))

content(φ) = {¬dbo:LaunchPad(c) ∨ dbo:Infrastructure(c) :

c is a resource occurring in DBPedia}

By construction, for all ψ ∈ content(φ), φ |= ψ.
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Development and Content

Confirmation and Counterexample of an Axiom

Given ψ ∈ content(φ) and an RDF dataset K, three cases:

1 K |= ψ: −→ ψ is a confirmation of φ;

2 K |= ¬ψ: −→ ψ is a counterexample of φ;

3 K 6|= ψ and K 6|= ¬ψ: −→ ψ is neither of the above

Selective confirmation: a ψ favoring φ rather than ¬φ.
φ = Raven v Black −→ ψ = a black raven (vs. a green apple)

Idea

Restrict content(φ) just to those ψ which can be counterexamples
of φ. Leave out all ψ which would be trivial confirmations of φ.
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Support, Confirmation, and Counterexample

Support, Confirmation, and Counterexample of an Axiom

Definition

Given axiom φ, let us define

uφ = ‖content(φ)‖ (a.k.a. the support of φ)

u+
φ = the number of confirmations of φ

u−φ = the number of counterexamples of φ

Some properties:

u+
φ + u−φ ≤ uφ (there may be ψ s.t. K 6|= ψ and K 6|= ¬ψ)

u+
φ = u−¬φ (confirmations of φ are counterexamples of ¬φ)

u−φ = u+
¬φ (counterexamples of φ are confirmations of ¬φ)

uφ = u¬φ (φ and ¬φ have the same support)
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Support, Confirmation, and Counterexample

Probability-Based Axiom Scoring

Score from statistical inference: Pr(φ is true | evidence)

Simple statistics: p̂φ = u+
φ /uφ

Refinements are possible, e.g., confidence intervals

Implicit assumption that we know how to estimate the
conditional probabilities in the RHS of

Pr(φ | e) =
Pr(e | φ) Pr(φ)

Pr(e | φ) Pr(φ) + Pr(e | ¬φ) Pr(¬φ)

... But do we?

⇒ Alternative scoring heuristics based on possibility theory, weaker
than probability theory
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Possibility Theory

Possibility Theory

Definition (Possibility Distribution)

π : Ω→ [0, 1]

Definition (Possibility and Necessity Measures)

Π(A) = max
ω∈A

π(ω);

N(A) = 1− Π(Ā) = min
ω∈Ā
{1− π(ω)}.

For all subsets A ⊆ Ω,

1 Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;
2 Π(A) = 1− N(Ā) (duality);
3 N(A) > 0 implies Π(A) = 1, Π(A) < 1 implies N(A) = 0.

In case of complete ignorance on A, Π(A) = Π(Ā) = 1.
15 / 41



Introduction Principles Possibilistic Scoring Framework Subsumption Testing Scalable Testing Conclusion

Possibility and Necessity of an Axiom

Postulates for the Possibility and Necessity of an Axiom

1 Π(φ) = 1 if u−φ = 0 or, if D(φ) is disjunctive, u+
φ > 0,

2 N(φ) = 0 if u+
φ = 0 or, if D(φ) is conjunctive, u−φ > 0,

3 let uφ = uψ; then Π(φ) > Π(ψ) iff u−φ < u−ψ and, if D(φ) is

disjunctive, u+
ψ = 0,

4 let uφ = uψ; then N(φ) > N(ψ) iff u+
φ > u+

ψ and, if D(φ) is

conjunctive, u−φ = 0,

5 let uφ = uψ = uχ and u+
ψ = u+

φ = u+
χ = 0,

u−ψ < u−φ < u−χ ⇒
Π(ψ)− Π(φ)

u−φ − u−ψ
>

Π(φ)− Π(χ)

u−χ − u−φ
,

6 let uφ = uψ = uχ and u−ψ = u−φ = u−χ = 0,

u+
ψ < u+

φ < u+
χ ⇒

N(φ)− N(ψ)

u+
φ − u+

ψ

>
N(χ)− N(φ)

u+
χ − u+

φ

,
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Possibility and Necessity of an Axiom

Possibility and Necessity of an Axiom
with conjunctive development

If uφ > 0 and D(φ) is conjunctive,

Π(φ) = 1−

√√√√1−

(
uφ − u−φ

uφ

)2

; (1)

N(φ) =


√

1−
(

uφ−u+
φ

uφ

)2

, if u−φ = 0,

0, if u−φ > 0;

(2)
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Possibility and Necessity of an Axiom

Possibility and Necessity of an Axiom
with disjunctive development

If uφ > 0 and D(φ) is disjunctive,

Π(φ) =


1−

√
1−

(
uφ−u−φ

uφ

)2

, if u+
φ = 0,

1, if u+
φ > 0;

(3)

N(φ) =

√√√√1−

(
uφ − u+

φ

uφ

)2

; (4)

(5)
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Possibility and Necessity of an Axiom

Acceptance/Rejection Index

Definition

ARI(φ) = N(φ)− N(¬φ) = N(φ) + Π(φ)− 1

−1 ≤ ARI(φ) ≤ 1 for all axiom φ
ARI(φ) < 0 suggests rejection of φ (Π(φ) < 1)
ARI(φ) > 0 suggests acceptance of φ (N(φ) > 0)
ARI(φ) ≈ 0 reflects ignorance about the status of φ
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OWL 2 → SPARQL

To test axioms, we define a mapping Q(E , x , y) from OWL 2
expressions to SPARQL graph patterns, such that

SELECT DISTINCT ?x ?y WHERE { Q(E , ?x, ?y) }

returns [Q(E , x , y)], all known instances of class expression E and

ASK { Q(E , a, b) }

checks whether E (a, b) is in the RDF base.

For an atomic concept A (a valid IRI),

Q(A, ?x, ?y) = ?x a A .
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Concept Negation: Q(¬C , ?x, ?y)

Problem

Open-world hypothesis, but no ¬ in RDF!

We approximate an open-world semantics as follows:

Q(¬C , ?x, ?y) = { ?x a ?dc .

FILTER NOT EXISTS {
?z a ?dc . Q(C , ?z, ?y1) }

}

(6)

For an atomic class expression A, this becomes

Q(¬A, ?x, ?y) = { ?x a ?dc .

FILTER NOT EXISTS {
?z a ?dc . ?z a A } }.

(7)
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Concept Negation: Discussion

22 / 41



Introduction Principles Possibilistic Scoring Framework Subsumption Testing Scalable Testing Conclusion

SubClassOf(C D) Axioms

To test SubClassOf axioms, we compute their logical content
based on their development

DK(C v D) =
∧

a∈I (K)

(¬C (a) ∨ D(a))

whence, following the principle of selective confirmation,

uCvD = ‖{D(a) : K |= C (a)}‖,

because, if C (a) holds,

C (a)⇒ D(a) ≡ ¬C (a) ∨ D(a) ≡ ⊥ ∨ D(a) ≡ D(a)
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Support, Confirmations and Counterexamples of C v D

uCvD can be computed by

SELECT (count(DISTINCT ?x) AS ?u) WHERE {Q(C , ?x)}.

As for the computational definition of u+
CvD and u−CvD :

confirmations: a s.t. a ∈ [Q(C , x)] and a ∈ [Q(D, x)];

counterexamples: a s.t. a ∈ [Q(C , x)] and a ∈ [Q(¬D, x)].

Therefore,

u+
CvD can be computed by

SELECT (count(DISTINCT ?x) AS ?numConfirmations)

WHERE { Q(C , ?x) Q(D, ?x) }

u−CvD can be computed by

SELECT (count(DISTINCT ?x) AS ?numCounterexamples)

WHERE { Q(C , ?x) Q(¬D, ?x) }
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Test a SubClassOf axiom (plain version, w/o time cap)

Input: φ, an axiom of the form SubClassOf(C D);
Output: Π(φ), N(φ), confirmations, counterexamples.
1: Compute uφ using the corresponding SPARQL query;
2: compute u+

φ using the corresponding SPARQL query;

3: if 0 < u+
φ ≤ 100 then

4: query a list of confirmations;
5: if u+

φ < uφ then

6: compute u−φ using the corresponding SPARQL query;

7: if 0 < u−φ ≤ 100 then
8: query a list of counterexamples;
9: else

10: u−φ ← 0;

11: compute Π(φ) and N(φ) based on uφ, u+
φ , and u−φ .
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Experiments & Results

Experiments

Experimental Setup:

DBpedia 3.9 in English as RDF fact repository

Local dump (812,546,748 RDF triples) loaded into Jena TDB

Method coded in Java, using Jena ARQ and TDB

12 6-core Intel Xeon CPUs @2.60GHz (15,360 KB cache), 128
GB RAM, 4 TB HD (128 GB SSD cache), Ubuntu 64-bit OS.

Two experiments:

1 Explorative test of systematically generated subsumption
axioms

2 Exhaustive test of all subsumption axioms in the DBpedia
ontology.

Results at http://www.i3s.unice.fr/~tettaman/RDFMining/.
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Experiments & Results

Explorative Experiment

Systematically generate and test SubClassOf axioms involving
atomic classes only

For each of the 442 classes C referred to in the RDF store

Construct all C v D : C and D share at least one instance

Classes D are obtained with query

SELECT DISTINCT ?D WHERE {Q(C , ?x). ?x a ?D}
722 axioms have been tested this way (but this took 290 CPU
days).
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Experiments & Results

Explorative Experiment: Results

Assessment:

1 sort the first 380 tested axioms by their ARI

2 manually tag each of them as either true or false

Findings:

ARI(φ) > 1/3 as the optimal acceptance criterion for φ

This would yield 4 FP and 6 FN (97.37% accuracy)

Misclassifications to blame on mistakes in DBpedia

Pr score w/ 0.7 threshold yields 13 FN (+7) and 4 FP (=)
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Experiments & Results

Comparison with a Probability-Based Score
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Experiments & Results

Exhaustive Experiment

Test all SubClassOf axioms in DBpedia ontology

Functional syntax, with query

SELECT DISTINCT

concat("SubClassOf(<", str(?x),

"> <",str(?y),">)")

WHERE { ?x a owl:Class . ?x rdfs:subClassOf ?y }
541 axioms

Testing “only” took 1 h 23 min 31 s
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Experiments & Results

Exhaustive Experiment: Results

For 143 axioms, uφ = 0 (empty content!): ARI(φ) = 0

For 28 axioms, ARI(φ) < 0 ⇒ ∃ erroneous facts

Examples of axioms C v D with their conterexamples:

Axiom Counterexamples
dbo:LaunchPad v dbo:Infrastructure :USA
dbo:Brain v dbo:AnatomicalStructure :Brain [sic]
dbo:Train v dbo:MeanOfTransportation :New Jersey Transit rail operations,

:ALWEG
dbo:ProgrammingLanguage v dbo:Software :Ajax
dbo:PoliticalParty v dbo:Organisation :Guelphs and Ghibellines, :-,

:New People’s Army, :Syrian

N.B.: counterexamples are instances a such that C (a) and E (a)
with EI ∩ DI = ∅: in this case, either C (a) is wrong or E (a) is.

31 / 41



Introduction Principles Possibilistic Scoring Framework Subsumption Testing Scalable Testing Conclusion

T (φ) = O
(
(1 + ARI(φ))−1

)
or O (exp(−ARI(φ)))
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Time Predictor

How much time should we allow in order to be reasonably sure we
are not throwing the baby out with the bathwater, while avoiding
to waste time on hopeless tests?

Studying the elapsed times for accepted axioms, we observed that
the time it takes to test C v D tends to be proportional to

TP(C v D) = uCvD · nicC ,

where nicC denotes the number of intersecting classes of C .
A computational definition of nicC is the following SPARQL query:

SELECT (count(DISTINCT ?A) AS ?nic)

WHERE { Q(C , ?x) ?x a ?A . }

where A represents an atomic class expression.
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T (C v D)/TP(C v D)
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TP(C v D) as a function of the cardinality rank of C
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Test a SubClassOf axiom (time-capped version)

Input: φ, an axiom of the form SubClassOf(C D);
a, b, the coefficients of the linear time cap equation.

Output: Π(φ), N(φ), confirmations, counterexamples.
1: Compute uφ and nic using the corresponding SPARQL queries;
2: TP(φ)← uφ · nic;

3: compute u+
φ using the corresponding SPARQL query;

4: if 0 < u+
φ ≤ 100 then

5: query a list of confirmations;
6: if u+

φ < uφ then

7: tmax(φ)← a + b · TP(φ)
8: waiting up to tmax(φ) min do
9: compute u−φ using the corresponding SPARQL query;

10: if time-out then
11: u−φ ← uφ − u+

φ ;

12: else if 0 < u−φ ≤ 100 then

13: query a list of counterexamples;
14: else
15: u−φ ← 0;

16: compute Π(φ) and N(φ) based on uφ, u+
φ , and u−φ .
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Experiments

Experimental Setup:

DBpedia 3.9 in English as RDF fact repository

Local dump (812,546,748 RDF triples) loaded into Jena TDB

Method coded in Java, using Jena ARQ and TDB

12 6-core Intel Xeon CPUs @2.60GHz (15,360 KB cache), 128
GB RAM, 4 TB HD (128 GB SSD cache), Ubuntu 64-bit OS.

Systematically generate and test SubClassOf axioms involving
atomic classes only

For each of the 442 classes C referred to in the RDF store

Construct all C v D : C and D share at least one instance

Test these axioms in increasing time-predictor order

Compare with scores obtained w/o time cap
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Time-Capped Score vs. Probability-Based Score
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Results

Speed-up:

Testing 722 axioms w/o time cap took 290 days of cpu time
We managed to test 5,050 axioms in < 342 h 30’ (244
s/axiom) w/ time cap
142-fold reduction in computing time

Precision loss due to time capping:

632 axioms were tested both w/ and w/o time cap
Outcome different on 25 of them: a 3.96% error rate

Absolute accuracy:

Comparison to a gold standard of DBpedia Ontology
SubClassOf axioms + SubClassOf axioms that can be
inferred from them
Of the 5,050 tested axioms, 1,915 occur in the gold standard
327 (17%) get an ARI < 1/3
34 (1.78%) get an ARI < −1/3
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Conclusions & Future Work

Contributions

Axiom scoring heuristics based on possibility theory

A framework based on the proposed heuristics

Experimental Results

ARI gives a highly accurate assessment axiom validity

Human evaluation suggests most axioms accepted by mistake
are inverted subsumptions or involve ill-defined concepts

Where Can We Go From Here?

Use scoring heuristics as fitness of an EA for RDF Mining

Generalize to Possibilistic Test of Hypothesis?
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The End

Thank you for your attention!
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