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ABSTRACT
Modern browsers have a highly concurrent page rendering
process in order to be more responsive. However, such a
concurrent execution model leads to various race issues. In
this paper, we present ARROW, a static technique that can
automatically, safely, and cost effectively patch certain race
issues on client side pages. It works by statically model-
ing a web page as a causal graph denoting happens-before
relations between page elements, according to the render-
ing process in browsers. Races are detected by identifying
inconsistencies between the graph and the dependence re-
lations intended by the developer. Detected races are fixed
by leveraging a constraint solver to add a set of edges with
the minimum cost to the causal graph so that it is consis-
tent with the intended dependences. The input page is then
transformed to respect the repair edges. ARROW has fixed
151 races from 20 real world commercial web sites.

CCS Concepts
•Software and its engineering → Software testing
and debugging;
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Automatic repair, constraint solving, race condition

1. INTRODUCTION
Web applications are pervasive, providing the platform

for many daily activities such as shopping, social network-
ing, gaming and working. To satisfy increasingly complex
functional requirements and provide pleasant user experi-
ence, they often include complex logics in client-side pages.
According to a survey on 4.2 billion web pages conducted by
Google in 2010 [20], on average, each page includes 7.09 ex-
ternal JavaScript (JS) files. The average size of external JS
files per page is 57.98KB. A web page takes up to 114.25KB
on average, excluding images.

Client-side web pages contain multiple types of scripts
such as HTML, JS, and Stylesheets. In order to be highly
responsive, these pages are rendered by modern browsers in
a concurrent fashion. When a web page is rendered, some
of the included external resources are downloaded, assem-
bled and rendered asynchronously. User input events and
internal events indicating the status of various asynchronous
tasks fire in a non-deterministic order, due to various fac-
tors such as network delay. Some execution orders may be
significantly different from the developer’s intention, leading
to exceptions. We call them web application races. These
races are wide-spread and can cause serious problems. Ac-
cording to [19], developers in Mozilla have observed that
many web sites used in their regression suite failed non-
deterministically due to races. They crashed the JS engine,
caused session data loss, or corrupted services such as the
Hotmail email service. For example, a race that crashes the
JS engine or triggers page reloading in the middle of email
composition may cause a loss of the unfinished email. Client
side races may lead to permanent data corruption on the
server side such as online photos being undesirably deleted.

Existing research efforts on client side races focus on au-
tomatically detecting races [28, 19, 21]. Zheng et al. [28]
applied static analysis on JS code to detect atomicity vio-
lations caused by asynchrony in Ajax. WebRacer [19] is a
dynamic race detector that leverages the happens-before re-
lations between common web features to identify races. Its
follow-up work EventRacer [21] proposed the concept of race
coverage and reduced false warnings caused by ad-hoc syn-
chronizations present in web pages. However, none of these
works discusses how to automatically repair races, which is
challenging for the following reasons: (1) there is no native
support for synchronization in JS so that the concurrency
control to fix a race may have to be developed from scratch;
(2) adding synchronizations may introduce new bugs such as
deadlocks or exceptions if not done properly; (3) one page
may have multiple races, their repairs may interfere with
each other (e.g. the repair of one race may also fix another
race or the repairs of multiple races may cause deadlocks).

In this paper, we propose ARROW1, a technique that can
automatically fix races on client side pages based on static
analysis. Given a page, it first statically analyzes the page
to detect races. It then transforms the page by re-ordering
the elements in the page (e.g. JS code blocks) or adding
customized synchronizations. To reason about the complex
effects of element reordering and adding synchronization,

1ARROW stands for“Automated Repair of Races On client-
side Web pages”.
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and to ensure the repairs for multiple races do not have
undesirable interferences, we leverage constraint solving. In
particular, we model the page into a causal graph describing
the happens-before relations between elements, which is fur-
ther encoded to constraints. We then infer the dependences
between elements intended by the developer from the page
source. The solver is queried to detect any inconsistencies
between the happens-before relations and the dependences,
which are essentially races. The constraints are constructed
in such a way that we can further query if a smallest set of
causal edges can be added to the graph so that all the races
in the same page can be repaired together in a safe fashion. If
so, the page is transformed to respect those edges. Since dif-
ferent transformations (e.g. element reordering and adding
synchronizations) have different runtime cost, we also en-
code the estimated cost as part of the constraints such that
the repair with the lowest estimated cost can be identified.

ARROW has the following advantages: (a) it is automatic;
(b) it is safe, meaning the repairs will not add any new buggy
behavior as our analysis is conservative; (c) it delivers cost-
effective solutions.

Our main contributions are the following.
• We propose a technique ARROW that can automati-

cally fix certain races on client side pages.
• We develop a technique to detect races statically by

identifying inconsistencies between happens-before re-
lations determined by the page rendering order and the
dependences extracted from the page source, denoting
the developer’s intension of the execution order.
• We develop a constraint solving based repair scheme

that can ensure safety and achieve low runtime cost.
• We evaluate ARROW on 20 real world websites. It

detects and repairs 151 races correctly.
Since ARROW aims to repair races in a page for all possible
input scenarios and ensure safety, it is built on static anal-
ysis. Note that a dynamic analysis based repair technique
may fix the page for one input but introduce undesirable
effects (e.g. deadlock) for a diferent input. Static analysis
has limitations on handling dynamic web features, such as
runtime element insertion. As such, ARROW detects and
repairs a subset of races that are amenable to static anal-
ysis. More discussion can be found in Section 5. Handling
dynamic features [25, 26] is part of our future work.

2. ILLUSTRATIVE EXAMPLES
In this section, we will examine two examples and explain

why race conditions happen and how they can be fixed.

2.1 Accessing Unready Objects
Web pages usually include multiple external resources such

as JS, CSS, and images. During page loading, web browsers
aggressively process resources whenever they become avail-
able. Although the loading order usually follows the source
code order, due to unpredictable reasons such as browser
settings, network conditions and user interactions, it may
become different from the source code order. Sometimes,
such differences represent race conditions that result in ac-
cessing DOM elements or JS objects before they are ready.
Accessing unready objects is an important kind of race con-
ditions reported by existing race detection work [19]: three
out of four races reported fall into this category. Next we
show such an example and illustrate its repair.

Fig. 1(a) presents a page main.html that includes a.html

<! main.html >

01 <iframe src = “a.html”>

02 <iframe src = “b.html”>

<! a.html >

03 <script> parent.x = 1; </script>

<! b.html >

<script>

04 alert(parent.x);

</script>

(a) Race on JS Variables

<! b.html (fixed) >

<script>

104 function foo_1() {

105 if (parent.x != undefined) {

106 alert(parent.x);

107 } else {

108 setTimeout(foo_1, st);

109 }

110 }

111 foo_1();

</script>

b.html
alert(...x)

a.html
...x=1

(b) A Possible Loading Sequence

iframe
a.html

iframe
b.html

(c) Fixed b.html

Figure 1: (a) shows a race resulting in accessing an
uninitialized variable “x” in line 4. (b) demonstrates
the buggy execution. (c) shows the script after re-
pair. The boxed statements are added during repair.

<! main.html >

01 <img id=“ii” ...>
……
<script>

02 function initA(...) {
[...some_stmts...]

}
03 var img1 =

document.getElementById(“ii”);
04 img1.onload = initA();

…...
</script>

img
parsed

img onload
event fires

set initA() as img’s
onload handler

<! main.html (fixed) >

<script>
101 function initA(...) {

[...some_stmts...]
}

</script>
102 <img id=“ii” onload=”initA(...)” ...>

<script>
103 var img1 =

document.getElementById(“ii”);
04 img1.onload = initA();

</script>

initA()
parsed

Figure 2: Race condition on an event handler that
is triggered only once and the corresponding repair.

and b.html using two iframe tags. Suggested by the inclusion
order, a.html is supposed to be processed before b.html so
that the use of variable x at line 4 will happen after its defini-
tion at line 3. However, iframes are loaded asynchronously.
As a result, the sequence in Fig. 1(b) can be the actual
one, where b.html is processed before a.html. Therefore, the
access to “x” at line 4 refers to an undefined variable and
causes exception. Note that such exceptions often trigger
page reloading that may cause loss of user’s session inputs.

To fix this issue, we leverage the definition-use (def-use)
dependence suggested by the source code order and force the
execution to follow an order that respects the dependence,
by introducing customized synchronization. In particular,
for a variable in a race, we check its availability before the
use to make sure it is ready. If not, we wait and try again
after some time until it’s ready. As shown in Fig. 1(c), the
boxed statements are added to enforce the execution order.
The access at 106 is wrapped by a new function foo 1().
Before accessing variable x, we check if it is ready at line
105. If not, we set up a timer at line 108 and try again after
st (a predefined number) milliseconds. Note that the timer
only fires once and it may be setup again by the handler
foo 1() if needed. The availability check serves as the cus-
tomized synchronization and makes sure x is always ready
when accessed. Note that since JS does not provide native
synchronization support, continuous polling controlled by a
timer is a common approach for developers to manually fix
race issues in practice [2].

Besides JS variables, race conditions can also happen on
HTML DOM elements or JS function objects. We can repair
them in a similar way.

2.2 One-Time Handlers
Another common kind of races is related to event han-

dlers. For example, an onload event fires only once after a
DOM element is loaded. Onload handlers are important as
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developers usually use them to initialize the properties of
the corresponding DOM object. If an onload event handler
is not invoked correctly, the page may become unusable.

By default, the onload handler of a DOM object is empty.
Developers can explicitly register a JS function as the new
handler. Although it is possible to specify the handler at
the place where a DOM object is defined (e.g., <img on-
load=“foo()”>), developers tend to register event handlers
explicitly and separately using JS. This is especially true
when programming with third-party libraries. Fig. 2(a) sho-
ws an example. At line 1, an image object, <img>, is de-
fined. At line 3, the script gets a reference to this object and
registers a JS function, initA(), as its onload event handler.

One reason behind such a practice is to make page load-
ing faster by parallelizing remote resource downloading and
local script interpretation. If a browser handles everything
sequentially, it is less efficient since it has to wait until the
files requested are retrieved from the remote servers. There-
fore, in modern browsers, external resource downloads are
usually asynchronous and non-blocking. In this example,
when the browser encounters the <img> tag, it requests
the image file specified by the src attribute and starts the
asynchronous download. Then it proceeds to the following
HTML elements. Once the <img> is fully loaded, its onload
event fires. Since parsing local script is usually faster than
downloading a remote file, in most cases the event handler
registration at line 4 can be done before the onload event
fires so that the handler can be invoked correctly.

However, the order between the handler registration (line
4) and the onload event firing (i.e. the moment when the
<img> element at line 1 is fully loaded) is nondeterministic.
If the image requested is small or cached locally, it is possible
the onload event fires before its handler is registered. If
so, the onload event handler may never be invoked. For
example, Fig. 2(b) shows a buggy execution sequence. When
the onload event of <img> fires, function initA() has not
been registered yet so that it will never have a chance to
be executed. Note that unlike events that can be triggered
multiple times, an onload event will only fire once. We call
an event handler of this kind a one-time handler.

Fig. 2(c) shows its repair. Since developers cannot control
when the onload event fires, to make sure the event handler
is registered and triggered properly, we place the registration
to the definition point of the DOM object. In this example,
lines 1 and 3 are replaced by line 102. Then, we move the
declaration of function initA() before the <img> tag so that
initA() is defined before it is used.

The repair in this example is different from the one in
Fig. 1(c). In Fig. 1(c), we introduce customized synchro-
nization to enforce the appropriate load order. While the
race in this example can also be fixed similarly, we choose
to reorder elements in the web page. We change the places
where initA() is declared and registered. The goal is to avoid
additional runtime overhead introduced by synchronization.

Observe that the races are due to inconsistencies between
the execution order and the def-use order in both cases. We
fix them by transforming the page so the orders become con-
sistent. In this paper, we focus on this kind of race problems.

In practice, similar issues have been observed. For exam-
ple, according to [4, 5], races are the root causes of malfunc-
tioned user interfaces and incomplete page loading, lead-
ing to unusable web pages. Fixing real world web appli-
cation races is challenging. In particular, there are inter-

Static Program
Analysis

Constraint
Encoder

Cost sensitive
Constraint Solving

Repair
web

page

causality graph

& define use

(fixed)

web page
DOM tree

JavaScript AST

constraint

A repair option

Figure 3: ARROW Overview.

dependencies between DOM objects and JS variables such
that the developers have to be very cautious in re-positioning
elements and adding synchronizations. For example, moving
a piece of JS code forward may break existing def-use de-
pendences and introduce uninitialized variable access errors.
Adding synchronizations may introduce deadlocks. Further-
more, a client page often has multiple races. Their repairs
may interfere with each other and have consequences that
are difficult to reason about. Finally, since there are alterna-
tives in fixing a race, constructing a low-cost overall repair
(for multiple races) is a complex optimization problem dif-
ficult to address manually.

Therefore, one key contribution of our work is to model
the problem of automatically fixing multiple races in a web
page together as a constraint solving problem, and leverage
the solver to ensure that (1) our fixes do not break any ex-
isting semantics (and hence introduce new bugs); (2) fixes
do not interfere in ways leading to any undesirable conse-
quences; (3) and the overall repair plan is cost-effective.

3. DESIGN
In this section, we first present a high-level overview of

ARROW. Then, we discuss the design of the individual com-
ponents in more details in Sections 3.2 - 3.4.

3.1 Overview and Deployment
As shown in Fig. 3, the input of ARROW is a client-side

web page and the output is the fixed version of the page.
The work-flow of ARROW can be divided into three steps:

In the first step, we perform static analysis on the HTML
and the JS snippets included in the input page. We con-
struct a causal graph that models the happens-before rela-
tions between runtime events of page elements (e.g., DOM
object creation must happen before the invocations of its
event handlers). These relations are determined by the un-
derlying page parsing and execution model of modern brows-
ers, which will be discussed in Section 3.2. We also identify
all the def-use dependences that describe the definition(s)
that a use of variable/object may come from. Def-use re-
lations are different from happens-before orders. They are
derived from the source code order in the given page, reflect-
ing the developer’s original expectation of the execution or-
der. However, the orders suggested by def-use relations are
not necessarily respected by the happens-before relations,
leading to races. The graph and the def-use relations allow
us to reduce the original problem to a partial order reason-
ing problem. In particular, we detect races by identifying
inconsistencies between the causal graph and the def-use re-
lations and we repair races by transforming the causal graph
(and hence transforming the page) to respect the def-use re-
lations. In this step, we also produce a DOM tree and JS
ASTs that will be used in the repair step. More details can
be found in Section 3.2.

In the second step, we detect races by identifying inconsis-
tencies between the causal graph and the def-use relations
derived from the source code order, as illustrated by the ex-
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amples in Section 2. In particular, we model this problem as
determining the reachability from an object/variable defini-
tion to its use in the causal graph, leveraging a constraint
solver. We encode the directed edges in the causal graph
and the orders suggested by def-use relations as constraints.
Then, we feed the constraints to a solver and query satisfi-
ability for several purposes:

(a) Race detection. Assuming the happens-before relations
in the graph, we check whether the orders suggested
by individual def-use pairs are respected. If not, races
are detected.

(b) The existence of a repair. After races are detected, we
check whether the race inducing execution orders can
be precluded by introducing additional causal edges.
If yes, we say the input page is fixable.

(c) An optimal repair. The solution produced in the previ-
ous query may not be an optimal repair. For example,
assume both element reordering and customized syn-
chronizations can fix a race. However, as mentioned
before, element reordering has less runtime overhead
compared to customized synchronizations. Therefore,
reordering is a better repair if it is applicable. On the
other hand, reordering is more likely to break exist-
ing semantic constraints (e.g. def-use relations) and
becomes in-applicable. To find a cost-effective solu-
tion, we further associate costs for the two repair op-
tions. By asserting a specific cost goal to the constraint
solver, starting from a low cost and gradually increas-
ing, we are able to find a repair with the lowest cost.

We explain the details of this step in Section 3.3.
In the third step, we transform the page according to the

repair, which is essentially a set of additional causal edges
in the graph. In particular, elements are reordered or cus-
tomized synchronizations are introduced according to the
edges. The repair will preserve the original looks and func-
tionalities of the page. Section 3.4 explains how to transform
the input web page based on the repair solution generated
in the previous step.

Deployment. Due to the overhead of constraint solving,
ARROW is not suitable for on-the-fly bug repair on the
client side. We anticipate the following two possible ways of
deploying ARROW.

First, during in-house testing and debugging, ARROW
can aid developers in fixing races. Note ARROW only fixes
races in a client page, which may be dynamically generated
from a server script. ARROW currently does not fix server
scripts. Instead, it will provide the fixed client pages to the
developers who will integrate the fixes to the server scripts.

Second, ARROW may be used to protect against races
during production runs when used with page caches. When
a page is downloaded, ARROW performs analysis and repair
in the background and then replaces the cached page with
the fixed version such that it can prevent future races.

3.2 Causal Graph Construction and Def-Use
Relation Identification

In step one, ARROW constructs a causal graph to model
the happens-before orders of events based on the standard
page parsing and execution order of modern browsers.

3.2.1 Web Page Rendering Process
While modern browsers are highly concurrent, they still

strictly follow certain orders during page rendering. Under-

(a) l1   <   l2 (b) l1   <   l2 (c) l2   <   l1* 

    …

l3 

    …

l1  

    … 
   …

l2 

   …

   …

l2 

   …

    …

l1 

    …

l3  

    … 

    …

l1 

    …

l2  

    … 

Figure 4: Location Precedence. ‘∗’ in (c) means l2 < l1
holds if l2 is not included by an iframe or an async script.

standing these orders is critical to causal graph construction.
Given a page, the browser parses the page in the source

code order. Once a DOM object is parsed, it is created and
its onload event fires. For DOM objects whose creation relies
on remote resources (e.g., an image with a remote URL), the
browser requests the resource in a non-blocking mode and
proceeds to render the remainder of the page. Some browsers
will not create the DOM object until the remote resource is
successfully retrieved. The browser also parses and executes
JS code snippets following their location order in the page.
Statements within a pair of <script> and </script> are
parsed and executed atomically. In other words, they cannot
interleave with others. The page may explicitly declare asyn-
chronous artifacts such as iframes and asynchronous scripts,
whose executions are non-deterministic and decoupled from
their parsing and creation. Event handler executions are
mostly non-deterministic, depending on the event triggering
time, except onload events.

From the page rendering process discussed above, we can
observe that the source code location order of elements is
very important. We model it through a relation called script
location precedence. Given two different source locations l1
and l2 in a web page or external resources included, we define
location precede (denoted as “<”) as follows.
(1) l1 and l2 are in a same file. As shown in Fig. 4(a), if l1
appears before l2, l1 < l2.
(2) l1 and l2 are in different files. If there exists l3 such that
l1 and l3 are in the same file, and l2 is transitively included
at l3, there are two cases as follows:
• If l1 < l3 (Fig. 4(b)), l1 < l2. In this case, before the

browser sees the tag at l3 and goes into the inclusion
chain, the elements at l1 must have been processed.
• If l3 < l1 and l2 is not included by an iframe or an

asynchronous script (Fig. 4(c)), l2 < l1. Otherwise,
l1 ≮ l2 ∧ l2 ≮ l1. In this scenario, the browser sees
the tag at l3 before l1. The order between l1 and l2
depends on whether the inclusion chain is processed
sequentially: If so, the browser must process l2 before
l1. Otherwise, when l2 is included in an iframe or an
asynchronous script, l2 will be handled asynchronously
so that the order between them is nondeterministic.

3.2.2 Causal Graph
Since our repairs need to be safe (i.e. not introducing any

new bugs but rather just precluding problematic execution
orders in the original page), we make use of conservative
static analysis in graph construction.

The causal graph of a web page is a directed graph CG =
(N,E∪W). N is a set of nodes that represent runtime events
during page parsing and rendering such as DOM creations
and event handler invocations. E and W denote two kinds
of happens-before edges between nodes.
Nodes. We model the following five kinds of nodes.
(N1) We use D to denote the set of HTML elements. If d ∈

D is declared and created at location l, create(d, l) ∈ N.
(N2) Let o be a global JS object, such as a global variable

or a function, declared at l, create(o, l) ∈ N.
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(N3) Let s be a top level statement (i.e. a statement not
in any function or composite statement such as con-
ditional or loop) parsed and executed at location l,
exec(s, l) ∈ N. Note that although all statements in
a JS code block execute atomically, we create nodes
for individual top level statements so that we can sep-
arate a code block to multiple smaller blocks and re-
order them. These nodes are different from the nodes
in (N2) as a function may be declared but not invoked.
We do not represent lower level statements as reorder-
ing them or adding synchronizations to them is very
difficult and also unnecessary in most cases. We can
ensure orders of low level statements by enforcing or-
ders of their corresponding top level statements.

(N4) Let f be a function registered as the handler of an
event e of object d ∈ D, the invocation of the handler
handler(f, d, e) ∈ N. For instance, handler(f, d, onlo
ad) denotes the invocation of the onload handler of d.

(N5) Let a be an asynchronous external JS element de-
clared at l (e.g. <script async src=...>). Its decla-
ration create(a, l) ∈ N and the asynchronous execu-
tion/interpretation interpr(a) ∈ N.

During page loading, the browser parses and renders/exec-
utes HTML and JS objects sequentially according to the
location order. The invocations of onload event handlers
of DOM objects are hence also sequential. We call nodes
involved in sequential processing sequential nodes. They
include the nodes tagged with location label l (e.g., N1,
N2, N3). In contrast, other nodes represent executions of
asynchronous scripts or callbacks triggered by user or timer
events. We call them asynchronous nodes. A special case
is that the invocation of an iframe’s onload event handler is
treated as an asynchronous node.

Edges. E is the set of directed edges indicating irreversible
happens-before relations between nodes. We classify happe-
ns-before relations into two kinds: reversible and irreversible.
Irreversible edges. Edges cannot be transformed during
repair such as the order between DOM object creation events
because mutating such edges may lead to undesirable visual
differences in page rendering. In contrast, some happens-
before relations such as the order between a DOM object
creation and a JS object creation may be reversed.

For any two nodes n1 and n2, (n1, n2) ∈ E if any of the
following conditions holds.
(E1) n1 = create(d1, l1), n2 = create(d2, l2), where d1, d2 ∈

D, l1 < l2, @ create(d3, l3) ∈ N such that d3 ∈ D and
l1 < l3 < l2. It means the orders between static DOM
elements are irreversible so that they will be preserved
in the repair.

(E2) n1 = create(a, l), n2 = interpr(a), where a is an asyn-
chronous external JS element.

(E3) n1 = create(d, l), n2 = handler(f, d, e). The creation
of DOM element d happens before the invocation of a
handler of event e of the element.

(E4) n1 = handler(f1, d1, onload), n2 = handler(f2, d2, on
load), d2 encloses d1.

(E5) n1 = exec(ajaxS(d), l), n2 = handler(f , d, ajaxR). If
a JS statement ajaxS(d) at l creates an ajax object
d, registers f as its response handler and sends the
request, ajaxS(d) executes before f .

(E6) n1 = exec(setTimeOut | setInterval, l), n2 = handler(f ,
, timer). Function setTimeOut/setInterval registers f
as a timer event handler. f can be invoked after its

registration at l.
(E7) n1 = create(iframe(x),l1), n2= create(d2, l2) with d2 ∈

D the first HTML element in the iframe page x.
(E8) n1 = create(d, l1) | create(o, l1) | exec(s1, l1) | cre-

ate(a, l1), n2 = exec(s2, l2), where l1 < l2 and s2 de-
notes a method call that evaluates a string as JS (e.g.,
eval()). Function eval() may generate some script on
the fly that uses a variable defined before l2 so we do
not want to reposition anything before l2 to after l2.
To handle this, we prevent any reposition between a
node preceding an eval() node and the eval() node, by
introducing these conservative irreversible edges. Note
that this does not prevent reordering of elements be-
fore the eval().

(E9) n1 = exec(s1, l1), n2 = create(d, l2) | create(o, l2) |
exec(s2, l2) | create(a, l2), where l1 < l2 and s1 eval-
uates a string as JS. This rule is symmetric to (E8),
preventing moving things after l1 to before l1.

Note that (E5) and (E6) introduce causal edges between
event handler registration and invocation for Ajax responses
and timer events, whereas such causality does not exist for
regular events such as onload and onclick. The reason is that
regular events fire even without the explicit registration of
handlers but Ajax responses and timer events do not.

Reversible Edges. A separate relation set (W) is defined
to denote reversible edges. In particular, W is a set of or-
dered pairs of sequential nodes in N satisfying one of the
conditions.

(W1) n1 = create(d, l1) | create(o, l1) | create(a, l1), n2 =
exec(s, l2). If l1 < l2 and there is not another node
with label l3 s.t. l1 < l3 and l3 < l2, (n1, n2) ∈ W.
If l2 < l1 and there is not a node l3 s.t. l2 < l3 and
l3 < l1, (n2, n1) ∈W.

(W2) n1 = exec(s1, l1), n2 = exec(s2, l2). If l1 < l2 and there
is not a node l3 s.t. l1 < l3 and l3 < l2, (n1, n2) ∈W.

Recall we only create nodes for top level statements (N3)
so that the location order is also the control flow order in
(W2). An edge between a script statement execution node
with any other node is a reversible edge, denoting that the
script statement may be repositioned during repair without
causing visual differences. However, whether a reversible
edge can be really reversed is also determined by the def-use
relations which we will discuss next.

Handling Dynamic Features. Rules (E8) and (E9) allow us
handle eval() conservatively. HTML pages can be modified
at runtime by their own JS code. To handle this, ARROW
currently requires the developer to record the set of possible
pages and apply the technique to individual pages. As part
of the deployment procedure (Section 3.1), the developer
may need to integrate the fixes.

3.2.3 Def-Use Relation Identification
The def-use relation (Pdu) is a set of node pairs in CG.

Particularly, (n1, n2)x ∈ Pdu means a JS global object/vari-
able or a DOM element x is defined in n1 and used in n2.
Note that if n1 and n2 denote top level composite statements
(e.g. conditionals or function calls), definitions/uses inside
n1/n2 will introduce edges between n1 and n2. Def-use pairs
are identified following the location order in the web page
source. The essence is that the source order reflects the orig-
inal semantics intended by the developer, which may not be
respected by the process order in the browser, causing races.
The definition is presented as follows.
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Figure 5: The causal graph and the def-use pairs of the
web pages shown in Fig. 1(a) and Fig. 2(a). “[d]” and
“[u]” mean objects defined and used in this node respec-
tively. Labels “C”, “E” and “H” beside nodes denote the
node types: object creations, JS executions and event
handler invocations, respectively.

• Let n2 be a sequential node that uses a global DOM/JS
object x. Based on the source location order from the
beginning to n2, for any definition of x in n1 that can
reach n2, (n1, n2)x ∈ Pdu.
• Let n2 be an asynchronous node that uses x. If a node

n1 defines x, (n1, n2)x ∈ Pdu.

Example. The graphs in Fig. 5 show the casual graphs
with both reversible and irreversible edges, and the def-
use pairs for the two examples in Section 2. In particular,
Fig. 5(a) is for the first example in Fig. 1(a). Fig. 5(b) mod-
els Fig. 2(a). In Fig. 5(a), the causal edges are established
by Rules (E1) and (E7). The def-use relation is straightfor-
ward. In Fig. 5(b) the causal edges are introduced by Rules
(E3), (W1) and (W2).

Our def-use analysis is mostly standard, very similar to
that in WALA [1]. The analysis distinguishes must def-use
pairs (i.e., the use variable is a must alias of the definition
variable and there is a path between the definition and the
use) from may def-use pairs (i.e., the use variable is a may
alias of the definition variable and there is a path between
the definition and the use). We use must-pairs in race de-
tection to avoid false positives. We use may-pairs in repair
to ensure safety. More discussion is in Section 5.

3.3 Repair Generation: A Constraint Solving
Based Approach

In this paper, we consider fixing races that manifest them-
selves as inconsistencies between the page rendering order
and the def-use pairs. As mentioned at the end of Section 2,
the challenges of fixing these races lie in avoiding breaking
any existing semantic constraints, reasoning about the inter-
ferences between individual fixes, and achieving cost effec-
tiveness. We hence leverage constraint solving to construct
a universal repair that fix all races together. Here a repair
is essentially a set of new edges in the causal graph.

The overarching design is to encode causal graph edges
including reversible and irreversible ones into relations. We
also encode def-use pairs as a different relation. We then
query the solver if def-use pairs can be inferred from the
edge relations. This is equivalent to performing graph reach-
ability analysis. If not, races are detected. We then further
query the solver if a smallest set of weighted edges can be
added such that the def-use pairs can be inferred in the mean
time the added weight/cost is minimal.
Edge Encoding. We define a function hasEdge(B) to en-
code edges including those in both E and W.

B: Node×Node→ Bool

The relation is populated by the edges from the causal

graph. As suggested by the following theorem, B is irreflex-
ive and asymmetric.

∀n ∈ N, ¬(n B n)
∀n1, n2 ∈ N, (n1 B n2) =⇒ ¬(n2 B n1)

[1]

It is not transitive either. From n1 B n2 and n2 B n3, we
cannot infer n1 B n3.
Inferring Happens-Before from hasEdge Relation.
Next, we introduce the happensBefore(≺) relation as follows.

≺: Node×Node→ Bool
∀n1, n2 ∈ N, n1 ≺ n2 := n1 B n2

| ∃n3, n1 ≺ n3 ∧ n3 B n2

[2]

If there is a path between two nodes, there is a happens-
before relation between them.

The relation has similar properties as the hasEdge rela-
tion, except that it is transitive, as suggested by the follow-
ing theorem.

∀n ∈ N, ¬(n ≺ n)
∀n1, n2 ∈ N, (n1 ≺ n2) =⇒ ¬(n2 ≺ n1)

∀n1, n2, n3 ∈ N, (n1 ≺ n2 ∧ n2 ≺ n3) =⇒ (n1 ≺ n3)
[3]

Note that the theorem dictates the causal graph is acyclic.

Def-Use Pair Encoding. A def-use pair implies that the
definition should happen before the use. Therefore, we as-
sert the happens-before relation between a definition and
the corresponding use. In particular, assume nu uses x; If
n1 is the only place where x is defined, we assert n1 ≺ nu;
If nu may use multiple x from nodes {n1, ..., ni}, we assert
(n1 ≺ nu) ∨ ... ∨ (ni ≺ nu).

Repair Cost Encoding. We explicitly encode repair cost
for two purposes: race detection and cost-effective repair
construction. Different from using relational reasoning en-
gines such as Datalog, it is tricky to determine if a given
(def-use) pair is a member of a (happens-before) relation
using an SMT engine (during race detection). Given a def-
use pair nd and nu, if we assert nd ≺ nu, the SMT engine
will simply add the pair to the current happens-before rela-
tion if it does not cause any contradiction. In other words,
the solver will always try to yield a satisfiable result by sim-
ply adding causal edges. Therefore, we leverage the cost
encoding to address the issue.

We introduce a relation Ω denoting the set of node pairs
that do not have an edge in either direction. If (n1, n2) ∈ Ω,
(n2, n1) ∈ Ω.

For two nodes (n1, n2) ∈ Ω, we define a function cost
(n1, n2) to denote the cost when we introduce an additional
edge from n1 to n2. The value of cost(n1, n2) is determined
using results from the previous analysis stage. In particular,
if the order between n1 and n2 can be inferred from their
source locations and they are in a same file, they are eligible
for reordering. Note that if a node is asynchronous, the
order cannot be inferred from the source locations. Since
reordering has less runtime overhead, we assign a small value
1 to cost(n1, n2). Otherwise, introducing synchronizations
is the only way to enforce their order. Since it has more
runtime overhead, we use a larger number 10 as the cost.

We use Cn1Bn2 to denote the repair cost regarding an edge
from n1 to n2. If an edge from n1 to n2 is added in a repair,
Cn1Bn2 equals to cost(n1, n2). Otherwise, Cn1Bn2 equals to
0. For any two nodes without edges in either direction, we
encode their repair cost as follows.

∀(n1, n2) ∈ Ω, Cn1Bn2
= (n1 B n2) ? cost(n1, n2) : 0

We use Crepair to represent the total cost, which is com-
puted as Crepair =

∑
(n1,n2)∈Ω Cn1Bn2 .
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Figure 6: Repairs for the two illustrative examples.

Race Detection. To detect races, we encode the causal
edges E ∪ W and def-use pairs as mentioned before. For
node pairs that do not have any edges (E ∪ W) in either
direction, we encode their cost of adding new edges.

We set the total repair cost (Crepair) to 0 and query its
satisfiability, which essentially checks whether the happens-
before relations suggested by the def-use pairs can be satis-
fied without introducing new edges. If the constraint is SAT,
no race is detected. Otherwise, there are race conditions.
Example. The encoding of Fig. 5(a) is

(N1 B N2) ∧ (N1 B N3) ∧ (N2 B N4) ∧ (N3 ≺ N4)

∧ ( if N3 B N4 then CN3BN4
= 10 else CN3BN4

= 0)

∧ ( if N4 B N3 then CN4BN3
= 10 else CN4BN3

= 0)

∧ ...

∧ Crepair = (CN3BN4
+ CN4BN3

) + (CN1BN4
+ CN4BN1

)

+ (CN2BN3
+ CN3BN2

)

∧ Crepair = 0

∧ [1] ∧ [2] ∧ [3]

Note N3 ≺ N4 in the first row is introduced according to
the def-use pair on x. The encoding for Fig. 5(b) is similar.
Finding a Cost-Effective Repair. Next we generate a
repair if we found races in the previous step. A repair is
a set of additional directed edges introduced to the causal
graph such that the relations implied by def-use pairs are
consistent with the new happensBefore relation.

We start by determining whether a repair exists. Unlike
in race detection, this time we only encode irreversible edges.
The reason is that ignoring the reversible edges allows the
solver to explore reordering of the corresponding elements.
We reuse the other constraint encodings from the previous
step. This time, we do not restrict the repair cost, which
can be achieved by removing the assertion Crepair = 0. We
query the solver again. If the constraint is SAT, a repair
exists. The solution provided by the solver will report the
additional edges needed. It will also report a concrete value
for repair cost Crepair. Assume its value is k. It means all
races can be fixed with cost k.

However, the solution may not have the lowest cost. There-
fore, ARROW repeatedly queries the solver with different
cost assertions starting from 1. It stops when the constraints
are SAT with the minimum cost.

We want to point out that the race repair scheme can be
made independent from the race detection component and
integrated with different race detectors.
Example. The example in Fig. 5(a) does not have any
reversible edges. We get the repair constraint after removing
the assertion Crepair = 0 from the race detection constraint.
And the solver reports N3 → N4 as the repair, which is
shown in Fig. 6(a).

For the example in Fig. 5(b), after removing the reversible
edges, we have more pairs of nodes that do not have edges
between them. We encode the cost to introduce extra edges
between these nodes. The solver reports four repair edges

as shown in Fig. 6(b).

3.4 Page Transformation
In this step, we realize a repair by page transformation.
For each source file involved, we put back the reversible

edges that do not involve any nodes in the generated repair
edges and do not form any cycles with other edges in the
graph. Recall reversible edges were removed during patch
generation. We then perform a topological sort on the part
of the resulting causal graph (with repair edges and restored
reversible edges) corresponding to the file. The page ele-
ments denoted by the nodes are rearranged based on the
order. Since the order between DOM elements remains the
same (due to the irreversible edges), the new arrangement
will not change relative positions among DOM elements so
that the page’s visual representation remains intact. Fur-
thermore, the restored reversible edges also ensure the re-
ordering is minimal for safety insurance (Section 5). After
this, we satisfy the repair edges denoting element reordering.

However, there are still edges that cannot be satisfied by
reordering, such as those across file boundaries and those in-
volving asynchronous nodes. These edges have a high repair
cost as discussed earlier. For these edges, ARROW intro-
duces synchronizations as follows: it first introduces and sets
a flag at the exit(s) of the head node. Then, before the tail
node, ARROW inserts code to check whether the flag is set.
If not, the inserted code reschedules the tail node to execute
later using the timer function setTimeout(). An example
of such transformation can be found in the second example
in Section 2. Due to space limitations, we omit the page
transformation algorithm.

Example. Let’s revisit the two illustrative examples. Fig. 6
shows the repairs generated by the solver. For the first ex-
ample in Fig. 6(a), three files are involved. After the per-file
topological sort, we have {N1, N2}, {N3} and {N4}, which
do not trigger any reordering. To respect the repair edge
N3 → N4, ARROW introduces synchronization as shown
in Fig. 1(c). Note that both N3 and N4 are asynchronous
nodes because they are included in <iframe>’s so that we
cannot determine their order from their script locations.

For the second example in Fig. 6(b), the topological sort
produces {N12, N11, N13, N14, N15}. The transformed page
starts with N12, followed by N11, N13 and N14, which de-
note event handler registration. Such a pattern is commonly
seen and ARROW has a special rule to handle it. The rule
groups the chain N11, N13 and N14 into a handler registra-
tion inside the DOM tag as shown in Fig. 2. The updated
topological order becomes {N12, (N11, N13, N14), N15}. In-
stead of introducing expensive synchronization, the repair
edges can be respected by reordering with the updated or-
der. The repaired version is shown in Fig. 2 (c).

4. HANDLING PRACTICAL ISSUES
Searching for a cost-effective repair for real world pages is

expensive. Assume there are n nodes in the graph. ARROW
needs to select k edges from the 2n2 possible node pairs.

The complexity is hence O(22n2

). To improve scalability,
we apply the following optimizations.

4.1 Causal Graph Simplification
Real world web pages usually have a large number of DOM

elements. For example, the home page of shell.com has 728
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DOM elements. The causal graph is large if we use one node
to denote each element. Fortunately, we observe that we can
usually model multiple elements as one node.

As mentioned before, DOM elements in a web page (ex-
cluding those included by an iframe) are processed sequen-
tially. A sequence of consecutive DOM elements with no
script, event handler or iframe elements in between can be
represented as one single node as there must not be any
edges going in or out from inside the sequence. For exam-
ple, the following is a piece of HTML script from shell.com.

<ul id=“country selector list”>
<li><a href=“http://www.shell.com/...”>Algeria</a></li>

...
<li><a href=“http://www.shell.com.vn/”>Vietnam</a></li>

</ul>

This is a drop-down list with 197 elements. None of them
has an event handler. So, we use one node to model them. In
our experience, most DOM elements do not have event han-
dlers such that we can greatly reduce the number of nodes.

4.2 Constraint Simplification
Besides reducing the graph size, we also simplify the con-

straint encoding. It is very expensive to reason about quan-
tifiers [3] in general. As an optimization, we eliminate quan-
tifiers by transformation. For example, we eliminate the
existential quantifier in theorem [2] in Section 3.3 by enu-
merating all the possible n3 in [2], as shown in the following.
∀nx, ny ∈ N, nx ≺ ny := nx B ny | nx ≺ n1 ∧ n1 B ny

|... | nx ≺ ni ∧ ni B ny [2′]
Universal quantifiers are similarly removed by enumerat-

ing all nodes.

5. SAFETY AND LIMITATIONS
Safety In Repair. We assume the def-use analysis is com-
plete in the absence of eval() and self-modifying JS code,
which can be achieved in theory [1]. With this assumption,
ARROW is safe during repair: given a set of races in a page,
it either determines that the page is not fixable or it guar-
antees that a repair must not introduce any new problems,
such as deadlocks or new exceptions.

First, our causal graph construction is conservative. For
places that cannot be analyzed appropriately, such as eval(),
ARROW conservatively introduces causal edges that pre-
vent any transformation across these places. As such, the
def-use information related to eval() is not necessary for AR-
ROW. Second, theorem [3] in Section 3.3 about the irreflex-
ive property of the happensBefore relation dictates that the
causal graph is always cycle-free. Together with the conser-
vative nature of the graph, a repaired page must be deadlock
free. ARROW considers a page not fixable if cycles cannot
be avoided. Third, according to our assumption, the def-use
analysis is complete when eval() and self-modifying JS code
are not considered. This ensures that the generated trans-
formation must respect these def-use pairs such that new
exceptions (e.g., undefined variables) cannot be introduced.

However, our current implementation is not complete due
to the incomplete modeling of third party JS libraries. Real
world pages make intensive use of third party JS libraries.
Due to the sheer number of these libraries, we only model
a subset that is commonly used (e.g. some JQuery func-
tions). Note that it is usually not an option to analyze these
libraries as part of the code base because many of them are
fairly complex or even obfuscated. In practice, our limited
modeling is sufficient. As shown in Section 6, most repair

transformations are fairly local, not involving substantial
global code re-ordering. As a result, they do not involve any
complex library calls that may endanger safety.

Self-modifying pages are beyond the scope of ARROW.
We assume the developer will collect the set of possible pages
and analyze them individually.
Limitations In Race Detection. ARROW may have
false negatives and false positives in race detection due to
the dynamic features of pages and the approximations made
during analysis. For example, ARROW will miss races in-
volving eval(). Our def-use analysis involves over-approxi-
mations. Thus, ARROW may have false positives in race
detection. To mitigate the problem, we only assert must-
aliased def-use pairs in race detection. In our experiment,
this strategy is effective. We did not observe any false posi-
tives. Another point we want to make is that false positives
are not that problematic for ARROW as they only lead to
redundant synchronizations or unnecessary reorderings.

6. EXPERIMENTAL RESULTS
ARROW is implemented in JavaScript, leveraging a set

of Node.js utilities. For each subject web page, ARROW
parses it and acquires its DOM tree using htmlparser2. For
script elements, ARROW uses ECMAScript parser Esprima
to parse them and generate AST trees. With the DOM tree
and JS ASTs, the causal graph can be constructed. Our
def-use analysis extends that in WALA [1]. The graph is
then simplified and encoded to constraints, together with
the def-use pairs. We use Z3 [7] to solve the constraints and
find the optimal repair if any. Then we transform the input
web page using AST transformation.

We randomly select 20 web sites from the Alexa Top 500
Sites and the Fortune 500 2014 Sites as the benchmark.
As our current implementation only supports a set of third
party libraries, we avoid those that make use a lot of other
libraries. Table 1 shows the program size of the subject web
sites. As we model the parsing of each HTML tag on the
main page as a single node in our causal graph, we believe
the line of code of the main page is an important metric that
reflects the graph size. We also report the number and the
line of code of all the JS files externally loaded by each site.
Observe most of these pages are quite complex.

Columns node and node(simp) in Table 1 show the num-
ber of nodes in causal graph before and after simplification,
respectively. The size ranges from small, with United Con-

tinental Holdings, Inc. at only 91 nodes, to quite large
with Delta Air Lines, inc. at 1840 nodes. Observe that
our simplification is effective. The reduction is usually two
orders of magnitude, which is critical to efficiency.

Column def-use in Table 1 reports the def-use pairs be-
tween graph nodes caused by global variables/objects, when
only must-aliasing is considered. These are the edges we
assert to the causal graph to detect inconsistencies. Since
most of the def-use pairs are respected by the causal graph,
the number of races detected (column races) is much smaller.

We have validated that all races are real by inserting in-
tentional sleep to the page to trigger the problematic or-
ders. Note that we do not have false positives because our
causal graph construction is conservative and we only con-
sider must-aliased def-use pairs in race detection. False neg-
atives cannot be studied due to the lack of ground truth. As
in most existing works on bug repairs, we do not claim that
ARROW can repair all races in a page.
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Table 1: Program characteristics and Analysis Result
Program Characteristics Analysis Result Causes of Races

Site HTML JavaScript Node Node Def-Use Races Solving Sync Reorder Load Time B/W Reorderings Aysn Event Timer Ajax

Index # LOC* # LOC* (simp) time (s) edge edge before after % LOC / % lib script handler

LOC* calls

360.cn 3851 1 3851 8 9574 1147 69 78 13(2)+ 222.1 6 2 2.83 3.02 106.7 0 / 0% 0 7 6 0 0

alcoa.com 1167 12 17362 19 79425 768 88 150 5 117.9 3 4 2.16 2.28 105.6 3/ 0.2% 0 2 2 1 0

cardinal.com 1681 1 1681 19 34307 662 59 596 2 107.0 1 4 2.53 2.56 101.2 151/ 6.6% 8 0 1 1 0

chsinc.com 807 1 807 10 11915 416 28 13 5 2.4 1 2 1.65 1.76 106.7 4/ 0.5% 0 0 5 0 0

deere.com 924 1 924 16 21928 509 47 1000 1 51.5 1 1 0.91 0.96 105.5 0/ 0% 0 0 1 0 0

delta.com 5098 3 5104 29 72040 1840 136 766 2 39.6 1 12 6.49 6.34 97.7 76/ 1.3% 1 0 1 0 1

directv.com 3734 10 16969 40 105302 1216 149 1501 19 724.8 3 3 0.02 0.02 100.0 30/ 0.9% 0 17 2 0 0

dow.com 577 4 7812 15 34484 330 39 117 6 24.9 3 3 1.29 1.28 99.2 139/ 21.8% 0 3 2 1 0

dropbox.com 1199 3 1267 33 117455 594 65 586 12 155.9 5 0 6.51 6.44 98.9 0/ 0% 0 10 2 0 0

fc2.com 1588 12 2271 18 35426 415 67 71 11(3)+ 11.2 3 1 1.99 1.98 99.5 0/ 0% 0 11 0 0 0

ge.com 1635 7 12743 17 53891 551 37 81 7 144.3 2 10 2.36 2.28 96.6 67/ 3.1% 1 5 2 0 0

jnj.com 1197 2 3707 23 29612 492 53 188 3 48.5 2 3 1.18 1.19 100.8 118/ 9.9% 0 1 1 1 0

manpowergroup.com 1143 3 3715 18 25491 627 46 94 4 55.1 2 5 1.04 1.07 102.9 112/ 9.7% 1 1 2 1 0

metlimos.com 504 2 1113 21 46227 369 52 69 9 605.8 7 6 1.31 1.31 100.0 17/ 3.4% 0 0 9 0 0

qq.com 14418 3 14699 18 21131 2440 101 92 20 356.3 10 0 14.2 14.8 104.2 0/ 0% 0 0 20 0 0

shell.com 1030 1 1030 25 32621 832 44 413 2 1.6 1 1 0.93 0.94 101.1 24/ 1.7% 0 1 0 0 1

statefarm.com 898 4 1052 15 13096 785 61 445 1 33.8 1 0 3.60 3.52 97.8 0/ 0% 0 0 1 0 0

tumblr.com 2237 2 2285 23 58331 701 100 967 22 24.9 3 1 19.4 21.6 111.3 0/ 0% 0 22 0 0 0

unitedcontinen-
148 2 2658 9 22670 91 21 82 3 76.2 2 3 2.36 2.21 93.6 46/ 24.6% 3 1 1 1 0

talholdings.com

yahoo.com 9424 4 9998 7 36675 2011 55 124 4 110.9 3 3 6.20 6.22 100.3 0/ 0% 0 1 3 0 0

*: After HTML/JavaScript Pretty-print. +: Number of Races That Form Cycles and ARROW Failed to Repair.

ARROW fixes races in the same page all together. Columns
solving time, sync edge and reorder egde show the constraint
solving time, the number of places where customized syn-
chronizations are added, and the number of reordering edges
in the repair. In some cases, the number of transformations
is smaller than the number of races, suggesting that one
transformation may fix multiple races. There are also cases
where the number of reordering is larger than the number
of races because reordering one node may cause other nodes
to be reordered to respect existing def-use constraints. We
have manually validated (using the aforementioned inten-
tional sleep method) that the races are correctly fixed. We
have also applied EventRacer [21], which is a dynamic race
detector, to the pages. For the races that were detected by
EventRacer before repair2, they are no longer reported after
repair. Note that for 360.cn and fc2.com, ARROW failed
to fix some of the races (as shown in column races) because
the def-use edges and the irreversible edges form cycles.

Columns before and after report the average page load
time before and after repair. We test the constraint solving
time, and the page load time on a 1.3 GHz Intel Core i5 Mac
machine with 4GB memory. The page load time is the aver-
age of 10 test runs recorded for each site on a clean Chrome
(36.0.1985) browser. Observe that the runtime overhead of
the repairs is small for most cases. In some cases, the repairs
actually speed-up the load time. Further inspection seems
to indicate that reordering may speed-up page loading.

The two columns of Between Reorderings show the lines of
JS code that are reordered together with their percentage
in the entire page, and the number of library function calls
involved. This is to show that in practice, the reordering is
mainly local and rarely involves library calls such that the
repair is safe (i.e., no violations of def-use pairs from the orig-
inal page due to incomplete modeling of library functions).
We also want to point out that reordering may not be needed
even though there are reorder edges from the solver (column
reorder edge). These edges are likely to ensure def-use pairs
caused by reversible edges. Since we put back the reversible
edges before transformation, the reorder edges may not trig-
ger any reordering.

Table 1 further classifies the races ARROW fixed into

2Since EventRacer is dynamic, it may not detect all the
races reported by ARROW.

<!-- CHS Inc. Home.html -->

01 <form name="LoginPortletForm“ action=“…">
02 <input type="text" onkeypress=“return executeViaEnter(event);">
03 <input type="password" onkeypress="return executeViaEnter(event);">
04 <div style="color: #ff0000; display: none;”> * Invalid Login </div>
05 <input type="submit" value="Log in" onclick="doLogin();">

</form>
…

06 <script src="main.js"></script>

Figure 7: Code snippet from site chsinc.com.

four categories. Asynchronous script execution: a race is
caused by executing an asynchronous script where a read
from/write to an object occurs. This execution is asyn-
chronous to other parts of the program. Out of the 20 sites,
5 sites do not show races in this category. Late event handler
registration: a DOM tag event handler is registered late in
the program. In this case, it is possible the event fires before
its handler is registered. Timing events: JS programs use
setTimeout() or setInterval() to execute a function at spec-
ified time-intervals. During this time-interval, it is possible
those variables referenced by the callback function are also
read/written by other parts of the program. AJAX: before
an AJAX request is sent out, a JS function is registered as
its response handler and will be invoked once the server re-
sponse arrives. Since the response may come at any time,
this handler can interleave with other JavaScript executions.

6.1 Case Study I
In this case we study three races ARROW fixed in page

CHS Inc. Home.html. Part of the page is shown in Fig. 7.
DOM tags are simplified to contain only relevant attributes.
This piece of script denotes a login form containing two text-
boxes and one submit button. The textboxes register exe-
cuteViaEnter() as the onkeypress event handler. The button
registers doLogin() as the onclick handler.

Functions executeViaEnter() and doLogin() are defined in
the external script main.js (Fig. 8), which is loaded after the
login form is created (line 6 in Fig. 7). Function executeVi-
aEnter() calls doLogin() if the input is ‘enter’. DoLogin()
first performs some preprocessing, e.g., reads username, be-
fore it calls the submit() method on the login form. The
server script specified in the action attribute of the login
form (line 1 in Fig. 7) is used to process client side input. If
a user enters the correct username and password, the user
profile page will be displayed.

Script main.js is parsed after the creation of the login
form, so it is possible these events fire before events’ regis-
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<!-- main.js -->
window.doLogin = function doLogin() {

// preprocessing
document.LoginPortletForm.submit();

}
window.executeViaEnter = function executeViaEnter(evt) {

var charCode = …;
if (charCode == 13 || charCode == 3) return doLogin();
return true;

}

Figure 8: Event handlers defined in main.js.

Figure 9: Causal Graph.

tration. We tested the effect of one of the races by inten-
tionally delaying the execution of main.js to enforce that the
onclick event happens before the definition of doLogin(). We
found that even if the user enters the correct username and
password, she will still be redirected to an error page (by
the server side script).

The causal graph for this example is shown in Fig. 9. The
def-use edges, N9 → N8, N9 → N5, and N9 → N3, are
not respected by the graph. For this case, the solver finds a
single edge N9 → N1 to fix all the three races. Note that
the edge N7→ N9 is reversible so that there is no cycle in
the repair graph. ARROW then reorders the script main.js
and puts it before the creation of the login form.

6.2 Case Study II
At the bottom of the page metlimos.com, there is a search

bar composed of a text box and a search button, which al-
lows the user to perform google search within the site. The
background of this text box is a google custom search water-
mark image in gif format by default (see Fig. 10(a)). When
user clicks the text box, the background should be set to be
empty. When the text box loses focus, the background sets
back to the default watermark image. Fig. 11 gives the code
snippet of the onfocus and onblur events registration for the
text box. These events are registered through an external
script brand(.js) which is parsed after the creation of the
search box. Before the external script is fetched, the onfo-
cus and onblur events are not registered. At this point, if the
user sets focus in the search box and types some text, the
input text will be overlapped with the default watermark
image as shown in Fig. 10(b).

The fixing of this case is similar to that of the motivating
example in Fig. 6(b). The solver reports three repair edges.
One edge from the textbox to the brand(.js) respects the
def-use of the textbox. The other two edges start from the
onblur and onfocus handler definitions and end at the calling
of each event handler respectively. In order to implement the
repair edges, ARROW reordered the handlers’ registration
at the point of textbox creation and also placed the handler
definitions before the textbox.

7. RELATED WORK
Our work is closely related to client-side race detection of

web applications [28, 19, 21, 10]. As mentioned in Section 1,
these techniques only focus on detection but not repair. The

(a) Default Search Box(a) Default Search Box (b) Text Overlapped with Background Image(b) Text Overlapped with Background Image

Figure 10: UI problem in metlimos.com

<! brand >
01 var b = function() {if (q.value == '') q.style.background = '#FFFFFF

url(http:\...\x2Fgoogle_custom_search_watermark.gif)’;};
02 var f = function() {q.style.background = '#ffffff’;};
03 q.onfocus = f;
04 q.onblur = b;

Figure 11: Event Handlers Registration in brand(.js).

happens-before graphs in [19, 21] share some similarity with
our causal graph. But their graphs are based on JS objects,
constructed from trace, dynamic and precise. Our graphs
are based on events, static and conservative. Our work is
relevant to program synthesis and program repair. Le Goues
et al. [14] apply heuristics based genetic programming to re-
pair C programs. SearchRepair [12] generates patches based
on semantic code search over large repositories of candidate
code. DirectFix [16] considers semantic factors and gener-
ates the simplest program repairs for C programs. LeakFix
[9] automatically fixes memory leaks in C program via static
analysis. SemFix [17] generates patches using semantic pro-
gram analysis via dynamic symbolic execution. Program
transformations have also been successfully applied to fix-
ing concurrency bugs [11, 8, 22]. Our work is also related
to automatic web application repair. Selakovic and Pradel
[24] proposed a pattern-based detection and repair method
for performance problems in JavaScript programs. Nguyen
et al. [18] and Samimi et al. [23] proposed an automatic
technique to fix HTML generation errors in PHP scripts.
Alkhalaf et al. [6] presented an automatic differential re-
pair for vulnerable input sanitizers. Our work is related to
preventions of concurrency related violations in general [27,
15, 13]. ConcBugAssist [13] aims to fix assertion violations
by enforcing extra schedule orders. It encodes the detection
of violating schedule as a Max-SAT problem and computes
fixes by reducing it to a set covering problem. Besides intro-
ducing extra schedule orders as fixes, ARROW could addi-
tionally reorder the code to avoid synchronization overheads.
However, ConcBugAssist relies on the observed dynamic ex-
ecutions. The fixes may introduce violations for unobserved
executions. Comparatively, ARROW doesn’t introduce new
races, as it considers all def-uses via static analysis.

8. CONCLUSION
We develop a solver-based technique ARROW that can

automatically fix race issues on client side web pages, while
guaranteeing safety and achieving the cost-effectiveness. In
our experiment, we use ARROW to fix 151 races from 20
real world commercial web sites.
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