Introduction to Haskell

Frederick Ross and lots of folk from #haskell
April 26, 2008

1 Preliminaries

Source code in Haskell is organized into modules. In today’s environments, modules correspond
to files, but this isn’t fixed in stone. Modules contain definitions, visible only within the module
and in other modules that explicitly import them. Two modules can both define functions named
foo without collision.
The language is case sensitive. Text between -- and the end of the line is a comment.
Outside of Haskell, programs are typically a sequence of instructions to the computer. Take
the program

X = 3;
print x;
x = b;

Tag each line with its position in the sequence

(0) x := 3;
(1) print x;
(2) x := 4;

We can rearrange the statements as much as we want, if we agree that statements with lower
numbers are executed before statements with higher numbers. So

(2) x := 4;
(0) x := 3;
(1) print x;

is identical to

(1) print x;
(2) x = 4;
(0) x := 3;

Now let’s cut off the numbers. The immediate response is “why would you do something so
ridiculous?” One processor executes instructions one after another. But keeping those numbers
straight across several processors or several computers is hard. Carefully building locks and
synchronization points are necessary to limit the damage.

Or cut off the line numbers and see what is still possible. This is how Haskell works. We cede
control of when — or if — statements are executed to the compiler. Only one ordering remains:
in sqrt(cos(3)), the subexpression cos(3) will be executed first. The order of statements in
Haskell modules is immaterial, with two exceptions:

1. Since files correspond to modules, every file’s first line of code must be of the form

module Name where

Here Name is the name of the module. Module names must be capitalized, and bear the
same name as the file that contains them. Bar must be in Bar.hs or the compiler won’t
be able to find it.

2. One module can import the definitions from another. Foo can use the definitions in Bar
by putting the command

import Bar

after its module declaration. It can import another module with a prefix

import qualified Bar as B

so all functions in Bar are called B. function in Foo. All import lines must come after the
module declaration and before any other code.

After this, definitions can come in any order.

You can compile Haskell code to a standalone executable, or load modules into an interpreter
to exercise their functionality. Only a module Main containing function main can be compiled
to an executable. For example, we compile the module

module Main where
main = putStrLn $ show 3

with
$ ghc --make Main -o prog

which produces an executable prog that we can run like any other program. --make forces
the compiler to correctly compile and link all modules which Main depends on.

Interpreters accept commands in order, so how do they mesh with Haskell? We can evaluate
expressions, but definitions have a special syntax. The minimum is to load your interpreter
(ghci, for example), and in it load your module

:1 Main

Run main by typing its name at the prompt. ghci is capable of more, but this is enough for
now.

2 Expressions & Definitions

All Haskell code is expression and definition. Expressions are strings for the compiler to evaluate.

(2%x3) + 5
"First" 4+ "Second"
True && False

Every expression has unique and unchanging type, written expression :: Type.
3 :: Int
5.24e6 :: Double
"The quick brown fox" :: String
’e’ :: Char
True :: Bool

False :: Bool

The names of types, their constructors (True and False for Bool), and modules begin with a
capital letter. Nothing else in the language can.

Int a machine integer; Integer is an arbitrary precision integer. Float exists, but all effort,
hardware, and algorithms focus on Double. Use it instead. Numbers have all the operations we
expect: +, =, * / < > <= (at most), >= (at least), ==, /= (not-equals), maz, and min. Prefix
functions like maz and min take no parentheses around their arguments, nor commas seprating
them, just spaces.

Statements herein like expr! == expr2 evaluate to True in Haskell: exprl evaluates to expr2
or an identity holds among the expressions involved.

3 < b = True
max 9.5 2.1 = 9.5

Single characters are delimited by single quotes (> ?), strings by double quotes (" "). For
historical reasons, Haskell has two kinds of strings, String and ByteString.

String is the native representation, handles Unicode, and is a factor of ten slower than
ByteString, which handles only ASCII. ByteString’s speed is comparable to C. If you are
handling large quantities of ASCII text, use ByteStrings. You must add

import qualified Data.ByteString.Lazy.Char8 as B

to the top of your module, and functions on the ByteStrings as B. function. pack and unpack
turn Strings into ByteStrings and vice versa.

unpack (pack "Test") — "Test"

Values and types displayed by Haskell are Haskell code. For most types, but not functions,
data is read, written, and represented identically. show produces a string corresponding to a
value, and read turns it back into a value.

read (show 23.552) — 23.552
Definitions take the form name = expression.

a=3
b =5 x (244)

You can split long definitions across lines by indenting lines after the first. They need not be
indented the same, only more than the first.

foo = max
3
2
bar = "A very long string which I will break " ++
"across lines."

3 Functions

Functions are the same as strings or integers: they are values with literal representations and
types. Their literal form is

\argl arg2 ... argn -> expression

where expression involves any of argl...argn.

show ::
a -> String
read ::
String -> a

\x => 3 + x :: Integer —> Integer
\y z =>y * z :: Double -> Double -> Double
\sl s2 -> sl +4 s2 :: String -> String -> String

They can be the expression in a definition.

a=\x > 3x
c =\s1 s2 => sl ++ s2

The types look bizarre. String -> String -> String should be a function from two strings
to another string, but it can be read as String -> (String -> String), a function from strings
to another function. In truth, it’s both. The syntax for using functions makes this obvious.

ad4—=7
c "A " "string" — "A string"

No parentheses, no commas, just a space separated list of arguments. If we give ¢ one
argument instead of two,

d=c "A " :: String -> String
we get another function. Function application is still an expression. We can layer it, as in

a (2 x (a 3) =15
d (d "rat") — "A A rat"

The last line must be d (d "rat"), not d d "rat". A sequence of function applications
binds left: x y z q == ((x y) z) q. d d "rat" == (d d) "rat", but d is of type String ->
String — it takes only arguments of type String, not String -> String. Mismatched types
won’t even compile. A type system this strong changes the way you work. If it compiles, it’s
probably right. The first thing to know about a function is its type.

Haskell provides several syntactic shortcuts function definitions. The most common is

function argl arg ... argn = expression

ax=3+x
byz=y*z
c sl s2 = sl ++ s2

Infix operators — functions which sit between their arguments, such as +, * and ++ — are
normal functions with peculiar syntax. We make any infix function prefix by surrounding it with
parentheses (()), any prefix function infix by surrounding it with backquotes (¢ ¢). Thus all
the following expressions evaluate to true:

3+5=—28

+ 35=28

c "A " "rat" — "A rat"
npom tc("rat" — "A rat"

Any function used infix is applied to two arguments, so one argument functions do not work.
Functions of five arguments used infix simply evaluate to other functions.

gxyzq= (xty *x (zHq)
3 ‘g 5 :: Integer -> Integer -> Integer

We can define infix functions as if they were prefix

) =\xy > x + (2xy)

or directly as infix
x 7Ty =x+ (2xy)

The syntactic shortcut for defining functions does more. Distinct constructors for a data type
(True and False for Bool) can be defined separately.

toBit True =1
toBit False = 0

This works with specific values of any time. For instance
f 3 x = x*x
f 5 x = 2x%x

In these cases the order matters! The statements are checked from top to bottom, and the
first one to match is the last one examined.

fyx=3%x
f 3 x = 4xx

always evaluates to 3*x; the second line is never used.

4 Common Data Structures

Three data structures carry the brunt of labor in Haskell: lists, tuples, and Maybe. Maybe must
be imported at the top of your module with

import Data.Maybe

Maybe handles values which may be undefined. It has two constructors, Just x and Nothing,
and is used as

Just 3 :: Maybe Integer
Just "A string" :: Maybe String
Nothing :: Maybe a

What is Maybe a? Haskell imposes the weakest possible type on expressions, including func-
tions which accept classes of types instead of just one. Nothing applies equally well to any type,
so Haskell inserts a variable a which is set appropriately when the constructor is used. You can
define restricted classes of types with specific properties and write functions that operate on that
class, but this introduction won’t discuss this further.

The syntactic shortcut for defining functions extends naturally to

addTwo :: Maybe Int -> Maybe Int
addTwo (Just x) = Just (x+2)
addTwo Nothing = Nothing

If Just x were not in parentheses, Haskell would read it as two argument to addTwo. x+2
must be between parentheses or it would be interpreted as (Just x) + 2.
A tuple consists of a fixed number of slots of fixed types, for example

(2,"fox") :: (Int,String)
(’e’, "fox", "hen", 53el12) :: (Char, String, String, Double)

This syntax — parentheses surrounding a comma-separated sequence of expressions — doesn’t
permit a tuple with one slot, but these are never useful. Tuple patterns also in function defini-
tions.

rootsO0fQuadratic (a,b,c) = ((-b + sqrt(b*b - 4xaxc)) / (2xa),
(-b - sqrt(bxb - 4xaxc)) / (2xa))

Often a tuple is an adequate representation of a small data structure. Haskell provides more
sophisticated mechanisms, but this introduction will not cover them.

The last structure, lists, are central to Haskell. Lists are sequences of arbitrary length but
fixed type. Specifically, they are one directional linked lists, which defines the natural operations
on them. Their literal form is a comma separated sequence surrounded by square brackets ([1).
[1 is the empty list. You must handle this case when writing functions on lists.

0 :: [al

[1,2,3] :: [Integer]

[’a’,’b’,’c’] :: [Char]

["first", "second", "third"] :: [String]
[[1,2], [3,4], [5,6]1]1 :: [[Integer]]

The last line shows nested lists. Lists need not be finite. We can take elements from the
beginning despite having infinitely many others. Infinite structures are problematic in most
languages, but denying ourselves statement order lets us consign to the compiler when, and if,
to evaluate an expression. “Never” is acceptable, so we can work with infinite lists so long as we
evaluate only a finite number of elements. The compiler will never evaluate the rest.

Haskell provides syntactic shortcuts for writing infinite lists. For numbers and characters we
can write

[1..] :: [Integer]
[’a’..] :: [Char]

The same notation also yields finite ranges.

[1..10] :: [Integer]
[’a’..’q’] :: [Char]

The infix function (:) builds a list consisting of its first argument followed by its second (:) ::

argument. head returns the first element of a list, tail the rest. At all times, a -> [a] -> [a]
head ::
\texttt{(head 1) : (tail 1) — 1} [a]l] -> a
reverse reverses a list, but is computationally expensive. Avoid it by arranging your lists in t[zl _> Ca]

the right direction initially. reverse ::
: appears when we write functions on lists. We name as many initial elements we need, plus [al -> [a]
the tail of a list with

(a:b:...:tail)

sumOfFirstTwo (x1:x2:xs) = x1+x2

sum (y:ys) =y + sum ys
sum [] =0

Lists arise naturally in many situations, but their most important role in Haskell is control
flow. Haskell iterates through lists where most languages loop. Surpisingly, this is far simpler.
Strings are lists of characters. Any list operation works seamlessly on strings. The infix
function ++ concatenates both strings and lists.
[’a’,’b’,’c’] = "abc"
"abc" -+ "def" = "abcdef"
[1,2,3]1 + [4,5,6] = [1,2,3,4,5,6]

words splits a string at whitespace boundaries, 1ines at newlines.

words "The quick brown fox\njumped over the lazy dog."

— [IlThell s llquickll s IIbI.OWnII , llfoXll , Iljumpedll , lloVerll , Ilthell , lllazyll , Ildog' Il]
lines "The quick brown fox\njumped over the lazy dog."

— ["The quick brown fox","jumped over the lazy dog."]

ByteStrings have homologs of all list functions, but not words and lines. Use split in place
of lines,

map B.unpack $ B.split ’\n’
(B.pack "The quick brown fox\njumped over the lazy dog.")
— ["The quick brown fox","jumped over the lazy dog."]

and splitWith for words. The module Data.Char defines character predicates such as

isSpace.

splitWith Data.Char.isSpace
(pack "The quick brown fox\njumped over the lazy dog.")
J— ["The" s "quick" ,"brown", "fox", "jumped" ,"over","the", "lazy" R "d.Og. u]

5 Control Structures

Programming without repetition and branching is pointless. The shortcut syntax for func-
tions gives us one way to branching, and Haskell has others. The next most common is
if...then...else.

isNegative x = if x<O then True else False

if...then...else is a syntactic shortcut for a normal function of type Bool -> a -> a ->
a. We can define it as

cond True x _ = X
cond False _ x = x

Underscores (-) stand for an argument we won’t use in the expression. They are placeholders.
The variables in each version of the function are independent, but for readability you should name
your variables consistently across versions.

cond is equivalent to if...then...else. In particular, you must always have an else condi-
tion. Otherwise the construct would not be an expression.

How do we iterate? Iteration is a combination of three forms: perform an identical action on
a set of things; conditionally perform an action on a set; or we sequentially perform actions that
carry over from one iteration to the next.

Typically adding 3 to every element of a list takes the form

for i =1 to 5
x[i] := x[i] + 3;

end

Define a function f which adds three to its argument, and rewrite the loop as

for i =1 to b
f(x[i]);

end

Abstract the loop to a function, conventionally called map.

words ::

String -> [String]
lines ::

String -> [String]

split ::
Char8 -> ByteString ->
[ByteString]

splitWith ::

(Char -> Bool) -> ByteString
-> [ByteString]

isSpace ::

Char -> Bool

map ::
(a => b) -> [a]l -> [b]

map (3+) [3,2,7,5] = [6,5,10,8]

(8+) is another syntactic shortcut. When we make an infix function prefix by surrounding it
with parentheses, we can give it either argument to get a one argument function.
Iterating while conditionally performing an operation divides into two functions: one iteration
which selects the elements to operate on, one iteration to perform the operation. The latter uses
map again. The former uses filter. filter’s first argument is a boolean-valued function. filter filter ::
returns those elements of its second argument on which the first argument evaluates to True. (a -> Bool) -> [a] > [a]

filter (<0) [5,-2,-3,7,9,-1] = [-2,-3,-1]

There is a problem: we iterate once with filter, and once with map, twice the required
number. Actually, as the compiler evaluates functions when it wishes, it runs both conditional
and transformation during one iteration. Layering these functions adds no additional iterations.

We often use the index variable’s value in a loop.

for i =1 to 5
x[i] := x[i] + i;

end
The index is not available in map or filter. First rewrite the loop.

idx = {1,2,3,4,5};
for i =1 to b

x[i] := x[i] + idx[i]l;
end

This form doesn’t depend on the index variable, but we can only iterate over one list at a
time. One more rewrite finishes it.

idx = {1,2,3,4,5};
for i =1 to 5
y[il = (x[il, idx[il)
end
for i=1to b5
y[i] := (first(y[i]) + second(y[i]), second(y[il))
end

where first and second pick out those elements of our tuple. The second loop is a map.
The first one is common enough to deserve a name: zip. zip ::
zip fuses two lists item by item into a list of tuples; zip3 does the same for three lists. Their [l > [b] -> [(a, b)]
inverses unzip and unzip8 make lists of tuples into tuples of lists.
zip [1,2,3] [’a’,’b’,’c’] = [(1,’a’),(2,’b?),(3,’¢c’)]
unzip [(1,’a’),(2,’b’),(3,’¢c’)] = ([1,2,3],"abc")

zip’s arguments need not be the same length. It returns a list as long as the shortest of its
arguments, and discards all later elements. With zip the loop becomes

(map (\(x,y) -> xty) $ zip [3,2,7,5] [1..]) = [4,4,10,9]
($) is a useful operator in Haskell to save on parentheses. It obeys
a$bcd...=a®cd...)

We repeat ($) instead of layering parentheses as we layer function calls. ($) is a normal
function defined by

%) :: (a—=>b) >a—->b
f$x=1fx

Combining map and zip is so common that we also give it a name: zipWith, and zip With3
for three arguments.

(zipWith £ m n) = (map (\(x,y) > £ x y) $ zip m n)

The loop becomes
(zipWith () [3,2,7,5] [1..]) = [4,4,10,9]

Certain strange things become possible with these functions. Here are the Fibonacci numbers
(fibs =0 : 1 : zipWith () fibs (tail fibs)) = [0,1,1,2,3,5,8,13,...]

The third loop pattern iterates, using the result of its previous iteration in its next.

y = 0;
for i =1 to b

y ==y + x[il;
end

If we write this out mathematically it looks like

(((((0 +x1) +x2) + 3) + .%'4) + $5)

We give this a name, foldl. The first argument is the binary operation (+ in the expression
above); the second is the starting value (0 in the expression above, the initializing line y := 0
before that); the last is the list to fold.

It is called foldl instead of fold because we can group in the opposite direction

(w1 + (z2 + (23 + (24 + (25 +0)))))

to get foldr. Prefer foldr, for it uses less stack space. foldl must reach the end of the list then
work its way back. For finite lists,

foldl f z xs = foldr (\x y > f y x) z (reverse xs)
scanl works like a fold, but returns all intermediate states as a list.
(scanl (+) 0 [1..10]) = [0,1,3,6,10,15,21,28,36,45,55]

foldr is the proper structure for database access. ByteStrings again have their own definitions
of all these functions.

6 Files and Transput

Haskell’s transput functions appear deceptively simple: readFile, writeFile and appendFile for
files; getLine, putStr and putStrLn for the terminal. But their types...

readFile :: FilePath -> I0 String
writeFile :: FilePath -> String -> I0 ()
appendFile :: FilePath -> String -> I0 ()
getlLine :: IO String

putStr :: String -> I0 O

putStrLn :: String -> I0 O

() is the nil type, with one corresponding value, (). But what is I0? How do we get past it
to the strings underneath?
We threw away all concept of order and timing. What does

zipWith ::
(a ->b ->c) > [a] -> [b] —>
[c]

foldl ::
(a->b->a) ->a->[b] >a

scanl ::
(a->b->a) >a->[b] >
[al

k := readFile "a_file"
writeFile "a_file" k

do? Functions are guarunteed to be evaluated after their arguments, and nothing else, but
we enforce ordering with this: make functions depend on trivial evaluations, tokens passed from
other functions, as well as real data. Each function doing transput returns its result plus such a
token. IO hides this token.

Nomne of the functions accept I0; they only produce them. Haskell provides other functions to
link these together, correctly directing tokens and data. (>>) connects independent transput
events.

putStr "This " >> putStrLn "is a test."

putStr "This " :: I0 () returnsatokeninI0 (). (>>)forces putStrLn "is a test."
I0 (O to depend the token’s evaluation.
(>>=) connects transput events which are not independent by pushing the value of its first
argument to its second argument as well as resolving the tokens. To read the contents of a file,
then write them to a new file

readWrite infile outfile = readFile infile >>=writeFile outfile

(>>) and (>>=) only work on transput functions. To use them with pure functions, we lift
the pure function into the world of transput. return lifts single values into transput. We lift
functions by composing it with return.

return . (43) :: Integer -> I0 Integer
(.) composes functions, so
(f . g) x=1£ (g x)

If we made return operate on functions instead of values, we would have to write a separate
function for values. Composing functions is so easy that we save a name by only creating a
function to lift values.

Transput works for arbitrarily large files. Sacrificing order allows the Haskell compiler to
break transput into chunks as it sees fit.

We achieved transput only by restoring the line numbers to our code. Much of our code now
has lovely properties, but do they justify the complication of transput?

They do. Like repetition, we build functions over (>>), (>>=), and return to make transput
effortless. Also, transput is a value. We can manipulate it in tiny grains, or compose it into
larger structures. When we need transput, we use a grain just large enough for the purpose,
then fall back into orderless code. Distributed systems make this compelling: local transput has
its own line numbers independent of all other transput. Replacing global progression of state in
a program with local grains is a step akin to replacing GOTO with structured programming.

Like structured programming, we need constructs to make transput convenient. The library
Control.Monad defines analogs of the repetition functions: mapM, filterM, zip WithM, foldM.

mapM is an extension of (>>). To print each entry of a list,

printList x = mapM (putStrLn . show) x
printList [3.5, 1.22, 3e2] produces

3.5
1.22
300.0

10

(>>) ::
I0a->I0b->1I0Db

>>=) ::
I0a->(a->I0b) ->I0Db

return ::
a -> 10 a

filterM selects elements depending on transput. To let the user say yes or no to every
element of a list, then print those selected,

userSelect x = putStr ((show x) + " (y/n)? ") >> getline >>=return. (="y")
queryList x = filterM userSelect x >>=printList

filterM’s result is lifted into transput, since the decisions came from transput. Its result must
be fed on with (>>=). This is true for all the transput control structures.

printSquaresOfSelected x = filterM userSelect x
>>=mapM (\x -> putStrLn (show (x*x)))

We can use mapM getting results from transput. To return answers to a list of questions
posed to the user,

userResponse q = putStrLn g >> getLine
poseQuestions gs = mapM userResponse gs

zipWithM is the same as mapM but takes two lists which it fuses element by element.
zipWithM f a b = mapM (\(x,y) > f x y) $ zip a b

foldM allows dependence. To print a list of strings, letting the user turn printing on and off
by typing any character at the keyboard between lines,

printAndToggle True s = putStrLn s >> getLine >>=return.(="")
printAndToggle False s = getLine >>=return. (/:” ")

userIntersperse q = foldM printAndToggle True q

Two things are missing from this discussion of transput. The first is do notation, a transput
syntax that resembles sequences of commands in other languages. You should avoid it until you
are comfortable with transput in the notation here.

The second is abstracting the machinery that chains transput together. The resulting struc-
ture is called a “monad.” In category theory, the branch of mathematics which gave birth to
monads, they are connections between very different spaces that let you manipulate the far
space from the near one: construct a space where programs have the properties you want —
all functions log what they do; statements combine into backtracking searches a la Prolog; all
calculations are actually probability distributions — and lift constructions from familiar Haskell
into this space.

7 Command Line Arguments

Only handling commandline options now prevents us from writing simple shell utilities in Haskell.
getArgs in System.Environment returns a list of the program’s arguments. To insert line
numbers in all files passed as arguments,

insertNumbers 1ls = zipWith
(\x y => (show x + " " +H y)) [1..] 1s
processFile filename = readFile filename
>>=return.insertNumbers.lines
>>=mapM putStrLn
main = getArgs >>=mapM processFile

System.Environment also provides withArgs to test programs.

withArgs ["filel","file2"] main

11

filterM ::
(a => I0 Bool) -> [a] -> m [a]

zipWithM ::
(a =>b ->1I0 ¢c) -> [a] -> [b]
->m [c]

foldM ::
(a =>b ->1I0 a) ->a -> [b]
-> I0 a

getArgs ::
I0 [String]

withArgs ::
[String] -> I0 a -> I0 a

prints the contents of filel and file2 with numbers prepended to each line.

This introduction handled commandline arguments and user interaction directly. In general
you should use Haskell’s versions of getopt and readline under System.Console. Learning
enough to use these libraries is a good next exercise.

12

