BERALL: Towards Generating Retrieval-augmented State-based
Interactive Fiction Games

Rachel Chambers and Naomi Tack and Eliot Pearson
and Lara J. Martin and Francis Ferraro
{rchambel,ntackl,eliotpl, laramar, ferraro}@umbc.edu
University of Maryland, Baltimore County
Baltimore, MD, USA

Abstract

Interactive fiction (IF) games are a genre of
games where the player interacts with the fic-
tional world via text-based commands, solving
puzzles primarily by exploring the world and
using items they collect along the way. Al-
though there has been much work on playing
IF using Al, there is relatively less work on
the creation of such games using Al. While
large language models (LLMs) have made the
generation of text far easier in the past sev-
eral years, they still struggle to generate the
highly-structured and consistent story worlds
that one might see in IF. We present a three-
part system called BERALL, which generates
unique text adventure games by 1) maintaining
the current state of the story world, 2) using
retrieval-augmented generation (RAG) to cre-
ate relevant location descriptions, and 3) com-
bining these components to create a coherent
experience for the player. Our approach is ef-
fective at generating room and story descrip-
tions from the setting and knowledge graphs,
demonstrating the potential benefits of LLMs
in IF generation. We find challenges remain
in maintaining the current game state due, in
part, to LLMs not understanding the impact of
changes to the knowledge graph generated by
the player’s command.

1 Introduction

Interactive fiction (IF) is defined as a computer
game presented and played primarily through text
commands. Early and well-known forms of interac-
tive fiction are text adventure games (TAGs). TAGs
are played by presenting a description of the cur-
rent location or room, with details about objects
and characters in that location. Players then inter-
act with the world by issuing commands usually in
the form of “<verb> <noun>,” such as “go west”
or “take apple.” The game state is maintained and
updated as the player changes location, adds items
to their inventory, and interacts with characters.
TAGs resemble a gamified novel, ending either at

the user’s discretion or when a win condition has
been reached.

Despite their seemingly simplistic text entry,
TAGs have a combinatorial set of potential actions
with only a small subsection of commands actu-
ally being valid (Hausknecht et al., 2019). The
generation of these games is even more difficult
since it is essentially generating a simulator for the
player (Montfort, 2006). On top of this, TAGs gen-
erally involve puzzles or riddles for the player to
solve and can easily grow to large, sprawling plots
containing many characters. This creates intellec-
tual gameplay that is hard for computer-generated
text to replicate: not only must the model create
puzzles but it must also keep track of a larger plot
and cast of characters. TAGs can also act as con-
trollable testbeds for coherence, plot generation,
and prompting development. However, the quality
of art and expression that comes with TAGs, as
well as the intellectual stimulation they provide,
are challenging for NLP techniques to replicate.

Most TAGs do not use automatic text generation,
and all the text is written and coded by hand in be-
spoke languages such as Inform 7 (Nelson, 2006).
This contributes to the significant amount of time
and effort to write, code, and debug a single game.
Al-designed games that involve language modeling
could create a new and interesting experience each
time. Fairly recently, we have seen in interest in
Al-generated IF thanks to games like AI Dungeon'
that are built upon large language models. How-
ever, even large language models (LLMs) such as
ChatGPT or LLaMA are not without flaws, as previ-
ous research into story generation (See et al., 2019;
Simon, 2024) has shown how prompting with out-
of-the-box models can result in text that quickly
loses coherence.

We present a three-stage constrained neurosym-
bolic system that enforces LLLMs to stay on track
and generate IF with consistent game worlds. Our

"https://play.aidungeon.com/


https://play.aidungeon.com/

system, which we name BERALL (BERT + RAG
LLaMA; pronounced barrel), has one system
to "translate" the player’s action into a parsed
command and two LLMs to structure the game
world. The first LLM is an encoder-decoder model
(BERT2BERT) that is used to keep track of player
actions using a knowledge graph based off of Am-
manabrolu and Riedl (2021). The other LLM is
an decoder-only model (LLaMA 2) that generates
location descriptions using retrieval-augmented
generation (RAG) on the knowledge graph and
play history. Both LLMs work together to ensure
that the generated game experience is consistent
throughout the entire playthrough. We believe that
our proof-of-concept system shows the potential
for future work in RAG-based IF generation.

We begin the paper by highlighting previ-
ous work in TAG/IF generation and the use of
knowledge-augmented LLMs for story and dialog
generation. Section 3 describes the data BERALL
uses and Section 4 discusses the details of its archi-
tecture. The results obtained through both ROUGE
metrics and qualitative analysis are discussed in
Section 5, and we end on a discussion of future
directions. All code can be found on our Github?.

2 Related Work

2.1 Interactive Fiction Generation

Some of the earlier work in interactive fiction gen-
eration focused on the automatic control of human-
written plot points—a task known as drama man-
agement (Nelson and Mateas, 2005; Yu and Riedl,
2012). These types of systems were constrained
to only tell stories about whatever was pre-written.
Later on, Cychosz et al. (2017) developed a way of
using classification techniques to pick relevant IF
choices from an existing dataset.

Once language models became good enough
to generate the text of the game, they began to
be used to generate quests (Urbanek et al., 2019;
Virtinen et al., 2024) or even piece together an en-
tire game (Ammanabrolu et al., 2020; Calderwood
et al., 2022; Wang et al., 2024).

2.2 Knowledge-Graph—-Augmented Story
Generation

While there have been a multitude of other ways to
augment language models for story and IF gener-
ation (such as with commonsense reasoning data

https://github.com/r-chambers/
TextAdventureGenerator

(Martin, 2021; Peng et al., 2022; Chen et al., 2023);
integrating planning (Tang et al., 2022; Treynor and
McCoy, 2024; Simon, 2024); or using other meth-
ods for retrieval (Urbanek et al., 2019; Fan et al.,
2021)), we will focus on augmentation techniques
involving knowledge graphs such as ours.

Knowledge graphs can structure data so that
it is both easier for LLMs to use and easier for
people to interpret. Researchers have used com-
monsense knowledge graphs to make more believ-
able story continuations (Alabdulkarim et al., 2021;
Chen et al., 2023) as well as have generated knowl-
edge graphs generate and keep track of quests
in roleplaying games (Ashby et al., 2023). Am-
manabrolu et al. (2020) have automatically created
IF games by extracting knowledge graphs from ex-
isting stories. In our work, we use a knowledge
graph to maintain the world state of the IF game
and "translate" the graph into descriptions of lo-
cations, essentially implementing a version of the
Parser/Describer system proposed by Todd et al.
(2022).

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) is a type of neurosymbolic system
that grounds the text generation of large language
models with organized external information such as
knowledge graphs. Although historic RAG systems
finetuned pre-trained models on relevant retrieved
information (Lewis et al., 2020), modern RAG uses
additional corpora to inform a pre-trained model
without finetuning. For example, Wen et al. (2023)
have used retrieval to find similar sets of stories
and then iteratively generated an “evidence forest”
to fill in plot holes and rewrite the story. Like their
work, our system uses a dynamic knowledge graph
to prompt the LLM without finetuning.

3 Dataset

The data input into our models is taken from around
500 transcripts of Club Floyd playthroughs of
TAGs?, provided directly by Jacqueline Lott (Lott,
2023), as well as the JerichoWorld dataset of knowl-
edge graphs and room descriptions from many pop-
ular games (Ammanabrolu and Riedl, 2021). The
Club Floyd transcripts were parsed, chat logs and
bot commands removed, and all commands and
output exported to a JSON document. This was
concatenated with the JerichoWorld dataset, parsed
to solely contain data about the command and the

‘https://www.allthingsjacq.com/
interactive_fiction.html


https://github.com/r-chambers/TextAdventureGenerator
https://github.com/r-chambers/TextAdventureGenerator
https://www.allthingsjacq.com/interactive_fiction.html
https://www.allthingsjacq.com/interactive_fiction.html

output, and given to our LLaMA 2+RAG model as
the RAG documents.

3.1 About JerichoWorld

The JerichoWorld dataset contains information as-
sociated with game states, organized into n-tuples
which are aggregated into a knowledge graph (Am-
manabrolu and Riedl, 2021). These knowledge
graphs reflect attributes of the state in a seman-
tic way which makes them more suitable as in-
puts for natural language models, while providing
a more computationally efficient approach. Am-
manabrolu and Riedl (2021) create their knowledge
graph-based prediction model using a fine-tuned
sequence-to-sequence model. Their model is warm-
started with BERT’s original weights as an bidirec-
tional encoder and GPT-2’s original weights as an
autoregressive decoder. The model’s input is a
room description, a knowledge graph of that room,
and a command. Changes to the knowledge graph
after the command executes is presented to the
user and used as input in the next pass through the
model. Their model’s generation uses beam search
to decode token by token until an end-of-sequence
token is produced. Ammanabrolu and Riedl (2021)
produced the JerichoWorld dataset which contains
room descriptions, a knowledge graph for each de-
scription, and the knowledge graph after an action
is taken.

4 BERALL System Design

BERALL consists of a user interface and two
LLMs acting as a game-play state tracker and a
translator between state changes and commands to
room prompts. The BERT2BERT model handles
these game states and the LLaMA 2 model handles
the translation. We provide details of each model
below. Figure 1 shows an overview of command
flow.

The BERT2BERT models were trained and run
on Google Colab. A High-RAM A100 GPU
is needed to fine-tune and run the BERT-Base-
Uncased BERT2BERT model; a T4 GPU is needed
for the BERT2BERT model trained on either BERT-
Medium or BERT-Tiny.

4.1 Knowledge Graph Generation

Since the model is taking in a separate context (the
player’s command) in addition to generating the
knowledge graph, we require our language model
to have an encoder-decoder architecture.

Parsed Command— .
BERT2BERT

< Graph

Player

Player Interface

|——Command + Knowledge Graph—p,

Llama 2+Rag

Figure 1: BERALL system architecture. Players ini-
tially receive a setting and they are able to enter any
command they want. The command is parsed by the Ul
and sent with the current setting to the BERT2BERT
state model. The BERT2BERT state model creates
a new graph based on that command. The LLaMA
2+RAG model takes this graph and the game history
and generates a setting based on the command.

We decided to warm-start a BERT2BERT
model—using BERT for both the encoder and the
decoder, following Rothe et al. (2020). When
warm-starting an encoder, the architecture of the
new encoder and the pre-trained checkpoint are
compared, and all layers that exist in both the en-
coder and checkpoint are copied over and random
weights are assigned to any layers that occur in the
encoder but not the checkpoint. The warm-started
model can then be fine-tuned on a task, saving
hours in computation time while also providing
better results then training a smaller model on the
task directly. This model was selected due to its
decent performance on translation tasks, which our
knowledge graph generation task essentially is. Fur-
thermore, warm-starting easily-accessible BERT
models fit our constraints on compute power.

By having BERT as both the encoder and the
decoder, it also enables the sharing of weights
between encoder and decoder, which halves the
model size and still achieves similar performance.
Our final BERT2BERT implementation does not
use this weight sharing, as BERT2BERT models
that do not share weights achieved slightly better
performance, as seen in Tables 1 and 2.

Our BERT2BERT model takes in the command
entered and the previous knowledge graph to gen-
erate the updated graph (Figure 1: BERT2BERT).
We represent the game state in a knowledge graph
consisting of a list of 3-tuples. Each tuple repre-
sents information about either the current room,
items in the room, items the player has, or ex-
its from the room; for examples see Appendix B.
Ammanabrolu and Riedl (2021) describe several



approaches for creating and updating knowledge
graphs by describing the current state of a TAG.
Inputs to the model seen in Ammanabrolu and
RiedlI (2021) contained the previous room descrip-
tion, the previous knowledge graph, and the most
recent command, outputting the new knowledge
graph. However, experimentation with our model
found that this input often exceeded the 512 token
limit for our BERT2BERT model and created re-
dundant output during generation. For this reason
our model omits the longer room description, only
taking in the knowledge graph and the command.
This produces the intended output: a knowledge
graph representing the state of the game after the
command occurs. The BERT2BERT model was
warm-started using BERT-Base-Uncased from the
Transformers library*. Models warm-started with
BERT-Medium and BERT-Tiny, respectively, were
also created as baselines. All models used beam
search (width = 4) rather than greedy decoding.

4.2 Setting Generation

Recent work examining LLLMs and conversational
games found that GPT models worked well with re-
call and game flow while LLaMA models became
confused more often (Qiao et al., 2023). How-
ever, this approach utilized the model as a player
rather than as the generator of the game. Zhu et al.
(2023) found that LLaMA 2 performed better than
other LLMs when generating stories, but needed
more specific prompts. We hypothesize that using
the model as a generator, along with providing ad-
ditional context in the prompt, will help address
these recall and coherence issues. Therefore, we
decided to use LLaMA 2 (Touvron et al., 2023),
augmented with Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020). Specifically, we used
the 13b version of LLaMA 2, available on Hugging
Face, as the base model for generating prompts
(Touvron et al., 2023).

This model generates room descriptions using
the knowledge graph changed by a user’s command
(Figure 1: LLaMA 2+RAG). We used the collected
data, as described in Section 3, as the input docu-
mentation for our LLaMA 2+RAG model. In our
RAG pipeline, implemented with LangChain, the
JerichoWorld and Club Floyd playthrough docu-
ments are vectorized and indexed for retrieval. We
then used LangChain’s Retrieval QA library with

*https://huggingface.co/blog/
warm-starting-encoder-decoder

out-of-the-box LLaMA 2, which was given the re-
trieved playthrough. The LLaMA 2+RAG system
is then prompted with the generated knowledge
graph from the BERT2BERT model and the com-
mand from the player. By providing LLaMA 2 with
context-specific prompts using RAG, the model
was able to produce expected room descriptions in
a similar format to human generated TAGs. We
found that the LLaMA 2 model without RAG did
better than expected, but the output of the LLaMA
2+RAG model was noticeably more similar in writ-
ing style to preexisting TAGs.

Scene initialization begins with a setting-
knowledge graph pair, taken from JerichoWorld,
presented the user. After the command is entered,
the knowledge graph and command are presented
to the BERT2BERT model. This model outputs a
new knowledge graph changed by the command,
and this graph and all previous scene descriptions
and graphs are input into the LLaMA model. The
next scene description is generated entirely on the
fly, without further script or plot direction.

We keep the initial prompt constant for each
instance of the system to produce the room descrip-
tion, but provide the previous knowledge graphs
and model outputs as context throughout game
progression as seen in Figure 2. This affords in-
struction, context and a few-shot base from which
to generate relevant room descriptions. Several
prompts were considered and those shown in Fig-
ure 2 produced the most coherent and creative de-
scriptions. Additional prompt tuning could poten-
tially improve the room descriptions.

4.3 User Interface

The player interface allows the user to easily under-
stand how to give the game commands (Figure 1).
We randomly select a starting graph and room de-
scription from a sub-selection of the JerichoWorld
dataset to present to the player. Players then input
their desired command and the game begins. As
play continues the user is prompted for the next
command after the model generates and displays
output.

The command from the user as well as the cur-
rent graph is passed to the BERT2BERT model,
which then generates a new graph. The new
graph is appended to the output generated by previ-
ous generations of the BERT2BERT and LLaMA
2+RAG models and passed to the LLaMA 24+RAG
model to generate the next room description or set-


https://huggingface.co/blog/warm-starting-encoder-decoder
https://huggingface.co/blog/warm-starting-encoder-decoder

ting. This allows both models to be stateless and
maintains the entire game state in the game history.

The game does not possess a win condition or
point tracking system and is more akin to a tex-
tual novel’s succession of scenes than a full game.
Play only stops when the user enters the "quit"
command.

5 Results

5.1 Automated Evaluation

Initial results showed that the LLaMA 2+RAG
model preformed well in generating room descrip-
tions based off the provided prompt and graphs.
The outputs of this model were coherent and it pro-
vided plausible descriptions of the results of the
user’s actions, most of the items, and the exits of
the room. Examples can be seen in Appendix C,
where realistic colloquial dialog can been seen in
the model’s settings.

Initial results of the sequence-to-sequence
knowledge graph generation model were less im-
pressive, as can be seen in Appendix B. When ran
after fine-tuning, all three versions of the model
would create output in the correct graph format.
When given knowledge graphs from JerichoWorld
as inputs, the BERT2BERT model output some-
times had little to do with the input; however, when
we input the new BERT2BERT generated graph
into the model, the output is nearly identical to the
input. Examples of knowledge graph generation
can be found in Appendix B.

The recall, precision, and F1 were computed
for all three iterations of the sequence-to-sequence
model, shown in Tables 1 and 2. All three models
showed poor performance on these measures, but
improvement was generally seen as the model size
increased. BERT-Base-Medium without weight-
sharing had the best performance metrics overall
and so the BERT2BERT model based on Bert-Base-
Medium was used in the final BERALL system.
BERT-Base-Uncased without weight-sharing can
also be used with similar results.

5.2 Subjective Evaluation

Playing the game produced natural-sounding, ap-
propriate output as show in Appendix C. Players
going east or west was described, although the state
does not always change locations, likely due to lim-
itations with the knowledge graph generation. An
example of the BERT2BERT model not always
changing locations can be found as input-output

ROUGE | ROUGE | ROUGE

Precision | Recall F1
BERT-Tiny 3.4 9.3 4.5
BERT-Medium 10.7 17.2 12.0
BERT-Base-Uncased | 13.2 17.8 13.0

Table 1: BERT2BERT with weight sharing, evaluated
on the test split of (Ammanabrolu and Riedl, 2021).

ROUGE | ROUGE | ROUGE

Precision | Recall F1
BERT-Tiny 6.4 13.1 7.8
BERT-Medium 12.2 18.2 13.7
BERT-Base-Uncased | 10.3 18.2 11.6

Table 2: BERT2BERT without weight sharing, evalu-
ated on the test split of (Ammanabrolu and Riedl, 2021).

pair B.4 in Appendix B. However, the LLaMA
2+RAG model responded to commands to examine
items, go directions, and talk to characters with
appropriate responses. Occasionally, option menus
for the user were printed despite the prompt speci-
fying not to print options. Regardless, the options
were interesting and relevant to the setting.

6 Discussion & Future Work

Data preparation presented an obstacle, as implied
exits had to be added to the knowledge graphs.
Additionally, exits parsed from the JerichoWorld
dataset had to account for multiple ways of moving
between locations in a game.

Prompt tuning has been shown to help models
perform better in zero- and few-shot learning envi-
ronments (Lester et al., 2021; Li and Liang, 2021;
Hu et al., 2022; Chen et al., 2022; Ajwani et al.,
2024), so further considerations on how to phrase
prompts for TAGs is recommended.

Future work could explore using the LLaMA
24+RAG model to start the TAG using a larger se-
lection of games. This would allow the player to
choose what kind of adventure they would like to
have and highlight the ability of the LLM to gener-
ate games from many different starting points.

Longer-term goals could consider supplement-
ing the RAG documents with additional interac-
tive stories, potentially utilizing Choose Your Own
Adventure-esque books to give the model further
creative works to draw from. This would involve
dataset curation and significant parsing to produce
the related graphs. Another consideration could
be fine-tuning the BERT2BERT model to generate
knowledge graphs that are more closely related to
the input. Altering the fine-tuning with time-series



commands and updated graphs might prove to be
effective.

As mentioned above, the prompt provided to the
BERT2BERT model can also be expanded and im-
proved via few-shot examples. This may produce
an output more related to the prompt but may add
to the struggle of identifying object relationships.
Considering the strategies used in models which
predict the next actions given a video input might
aid understanding relationships between objects
and places. Given these models’ more complete
grasp of an object-place relationship, they might
lend themselves to accurate generation of a knowl-
edge graph.

7 Conclusion

We present our system, BERALL, which adapts
LLM:s to generate TAGs. We utilize a user interface
to handle connecting the knowledge graph model,
BERT2BERT, and the room description model,
LLaMA 2+RAG, to progress the game. LLMs
show promising results for generating playable
TAGsS, but also indicate room for improvement.
LLMs prove to be challenged when asked to make
changes to a game state. This initial development
shows great potential for generating room descrip-
tions with minimal adjusting of existing LLMs.
This is promising as it reduces the environmen-
tal impact of adapting models to the storytelling
domain. BERALL highlights the power and limita-
tions of LLMs when it comes to generating interac-
tive fiction.

Acknowledgements

We would like to thank our classmate Patricia Dela-
fuente for her advice on using the LLaMA 2+RAG
model. We would also like to thank Jacqueline Lott
and Club Floyd for their many transcripts, without
which our RAG model would not have had such
impressive results.

References

Rohan Deepak Ajwani, Zining Zhu, Jonathan Rose, and
Frank Rudzicz. 2024. Plug and Play with Prompts: A
Prompt Tuning Approach for Controlling Text Gen-
eration. In Deployable AI Workshop at AAAI-2024.

Amal Alabdulkarim, Winston Li, Lara J. Martin, and
Mark O. Riedl. 2021. Goal-Directed Story Gen-
eration: Augmenting Generative Language Mod-
els with Reinforcement Learning. arXiv preprint
arXiv:2112.08593.

Prithviraj Ammanabrolu, Wesley Cheung, Dan Tu,
William Broniec, and Mark O. Riedl. 2020. Bringing
Stories Alive: Generating Interactive Fiction Worlds.
AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE), 16(1):3-9.

Prithviraj Ammanabrolu and Mark Riedl. 2021. Mod-
eling worlds in text. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks, volume 1.

Trevor Ashby, Braden Webb, Gregory Knapp, Jackson
Searle, and Nancy Fulda. 2023. Personalized Quest
and Dialogue Generation in Role-Playing Games:
A Knowledge Graph- and Language Model-based
Approach. In ACM Conference on Human Factors in
Computing Systems (CHI), pages 290:1-290:20.

Alex Calderwood, Noah Wardrip-Fruin, and Michael
Mateas. 2022. Spinning Coherent Interactive Fiction
through Foundation Model Prompts. In International
Conference on Computational Creativity (ICCC).

Jiaju Chen, Yuxuan Lu, Shao Zhang, Bingsheng Yao,
Yuanzhe Dong, Ying Xu, Yunyao Li, Qianwen Wang,
Dakuo Wang, and Yuling Sun. 2023. FairytaleCQA:
Integrating a Commonsense Knowledge Graph into
Children’s Storybook Narratives. arXiv preprint
arXiv:2311.09756.

Yulong Chen, Yang Liu, Li Dong, Shuohang Wang,
Chenguang Zhu, Michael Zeng, and Yue Zhang.
2022. AdaPrompt: Adaptive model training for
prompt-based NLP. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
6057-6068, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Margaret Cychosz, Andrew S. Gordon, Obiageli
Odimegwu, Olivia Connolly, Jenna Bellassai, and
Melissa Roemmele. 2017. Effective Scenario De-
signs for Free-Text Interactive Fiction. In Inter-
national Conference on Interactive Digital Story-
telling (ICIDS), volume 10690 of LNCS, page 12-23.
Springer International Publishing.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2021. Augmenting Transformers with KNN-
Based Composite Memory for Dialogue. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 9:82-99.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Coté, and Xingdi Yuan. 2019. In-
teractive Fiction Games: A Colossal Adventure.
AAAI Conference on Artificial Intelligence (AAAI),
34(4):7903-7910.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong
Sun. 2022. Knowledgeable prompt-tuning: Incor-
porating knowledge into prompt verbalizer for text
classification. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2225-2240,


https://doi.org/10.48550/arXiv.2404.05143
https://doi.org/10.48550/arXiv.2404.05143
https://doi.org/10.48550/arXiv.2404.05143
https://doi.org/10.48550/arXiv.2112.08593
https://doi.org/10.48550/arXiv.2112.08593
https://doi.org/10.48550/arXiv.2112.08593
https://doi.org/10.1609/aiide.v16i1.7400
https://doi.org/10.1609/aiide.v16i1.7400
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/hash/1f0e3dad99908345f7439f8ffabdffc4-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/hash/1f0e3dad99908345f7439f8ffabdffc4-Abstract-round1.html
https://doi.org/10.1145/3544548.3581441
https://doi.org/10.1145/3544548.3581441
https://doi.org/10.1145/3544548.3581441
https://doi.org/10.1145/3544548.3581441
https://computationalcreativity.net/iccc22/papers/ICCC-2022_paper_65.pdf
https://computationalcreativity.net/iccc22/papers/ICCC-2022_paper_65.pdf
https://doi.org/10.48550/arXiv.2311.09756
https://doi.org/10.48550/arXiv.2311.09756
https://doi.org/10.48550/arXiv.2311.09756
https://doi.org/10.18653/v1/2022.findings-emnlp.448
https://doi.org/10.18653/v1/2022.findings-emnlp.448
https://doi.org/10.1007/978-3-319-71027-3_2
https://doi.org/10.1007/978-3-319-71027-3_2
https://doi.org/10.1162/tacl_a_00356
https://doi.org/10.1162/tacl_a_00356
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158

Dublin, Ireland. Association for Computational Lin-
guistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Advances in Neural In-
formation Processing Systems, volume 33, page
9459-9474, Vancouver, Canada. Curran Associates,
Inc.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Jacqueline Lott. 2023. Personal Communication.

Lara J. Martin. 2021. Neurosymbolic Automated Story
Generation. Phd, Georgia Institute of Technology,
Atlanta, GA.

Nick Montfort. 2006. Natural Language Generation and
Narrative Variation in Interactive Fiction. In AAAI
Conference on Artificial Intelligence (AAAI), page
45-52.

Graham Nelson. 2006. The IF Theory Reader, chapter
Natural Language, Semantic Analysis, and Interac-
tive Fiction.

Mark J. Nelson and Michael Mateas. 2005. Search-
Based Drama Management in the Interactive Fiction
Anchorhead. AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE),
1(1):99-104.

Xiangyu Peng, Kaige Xie, Amal Alabdulkarim,
Harshith Kayam, Samihan Dani, and Mark Ried]l.
2022. Guiding neural story generation with reader
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 7087-7111,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Dan Qiao, Chenfei Wu, Yaobo Liang, Juntao Li,
and Nan Duan. 2023. GameEval: Evaluating
LLMs on Conversational Games. arXiv preprint
arXiv:2308.10032.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264-280.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
Massively Pretrained Language Models Make Bet-
ter Storytellers? In Conference on Computational
Natural Language Learning (CoNLL), page 843-861,
Hong Kong, China. Association for Computational
Linguistics.

Nisha Simon. 2024. Large Language Models are In-
coherent Storytellers. In Canadian Conference on
Artificial Intelligence (CAIAC), Online. Canadian Ar-
tificial Intelligence Association.

Chen Tang, Zhihao Zhang, Tyler Loakman, Chenghua
Lin, and Frank Guerin. 2022. NGEP: A graph-based
event planning framework for story generation. In
Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 186—193, Online only. Association for
Computational Linguistics.

Graham Todd, Zegang Cheng, Yifan Liu, and Julian
Togelius. 2022. Towards Knowledge-Graph Con-
strained Generation for Text Adventure Games. In
Wordplay Workshop at NAACL 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open Founda-
tion and Fine-Tuned Chat Models. arXiv preprint
arXiv:2307.09288.

Nicholas Sloss Treynor and Joshua McCoy. 2024. Col-
lege Ruled: A Pathfinding Approach to Generative
Storytelling. In International Conference on the
Foundations of Digital Games (FDG), FDG ’24, page
15:1-10, Worcester, MA, USA. Association for Com-
puting Machinery.


https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://smartech.gatech.edu/handle/1853/64643
https://smartech.gatech.edu/handle/1853/64643
https://nickm.com/if/aaai_06_montfort.pdf
https://nickm.com/if/aaai_06_montfort.pdf
https://doi.org/10.1609/aiide.v1i1.18723
https://doi.org/10.1609/aiide.v1i1.18723
https://doi.org/10.1609/aiide.v1i1.18723
https://doi.org/10.18653/v1/2022.findings-emnlp.526
https://doi.org/10.18653/v1/2022.findings-emnlp.526
http://arxiv.org/abs/2308.10032
http://arxiv.org/abs/2308.10032
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://caiac.pubpub.org/pub/3w466klp/release/1
https://caiac.pubpub.org/pub/3w466klp/release/1
https://aclanthology.org/2022.aacl-short.24
https://aclanthology.org/2022.aacl-short.24
https://openreview.net/forum?id=eavkBOy_DiJ
https://openreview.net/forum?id=eavkBOy_DiJ
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3649921.3649994
https://doi.org/10.1145/3649921.3649994
https://doi.org/10.1145/3649921.3649994

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktischel, Douwe Kiela, Arthur Szlam, and Ja-
son Weston. 2019. Learning to Speak and Act in a
Fantasy Text Adventure Game. In Conference on Em-
pirical Methods in Natural Language Processing and
the International Joint Conference on Natural Lan-
guage Processing (EMNLP-1JCNLP), page 673683,
Hong Kong, China. Association for Computational
Linguistics.

Susanna Virtinen, Perttu Hamaldinen, and Christian
Guckelsberger. 2024.  Generating Role-Playing
Game Quests With GPT Language Models. IEEE
Transactions on Games, 16(1):127-139.

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan,
Marc-Alexandre Coté, Peter Clark, and Peter Jansen.
2024. Can Language Models Serve as Text-Based
World Simulators? In Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Bangkok,
Thailand. Association for Computational Linguistics.

Zhihua Wen, Zhiliang Tian, Wei Wu, Yuxin Yang, Yanqi
Shi, Zhen Huang, and Dongsheng Li. 2023. GROVE:
A Retrieval-augmented Complex Story Generation
Framework with A Forest of Evidence. In Findings
of the Association for Computational Linguistics:
EMNLP, page 3980-3998, Singapore. Association
for Computational Linguistics.

Hong Yu and Mark O. Riedl. 2012. A Sequential Rec-
ommendation Approach for Interactive Personalized
Story Generation. In International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS),
volume 1, page 71-78.

Hanlin Zhu, Andrew Cohen, Danqing Wang, Kevin
Yang, Xiaomeng Yang, Jiantao Jiao, and Yuandong
Tian. 2023. End-to-end story plot generator. arXiv
preprint arXiv:2310.08796.

A Prompt for Setting Generation

Below, in Figure 2, is the prompt that was used for
generating the room descriptions using LLaMA 2.


https://doi.org/10.18653/v1/D19-1062
https://doi.org/10.18653/v1/D19-1062
https://doi.org/10.1109/TG.2022.3228480
https://doi.org/10.1109/TG.2022.3228480
https://doi.org/10.48550/arXiv.2406.06485
https://doi.org/10.48550/arXiv.2406.06485
https://doi.org/10.48550/arXiv.2310.05388
https://doi.org/10.48550/arXiv.2310.05388
https://doi.org/10.48550/arXiv.2310.05388
http://dl.acm.org/citation.cfm?id=2343586
http://dl.acm.org/citation.cfm?id=2343586
http://dl.acm.org/citation.cfm?id=2343586
http://arxiv.org/abs/2310.08796

<s>[INST] <<SYS>>

Convert graphs into the output of a text adventure game, like Zork.
Be artful and expressive.

Always use second person.

Do not give the user any choices about what to do next.

Do not tell the user how to enter the next command.

The first part of the graph will be the command in the format
"command’, "is’, ' {{ command }}’.

For the ’"use {{ item }}’ command, describe the user using the item.

For the ’"take {{ item }}’ command, describe the user taking the item.

For the ’"talk to {{ person }}’ command, describe the user talking to the
person and the conversation they have.

The graph will have ’you’, 'in’, ’'{{ room name }}’ representing the room
the player is in.

The graph will also have items in the room, represented by
"{{ item name }}’, ’'in’, ’'{{ room name }}’.

The player will also have inventory items, represented by
"you’, "have’, ’'{{ item name }}’.

Do not mention the inventory items in the text.

If the player does not have an item in their inventory, then they can’t
use that item via the ’'use {{ item }}’ command.

Finally, exits to the current room will be in the format
"{{ room name }}’, ’'is’, ' {{ direction }}’.
Mention all the exits of a room and their directions.

Here are examples of converting graphs to output:
((Graph and Output pairs, ommited for brevity)) <</SYS>>
{{ [[’/command’, ’'is’, ’examine map’],

[you’, ’"in’, ’'Captain’s Cabin’],

[map’, ’"in’, ’'Captain’s Cabin’],

[/ Captain’s chair’, ’'in’, ’Captain’s Cabin’],
[painting’, ’'in’, ’Captain’s cabin’],

["desk’, ’'in’, ’Captain’s cabin’],

['Deck’, ’'is’, 'east’]] }} [/INST] </s>

<s> [INST]

((Previous Graph + Output pairs are appended here after
generation))

[/INST] </s>

Figure 2: Prompt provided to the LLaMA 2 model for room description generation. Template variables are in curly
brackets. Line breaks and red coloring for template variables were added for readability in the paper.

B Example Graphs Closet’], [”Chief’s office”, ’is’, ’east’]]
output: [[’you ’,have ’,flashlight’], ["you ’,in

B.1 *hall’], ["hall ’,’is *,’south’], ["hall outside elevator

. ) ’Jis 7 east’ ]

input: [[’command’, ’is’, ’east’]], ['you’,

’have’, ’piece of white paper’], ['you’,

2

’in’, ’Closet’], [’small black pistol’, ’in’,



B.2

input: [[Ccommand’, ’is’, ’east’], ['Be-
hind House’, ’is’, ’east’], ['Forest Path’,
’is’, ’north’], ["West House’, ’is’, ’west’]]

output: [['grass ’,’in ’,’forest pathway’], [’empty
stone bird bath ’in ’,forest pathway’], ['you
> have ’large iron key’], ['you ’, have ’, pewter
mug’], ["trees *,’in ’, forest pathway’], ['birds ’,’in
> forest pathway’], [’exits *,’in ’,’forest pathway’],

[’you ’,have ’,’bunch of bananas’], ['ferns ’,in
> forest pathway’], [’sky ’,’in ’,’forest pathway’],

[’you ’)in ’ forest pathway’], [’forest pathway
>Jis ) west’], ['post office’, ’is ’,east’]]

B.3

input: [[’command’, ’is’, ’south’], ['you’,

’in’, ’Castle’], [’jet black sword’, ’in’, ’The
Dark EIf’], ["The Dark EIf’, ’in’, ’Castle’],
['you’, ’have’, ’fine Pentarian sword’], ['Cas-
tle Entrance’, ’is’, ’south’], ['Main Hall’,
’is’, ’north’], [’Sitting Room’, ’is’, ’east’]]
output: [[’you ’,)in ’,forbidding castle’], ["you
> have ’,’large cardboard box’], [’castle door ’,’in
> forbidding castle’], ['walls ’,in ’,forbidding
castle’], [’scrub ’,in ’, forbidding castle’], ['you
> have ’,’small screwdriver’], ['you ’,’have ’,’large
iron key’], [you ’,’have ’,pewter mug’], [ exits
>,in ) forbidding castle’], ["you ’,’have ’,’bunch
of bananas’], ["you ’,have ’,’small silver bell’],
[‘castle ’,’in ’,’forbidding castle’], [’sky ’,’in ’, for-
bidding castle’]]

B.4

input: [[’command’, ’18, *west’ ]
['you’,’have’,’sword’], ['you’,in’,’shadow
armory’], [light’,)in  ’’shadow armory’],

[’stones’,’ in’,’shadow armory’], ["’you’, have’, bas

- relief’], [’shadow weapons’,’in’,’shadow
armory’], [’stairs’,’in’,’shadow ar-
mory’], ['you’, have’,armor and  silks’],
[’bas - relief’,’in’,’shadow armory’],
[’stairs’,’in’,’shadow armory’], ["undy-
ing garden’,’is’,’north’], [’silent sym-

phony’,’is’,west’], [’ moonlit chamber’,’is’,’up’]]
output: [['you’, have’,’armor and silks’],
[’you’,)in’,’shadow armory’], [’light’,’in’,’shadow
armory’], [’stones’,’in’,’shadow armory’],
['you’,have’ ) porcelain  mask’], [’shadow
weapons’,’in’,’shadow  armory’], ['tasseled
pommel’,’in’,’bronze - hilted dagger’], ['white
tassel’,’in’’bronze - hilted dagger’], [’bas

- relief’,in’,’shadow armory’], [’stairs’,in
’’shadow armory’], ['undying garden’,’is’, north’],
[’silent symphony’,’is’,’west’], ['moonlit cham-
ber’,is’, up’]]

C Example Playthrough

NIGHT AT THE COMPUTER CENTER

An Interactive Nocturnal Chase

Copyright (c) 1996 by bonni mierzejewska.

Release 1/ Serial number 961118 / Inform v1502
Library 5/12

Standard interpreter 1.0

Computer Site: This is the computer site. You
know, half a dozen PCs, couple of Macs, a printer
table, the desk at which you write that interactive
fiction game instead of study. An internet router
hums quietly in the corner.

The door is northeast.

[The output generated by the model starts here.
Text in bold are commands input by the player.]
Please enter a command: examine pcs

You find yourself in a computer site filled with
various machines and gadgets. A desk with a
mouse and a mac lies nearby, while a sticker on the
monitor catches your eye. You notice a printer table
with a laser printer and a stack of papers. A Uggs
manual rests on the desk, and you spot a compile
game icon on the computer. The computer itself
sits on a desk, surrounded by icons for lpr, telnet,
ftp, and internet routers.

What would you like to do?

Please enter a command: east

You decide to head east. As you move through
the computer site, you notice a group of techni-
cians working on a large machine. They seem to
be having trouble with the device, and they look
frustrated. One of them notices you and approaches
you.

"Hey, you look like someone we can trust. We’re
trying to fix this internet router, but it’s not cooper-
ating. Do you think you could help us out?"

What would you like to do?

Please enter a command: help them out

You approach the group of technicians and ask if
you can assist them. One of them explains that the
internet router has been acting strangely, causing
connectivity issues throughout the computer site.
They have tried various troubleshooting methods,
but nothing seems to work.

You examine the router and notice that one of
its LED indicators is flashing rapidly. After some



thought, you suggest trying to reset the router to its
default settings. The technicians agree that this is
worth a try and thank you for your help.

As you watch, they successfully reset the router,
and the LED indicator stops flashing. The techni-
cians breathe a collective sigh of relief and begin
testing the internet connection.

With the issue resolved, the technicians return to
their workstations, and you continue exploring the
computer site.

What would you like to do next?

Please enter a command: examine internet
router

You take a closer look at the internet router and
notice that it is a high-end model with advanced
features and settings. You see several LED indi-
cators on the front panel, each indicating different
aspects of the router’s performance.

One of the LEDs is flashing rapidly, which sug-
gests that there might be an issue with the router’s
network connection. You wonder if this could be
related to the connectivity problems the technicians
were experiencing earlier.

As you continue to examine the router, you no-
tice a small button on the side panel labeled "Re-
set." You press the button, and the router’s LED
indicators start blinking in a pattern that indicates
it is resetting to its default settings.

After a few moments, the router completes the
reset process and returns to its normal operation.
You notice that the LED indicator that was flashing
before is now steady, indicating that the issue has
been resolved.

What would you like to do next?



	Introduction
	Related Work
	Interactive Fiction Generation
	Knowledge-Graph–Augmented Story Generation

	Dataset
	About JerichoWorld

	BERALL System Design
	Knowledge Graph Generation
	Setting Generation
	User Interface

	Results
	Automated Evaluation
	Subjective Evaluation

	Discussion & Future Work
	Conclusion
	Prompt for Setting Generation
	Example Graphs
	
	
	
	

	Example Playthrough

