
Enhancing Empirical Research for
Linguistically Motivated Precision

Grammars

PhD Thesis

Antske Sibelle Fokkens

Presented to the Department of Computational Linguistics,
Universität des Saarlandes

in fulfillment of the requirements
for the degree of Doctor of Philosophy

Saarbrücken 2014

ii

Deutsche Zusammenfassung

Die Komplexität und Struktur natürlicher Sprachen fasziniert Sprachwissen-
schaftler schon seit Jahrzehnten (Chomsky, 1957; Bierwisch, 1963, u.a.). Die-
se Komplexität zeigt sich auch in den syntaktischen Analysen die natürliche
Sprachen modellieren sollen. Bierwisch stellte schon in 1963 Folgendes fest:

Eine systematische Überprüfung der Implikationen einer für na-
türliche Sprachen angemessenen Grammatik ist sicherlich eine
mit Hand nicht mehr zu bewältigende Aufgabe. Sie könnte vorge-
nommen werden, indem die Grammatik als Rechenprogramm in
einem Elektronenrechner realisiert wird, so daß überprüft werden
kann, in welchem Maße das Resultat von der zu beschreibenden
Sprache abweicht. (Bierwisch, 1963, p. 163)

Eine der Ursachen für die Komplexität liegt darin, dass sprachliche Phäno-
mene sich gegenseitig beeinflussen. Rechenprogramme können eingesetzt wer-
den um zu überprüfen ob eine Analyse nicht nur dem Phänomen, das sie
modellieren soll, gerecht wird, sondern auch ob sie mit den anderen Eigen-
schaften der Grammatik ein kohärentes Modell bildet. Diese Überprüfung
kann aber nur die Analysen betrachten, die bei der Entwicklung der neuen
Analyse bereits in der Grammatik integriert waren.

Im Allgemeinen kann für ein bestimmtes Phänomen meist mehr als ei-
ne Analyse gefunden werden, die das Verhalten des Phänomens modellieren
kann. Die Wechselbeziehung zwischen Analysen unterschiedlicher Phänomene
ist eines der Kriterien die dabei helfen die richtige, oder am besten geeignete,
Analyse zu finden. Die Wahl zwischen alternativen Analysen wird deswegen

iii

von den schon entwickelten Analysen beeinflusst, wobei zwei (zusammenhän-
gende) Probleme festgestellt werden können. Erstens ist es wegen der Kom-
plexität der Grammatik nicht möglich Phänomene, die noch nicht analysiert
worden sind, auf gleicher Ebene zu betrachten, wie bereits analysierte Phä-
nomene. Zweitens, wenn ein Grammatikentwickler überprüfen möchte, ob
eine neue Analyse richtig mit dem Rest der Grammatik interagiert, werden
alternative Möglichkeiten für die Phänomene, die schon analysiert worden
sind, nicht betrachtet. Es ist deswegen oft unklar,0 ob eine neue Analyse tat-
sächlich am Besten mit den Phänomenen interagiert oder nur mit den bisher
ausgewählten Analysen der Phänomene.

Die Reihenfolge, in der Phänomene betrachtet werden, beeinflusst des-
wegen die Grammatik. Es ist bekannt, dass sich grammatische Phänomene
gegenseitig beeinflussen. Wir wissen auch, dass in der Regel mehrere Ana-
lysen für ein Phänomen möglich sind. Die Erkenntnis, dass diese Tatsachen
zusammen zu einer neuen Herausforderung führen, ist meines Wissens zuerst
in Publikationen formuliert worden, die Teil dieser Arbeit darstellen.

Diese Arbeit stellt eine neue Methodologie für Grammatikentwicklung
vor, welche zur Lösung dieses Problems beiträgt. Die Grundidee ist neue
Analysen nicht direkt in einer Grammatik zu implementieren, sondern in
einer Metagrammatik. Diese Metagrammatik kann alternative Analysen ent-
halten und daraus Grammatiken generieren, die für jedes implementierte
Phänomen eine der alternativen Analysen enthalten. Es wird dadurch mög-
lich, neue Analysen mit alternativen Möglichkeiten aus der Vergangenheit
zu überprüfen und Entscheidungen über eine bestimmte Analyse auszuset-
zen bis genügend Hinweise vorliegen, dass sie zur besten Modellierung des
Phänomens führt.

Diese Methodologie liegt der Implementierung von climb zugrunde.1 Sie
ist mittels einer Metagrammatik des Deutschen evaluiert worden, die alter-
native Analysen für Wortstellung und Hilfsverben enthällt. Die Ergebnisse
zeigen, dass climb neue Möglichkeiten für empirische Studien mit Gramma-

1“Comparative Libraries of Implementations with a (grammar) Matrix Basis”, im Deut-
schen: Vergleichende Programmbibliotheken von Implementierungen mit einer Basis in der
(Grammatik) Matrix.

iv

tiken eröffnet.
Die Beobachtung, dass syntaktische Analysen von der Reihenfolge der Be-

handlung von Phänomenen beeinflusst werden, und die von climb gebotenen
Mittel dieses Problem zu reduzieren, sind die wichtigsten Leistungen dieser
Arbeit. climb bietet jedoch zusätzliche Vorteile, die innerhalb der Gramma-
tikentwicklungsumgebung (delph-in) und sogar innerhalb der angewendeten
syntaktischen Theorie (Kopfgesteuerte Phrasengrammatik, auch bekannt als
“Head-driven Phrase Structure Grammar” oder hpsg) nicht vorhanden wa-
ren. Dazu enthält diese Arbeit mehrere Untersuchungen über mehrsprachige
Grammatikentwicklung. Die nächsten Seiten bieten eine Übersicht über die
Inhalte der einzelnen Kapitel.

Im ersten Kapitel wird die oben beschriebene Hauptproblemstellung
tiefergehend behandelt. Nachdem das Thema vorgestellt worden ist, werden
einige allgemeine Fragen der Syntaxforschung besprochen, insbesondere die
Frage ob syntaktische Modelle als wissenschaftliche oder eher philosophi-
sche Modelle betrachtet werden sollten. Ich stelle dabei fest, dass es möglich
ist wissenschaftliche, empirische Experimente durchzuführen wobei überprüft
wird, ob ein bestimmtes syntaktisches Modell tatsächlich grammatische Sätze
analysieren, und Äußerungen, die von Muttersprachlern für ungrammatisch
gehalten werden, ausschließen kann. Dazu gibt es auch die Möglichkeit mit
Muttersprachlern zu überprüfen, ob Äußerungen semantisch identisch sind,
wobei festgestellt werden kann, ob syntaktische Analysen zur richtigen se-
mantischen Darstellung führen. Es gibt aber in den meisten Fällen mehrere
mögliche Analysen für syntaktische Phänomene, die eine Überprüfung der
Grammatikalität und semantischen Gleichwertigkeit bestehen können.

Syntaktische Theorien verwenden deswegen zusätzliche Kriterien um zu
bestimmen welche die richtige (oder bessere) Analyse ist. Hierbei spielen Kri-
terien wie Eleganz oder Einfachheit eine Rolle genauso wie die Frage, ob eine
Analyse auch erklären kann, wie das Phänomen sich in anderen Sprachen
darstellt oder ob die Analyse eine psychologische Erklärung für das Phä-
nomen bietet. Diese Kriterien können zur Zeit nicht oder nur schwierig auf
wissenschaftliche Weise überprüft werden. Meiner Meinung nach sollten sol-
che Kriterien als philosophische Annahmen betrachtet werden. Ich schließe

v

daraus, dass syntaktische Modelle teilweise auf philosophische Annahmen ba-
sieren und deswegen eher als philosophische Modelle gesehen werden sollten.
Diese Feststellung bedeutet aber nicht, dass empirische Beobachtungen keine
wichtige Rolle in der Syntaxforschung spielen. Das Ziel der Syntaxforschung
ist die Struktur der Sprache so gut wie möglich zu modellieren. Die Methode
die in dieser Arbeit vorgestellt wird, erlaubt nicht nur besser zu überprüfen
ob eine Analyse am besten mit empirischen Beobachtungen übereinstimmt,
sondern auch, ob sie die beste Lösung bietet unter Verwendung anderer Ver-
gleichskriterien.

Das zweite Kapitel beschreibt den Hintergrund und Kontext der climb

Methodologie. Die Grammatiken die von climb Metagrammatiken generiert
werden, sind hpsg Grammatiken die innerhalb der delph-in2 Initiative klas-
sifiziert werden. Diese Initiative ist bemüht, frei verfügbare sprachanalytische
Anwendungen zu bauen, die linguistische Analysen, die auf hpsg basiert sind,
verwenden.

Das Kapitel beschreibt zuerst die Grundprinzipien von hpsg, wobei auch
der in hpsg verwendete Formalismus (getypte Merkmalstrukturen) betrach-
tet wird. Der Beschreibung der theoretischen Eigenschaften von hpsg folgt
eine Einführung von delph-in. In der Beschreibung von delph-in Gram-
matiken wird insbesondere darauf geachtet, welche Unterschiede zwischen
theoretischen hpsg-Grammatiken und denjenigen Grammatiken bestehen,
die als Teil der delph-in Initative implementiert worden sind. Außerdem
werden die Algorithmen erklärt, die zum Parsen und Generieren von natürli-
chen Sprachen mit delph-in Grammatiken verwendet werden. Zum Schluß
bietet dieses Kapitel eine ausführliche Beschreibung der LinGO Grammar
Matrix (die Grammatikmatrix).

Die Grammatikmatrix bietet Grammatikentwicklern ein Sprungbett um
mit neuen Grammatiken anzufangen. Sie besteht aus einem statischen Kern
und einer dynamischen Komponente. Der statische Kern enthält allgemei-
ne (nicht-sprachspezifische) Definitionen von linguistischen Phänomenen und
bietet dazu Voreinstellungen mit denen die Grammatik mit dem bestehen-
den delph-in Parser und Generator verwendet werden kann. Die dynamische

2DEep Linguistic Processing in HPSG INitiative

vi

Komponente enthält sprachspezifische Analysen, die Nutzer mittels eines Fra-
gebogens aktivieren können. Der Grammatikentwickler definiert linguistische
Eigenschaften in diesem Fragebogen und auf Basis davon wird eine kleine
Anfangsgrammatik generiert, die Analysen für die definierten Eigenschaf-
ten enthält. Die Idee für climb ist während der Arbeit an der dynamischen
Komponente der Grammatikmatrix entstanden.

Im dritten Kapitel wird die Beziehung zwischen der Grammatikmatrix
und climb weiter ausgeführt. Die Grammatikmatrix lässt Entwickler lingui-
stische Eigenschaften als Eingabe definieren und bietet eine Anfangsgramma-
tik, die von Hand weiterentwickelt werden kann. Die dynamische Komponen-
te, die die Anfangsgrammatik generiert, bleibt vor dem Grammatikentwickler
verborgen. climb hingegen legt den Hauptfokus auf die dynamische Gene-
rierungskomponente. In Ihr findet der Grossteil der Grammatikentwicklung
statt. Die Generierungskomponente wird so zu einer Metagrammatik, aus
der verschiedene konkrete Grammatiken generiert werden können. Die Meta-
grammatik kann alternative Analysen für die gleichen Phänomene enthalten,
die dadurch systematisch verglichen werden können.

Die climb Metagrammatiken, die als Teil dieser Arbeit implementiert
worden sind, sind als prozedurale Funktionen in Python implementiert. Es
kann für Grammatikentwickler, die es gewohnt sind ihre Grammatiken dekla-
rativ zu programmieren, ein Hindernis sein, auf prozedurale Programmierung
umzusteigen. Ich habe deswegen auch eine deklarative Variante von climb

entwickelt, die es Grammatikentwicklern erlaubt ihre Metagrammatik dekla-
rativ im gleichen Formalismus wie die normale Grammatik zu programmie-
ren. Diese deklarative Variante bietet weniger Flexibilität als die prozedurale
Variante. Sie hat jedoch mehrere Vorteile, die nicht vom Standardformalis-
mus geboten werden. Erstens können Eigenschaften eines bestimmten Typs
an unterschiedlichen Stellen in der Metagrammatik definiert werden, da das
climb Generierungsprogram die Eigenschaften automatisch zu einer gemein-
samen Definition zusammenfügt. Zweitens können in Typdefinitionen abge-
kürzte Pfade verwendet werden, die von einem Pfadergänzungsalgorithmus
während der Generierung der Grammatik vervollständigt werden. Drittens
können Grammatikentwickler in der Metagrammatik widersprüchliche Ei-

vii

genschaften implementieren, was für die Entwicklung alternativer Analysen
oder Variationen für unterschiedliche Sprachen nützlich sein kann. Es muss
dabei allerdings beachtet werden, dass widersprüchliche Eigenschaften bei
der Generierung nicht in der gleichen Grammatik vorkommen.

Zusätzlich zu climb gibt es weitere Software, die als Teil dieser Arbeit
entwickelt worden ist. Der “Spring Cleaning” Algorithmus nimmt eine delph-

in Grammatik als Eingabe und kann Teile der Grammatik, die auf keine
Weise Einfluss auf die Kompetenz der Grammatik haben, identifizieren und
entfernen. Die Kompetenz der Grammatik ist deren Fähigkeit, eine bidirek-
tionale Zuordnung zwischen Äußerungen und ihren semantischen Darstellun-
gen herzustellen. Dazu gibt es noch drei Algorithmen, die sich mit Pfader-
gänzung, Pfadabkürzung und dem Identifizieren der Geometrie von Merk-
malstrukturen beschäftigen. Diese Algorithmen unterstützen den Entwickler
bei der Verwendung abgekürzter Pfade in deklartivem climb.

Die climb Software und verwandte Algorithmen bieten weitere Vorteile
für die Grammatikentwicklung außer der oben beschriebenen Möglichkeit al-
ternative Analysen nebeneinander zu unterstützen. Die Methodologie erhöht
die Modularität der Grammatik, sie unterstützt die parallele Entwicklung von
Grammatiken für verwandte Sprachen und vereinfacht die Entwicklung und
Unterstützung alternativer Grammatiken, die dialektale Änderungen oder
unterschiedliche Anwendungen unterstützen. Die verwandten Algorithmen
erlauben es, Eigenschaften der Grammatik zu extrahieren und zu untersu-
chen. Für mehrere dieser Vorteile gilt, dass sie bereits in anderen Gramma-
tikentwicklungsumgebungen vorgeschlagen worden sind. climb ist allerdings
das erste Framework, welches diese Vorteile im Rahmen von delph-in bie-
tet. Meines Wissens nach gilt dies teilweise auch für die Entwicklung von
hpsg-Grammatiken im Allgemeinen.

Die Methodologie ist mittels gclimb, einer Metagrammatik, die Analysen
des Deutschen enthält, evaluiert worden. Das vierte Kapitel beschreibt die
Analyse deutscher Wortstellung und Hilfsverben ,die in gclimb vorhanden
sind. Zuerst werden die Analysen vorgestellt, die in der theoretischen hpsg

für deutsche Wortstellung und Hilfsverben vorgeschlagen worden sind. Da-
nach werden alternative Analysen erläutert, die von Bender (2008a) und Ben-

viii

der (2010) für die australische Sprache Wambaya vorgeschlagen worden sind
und auch für das Deutsche verwendet werden können. Hierbei ist besonders
die alternative Analyse für Hilfsverben interessant, da sie effizienter ist, wenn
sie von den delph-in Parsing- und Generierungsalgorithmen für Satzanalyse
oder Generierung verwendet wird. Das Kapitel erklärt die Ursache der nied-
rigen Effizienz der hpsg-Standardanalyse für Hilfsverben und illustriert dies
an einem Beispiel. Es muss dabei beachtet werden, dass die alternative Ana-
lyse nicht ohne Weiteres mit der originalen Analyse für deutsche Wortstel-
lung kombiniert werden kann. Die heutige Implementierung dieser Analyse
in gclimb kann nur mit der alternativen Wortstellunganalyse in einer Gram-
matik kombiniert werden. Diese Tatsache zeigt, dass Entscheidungen, die am
Anfang der Grammatikentwicklung getroffen werden, die Möglichkeiten für
zukünftige Analysen beeinflussen: die allgemeine Akzeptanz der Standard-
analyse für deutsche Wortstellung in hpsg hat dazu geführt, dass es nur eine
Möglichkeit zur Analyse der Hilfsverben zu geben schien.3

Im fünften Kapitel wird die climb Methodologie evaluiert. Es wer-
den zwei Aspekte untersucht, die bei der Bewertung der Methodologie ei-
ne Rolle spielen. Erstens, die Frage, ob climb für langfristige Grammatik-
entwicklungsprojekte genutzt werden kann. Zur Untersuchung dieses Aspek-
tes wurde gclimb weiterentwickelt, so dass es alle Phänomene enthielt, die
auch im Regressionskorpus von Cheetah (Cramer, 2011) enthalten waren.
Es wird eine Übersicht aller behandelten Phänomene in gclimb präsentiert,
die auch die Unterschiede zu den Analysen in Cheetah erläutert. Gleichzeitig
zeigt diese Übersicht auch die Komplexität der Analysen in gclimb auf. In
der dazugehörigen Diskussion wird argumentiert, dass es nicht möglich ist,
verschiedene Methodologien der Grammatikentwicklung nach wissenschaftli-
chen Standards miteinander zu vergleichen. Des Weiteren wird dargelegt, wie
gclimb eine große Bandbreite linguistischer Phänomene abdeckt, und dass
es sich für die Entwicklung großer Grammatiken eignet. gclimb wurde in
der Hälfte der Zeit entwickelt, die für Cheetah’s Grundgrammatik benötigt
wurde. In dieser Zeit wurden zusätzlich noch cross-linguistische Variationen

3Hinrichs and Nakazawa (1994) haben die Standardanalyse für Hilfsverben ins Deut-
schen als eine Notwendigkeit eingeführt.

ix

mittels gclimb erforscht und ein komplexer Standard der Generierung der
semantischen Ausgabe implementiert (Minimal Recursion Semantics). Die-
se Ergebnisse deuten darauf hin, dass die Nutzung von climb die Gram-
matikentwicklung beschleunigen könnte, mindestens aber nicht übermäßig
verlangsamt.

Der zweite Teil der Evaluierung vergleicht die Effizienz der unterschiedli-
chen Analysen. Diese Untersuchung bestätigt in einer Studie über deutsche
Satzanalyse und niederländische Sprachgenerierung, dass die alternative Ana-
lyse von Bender (2010) effizienter ist als die Standardanalyse. Der Einfluss der
niederländischen Wortstellung auf Sprachgenerierung wurde in dieser Studie
auch untersucht. Die climb Methodologie ermöglicht diese Art von Studien,
weil sie es erlaubt, die Eigenschaften der Grammatik und ihre Analysen ein-
fach und schnell anzupassen. Der dritte Teil des Kapitels präsentiert Möglich-
keiten für weitere Untersuchungen mit climb. Insbesondere wenn Analysen
aus anderen hpsg Grammatiken für das Deutsche zu gclimb hinzugefügt
werden, kann die Interaktion von unterschiedlichen Analysen dieser Gram-
matiken und ihr Einfluß auf die Effizienz untersucht werden. Ein Schritt in
diese Richtung wurde bereits mit der Integration des Lexikons aus Cramer
(2011) in gclimb gemacht (sehe Sektion 5.3). Die bisherige Ergebnisse zei-
gen, dass den Eigenschaften des Lexikons in der Struktur der Grammatik
Rechnung getragen werden sollte.

Das sechste Kapitel erarbeitet die multilingualen Aspekte von climb

und delph-in Grammatiken. Im ersten Teil des Kapitels werden die Möglich-
keiten untersucht, climb für multilinguale Grammatikentwicklung zu ver-
wenden. Die erste Version von gclimb hat neben dem Deutschen auch das
Niederländische und Dänische unterstützt. gclimb enthielt damals nur die
Grundprinzipien von Wortstellung, intransitiven, transitiven und ditransiti-
ven Verben. Während der Weiterentwicklung der Grammatik des Deutschen,
wurden dann die anderen Sprachen nicht weiter behandelt. In Kapitel sechs
wurde evaluiert ob gclimb verwendet werden kann, um für andere germa-
nische Sprachen Grammatiken zu entwickeln. Dabei wurde Niederländisch,
Dänisch und Nordfriesisch untersucht. Ich habe eine niederländische Versi-
on der deutschen Entwicklungsdaten gemacht und für Dänisch und Nord-

x

friesisch wurden mir Evaluierungsdaten von Kollegen zu Verfügung gestellt.
Alle Grammatiken wurden innerhalb weniger Tage erstellt. Während die-
se Grammatiken die meisten Daten richtig analysieren könnten, wurden bei
allen noch Fehler beobachtet, die (teilweise große) Überarbeitungen der Ana-
lysen erfordern. Dieses Ergebnis zeigt einerseits, dass multilinguale Gramma-
tikentwicklung nur dann funktioniert, wenn die Unterschiede zwischen den
Sprachen während der ganzen Entwicklung betrachtet werden. Andererseits
wäre es ohne gclimb aller Wahrscheinlichkeit nach nicht möglich gewesen,
in so kurzer Zeit ähnliche Ergebnisse zu erreichen.

Die Idee, climb für multilinguale Grammatikentwicklung zu verwenden
und dabei stets die linguistische Variationen in einer Gruppe von Sprachen
zu betrachten, wird in dem neuen Projekt “Slaviclimb” angewendet. Dieses
Projekt folgt aus dem PaGES Projekt für multilinguale Grammatikentwick-
lung für Slavische Sprachen. Slaviclimb fügt eine dynamische Komponente
zum Projekt hinzu und ich beschreibe wie die Methodologie neue empirische
Verifikationen von theoretischen linguistischen Hypothesen erlauben wird.
Slaviclimb kann im Moment die allgemeine slavische Grammatik, die von
Avgustinova and Zhang (2009) innerhalb von PaGES entwickelt worden ist
und die “Russian Resource Grammar” (Avgustinova and Zhang, 2010) gene-
rieren.

Der zweite Teil des Kapitels untersucht den Einfluss des statischen Kerns
der Grammatikmatrix auf einzelne Grammatiken. Die Entwicklung der gclimb-
grammatik hat zur größten Überarbeitung der statischen Komponente seit
ihrer Erstveröffentlichung geführt. Diese Überarbeitungen bestehen teils aus
Korrekturen von sogenannten Bugs und teils aus Korrekturen von Imple-
mentierungen, die englischspezifisch sind und nicht ins Deutsche übertragen
werden können.4 Seit der Erstveröffentlichung sind mehrere Grammatiken
mit Hilfe der Grammatikmatrix entwickelt worden und es ist unwahrschein-
lich, dass keiner der Grammatikentwickler dabei Fehlern in der Gramma-
tikmatrix oder sprachabhängigen Problemen begegnet ist. Ich habe deswe-
gen untersucht inwiefern diese Grammatiken die Implementierungen aus der
Grammatikmatrix verwenden. Der erste Schritt in dieser Studie bestand dar-

4Die ERG, eine Grammatik für Englisch, ist die Hauptquelle für die Grammatikmatrix.

xi

aus den “Spring Cleaning” Algorithmus auf die Grammatiken anzuwenden,
damit festgestellt werden kann, welche Teile der statischen Komponente Ein-
fluß auf die Grammatik haben. Danach habe ich die Änderungen und neue
Definitionen in den Grammatiken analysiert. Diese Studie hat gezeigt, dass
einige Grammatiken die gleichen Überarbeitungen in der Grammatikmatrix
enthalten, die von unterschiedlichen Grammatikentwicklern unabhängig von
einander gemacht worden sind. Dieses Ergebnis zeigt, dass nützliche Einsich-
ten der Grammatikentwickler nicht (immer) an die Entwickler der Gramma-
tikmatrix weiter gegeben werden. Die Grammatikmatrix könnte von einer
engeren Zusammenarbeit mit einzelnen Entwicklern profitieren.

Im siebten Kapitel werden andere Initiativen für multilinguale Sprach-
entwicklung, Austausch zwischen Grammatiken, gemeinsame Implementie-
rung und Verbesserung der Modularität von Grammatiken beschrieben. Meh-
rere der Initativen entwickeln Grammatiken in anderen Theorien und For-
malismen als hpsg. Hier werden auch diese Theorie und Formalismus kurz
vorgetellt und es wird erklärt, wie sie die Entscheidungen im Ansatz der
gemeinsamen Implementierung oder multilingualen Sprachentwicklung be-
einflussen. Jede Initiative wird mit climb verglichen wobei der wichtigste
Unterschied ist, dass climb die einzige Initiative ist, die sich mit alternati-
ven Analysen und empirischen Vergleichen der Analysen über längere Zeit
auseinandersetzt.

Zusammenfassend kann gesagt werden, dass das Hauptaugenmerk dieser
Arbeit dem verfrühten Verwerfen alternativer Analysen in der Grammatik-
entwicklung gilt. climb ist nach meinem Kenntnisstand die erste Arbeit, die
dieses Problem zum Gegenstand hat. Es bietet die Möglichkeit mehrere alter-
native Analysen zu implementieren und zu erhalten, während die Grammatik
weiterentwickelt wird. Diese Fähigkeit erlaubt es, die Interaktion zwischen
Analysen für Phänomene, die zu unterschiedlichen Zeiten erstellt wurden,
miteinander zu vergleichen. So können Entscheidungen bei der Grammati-
kentwicklung aufgrund empirischer Belege getroffen werden. Des Weiteren
bietet climb und die unterstützende Software “Spring Cleaning” die Grund-
lage für weitere Studien zur Interaktion zwischen Grammatikanalysen, Lexika
und multilingualer Sprachentwicklung.

xii

Acknowledgements

First and foremost, I would like to thank my supervisors, Hans Uszkoreit and
Emily Bender.

Hans, thank you for your support and feedback, but mostly for encour-
aging me to find my own way and giving me the space to do so. I enjoyed
our conversations and discussions these last years.

Emily, thank you for your guidance, encouragement and enthusiasm.
Your work on the Grammar Matrix, welcoming me in your group and the
intense collaboration despite the distance has truly enabled the research car-
ried out in this thesis. I am grateful for all insightful and useful feedback and
help you have given me throughout these years through inspiring discussions
on big questions and your eye for detail in my writings. I have learned many
things during this journey, but how you manage to always provide useful
support answering e-mails in negative time is still a mystery to me.

The Matrix developers played an important role in this thesis with their
feedback, questions and support during weekly meetings. Safiyyah, Joshua,
Glen, Varya: Thanks! In particular, I would like to thank Scott Drellishak
for his help when I started to use the Grammar Matrix customisation sys-
tem. Michael Goodman developed several tools that have been helpful and
was always managed to provide quick responses to any questions I have had.

Special thanks go to Laurie Poulson. I have fond memories of her wit,
wisdom and friendship. Her many questions and detailed feedback on my

xiii

work have led to great improvements of the first papers written on climb.
She would have undoubtely found many ways to improve this thesis.

Yi Zhang and Tania Avgustinova: it has been great exchanging ideas with
you and develop the vision of Slaviclimb. May many delph-in grammars
for Slavic languages be generated!

Working within delph-in has been a joy. I am grateful to all entire
delph-in participants for the interaction and good times during the last
eight delph-in meetings. I’d particularly like to thank Francis Bond, Dan
Flickinger, Montse Marimon, Petya Osenova, Rui Wang, Ann Copestake and
Sanghoun Song for discussions and their interest in climb.

Thanks to Christoph Zwirello and Emillia Ellsiepen for correcting and
helping me polish my German summary.

Participating in delph-in meetings, visiting the University of Washing-
ton and Brown University and working on my PhD at Saarland University
was made possible thanks to the funding of the IRTG-PIRE program. I am
grateful for having received this opportunity. I have had many good teachers
and researchers who supported and encouraged me during my undergradu-
ate studies and helped me to receive this grant. I would particularly like to
thank Claude Muller, Joan Busquets, Kim Gerdes, Line Mikkelsen and Valia
Kordoni.

I would also like to thank my colleagues at (and around) VU University for
their encouragement. Niels, Serge, Piek, Susan, Guus, Marieke, Agata, Isa,
Hennie, Roxane, Rubén, Marten, Selene, Emiel, Paul, Wouter, Jan, Willem,
Thomas, Victor, Laura and Lora, I really enjoy working with you and am
looking forward to continuing in the coming post-thesis time.

The IRTG was a fun crowd to be part of. I have great memories of
the entire group, but would particularly like to thank Bec, Bart, Micha,

xiv

Milla, Judith K., Barbara and Alexis for the shared lunches, drinks, trips
and friendship. Anne-Christin, Markus, Judith B., Herr and Frau Eichner
have also given me many good memories of Saarbrücken during my PhD.
Peter Adolphs, Tina Klüwer and Kathrin Eichler helped to make my stay
in Berlin a pleasant one and I’d like to thank David McClosky, Micha Els-
ner, Matt Lease, and Will Headden for making me feel at home in Providence.

Finally, I would like to thank my family for their support and patience.

Antske Fokkens, Amsterdam July 24 2014

xv

Contents

1 Introduction 1
1.1 Syntax, Science and Philosophy 3
1.2 Metagrammar Engineering . 13
1.3 Thesis Overview . 19

2 Background 26
2.1 Head-Driven Phrase Structure Grammar 26
2.2 delph-in . 40
2.3 The LinGO Grammar Matrix 54
2.4 Summary . 66

3 The CLIMB Methodology 67
3.1 An introduction to climb . 69
3.2 Declarative climb . 81
3.3 tdl processing tools . 100
3.4 climb applications . 111
3.5 Summary . 121

4 CLIMB for Germanic languages 122
4.1 Motivation of gCLIMB for German 123
4.2 German word order and auxiliaries 124
4.3 Standard hpsg analyses for German 130
4.4 Alternative analyses in gclimb 139

xvi

5 Evaluation 155
5.1 climb development . 156
5.2 Comparative efficiency evaluation 184
5.3 Outlook . 200
5.4 Summary . 211

6 Multilingual aspects of CLIMB 214
6.1 Sharing between related languages 214
6.2 climbfor Germanic languages 215
6.3 PaGES, SlaviCore and Slaviclimb 246
6.4 climb for second language learners 256
6.5 Spring cleaning revisited . 266
6.6 The Matrix core . 278
6.7 Summary . 295

7 Related Work 299
7.1 MetaGrammar and xmg for tag 300
7.2 The gf Resource Library . 307
7.3 The ParGram Project . 315
7.4 paws . 324
7.5 Modular typed unification grammars 325
7.6 CoreGram . 334
7.7 An overview of related work and climb 337

8 Conclusion and Future Work 343
8.1 climb: Enhancing empirical research 343
8.2 Other aspects of climb and related tools 346
8.3 Discussion and Future work 350
8.4 Concluding remarks . 357

A Cheetah test set (with coverage indication) 359

B Sentences for Natural Language Generation 363

C Babel phenomena not handled by either grammar 365

xvii

List of Tables

2.1 delph-in grammars as of July 20 2012 41

3.1 Overview of German adjective endings 95

4.1 Basic structure of German word order in main clauses 125
4.2 Basic structure of German word order in subordinates (not

exclusive) . 126

5.1 Phenomena covered by carrying out assignments of ling567 . . 159
5.2 gclimb phenomena in Cheetah test set: mismatches between

syntactic and semantic arity 166
5.3 gclimb phenomena in Cheetah test set: unusual argument

structures . 167
5.4 gclimb phenomena in Cheetah test set: word order phenomena169
5.5 gclimb phenomena in Cheetah test set: wh-phrases 170
5.6 gclimb phenomena in Cheetah test set: subordinates and re-

lative clauses . 172
5.7 gclimb phenomena in Cheetah test set: modification 173
5.8 gclimb phenomena in Cheetah test set: comparatives 174
5.9 gclimb phenomena in Cheetah test set: various 174
5.10 Phenomena additionally covered by gclimb 176
5.11 Coverage and overgeneration on Babel corpus 178
5.12 Comparison of coverage of phenomena in Babel corpus 179
5.13 Comparison of overgeneration 180
5.14 Differences in efficiency as found in Fokkens (2011a) 185
5.15 Development stages and phenomena that were treated in them 186

xviii

5.16 Comparative efficiency of grammars with or without constraints
on the non-head daughter . 190

5.17 Improvement in efficiency when aux+verb analysis is com-
pared to other analyses . 191

5.18 Overview of structures included in NLG experiment 196
5.19 NLG experiment results: minimal number of edges required . 197
5.20 Required edges for NLG with arg-comp without constraints

on non-head-dtr . 199
5.21 Results of the grammars on Cheetah and gclimb development

set . 201
5.22 Lexicon size and number of lexical types for grammars using

the TiGer lexicon . 204
5.23 Results of parsing the development corpus with the TiGer lexicon205
5.24 Difference in efficiency with and without optional arguments . 210

6.1 Basic structure of Dutch word order in main clauses (not ex-
clusive) . 217

6.2 Word order variation in the right bracket 220
6.3 Topological model for Danish word order 221
6.4 Process of adapting gclimb for Dutch 226
6.5 Parsing results of gclimb for Dutch 229
6.6 Performance of gclimb grammars on Danish test suite 232
6.7 Overview of over- and undergeneration DanGram test suite . . 234
6.8 Overview of Northern Frisian evaluation 238
6.9 Overview of remaining errors in Northern Frisian grammar . . 240
6.10 Coverage per source for Northern Frisian 243
6.11 Overview of German adjective endings (repeated) 263
6.12 Grammars included in spring cleaning/grammar compression

experiment . 270
6.13 Results from grammar compression and spring cleaning 271
6.14 overview of kind of types that are removed from grammars . . 275
6.15 Comparing portion removed from multilingual versus language

specific . 275

xix

6.16 Overview of corrections made to the Matrix core 280
6.17 Classification of redundant types from Matrix core in groups

of grammars . 288
6.18 Classification of redundant types from Matrix core per grammar289

xx

List of Figures

1.1 Grammar engineering workflow (Bender et al., 2011, p. 10) . . 14

2.1 A feature structure presented as AVM (left) and DAG (right) 27
2.2 A type hierarchy for English person, number and case 29
2.3 Basic feature-structure of the type sign 31
2.4 Abbreviated structure for likes strawberries 34
2.5 Abbreviated structure for the little girl 35
2.6 Abbreviated structure for the little girl likes strawberries . . . 37
2.7 MRS Representation of Every little girl likes strawberries . . . 38
2.8 Sample type definition from German grammar 43
2.9 Sample hierarchy as written by grammar engineer (left) and

augmented with glb type by compiler (right) 44
2.10 Partial type hierarchy (left) and lexical rule (right) 45
2.11 Chart for parsing the girls like strawberries 50
2.12 Parse trees for the girls like strawberries 50
2.13 Overview of the Grammar Matrix customisation system (Bender

et al., 2010, p. 7) . 58
2.14 Screenshot of questionnaire’s main page, taken 13 August 2012 59
2.15 Small extract of a choices file 60

3.1 Basic overview of climb . 74
3.2 Simplified overview of the climb workflow 75
3.3 Small extract of a choices file 79
3.4 Example lexical entry for German passive auxiliary werden . . 79
3.5 Sample code from word order library: implementations triggered

by word-order=v2 in choices 80

xxi

3.6 Schematic overview of declarative climb 82
3.7 Snippet of declarative climb code with alternative choices and

their output . 84
3.8 Code snippet to add the feature path and values for strong . 96
3.9 Code snippet for generating adjectives 97
3.10 Sample of choices defining adjectives and their morphology . . 98
3.11 Two morphotactic rules for adjectives in declarative climb . . 99
3.12 Illustration of glb completion when subtypes have features . . 102
3.13 The Head Feature Principle in full and abbreviated form . . . 104
3.14 Pseudo code for path reduction 106
3.15 Pseudo code for finding the default types of lists 108

4.1 Dependency structures of German examples violating the ad-
jacency principle . 129

4.2 Basic analysis of Das Buch kennt jeder 131
4.3 Simplified representation of complement-extraction 133
4.4 The slash of a basic-two-arg lexical item in the Grammar

Matrix . 134
4.5 Simplified Head-Filler Schema for German 134
4.6 Mittelfeld and Right Bracket based on Uszkoreit (1987) 136
4.7 Subcategorisation of raising auxiliaries 137
4.8 Tree for Mittelfeld and Right Bracket following Hinrichs and

Nakazawa (1994) . 138
4.9 Type hierarchy for luk as included in the Grammar Matrix . . 140
4.10 Chart for Sie hat die süßen Erdbeeren gerne gegessen using

argument composition . 144
4.11 Auxiliary’s valence (i) and Auxiliary+verb Construction (ii) . 145
4.12 Chart for Sie hat die süßen Erdbeeren gerne gegessen using

argument composition . 146
4.13 Dependency structures of partial VP fronting 147
4.14 Tree structure for Ausruhen hat er können 150
4.15 Simplified representation of the noncomp-head rule 151
4.16 Simplified representation of the insert-aux rule 151

xxii

5.1 MRS output Cheetah for Er hat herrlicheren Wein getrunken
als Du. 162

5.2 MRS output climb for Er hat herrlicheren Wein getrunken
als Du. 163

5.3 MRS output Cheetah for Der Wein den er trinkt ist herrlich.
(see Table 5.6, example on “relative clauses” for glosses and a
translation) . 171

5.4 MRS output climb for Der Wein den er trinkt ist herrlich.
(see Table 5.6, example on “relative clauses” for glosses and a
translation) . 172

5.5 Number of tasks carried out per sentence for different grammars187
5.6 Number of active edges used per sentence for different grammars188
5.7 Average Memory used per sentence for different grammars . . 188
5.8 Average CPU time per sentence for different grammars 189

6.1 Basic architecture of original idea for PaGES 247
6.2 Partial representation of Slavic case, created by Avgustinova . 251
6.3 Overview of grammar development with Slaviclimb 255
6.4 Simplified representation of a head-complement mal-rule that

ignores case when defined as a head feature 261
6.5 Simplified representation of a head-complement mal-rule that

ignores case when it is defined as a synsem feature 262
6.6 Mal-rules for adjectives enforcing different grammatical prop-

erties . 264
6.7 Example of a subsumption table in a compiled grammar . . . 268

7.1 Substitution (left) and adjunction (right) in tag 302
7.2 Example of substitution in ltag 303
7.3 Basic c-structure and f-structure of Mary smiles pleasantly . . 317
7.4 Indicating φ for analysis Mary smiles pleasantly 318

8.1 Schematic overview of future form of climb 351
8.2 Sketch of fields for defining new lexical types in future climb . 352

xxiii

Dedication

Chris, dziękuję za Twoją cierpliwość i wsparcie, za to, że wciąż na nowo
mnie zaskakujesz, i czynisz szczęśliwą.

xxiv

xxv

Chapter 1

Introduction

eine Grammatik [ist] eine Hypothese über die Struktur einer Sprache.1

Bierwisch (1963), p. 163

Grammars of natural language are highly complex objects (Bierwisch, 1963;
Müller, 1999; Bender, 2008a; Bender et al., 2011). This complexity is re-
flected in formal analyses found in both syntactic theory and computational
grammars. In particular, there are two factors that make it notoriously diffi-
cult to make strong assertions about analyses for natural language grammars.
First, syntactic phenomena interact and therefore also their analyses inter-
act. Second, typically more than one formal analysis can account for a given
phenomenon. Both of these properties are well known. However, an addi-
tional challenge that results from the combination of these two properties
has largely been ignored in previous work. Grammar engineering is an incre-
mental process. A syntactician or grammar engineer often needs to choose
between analyses without conclusive evidence as to which analysis works
best. Because analyses interact, this decision will affect possible analyses for
phenomena handled in the future.

The restrictions imposed by the choice of past analyses are not always easy
1a grammar is a hypothesis about the structure of a language.

1

to identify, especially after a significant amount of time has passed and the
influence is the result of the interaction of several choices. As such, syn-
tactic theories as well as computational grammars for natural language are
influenced by the order in which phenomena are treated (Fokkens, 2011a).

The work presented in this thesis is, to my knowledge, the first to point out
the challenge outlined above and to propose a solution that addresses this
problem. The key idea, as introduced in Fokkens (2011a), is that alternative
plausible analyses for linguistic phenomena are added to a metagrammar.
I use metagrammar as a generic term to refer to a system that can gener-
ate computational grammars. This metagrammar can generate all possible
combinations of these analyses automatically, creating different versions of a
grammar that cover the same phenomena. The engineer can test directly how
competing analyses for different phenomena interact, and determine which
combinations are possible (after minor adaptations) and which analyses are
incompatible. Alternative analyses can be maintained while new analyses are
developed, thus reducing the influence of the order in which phenomena are
investigated. The interaction between alternative analyses with phenomena
can be tested empirically after new analyses have been added to the gram-
mar. As such, the metagrammar engineering approach proposed in this thesis
provides a more systematic method for grammar development that enhances
empirical experiments on the grammar’s behaviour.

The observation that the interaction of different analyses in future states of
the grammar cannot be predicted and the proposal to address this problem
using metagrammar engineering as a general methodology form the main
contribution of this thesis. In particular, this thesis introduces climb2 a
metagrammar environment that can generate hpsg3 implementations. In
addition to the possibility of maintaining alternative analyses in par-
allel, climb supports a number of other advantageous properties found in
related work using metagrammars or similar approaches (Candito (1998);
Duchier et al. (2005); King et al. (2005); Ranta (2009); Bender et al. (2010),

2Comparative Libraries of Implementations with a (grammar) Matrix Basis (Fokkens,
2011a; Fokkens et al., 2012a; Fokkens and Bender, 2013)

3Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994)

2

among others). The methodology increases modularity, it supports mul-
tilingual grammar development and adaptations for alternative dialects as
well as alternative versions for different applications. The setup facilitates
a phenomenon-based organisation. This provides further flexibility, be-
cause it is easy to create alternative grammars that include or exclude rare
phenomena. Furthermore, increased modularity and a phenomenon-based
organisation facilitates collaborate efforts of grammar engineering. Finally,
additional processing tools provide support for investigating properties
of grammars generated by the metagrammar.

The rest of this chapter is structured as follows. Section 1.1 addresses the
question of whether research on syntax can be considered to be scientific
research. It discusses both empirical observations and philosophical assump-
tions used when designing syntactic models. Section 1.2 provides a more
elaborate illustration of the idea behind grammar engineering and outlines
the assumptions adopted for the grammars developed as part of this thesis.
Finally, an overview of the chapters of this thesis and its main contributions
are presented in Section 1.3.

1.1 Syntax, Science and Philosophy

This section discusses scientific and philosophical aspects of syntactic theory.
It serves two purposes. First, I would like to elaborate on the question of
whether syntactic research is science or whether it is founded on philosophical
assumptions rather than observations. The main contribution of this thesis
is that it provides a method to test grammars of natural language more
systematically. In order to establish what this might mean for researchers
working on grammars or syntactic theory, it is important to establish what
these researchers aim to model. Second, this section provides an overview
of the most important criteria used in syntactic research to determine the
quality of an analysis. They are related to the discussion about science
and philosophy, because both evidence based on observations (which can be
scientific) and evidence based on assumptions (which are philosophical) are

3

used in syntax. Moreover, what syntacticians aim to model determines which
criteria they use to compare analyses. The issues discussed in this section
thus relate to the underlying question of what a grammar is. In Section 1.2.2,
I will present the observations and assumptions that were followed to develop
the grammars for this thesis.

1.1.1 Empirical Science and Syntax

Even though philosophers of science seem to agree more or less on which
disciplines are part of science and which are not, definitions of science vary
(Hansson, 2012). Popper (1962) proposes falsifiability as a criterion for a
statement to belong to empirical sciences: “statements or systems of state-
ments, in order to be ranked as scientific, must be capable of conflicting
with possible, or conceivable observations” (Popper, 1962, 39). Kuhn (1974)
claims that the status of science is related to its puzzle-solving nature: if
a prediction fails, the scientist will try to solve this by verifying measure-
ments or a revision of the theory. Lakatos emphasises that a scientific theory
should make progress: it is not the character of a theory in isolation that
makes a research program scientific, but that it consists of a series of theories
replacing one another making new predictions that are confirmed (Lakatos,
1970, 1974a,b, 1981). These visions on science have in common that they all
rely on evidence from observations. In other words, empirical verification (or
falsification) is an essential aspect of science.

Linguistics as science

Linguistics has been classified as a science by prominent linguists starting
with Saussure (1916). Despite the fact that critical differences between
linguistics and natural science have been pointed out by several authors
(e.g. Botha (1970); Itkonen (1978, 1981); Wasow (1985); Yngve (1986, 1996);
Koster (2005); Eddington (2008); Coleman (2009)), this is still a widely held

4

view.4 A full discussion and overview of the development of linguistics goes
beyond the scope of this thesis. Because of the importance of the topic
and, in my view, insufficient attention that it has received, I will provide a
short discussion of some problematic aspects in scientific approaches used in
linguistics and syntactic research in particular.

Coleman (1999) points out that the problems of defining linguistics as the
science of language start with the object of study. Language is not a concrete
object that can be observed, it is an abstraction in itself. It is therefore not
possible to create a theory of language which can be proven wrong or right by
observing language. This general confusion about linguistic observations and
relevant data forms one of the main problems in linguistic research. Coleman
(2009) provides clear demonstrations, partially inspired by Yngve (1996), of
where abstractions of observations can be made in linguistics, where abstrac-
tions are made based on assumptions (as often found in philosophy) and, the
highly problematic case, where abstractions based on assumptions are taken
to be concrete. A scientific theory is an abstraction of observations. More
specifically, the theory must be falsifiable by observations, which must be
identical every time an experiment is repeated under the same conditions.
Confusion about observations and assumptions are found in several subdo-
mains of linguistics. I limit the discussion to syntax and will argue that there
are scientific methods and empirical observations that support syntactic re-
search, but that often evidence is based on assumptions. In principle, this
is unproblematic, as long as syntacticians are clear about the status of their
model.

Syntax as science?

The view that syntax is science is not uncommon among syntacticians. This
can be seen clearly in Chomsky’s highly influential Syntactic Structures,
where he compares a grammar of English to hypothetical constructs such

4See Coleman (2001) for a survey of authors referring to linguistics as a science in
textbooks.

5

as electrons in physics (Chomsky, 1957, 49).5 More recently, Larson’s book
Grammar as Science (Larson, 2010) states not only that grammar can be
seen as a science, but that “syntax offers an excellent instrument for intro-
ducing students [...] to the principles of scientific theorizing and scientific
thought” (p. xiii). The fact that there is no mention of aspects that may
make research on syntax a less scientific undertaking shows that this is not
considered a real issue by Larson, nor does he seem to expect to find much
doubt from his intended audience.

In my opinion, syntacticians use scientific methods in their approach, but
this does not automatically mean that syntax is science. Models of syntax
are generally the result of the combination of observations and philosophical
assumptions. I will elaborate briefly on the most important evidence in syn-
tactic research: namely linguistic expressions accompanied by native speaker
judgements.

Syntax: scientific data

In their introduction to syntactic theory, Sag and Wasow (1999) call lan-
guages “complex phenomena, which can be studied scientifically” (p.3). They
explain that hypotheses about linguistic structure can be tested through facts
of language. However, linguistic structure is as abstract as language itself,
which would mean that a syntactic theory cannot be a scientific model of lin-
guistic structure. This problem can either be addressed by defining syntax
as a theory rather than a scientific model, or redefining the object of study
of syntax.

If syntax is considered to propose scientific models, the question rises what
it models. The answer to this question is simple: a scientific theory models
what scientists observe. Syntacticians generally observe linguistic expressions
provided with native speaker judgements. From this point of view, syntactic
theory would be a model of native speaker judgements. A similar point is

5Wasow (1985) points out that Chomsky questions the scientific status in Chomsky
(1982), but according to Wasow, this is “clearly a minority view” (Wasow, 1985, 486).

6

made by Coleman (2002), who explains that data in the form of a linguistic
example marked as ungrammatical is a “supposed ‘native-speaker judgment’
of the item’s ungrammaticality” (46, Coleman’s italics and quotes). Coleman
calls the judgement supposed, because the exact source of such observations
is typically absent from linguistic papers.

Several authors have pointed out other pitfalls of using judgements of accept-
ability6 and addressed the question of how grammaticality judgements can
be carried out in an experimental setting (notably, Schütze (1996); Cowart
(1997); Keller (2000); Schütze (2005)). Their findings can be summarised as
follows. In order to conduct scientific experiments on acceptability judge-
ments, syntacticians should control for confounding factors such as the influ-
ence of context on acceptability or the variation across speakers depending
on education, social background and dialects or other local languages spoken
in the speaker’s environment. Moreover, the traditional approach of classi-
fying examples as grammatical or ungrammatical, with occasionally a ? for
doubtful or an indication of speaker dependence has been criticised by Cow-
art (1997) and Keller (2000). Both of these works show that grammaticality
is gradient with clearly observable differences in how ungrammatical speakers
consider individual expressions. An experiment determining the comparative
grammaticality of examples naturally requires a certain number of subjects
to judge grammaticality. Details on how to carry out experimental syntax
and more thorough analyses of native speaker judgements in this field can be
found in Schütze (1996), Cowart (1997) and Keller (2000). For the current
discussion it suffices to say that experimental methods have been developed
that in principle allow syntacticians to gather data in a scientifically sound
manner. It should however be noted that these methods are only followed in
a minority of syntactic studies.

6I will not discuss the distinction between grammaticality and acceptability here. Suf-
fice to say that acceptability (along with influencing factors) can be observed through tests
with native speakers, grammaticality cannot.

7

1.1.2 Philosophical aspects of syntax

If syntax uses utterances marked by judgements as observations, it can be
seen as a model of native speaker judgements. Syntactic models can then be
tested by verifying whether they predict the correct judgements for new utter-
ances. Models that correctly account for known utterances and make correct
predictions about new utterances can be verified against two of the three
levels of adequacy described by Chomsky (1965) for evaluating grammars:
observational adequacy and descriptive adequacy. But how can we
compare between different models that get predictions right? The third level
of adequacy, explanatory adequacy, can be used to distinguish between
analyses that fulfil the first two. This level of adequacy is concerned with
how well a theory explains its observations. Furthermore, additional criteria
are set to fully satisfy the needs for observational and descriptive adequacy.
Finally, grammar engineering has additional criteria of its own regardless of
whether the implemented grammars are meant to verify syntactic analyses
or intended to be used in applications.

Though traditionally syntactic research focused on making the right predic-
tions on native speaker judgements, more recently research have taken the
link between utterances and their semantics into account. Theories such as
Lexical Functional Grammar (Kaplan and Bresnan, 1982, lfg), hpsg and
the Minimalist Program (Chomsky, 1995) also aim to describe how the se-
mantics of a sentence is built up from its parts in addition to examining
native speaker judgements. This criterion also plays an important role in
implemented grammars that are based on these theories.

In addition, syntacticians take simplicity or elegance and crosslinguistic
applicability into account when comparing the suitability of specific ana-
lyses and grammar engineers pay attention to efficiency. Whereas the im-
portance of making correct predictions of native speaker judgements and
relating the sentence’s structure to its meaning are generally accepted, syn-
tacticians differ in the importance they assign to these additional criteria.
This difference can be explained by the fact that these criteria are founded

8

on philosophical assumptions rather than observations.

It makes perfect sense to narrow the search for an appropriate model by im-
posing desiderata based on philosophical or practical arguments, especially
when observations leave a multitude of possibilities for suitable theories. Re-
searchers should, however, always clearly distinguish between decisions based
on scientific observations and those based on philosophical assumptions. The
more a model is validated by assumptions rather than observations, the more
it becomes a philosophical model rather than a scientific model. I believe that
models of language in syntactic theory should generally be seen as philo-
sophical models of grammar. I will elaborate briefly on each of the adopted
philosophical desiderata below.

Explanatory adequacy refers to the capability of the theory to explain
observations. This requirement is generally addressed with regard to the
overall syntactic theory, i.e. is the formalism appropriate? What are basic
assumptions of the theory that do not directly reflect analyses? And, what
are the available mechanisms that can be used to exclude unacceptable utter-
ances? Depending on theoretical assumptions, the aforementioned criteria of
simplicity and crosslinguistic applicability may be considered requirements
of explanatory adequacy. This discussion can go a long way, starting with
the question of what syntax is supposed to be modelling in the first place.
I will therefore not address this aspect here, but refer the interested reader
to Wasow (1985) who points out that the typical assumption is that syntax
models children’s language acquisition and explains that syntacticians do not
examine the right data to investigate this.

On the level of specific analyses, the criterion of explanatory adequacy seems
to be what prompts linguists to criticise analyses because it is “unlikely that
speakers have this in their heads”. Since there currently are no experiments
that allow us to examine what linguistic properties speakers may have “in
their heads”, such argumentations are clearly philosophical and not scientific.7

In my experience, such comments are often made to criticise analyses with
7This may, of course, change in the future as technology and psycholinguistic methods

evolve.

9

a heavy technical component, where the relation between observations and
analysis is not apparent. It therefore often is justified critique, where the
problem lies more in lack of simplicity or elegance than “likelihood of be-
ing in the heads of speakers”. Eddington (2008) points out that simplicity
cannot be used as evidence to identify which theory is correct. After all, there
is no reason to assume that the truth should be simple rather than complex.
Linguists support the idea that analyses should be simple, because language
can be learned easily by humans. However, the difference in complexity of
alternative analyses is relatively small compared to the complexity of the
entire grammar as a system. Furthermore, simplicity still is a philosophical
criterion under this explanation for reasons explained above: at present, it
is not possible (yet) to investigate which models would make the syntax of a
language too complex for it to be learnable by human beings. Nevertheless,
aiming for the most simple model possible (or applying Ockham’s razor) is
common practice in research. Adger (2003) explains that it is easier to work
with fewer concepts and that Ockham’s razor is partially applied for meth-
odological reasons. The merits of elegance and simplicity are indeed clear
(e.g. easier to understand and test analyses, aiming to prevent unnecessary
additions).

Syntacticians can have different opinions on the importance of crosslin-
guistic application. The main idea behind this criterion seems to be that
an analysis that can be used to explain data from more than one language
is more likely to say something about language in general. Most notably,
syntacticians who support the notion of a Universal Grammar (UG) assign
high importance to crosslinguistic applicability. Some syntacticians take the
point of view that the basic structure for all languages should be the same.
For instance, Richard Kayne criticised an analysis by Balkiz Ozturk, because
she used left-branching structures for Turkish. Kayne argued that it would
not make sense to adopt a structure for Turkish based on observations of
Turkish (only).8 The result of such assumptions is that analyses concerning
phenomena with large typological variation tend to get highly complex. This

8This discussion took place at workshop Theoretical Approaches to Disharmonic Word
Orders, Newcastle, 31 May 2009.

10

seems somewhat ironic given that the proposal of UG follows from the claim
that language must be innate, because there would be no other way to ex-
plain why all children manage to learn language easily despite its complexity
(Chomsky, 1965).

The argumentation around UG should clearly be placed in the philosophical
sphere: it may be an observation that children learn language easily, but it is
currently impossible to empirically test the hypothesis of an innate grammar
of linguistic structure against, for instance, a more general hypothesis that
the human brain can make complex generalisations unconsciously. Scholz
and Pullum (2006) point out several ways in which tests typically used to
prove that language is innate fail as scientific tests.

Crosslinguistic applicability can thus not be considered a scientific argument
that makes an analysis more likely to be ‘true’. If we accept that syntax
is better placed at the level of philosophy and comparable to mathematical
models, where motivations can be built on assumptions, the crosslinguistic
aspect of analyses becomes an interesting aspect in linguistic investigation.
Looking at analyses that can explain linguistic behaviour (in the sense that
they make correct predications concerning grammaticality) across languages
can provide deeper insight into language than looking at languages in isola-
tion.

If we try to model language to understand why particular behaviour is ob-
served in language or how people learn language, it is important to consider
which parts of our model can apply to different languages. Moreover, by
sharing analyses between languages, we can make progress in describing new
languages faster. This makes crosslinguistic applicability particularly inter-
esting for implemented grammars. On the other hand, care must be taken
that existing analyses for previously described languages do not determine
what new grammars look like, leading to a bias in grammar design towards
languages that were implemented first.

11

1.1.3 Summary

I have argued above that native speaker judgements can be considered ob-
servations, provided that they are obtained under the right (controlled) con-
ditions. Syntax could then be a scientific theory about knowledge speakers
have to rate utterances. However, there are many decisions to be taken to
arrive at such a model. Additional assumptions have been adopted by syn-
tacticians to guide their research. By adapting these assumptions and using
them to get evidence for their models, syntacticians have moved away from
science towards a more philosophical approach. In my opinion, this does not
degrade syntactic research in any manner. Creating precise, philosophical
models of language forms a perfectly justifiable area of research. Moreover,
research on syntax has primed syntacticians to try out various variations in
language and obtain grammaticality judgements. This has contributed to
our knowledge about language through observations.

Even if syntax is not science, this does not mean that syntactic research
is not improved by researchers following more scientifically sound methods.
A philosophical model of language increases in validity and thus becomes
more interesting when based on more empirical evidence. In general, care
should be taken when excluding analyses based on assumptions rather than
empirical evidence. It is important to clearly state the criteria for choosing
among alternatives and what role these criteria play in the theory. Using
evidence based on philosophical ideas is not a problem as long as they are
clearly defined as such and not confused with scientific evidence. The method
proposed in this thesis not only allows the grammar writers to run more em-
pirical tests for alternative analyses, but also allows them to examine which
alternative fits their philosophical assumptions best in a more systematic
manner. The following section describes how metagrammar engineering al-
lows grammar developers to base their decision on more empirical evidence
and introduces the assumptions made for the grammars developed as part of
this thesis.

12

1.2 Metagrammar Engineering

The previous section has discussed the object of study in syntactic theory and
presented several criteria that are used to decide among alternative analyses.
An aspect that has not been addressed is the interaction between analyses. A
correct analysis should not only be able to capture data correctly in isolation,
it should also interact correctly with other analyses. Interaction between
analyses is not always transparent. This is the main reason why grammars
of natural language are so complex and why syntacticians tend to pick one
analysis and stick to it. As early as 1963, Bierwisch (1963) pointed out
that phenomena interact to a point where it is not feasible to make sure
a model is correct without verifying this with help of a computer. This
call has since then put to practice across frameworks, notably by Müller
(1999), Bender (2010) and Kinyon et al. (2006). Bender et al. (2011) illustrate
how grammar engineering, and the integration of regression testing, can help
linguists manage the complexity of their models. This involves both testing
the interactions between analyses and testing analyses against much larger
collections of data than would be feasible by hand. Bender et al. (2011)
illustrate the process with the diagram in Fig. 1.1.9

The process depicted in Fig. 1.1 is cyclic, with new phenomena being ad-
ded on successive passes through the cycle. The test suites (extended with
each pass) document the analyses that have been implemented and allow
the linguist to ensure that later work does not break or invalidate what has
gone before. This is a strength of the methodology and key to the ability
of grammar engineering to facilitate linguistic hypothesis testing. However,
when we view the process of grammar engineering in this light, it also be-
comes apparent that phenomena considered earlier in the development of a
grammar and their analyses have an asymmetrical influence on analyses of
phenomena developed later (cf. Bender (2008b)).

This asymmetrical influence is unfortunate: It is fairly common for a key
9Note that not all efforts of grammar engineering involve compiling a grammar and

adapting analyses to make sure the grammar compiles. This is however the case for the
grammars implemented as part of this thesis.

13

Develop
initial test

suite

Identify
phenomena
to analyze Extend test suite

with examples
documenting

analysis

Implement
analysis

Compile
grammar

Debug
implementation Parse sample

sentences

Parse full
test suite

Treebank

Develop
analysis

Figure 1.1: Grammar engineering workflow (Bender et al., 2011, p. 10)

phenomenon constraining the choice of analysis of another phenomenon to
be only addressed after several further passes through the cycle. In the
meantime, whichever analysis was chosen of the phenomenon implemented
earlier may become deeply embedded in the growing grammar. This has
several consequences: First, once an analysis becomes embedded in this way,
it is easy to forget what alternative analyses were available. Second, the
longer an analysis has been part of a grammar, the more other analyses are
likely to depend on it in some way. This leads to scenarios where it becomes
cumbersome or impractical to change an analysis, even when it is discovered
to be suboptimal.

Challenges related to deeply embedded analyses are familiar to most gram-
mar engineers working on large scale grammars. Francis Bond (p.c.) reports

14

that it is often hard to identify parts of the grammar which relate to ob-
solete analyses no longer active in the Japanese grammar Jacy (Siegel and
Bender, 2002). Montserrat Marimon (p.c.) reports that there are analyses
in her Spanish grammar (Marimon, 2010) for clitics and word order that
need revisions, but these phenomena interact with several other properties
of the grammar. It would therefore be an elaborate undertaking to make
these changes and they have been put on hold for now. Tracy King (p.c.)
reports an ongoing discussion within ParGram (Butt et al., 2002) on whether
adjectives have subjects or not. The English LFG grammar (Riezler et al.,
2002) was changed a few times, but this was so time consuming that King
decided to call the last change final.

Finally, even if a grammar engineer is inspired to go back and revise a deeply-
embedded analysis, it is simply not possible to explore all alternative possibil-
ities, that is, all the alternative analyses of the various interacting phenomena
that might have been just slightly more desirable had the revised analysis
been the one chosen in the first place. As a result, computational grammars
are partially (or even largely) a product of the order in which phenomena
are treated. For grammar engineers with practical applications in mind, this
is undesirable because the resulting grammar may end up far from optimal.
For grammar writers that use engineering to find valid linguistic analyses,
the problem is even more serious: if there is a truth in a declarative grammar,
surely, this should not depend on the order in which phenomena are treated
(Fokkens, 2011a).

In order to escape from this asymmetrical influence problem, what is required
is the ability to explore multiple development paths. As described in the next
section, this is exactly what metagrammar engineering provides.

1.2.1 A Many-Model Interpretation

This thesis proposes to address the problem of asymmetrical influence by
using a metagrammar. I will illustrate how a metagrammar in an explana-
tion that is inspired by the many-world interpretation of quantum mechanics

15

Everett (1957); DeWitt (1972).10 Quantum mechanics can predict the prob-
ability of a location of a photon and this prediction forms a wave function.
However, as soon as the photon is observed, the probability function is re-
duced to one point and, according to the alternative Copenhagen Interpret-
ation, the wave function collapses. The many-world interpretation rejects
the idea that the wave function collapses, but maintains that the alternative
worlds in which the photon is at another location than the one observed are
real, implying that alternative histories and futures are real.

If we translate this vision to the grammar engineering scenario, we have a
many-model interpretation, where each model considers different analyses to
be correct. Each implementation decision we make places us in a given model.
While making a decision in grammar engineering, the grammar engineers sets
off on a specific road and the route that is taken (the order in which phe-
nomena are considered, the choices made concerning their implementations)
influences the final destination (the resulting grammar). However, unlike real
life, where we are stuck in a specific world and cannot explore alternatives,
we can look at alternative models for grammars. The only problem is that it
is not feasible to have a clear picture of all consequences of a specific decision
while following the traditional grammar engineering approach. But what if
we could monitor more than one model at the same time? What if, instead of
making a decision to commit to a specific model, we follow a couple of mod-
els for a while, test them with new analyses until we have gathered enough
evidence to feel comfortable about a decision?

This effect can be achieved when adopting metagrammar engineering as a
general methodology for grammar development. When alternative plausible
analyses are at hand, they are stored in the metagrammar. When treat-
ing new phenomena, the metagrammar can generate alternative versions of
the grammar each providing a different context for analyses of the new phe-
nomenon. Choices between alternatives can thus be delayed until more evid-
ence for or against a specific analysis has been gathered, or alternatives can
coexist in the metagrammar indefinitely.

10This explanation is based on Fokkens and Bender (2013).

16

1.2.2 CLIMB metagrammars

In this subsection, I will provide a brief outline of the context and assump-
tions used for developing grammars in this work. The previous section ex-
plained that metagrammar engineering can help to make more informed de-
cisions about which analysis to choose when alternatives are at hand. Sec-
tion 1.1 has shown that different assumptions may be used as criteria as to
which analysis is best. The only criterion syntacticians agree on is that the
analyses must be able to lead to correct predictions concerning the grammat-
icality of data.

The discussion mainly focused on theoretical grammars. It should be noted
that the grammars developed in this thesis can be seen as “practical gram-
mars”. Even though they are based on linguistic theory and aim at capturing
linguistic behaviour correctly, they can also be used in applications. It is also
possible to apply the methodology proposed in this thesis for syntactic hy-
pothesis testing only, but the practical character of the grammars provides
an additional set of measurable criteria related to their efficiency that can be
used to evaluate alternative analyses.

As mentioned above, the proposed methodology has been tested through the
development of climb which can generate implemented hpsg grammars. In
particular, climb is closely connected to the multilingual grammar develop-
ment toolkit, the LinGO Grammar Matrix (Bender et al., 2002, 2010) and,
like the Grammar Matrix, part of delph-in (the Deep Linguistic Processing
with hpsg Initiative).11 I will briefly elaborate on some of these aspects
here. A more elaborate description of the background of these grammars
(i.e. hpsg, delph-in and the Grammar Matrix) will be given in Chapter 2.

The Grammar Matrix provides a starter kit for writing new delph-in gram-
mars. It consists of a static core and dynamic customisation system. The
static core includes basic files to make the grammars interact correctly with
delph-in parsers and generators. It furthermore contains very general im-
plementations of linguistic properties which are likely to be useful for most

11http://www.delph-in.net

17

http://www.delph-in.net

languages. The customisation system allows users to define language specific
properties in a web-based questionnaire. Based on this input, the customisa-
tion system generates a set of language specific implementations of linguistic
phenomena. The customisation system provides basic analyses which can be
corrected and extended manually by grammar engineers.

The technology used for grammar customisation forms the basis of climb

metagrammars. In climb, grammar engineers no longer treat the customisa-
tion system as a black box only using the grammar it outputs as a starting
point. Rather, they extend the original customisation system, so that it can
generate all analyses they designed for their grammar. It should be noted
that it is possible to write grammars with this methodology that do not
make use of the Grammar Matrix, but all climb metagrammars discussed
in this thesis are Matrix-based. A more detailed explanation of climb and
how it relates exactly to the Grammar Matrix will be given in Chapter 3,
Section 3.1.1.

Some of the restrictions posed on the grammars implemented to test meta-
grammar engineering come from their relation to delph-in and the Grammar
Matrix. This includes the use of typed feature structures (from hpsg) and
the basic feature geometry (from the Grammar Matrix).

Grammars developed in delph-in provide a bidirectional mapping between
linguistic expressions and semantic representations. The main criterion that
was followed to develop the grammars for this thesis is that they handle
available data correctly. This means that they provide a defensible semantic
representation for grammatical strings and fail to produce an analysis for
ungrammatical expressions. Mappings between semantic representation and
surface strings can also be verified experimentally by asking native speakers
whether sentences with the same semantics are paraphrases. However, such
experiments require input from several speakers and do not contribute to
the main topic of this thesis. In this study, the MRS representations the
grammars should produce were based on semantic representations for similar
expressions by the English Resource Grammar (Flickinger, 2000, ERG) and
the German Grammar (Müller and Kasper, 2000; Crysmann, 2005, GG), two

18

other delph-in grammars.

A survey of native speaker judgements and syntactic investigations to select
the right data for such experiments was beyond the scope of this work. In
order to prevent an undesirable bias in data selection, the main datasets used
for evaluation were taken from other researchers. Particularly, the Cheetah
development set (Cramer, 2011) was used as a guideline to develop climb

grammars for German. Extensions of this set were mostly based on literature
on German syntax.

1.2.3 Summary

In this section, I argued that the choice between analyses partially depends
on how each alternative interacts with the rest of the grammar. However, it
is only possible to verify interaction with analyses that are already included
in the grammar and phenomena that are still to be treated are (generally)
ignored. This leads to an asymmetrical influence on the grammar from phe-
nomena treated earlier in the grammar development process. Section 1.2.1
explained that this problem can be addressed by using a metagrammar.
The metagrammar can contain alternatives and allows grammar engineers
to maintain these alternatives while developing the grammar. The decision
between alternatives can thus be postponed until more evidence is available.
This idea has been implemented in the development of gclimb. Section 1.2.2
outlined the assumptions taken in this project. Namely, competence of the
grammars is evaluated using test data that is developed independently of this
thesis whenever possible and the target semantic representation for a given
expression is based on the representations for equivalent expressions given
by the ERG or GG.

1.3 Thesis Overview

The previous sections have introduced the topic of this thesis and outlined
the basic assumptions followed in this work. This section presents the outline

19

of this thesis in Section 1.3.1 and its main contributions in Section 1.3.2.

1.3.1 Thesis Structure

Chapter 2 introduces the background for the work carried out in this thesis.
A brief introduction to hpsg is provided. The formalism of typed feature
structures are defined and the main principles of the theory are explained
through an example analysis. Section 2.2 describes specific properties of
grammars developed as part of delph-in. The basics behind parsing and
generation algorithms used in delph-in grammars are explained. Section 2.3
introduces the LinGO Grammar Matrix, the project that formed the main
inspiration for climb. The history and main goals of this project are presen-
ted as well as the basic architecture of the Grammar Matrix. The Grammar
Matrix implementations provided the foundation of climb, which can be
seen as an extension of the Grammar Matrix.

Chapter 3 introduces the climb approach and related tools to analyse
grammars. Section 3.1 describes the origin of the idea behind climb, the
relation between climb and the Grammar Matrix and the architecture and
workflow used for the climb grammars in this thesis. Section 3.2 presents
declarative climb, an alternative version of climb that is easier to use for
grammar engineers used to writing grammars declarative in tdl,12 but which
does not support the full flexibility of climb. Additional processing tools for
the grammars are introduced in Section 3.3. They include the spring clean-
ing algorithm (Fokkens et al., 2011) and a set of tools that support writing
grammars using abbreviated paths. Finally, an overview of the possible ap-
plications of climb (briefly mentioned above at the beginning of this chapter)
is given in Section 3.4.

Chapter 4 introduces the alternative analyses that are examined in this
thesis. Section 4.1 motivates the decision to implement a grammar for Ger-
man. A basic overview of German word order and auxiliaries is given in

12Type Description Language used to define typed feature structures in delph-in gram-
mars (Krieger and Schäfer, 1994; Copestake, 2000).

20

Section 4.2. The standard hpsg analyses are described in Section 4.3. Sec-
tion 4.4 describes the alternative analyses included in gclimb. It is explained
why the alternative analyses for auxiliaries are (expected to be) more effi-
cient in parsing and generation. It includes an illustration of what happens
with the parse chart when a basic sentence is analysed with either of the two
analyses.

Chapter 5 describes the evaluation of gclimb for German. The first part
of the evaluation examines whether it is feasible to use climb for large scale
grammar development and what the impact is on grammar development.
This is done by comparing the process of including phenomena from Chee-
tah’s development set for regression testing in gclimb to the development
of Cheetah’s core grammar. The outcome of this evaluation indicates that
climb can be used for developing large scale grammars. The total devel-
opment time for gclimb is less than half that of Cheetah, despite the facts
that the gclimb work also includes support for other languages (to a cer-
tain extent) and that gclimb’s semantic representations are more complex
than Cheetah’s. Cramer (2011), on the other hand, focused on improving
efficiency. Because of this difference and the fact that there are generally
too many other influential factors on development speed, it is not possible
to conclude that climb speeds up development. However, this result does
make it clear that even if it were the case that using climb generally slows
grammar development down, this remains in an acceptable range.

The second part evaluates efficiency of the grammar indicating that the ad-
vantages of alternative analyses observed in Fokkens (2011a) is still found in
larger grammars. As predicted, the impact increases as the metagrammar
covers more phenomena, but this effect can be prevented by using addi-
tional constraints in the grammars. Section 5.3 describes future directions
of research for gclimb including how to extend gclimb to carry out more
elaborate studies of German syntax and how to incorporate a lexicon that is
read off a treebank.

Chapter 6 discusses multilingual aspects of climb. It first presents two
studies that examine whether the German specific analyses created in this

21

grammar can be used for Dutch, Danish and Northern Frisian. It exam-
ines whether additional analyses interact correctly with the language specific
analyses added for Dutch and Danish at the beginning of the development
of gclimb. The evaluation shows that decent coverage can be obtained in
a relatively short time. It is unlikely the same could be achieved by only
using the Grammar Matrix or starting from another grammar for German
such as GG, but revisions of the metagrammar are necessary to make it
work properly for these languages. Section 6.3 outlines the main goals of
Slaviclimb, a version of climb that can be used to create grammars for
Slavic languages. The role of climb is illustrated by comparing the imple-
mentation of a Slavic case hierarchy with a static core to the more flexible
climb implementation. Section 6.4 describes the climb implementation of
a second language learning module for adjective endings in German. This
is followed by an evaluation of the spring cleaning algorithm, an algorithm
which identifies inactive parts of grammars, on different delph-in grammars.
Finally, a study of revisions made to the Grammar Matrix and a study on
the role of the Grammar Matrix as a language independent core in different
delph-in grammars are presented in Section 6.6.

In Chapter 7, I describe other approaches to improve grammar engineering
by metagrammars, code sharing or crosslinguistic collaboration across frame-
works. The formalism and ideas behind the following projects are addressed:
MetaGrammar and xmg for tag (Candito, 1998; Duchier et al., 2005), the
gf Resource Library (Ranta, 2009, 2011) and the ParGram Project (Butt
et al., 2002; King et al., 2005). Furthermore, three approaches for hpsg and
pc-patr grammars are discussed. They are paws (Black, 2004; Black and
Black, 2009), Sygal and Wintner’s (2011) modular approach to developing
unification based grammar and Müller’s (2013) CoreGram.13 climb is com-
pared to each of these approaches. The main conclusion of this comparison is
that even though some approaches provide the means to maintain alternative
analyses in parallel (notably Candito (1998), Ranta (2011) and to a lesser
extent the hpsg CoreGram), this has to my knowledge not been tried out

13http://hpsg.fu-berlin.de/Projects/core.html, accessed 30 June 2012.

22

on a large scale by any previous approach. climb and Sygal and Wintner’s
modular approach reveal several similarities. Sygal and Wintner’s approach
mainly focuses on increasing modularity and has, to my knowledge, not been
tried out for grammars of similar size to gclimb.

Overall conclusions and future work are presented in Chapter 8.

1.3.2 Contributions

The main contributions of this thesis are the following:

1. This work is, to my knowledge, the first to observe that inconclusive
evidence and interaction form a major hindrance in coming to optimal
solutions in syntactic models and computational grammars.

2. This thesis proposes to address this problem by adopting metagram-
mar engineering as a general method for grammar development. The
methodology differs from other similar approaches in that all analyses
are stored in syntactic libraries, so that the complete latest versions of
the grammar can be generated at any time.

3. Procedural and declarative climb have been developed to implement
this idea. The methodology has some additional advantages including:

• increased modularity

• phenomenon based organisation of the grammar

• longterm flexible multilingual grammar development

• different versions for different dialects

• different versions for different applications (e.g. grammar checking
versus high recall on text)

• possible speed-up for grammar development

4. A metagrammar for German has been implemented examining altern-
ative analyses for auxiliaries and word order. This study provided the
following contributions:

23

• Comparison between the development of gclimb and the Chee-
tah core grammar indicates that climb does not seem to have a
negative influence on development speed.

• Observations about the methodology while the grammars increased
in size indicated that the method can easily be applied to large
scale grammars.

• Experiments that would be difficult to carry out without climb

evaluating natural language generation involving alternative ana-
lyses and different linguistic properties are carried out.

• A setup containing implemented analyses for a range of phenom-
ena for German is provided: This setup can be used for further re-
search comparing analyses from other German grammars in hpsg.

5. Multilingual aspects of metagrammar engineering with delph-in gram-
mars have been explored:

• An evaluation of Dutch, Danish and Northern Frisian grammars
created with gclimb: This evaluation shows that climb indeed
facilitates adaptations of analyses to cover variations in related
languages making it possible to capture a range of phenomena in
short time. However, variations in linguistic properties should be
taken into account throughout grammar development in order to
produce high quality grammars.

• The outline and vision on Slaviclimb and an implementation of
its basic architecture

• A simple method to build grammars for second language learners
using the metagrammar

• An evaluation of the Grammar Matrix describing the revisions
that have been made while implementing gclimb as well as an
evaluation of how the Matrix core is used in other grammars

The bulk of the work carried out as part of this thesis was the conceptual de-
velopment of climb and the technical development of tools that implement

24

it. In particular, I developed gclimb to evaluate the methodology showing
that climb can be applied for developing large scale grammars. Building on
this work, I carried out several experiments that explore the potential of the
methodogy. They include comparative experiments and studies on multilin-
gual aspects of using climb. These studies show the possibilities provided
by the methodology. It should be noted, however, that these experiments
and studies are initial explorations. This thesis introduces the methodology,
provides the tools and indicates what may be done with them. The possib-
ilities include research to support theoretical syntax, an approach to explore
the impact of analyses on efficiency in implemented grammars over time and
a flexible way of multilingual grammar development that has, to my know-
ledge, not been proposed for hpsg-based implemented grammars before. It
is my hope that the contributions of this thesis will inspire and enable other
researchers to further explore properties of their grammars, compare analyses
and investigate new approaches for multilingual grammar development and
that it provides them with the means to carry out such research.

25

Chapter 2

Background

This chapter provides the theoretical background of climb, as well as the
context of the approach. The grammars produced by climb follow the prin-
ciples of Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994,
hpsg). Section 2.1 provides an introduction to this theory based on Pollard
and Sag (1994) and Sag et al. (2003). This is followed by an overview of
the grammars developed within the delph-in consortium as well as a de-
scription of how parsing and generation with these grammars works. In this
section, I also point out some aspects in which analyses in delph-in gram-
mars differ from standard theoretical hpsg. Finally, Section 2.3 describes
the LinGO Grammar Matrix, the project that is most closely related to the
work presented in this thesis.

2.1 Head-Driven Phrase Structure Grammar

Pollard and Sag (1994) present linguistic theory as a “mathematical theory
about an empirical domain” (Pollard and Sag, 1994, 6).1 The object of study
is language, which they understand to be the collective knowledge that is
shared among members of a linguistic community. This knowledge should

1This statement can apply to both scientific theories and philosophical theories and
does thus not address the questions raised in the previous chapter.

26

cat
[
head noun

[
case nom

]]

cont

index

person 3
number sg
gender masc

.
cat .

noun

.
cont

index .

.case
nom

.person 3

.number
sg

.gender
masc

Figure 2.1: A feature structure presented as AVM (left) and DAG (right)

be sought in linguistic types rather than linguistic tokens. In other words,
linguistic theory should model generalisations about linguistic utterances.

In line with seeing linguistic theory as a mathematical model of language,
Pollard and Sag (1994) insist on the importance of formalising linguistic
theory. In hpsg, sorted or typed feature structures (Moshier, 1988; Pollard
and Moshier, 1990) are used to model language. I will use the term typed
feature structures in this thesis. In the following subsections, I will describe
typed feature structures as well as the main ideas on which hpsg theory is
based.

2.1.1 Typed Feature Structures in HPSG

Feature structures

Feature structures are data structures that can be used to represent ob-
jects. They are sets of attribute-value pairs. Feature attributes can take
other feature structures as values. They are therefore suitable to model
objects with complex structures. Several linguistic formalisms make use of
feature structures to model linguistic objects. In addition to hpsg, they are

27

found in Functional Unification Grammar (Kay, 1979, 1984, fug), Parse and
Translate II (Shieber et al., 1983; Shieber, 1984, patr-ii), Lexical Functional
Grammars (Kaplan and Bresnan, 1982, lfg) and other formalisms.

Figure 2.1 depicts two representations of a feature structure partially describ-
ing a noun or noun phrase. The figure on the left uses an attribute-value
matrix (AVM) to describe the feature structure, which is the most common
representation in linguistic work. On the right hand side, the same feature
structure is represented as a directed acyclic graph (DAG). The feature struc-
ture partially describes the English pronoun he (or any other grammatically
masculine singular noun bearing nominative case). It specifies that the head
of the element belongs to the syntactic category noun and bears the nom-
inative case. The indicated semantic values state that the referent of the
object is third person singular and masculine. I will elaborate on the feature
geometry (the location of specific features in the structure) in Sections 2.1.2
and 2.1.3.

Types

Feature structures in hpsg are typed or sorted (Pollard and Sag, 1994). This
means that they are associated with an ontology of linguistic objects or types.
Each feature structure corresponds to a type. In a graph representation,
types will be indicated by labels at the nodes of the graph.

Types are organised in a finite partially ordered set called the type hierarchy.
Types are ordered through subsumption. Subsumption (v) is a reflexive,
transitive and anti-symmetric relation (Carpenter, 1992).

Supertypes are more general types that subsume more specific types, their
subtypes. Subsumption is a relation of inheritance: subtypes inherit all
properties from their supertypes. Multiple inheritance is permitted, i.e. a
type can have more than one supertype. Figure 2.2 provides an example of
a type hierarchy for English agreement and case.

The type hierarchy plays an important role in hpsg’s central operation: uni-
fication. Unification is used to combine words and phrases into larger ex-

28

>

agr

sing plur 3

non-3sg

2 1

3sg 2sg 1sg 3pl 2pl 1pl

case

nom acc

Figure 2.2: A type hierarchy for English person, number and case

pressions, as will be explained in more detail in Section 2.1.3. Grammatical
constraints can also be modelled using unification: if two types bear conflict-
ing feature values, they cannot unify. In order to unify, types must have a
common subtype. Moreover, if the types that are unified are complex types,
i.e. they have properties defined through feature-value pairs, the feature val-
ues of the individual types must unify as well.

Figure 2.2 shows how a type hierarchy may be used to model person number
agreement in English. From the six variations between person and number,
all except the type for third person singular can unify with the type non-3sg.
Morphological marking on English verbs in present tense can restrict the
agreement value of the verb’s subject to 3sg or non-3sg. If a verb assigns the
feature value pair [agr non-3sg] to its subject, a NP bearing the pair [agr

1sg] can become subject of this verb, whereas unification will fail when the
NP is [agr 3sg].

In addition to their role in unification, types are used in hpsg to define
principles of well-formedness of feature structures. Pollard and Sag (1994)
state that feature structures must be well-typed, totally well-typed and type-
resolved (Carpenter, 1992). I will briefly explain each of these conditions
below.

29

Well-typedness ensures that feature structures only describe properties that
are appropriate for the type they model. Feature structures may only con-
tain attributes that are specifically defined to be appropriate for their type.
Likewise, the values that these attributes can take are restricted to specific
types. The AVM in Figure 2.1, for instance, contains the attribute case.
The grammar will contain a definition that states that case is an appropri-
ate attribute of the type noun and that values of this attribute should be
of type case. The type hierarchy in Figure 2.2 would then allow the values
case, nom and acc for this attribute.

Feature structures must be totally well-typed, which means that they must
include all attributes declared appropriate for their type. In other words,
where well-typedness ensures that only appropriate attribute-value pairs oc-
cur, total well-typedness ensures that all appropriate attributes occur. In
practice, irrelevant attributes are often left out in representations of struc-
tures, but they are considered to be present nevertheless. This can lead to
inefficiencies in implemented grammars. Flickinger (2000) provides a solution
to this problem, which will be explained in Section 2.2.1.

Finally, the condition that a feature structure should be type-resolved ensures
that no underspecified values remain in the feature structure. A feature
structure is type resolved when all types it contains are maximal types, the
most specific types in the hierarchy. In other words, types in a type-resolved
feature structure may not have any subtypes: they are the leaves of the type
hierarchy. The ambiguity of natural language is well-known and it is therefore
common that even after all linguistic information is taken into account, there
may be underspecified information. The idea behind this is that, in a given
context, there will be only one appropriate interpretation and all information
about the object is known. There are different views on this condition in the
hpsg community. This approach is followed by Sag et al. (2003), but it is
typically not maintained in implemented grammars, nor is it implemented in
the parsing and generation tools described below in Section 2.2.2.

30

phon string

synsem

local

cat

head head

val

subj list
comps list
spr list
spec list

cont

hook hook
rels diff-list
hcons diff-list

non-local

slash 0-1-dlist
que 0-1-dlist
rel 0-1-dlist

Figure 2.3: Basic feature-structure of the type sign

2.1.2 Signs

The main linguistic objects in hpsg are signs. They correspond more or
less to Saussurean signs, which are arbitrary mappings between form and
meaning (Saussure, 1916). Signs include words, phrases, sentences and even
multi-sentence discourses (Pollard and Sag, 1994). hpsg is a lexicalist theory.
This means that the bulk of syntactic and semantic properties are defined
in the lexicon. As such, lexical items contain information about phonetics,
syntax, semantics and discourse, just like words and phrases.

The exact feature geometry of sign has been revised at several occasions2

and may differ from one researcher to another. Figure 2.3 presents the basic
(incomplete) structure of a sign as typically found in delph-in grammars.
The next sections will explain how individual signs can be combined to form

2Most notably, Pollard and Sag (1994) merge the attributes syntax and semantics
from Pollard and Sag (1987) into synsem. In constructional versions of hpsg (Ginzburg
and Sag, 2000; Sag, 1997), feature structures are generally flatter than in standard hpsg.

31

larger expressions. Semantic properties (found under cont) will be explained
in more detail in Section 2.1.5.

2.1.3 Immediate Dominance Schemata

Signs are combined into larger units by immediate dominance schemata. In
hpsg theory, schemata are seen as a small universal set of constraints that
determine the immediate constituency of phrases (Pollard and Sag, 1994,
38). Likewise, the related Immediate Dominance Principle is considered a
universal principle:

The ID Principle (Pollard and Sag, 1994, 38,399)
Every headed phrase must satisfy exactly one of the ID schemata.

Pollard and Sag (1994) define six schemata in total. They are listed below,
followed by a brief description of their function. The reason that only six
schemata are proposed is closely linked to the lexicalist character of hpsg.
Lexical items contain detailed information about the arguments they take
and/or the elements they may modify. Restrictions on syntactic categories
or cases are therefore handled by the syntactic head or modifier of a phrase,
permitting generally defined schemata to create different kinds of phrases.

schema 1 (head-subject/head-specifier schema):

Schema 1 combines a phrase with its subject or a noun with its specifier.

schema 2 (head-complement schema):

Schema 2 combines a word or phrase with its complements.

schema 3 (head-subject-complement schema):

Schema 3 combines a head with both its subject and a complement in
a ternary structure. This schema can be used when the subject stands
between a verb and its complement, interrupting the verb phrase.

schema 4 (head-marker schema):

Schema 4 combines a syntactic marker with a phrase. The English
complementiser that is an example of a syntactic marker.

32

schema 5 (head-adjunct schema):

Schema 5 combines phrases with modifiers.

schema 6 (head-filler schema):

Schema 6 combines a phrase with an extracted element. This schema
is used to capture long distance dependencies.

Schemata 1, 2 and 5 will be illustrated in an example derivation in Sec-
tion 2.1.4. Schemata 3 and 4 are not used in the grammars discussed in this
work. Examples and motivations for their use can be found in Pollard and
Sag (1994). Schema 6 is used in the standard hpsg analysis for German
word order and will be illustrated in Chapter 4.

The ability to apply schemata, as well as the result of their application is in-
fluenced by a set of principles. I will present the most significant ones, namely
the Head Feature Principle, the Subcategorisation or Valence Principle and
the Semantics Principles in the next section.

2.1.4 An example analysis in HPSG

This section will present an hpsg analysis for the sentence The little girl
likes strawberries. The purpose of this example analysis is to demonstrate
how schemata work, as well as to introduce some of the main principles in
hpsg.

Figure 2.4 presents the structure for likes strawberries. A lexical rule applies
to the lexical entry of like assigning present tense and restricting its subject
to entities in third person singular. The noun strawberries is the daughter of
a bare-np-phrase which creates noun phrases from nouns when they do not
combine with a determiner.3 Note that this derivation is somewhat simplified.
In standard hpsg and most grammars, the grammar would include a stem
for strawberry and a lexical rule to create the plural form. The word likes

3Bare-np-phrases are typically used in implemented grammars and not (necessarily) in
theoretical hpsg.

33

head-comp-phrase

cat

head 1

val

[
spr 〈 2 〉
comps 〈 〉

]

cont

index e

[
tense present

]

rels 〈 like v(e,x,y),undef q(y),strawberry n(y) 〉

present-3sg-verb

cat

head 1

val

spr 〈 2 3sg 〉
comps 〈 3 〉

cont

index e

[
tense present

]

rels 〈 like v(e,x,y) 〉

trans-verb-lex

cat

head 1 verb

val

[
spr 〈 2 NPx 〉
comps 〈 3 NPy 〉

]

cont

[
index e

rels 〈 like v(e,x,y) 〉

]

likes

3

bare-np

cat

head 4

val
[
spr 〈 〉

]

cont

[
index y

rels 〈 undef q(y), strawberry n(y) 〉

]

common-noun-lex

cat

head 4 noun

val

[
spr 〈 D

[
opt +

]
〉
]

cont

[
index y

rels 〈 strawberry n(y) 〉

]

strawberries

Figure 2.4: Abbreviated structure for likes strawberries

and phrase strawberries are combined with schema 2, the head-complement
schema.

The head-complement schema specifies that the complement list of the res-
ulting phrase is empty, and the elements on the complements list of the head
daughter corresponds to the synsems of the non-head daughters. In Fig-
ure 2.4, the complement list of like has one element (3), which corresponds
to the synsem of strawberries. The example shows that the head of likes (1)
also is the head of the entire phrase. The noun phrase and noun strawberries

34

2

spr-head-phrase

cat

head 5

val
[
spr 〈 〉

]

cont

index x

rels 〈 exist q(x), little a(e2,x), girl n(x) 〉

6

determiner-lex

cat

head det

val
[
spec 〈 8 NPx 〉

]

cont
[
rels 〈 exist q(x) 〉

]

The

8

head-modifier-phrase

cat

head 5

val
[
spr 〈 6 〉

]

cont

index x

rels 〈 little a(e2,x), girl n(x) 〉

adjective

cat

[
head adj

[
mod 〈 7 Nx 〉

]]

cont

index e2

rels 〈 little a(e2,x) 〉

little

7

common-noun-lex

cat

head 5 noun

val
[
spr 〈 6 D 〉

]

cont

index x

rels 〈 girl n(x) 〉

girl

Figure 2.5: Abbreviated structure for the little girl

share their head value as well (4). This forms an illustration of the Head
Feature Principle defined below (based on (Pollard and Sag, 1994, 34, 399)
and (Sag et al., 2003, 55)):

Head Feature Principle:
The head value of any headed phrase is token identical to the head

value of head daughter

Figure 2.5 shows the structure of the little girl. The head-modifier-phrase is
built by applying schema 5. Schema 1 combines the noun with its specifier.

35

Note that the valence requirements of the phrase do not change when the
adjective and the noun are combined. This is a consequence of the valence
principle (based on Sag et al. (2003), p. 143):

Valence Principle:
The val(ence) value of any headed phrase is token identical to the val

value of head daughter, unless the applied schema specifies otherwise.

The values specified under val indicate the arguments an element subcat-
egorises for. A schema that does not combine a head with an argument (or
cancel an argument, like the bare-np-phrase) should therefore not change its
values. Schemata that combine phrases with subjects, specifiers or comple-
ments remove the found object from the related subcategorisation list. The
valence principle in combination with correctly defined schemata ensure that
subcategorisation requirements are respected.

Figure 2.6 combines the verbal phrase with its subject, using schema 1. This
example follows Pollard and Sag (1994), who treat subjects as specifiers. This
is generally not the case in delph-in grammars, where subjects have their
own list under val (cf. Figure 2.3, p. 31). Again, the only element on the
spr list of the head daughter is identified with the synsem of the non-head
daughter. The result is a phrase that no longer requires a specifier.

Now that the main syntactic properties (sharing head values and subcat-
egorisation) have been explained, let us look at the semantics value of the
sentence. They are the result of two semantic principles, namely the Se-
mantic Inheritance Principle and the Semantic Compositionality Principle.
The definition of the former is as follows (based on (Sag et al., 2003, 143)):

Semantic Inheritance Principle:
The index of a phrase is token identical to the index of its head
daughter.

The index is used to build up semantics of predicates and arguments. The
semantic inheritance principle ensures that the newly created phrase has the

36

spr-head-phrase

cat

head 1

val

spr 〈 〉
comps 〈 〉

cont

index e

rels 〈 exist q(x), little a(e2,x), girl n(x),

like v(e,x,y), undef q(y),strawberry n(y) 〉

2

spr-head-phrase

cat

head 5

val
[
spr 〈 〉

]

cont

index x

rels 〈 exist q(x), little a(e2,x),

girl n(x) 〉

the little girl

head-comp-phrase

cat

head 1

val

spr 〈 2 〉
comps 〈 〉

cont

index e
[
tense present

]

rels 〈 like v(e,x,y), undef q(y),

strawberry n(y) 〉

likes strawberries

Figure 2.6: Abbreviated structure for the little girl likes strawberries

correct index for further combinations. The example sentence the little girl
likes strawberries reveals how this works for arguments as well as modifiers.
The lexical entry like specifies that its subject and object correspond to its
first and second argument, respectively (e is its identifying argument, also
known as “distinguished variable” or arg0, as will be explained in the next
section). This is indicated by the subscribed x and y in NPx and NPy, which
stand for the NP’s indices. Similarly, Nx and x on the mod and, respectively,
rels lists of little indicate that the adjective’s first argument is the referent
of the modified noun.

The Semantic Compositionality Principle captures the idea that the se-
mantics of a phrase is constructed from its parts (Frege, 1892). It is defined

37

mrs
ltop h1 h
index e2

[
e
]

rels

〈
every_q_rel
lbl h3 h
arg0 x5

[
x
]

rstr h6 h
body h4 h

,

little_a_rel
lbl h7 h
arg0 e8

[
e
]

arg1 x5

,
girl_n_rel
lbl h7 h
arg0 x5

,

like_v_rel
lbl h9 h
arg0 e2

[
x
]

arg1 x5

arg2 x10
[
x
]

,

undef_q_rel
lbl h11 h
arg0 x10

[
x
]

rstr h12 h
body h13 h

,
strawberry_n_rel
lbl h14 h
arg0 x10

〉

hcons

〈qeq
harg h6

larg h7

,
qeq
harg h12

larg h14

〉

Figure 2.7: MRS Representation of Every little girl likes strawberries

as follows (based on (Sag et al., 2003, 144)):

The Semantic Compositionality Principle: The value of rels

of any well-formed phrase is the sum of the rels values of its daughters.

The example analysis in this section has been used with the purpose to
provide a basic indication of how hpsg works and to introduce its basic prin-
ciples. The next section will describe Minimal Recursion Semantics (Copes-
take et al., 2005), which is used in most delph-in grammars.

2.1.5 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a meta-language that can be used to
describe semantic structures. The idea behind MRS is to provide a frame-
work for computational semantics suitable for parsing and generation. This
subsection will provide a simple example and brief explanation of MRS. For
a thorough introduction, see Copestake et al. (2005). Figure 2.7 presents an
MRS representation for a similar example sentence as in the previous section,
every little girl likes strawberries.

The basic entities in MRS representations are elementary predications (eps).
An ep is a single relation with its associated arguments (Copestake et al.,
2005, 2). The eps in the semantics of every little girl likes strawberries are
found under the attribute rels in Figure 2.7.

38

MRS aims to provide a flat representation that still captures required in-
formation about scope. The rels value in Figure 2.6 in the previous section
presents a simplified form of the basic argument structure. The information
in this simplified structure is conveyed by the values of argN in the MRS
representation above.

In order to represent scopal information, labels are introduced with so-called
handles as their value. Handles also appear as the value of scopal argu-
ments, in this case they are called holes. Constraints on possible scopal
interpretations of the expression are introduced under hcons. The qeq re-
lation indicates that either the value of larg l fills the hole h in harg,
or l is indirectly linked to h via one or more ‘floating quantifiers’. In this
case, l is either the body of an argument filling h, or an argument that is
the body of an argument directly or indirectly filling h (Copestake et al.,
2005, 10). Two scopal relations are defined in the example above. The first
element on hcons indicates every has scope over little and girl. Likewise,
udef, the quantifier introduced by the bare noun phrase rule has scope over
strawberries.

2.1.6 Summary

This section provided an introduction into hpsg. Formal properties of typed
feature structures were defined. A basic description of sign has been given,
along with a demonstration of how signs are combined into larger expressions
through unification. Finally, the basics of MRS were explained. The next
section provides background information on hpsg grammars implemented as
part of the delph-in initiative.

39

2.2 DELPH-IN

The delph-in (Deep Linguistic Processing with hpsg Initiative)4 research
consortium aims to create open source NLP applications that use linguist-
ically motivated precision grammars. Research at delph-in member sites
ranges from grammar development and tools supporting grammar develop-
ment to applications using them.

Several applications have been supported by delph-in grammars, such as on-
tology construction (Nichols et al., 2006), machine translation (Oepen et al.,
2007; Nichols et al., 2010; Bond et al., 2011; Wang et al., 2012), structured
knowledge based question answering (Frank et al., 2007), extracting know-
ledge from scientific text (Rupp et al., 2007), textual entailment (Bergmair,
2008) and grammar checking (Bender et al., 2004; Crysmann et al., 2008;
Suppes et al., 2012). A full account of NLP applications and other related
research using delph-in grammars is beyond the scope of this work. The
only application that will be discussed in detail will be work on grammar
checking in Chapter 6, as part of an introduction on using Germanic climb

for this purpose.

The properties of delph-in grammars, as well as the tools available to sup-
port their development, on the other hand, directly influence the design
choices made in the development of gclimb. In order to understand al-
gorithms developed as part of climb, such as the algorithm for spring clean-
ing (cf. Chapter 3, Section 3.3.1), knowledge of some of the formal properties
of delph-in grammars is required. The analyses proposed in Chapter 4 devi-
ate from standard hpsg in several ways, some of which are typical deviations
found in delph-in grammars. In order to understand how different analyses
interact with efficiency of the grammar, a basic understanding of the parsing
and generation algorithms used with these grammars is needed. This section
addresses these two aspects. First, delph-in grammars are described. Next,
the basics behind parsing and generation grammars of the delph-in parsers
and generators are explained.

4http://www.delph-in.net

40

http://www.delph-in.net

2.2.1 DELPH-IN grammars

Name Language Reference Maintainer
Resource Grammars

English Resource Gram-
mar (ERG)

English Flickinger (2000) Dan Flickinger

Jacy Japanese Grammar
(Jacy)

Japanese Siegel and Bender (2002) Francis Bond

GG German Müller and Kasper (2000),
Crysmann (2005)

–

SRG Spanish Marimon (2010) Montserrat Marimon
LXGram Portuguese Branco and Costa (2010) Antonio Branco
KRG Korean Kim and Yang (2003),

Song et al. (2010)
Jong Bok Kim

MCRG Modern Greek Kordoni and Neu (2005) Valia Kordoni
NorSource Norwegian Hellan and Haugereid

(2003)
Lars Hellan

gclimb German German Fokkens (2011a) Antske Fokkens
Treebank-trained Grammars

Cheetah German Cramer and Zhang (2009) Bart Cramer
Medium-sized linguistic Grammars

La Grenouille French Tseng (2003) Jesse Tseng
MCG Mandarin Chinese Zhang et al. (2011) Yi Zhang
BURGER Bulgarian Osenova (2010) Petya Osenova
wmb (wmb) Wambaya Bender (2008a) Emily Bender
HaG Hausa Crysmann (2012) Berthold Crysmann
RRG Russian Avgustinova and Zhang

(2010)
Tania Avgustinova

gclimb Dutch Dutch Fokkens (2011a) Antske Fokkens
ManGO Mandarin Chinese – Justin Chunlei Yang

Experimental Grammars
Min Nan Grammar Min Nan

(Taiwanese)
– Michael Goodman

– Turkish Fokkens et al. (2009) Antske Fokkens
– Georgian Borisova (2010) Irina Borisova
– Thai – Glenn Slayden

Table 2.1: delph-in grammars as of July 20 2012

Grammars for several languages that may be used with delph-in tools have
been developed over the last two decades. Table 2.1 provides an overview of
these grammars according to the delph-in grammar catalogue,5 which lists
most of the delph-in grammars.

Formal properties of DELPH-IN grammars

delph-in grammars have five major components (Copestake, 2002, 107):
5moin.delph-in.net/GrammarCatalogue, accessed on 23 July 2012.

41

moin.delph-in.net/GrammarCatalogue

• types and constraints

• lexical entries

• grammar rules

• lexical and morphological rules

• root conditions

Types and constraints form a type hierarchy as described in Section 2.1.6

Recall that this means a hierarchy of subsumption relations, where types
can be associated with complex feature structures. The root conditions de-
termine whether an utterance can be considered as a “completed” expression.
A grammar can accept several roots at the same time (full sentences, noun
phrases, only complete phrases, lexical items, etc.). The other three compon-
ents lexical entries, grammar rules and lexical and morphological rules define
instances. Parsing and generation algorithms operate on instances and types
define these instances. In a grammar that closely follows theoretical hpsg,
the grammar rule instances would correspond to hpsg schemata.

delph-in grammars are all written in the delph-in joint reference formal-
ism (Copestake, 2000), based on Type Description Language as defined by
Krieger and Schäfer (1994), and known as tdl. Figure 2.8 shows an example
tdl type definition taken from one of the German grammars developed for
this thesis. The type identifier (or name of the type, in this case noun-lex)
stands left of the symbol :=. The symbol := should always be followed by
at least one supertype. Two supertypes are specified for noun-lex. Square
brackets provide an environment to define further constraints on the type.
Features and their values are separated from each other by white spaces. Dots
can be used to define paths of features. #spr labels a reentrancy between the
values of two features, i.e. it indicates that the values of these features should
be unified.7 Additional properties can be added to types by defining so-called

6The following text and its related examples are partially taken from Fokkens et al.
(2011).

7Note that < > is an abbreviatory notation for lists, which are treated as feature
structures containing the features FIRST and REST.

42

noun-lex := general-noun-lex & non-reflexive-noun-lex &
[SYNSEM.LOCAL.CAT [HEAD.MOD <>,

VAL [SPR < #spr & [LOCAL.CAT.HEAD det] >]],
ARG-ST < #spr >] .

Figure 2.8: Sample type definition from German grammar

addenda. In an addendum, the type identifier is followed by the symbol :+.
The structure of definitions defined using :+ is similar to the structure when
:= is used. The properties following the addendum symbol will be added to
the original type definition. These properties can be additional supertypes
or feature-value pairs. Addenda allow the grammar engineer to define the
properties of a type over different files. This is of particular interest for mul-
tilingual approaches, where one may want to add language specific properties
to a crosslinguistic type defined in a common core.

The type hierarchy must be a bounded complete partial order (BCPO) in
order to be used for parsing or generation. In order to be a BCPO, the
hierarchy must contain one unique most general subtype (the greatest lower
bound, or glb) for any two types that have subtypes in common. Grammar
engineers are not required to make sure that the type hierarchy has this
property. Compilation algorithms of the parse and generation tools create
glb types where necessary using an algorithm described in Penn (2000). In
other words, if any two types share more than one subtype, and none of
them is more general than all the others, the grammar compiler creates an
additional type. This is shown in Figure 2.9.

Deviations from HPSG theory

Even though the foundation of delph-in grammars lies in hpsg, several dif-
ferences between theoretical hpsg and common practice in delph-in gram-
mars can be observed. Such differences may occur in order to maintain com-
putational efficiency in the grammars. They mainly concern the treatment
of word order and avoiding the use of unnecessary features.

43

Figure 2.9: Sample hierarchy as written by grammar engineer (left) and
augmented with glb type by compiler (right)

Copestake (2002) elaborates on a difference in the notion of constraints in
theoretical hpsg and their treatment in implemented grammars. Recall from
Section 2.1.1 that well-formed feature structures must be (totally) well-typed
and type-resolved. Sag and Wasow (1999) distinguish typed feature structure
descriptions from typed feature structures: descriptions need not adhere to
the well-formedness conditions mentioned above.

The typed feature structures in implemented grammars are, in most cases,
typed feature structure descriptions. The delph-in approach uses (totally)
well-typed feature structures, but does not require feature structures to be
fully resolved. A typed feature structure description defines a set of typed
feature structures that correspond to its description. When maximally spe-
cified, this set contains exactly one element. The unification of two descrip-
tions is the intersection of the sets they define. If a description defines the
empty set, it is considered ill-formed. This distinction between typed fea-
ture structures themselves and their descriptions is not made in implemented
grammars. Operations are defined on partial orders instead of sets of objects
(Copestake, 2002, 152).

Copestake (2002) explains that this difference does not seem to be significant
in itself, because grammar engineers typically only use typed feature struc-
tures descriptions in their grammars. It is, however, related to a difference
that does have some impact on grammar writing, namely, the way constraints
are interpreted. In theoretical hpsg, features in a typed feature structure

44

noun-synsem
case case
num num

nom-synsem
case nom
num sg

acc-synsem
case acc
num pl

synsem 1

[
case nom

]

dtr|synsem 1 noun-synsem

Figure 2.10: Partial type hierarchy (left) and lexical rule (right)

description are not only constrained by locally defined constraints, but also
by the subtypes of the feature structure. Each feature structure description
must correspond to at least one leaf type of the type hierarchy.

The constraints imposed by possible fully specified candidates influence the
values of the typed feature structure, as well as it well-formedness. If a type
is not a maximal type (or leaf of the type hierarchy), it is only valid if it can
be specialised into one of its subtypes.

Consider the (partial) type hierarchy and basic lexical rules in Figure 2.10.
Suppose the two subtypes in the hierarchy are the only subtypes of noun-
synsem. Under the formalisation followed in theoretical hpsg, the result
of applying the lexical rule represented on the right will carry the con-
straint [synsem nom-synsem], automatically receiving the additional con-
straint [num sg]. After all, as soon as the case is constraint to the value
nom, this is the only noun-synsem it can be resolved to. The value of syn-
sem and its additional constraint follow from general constraint resolution.
Constraints in delph-in grammars are not resolved in this manner. In the
example above, the value of synsem remains noun-synsem with an under-
specified value for the feature num after the rule applies.

Both delph-in grammars and (most versions of) theoretical hpsg adopt a
closed-world assumption. The example above illustrates that this assumption

45

is applied uniformly in theoretical hpsg, whereas the formalisation used in
delph-in grammars is more flexible.

The difference may lead to underspecification if the grammar engineer does
not take care when integrating analyses from theoretical work. The upside is
that general constraint resolution is hardly used in hpsg (Copestake, 2002,
154). Restrictions that follow from general constraint resolution are less
transparent, which may be the reason why syntacticians do not make much
use of them in theoretical work.

Features

Feature structures in hpsg analyses tend to get quite large. Because all fea-
tures of types to be unified are copied during unification, the size of feature
structures influences both time and space in parsing and generation. It is
therefore natural that grammar engineers should seek methods to reduce the
size of feature structures. The aim of keeping feature structures small can also
be found in theoretical hpsg. As mentioned in Chapter 1, Section 1.1.2, eleg-
ance and simplicity are generally strived for in syntactic theories and hpsg

is no exception. However, there can be a difference between a theoretical
justification to introduce a new feature and a computational justification.

Considerations of the feature space can inform analysis choice in grammar en-
gineering. They can also inform the specific design of type hierarchies because
the size of feature structures impacts the efficiency of processing. Flickinger
(2000) proposes a specific strategy for minimising the size of feature struc-
tures while maintaining the same (analytical) feature space. Flickinger’s
(2000) proposal addresses inefficiencies due to the condition of total well-
typedness. Because of this condition, all features assigned to a type must be
verified anytime the type occurs in a structure, even if all of their values are
underspecified. Flickinger (2000) proposes to introduce so-called mintypes.
Mintypes are supertypes of basic hpsg types, where the bulk of the original
type’s features are omitted. Where possible, the mintype is assigned as value
rather than the more elaborate type. Because of the way constraints are

46

treated in delph-in grammars, features on their subtypes will only be intro-
duced in the structure when they are specifically defined. Features that are
not relevant at a given point of a derivation are not present in the structure
and need not be copied, saving both time and space in parsing (Flickinger,
2000).

Schemata and word order

The treatment of word order is probably where theoretical hpsg and delph-

in grammars differ most. As explained above, theoretical hpsg proposes a
small set of universally valid schemata. The language dependent word order
constraints are imposed by linear precedence constraints defined externally
from the type hierarchy. In early hpsg, these constraints influence the or-
der of daughters directly by ordering constituents. Later, domains were in-
troduced which provide a method to scramble words belonging to different
constituents (Reape, 1993, 1994).8

Grammar rule instances are the delph-in equivalent of hpsg schemata: they
define how signs may be combined. But unlike schemata, the arity of the
rules as well as the relative order of their daughters is fixed. Moreover, the
arity is generally kept small. Most rules are unary or binary rules. Occa-
sionally, a grammar may include a ternary rule. In addition to the obvious
consequence that the domain-based analysis of scrambling is not available,
these conditions have a large impact on the number of rules used in the gram-
mars. If a head can combine with its daughters in more than one order, this
results in the introduction of multiple variations of a grammar rule. In the
case of two daughters, the rule must be introduced in both directions. When
more daughters are involved, even more rules may be necessary to allow the
head to pick up its arguments in alternative orders.

According to the grammar catalogue,9 the ERG includes 207, Jacy 51, and
Wambaya (wmb) 88 grammar rules. Even though this includes some unary

8See Kathol (2000) for an elaborate account using domains to model German word
order.

9http://moin.delph-in.net/GrammarCatalogue, accessed 24 July 2012

47

http://moin.delph-in.net/GrammarCatalogue

rules which would also be used as constructions in theoretical hpsg, this
clearly surpasses the “five and maybe more, but not many more” schemata
suggested in Pollard and Sag (1994). Not all of these additional rules are due
to the different treatment of word order. Drellishak and Bender (2005) point
out that coordination is a source of additional rules. In many cases, it can
be advantageous to exclude certain structures by restrictions on grammar
rules rather than waiting until ill-formed structures are excluded by lexical
constraints. Such decisions may as well have an impact on the number of
rules needed to get broad coverage of phenomena in a language.

2.2.2 DELPH-IN Parsing and generation

The previous section described some of the main differences between delph-

in grammars and theoretical hpsg. This section explains the basics behind
the parsing and generation algorithms that are used with these grammars.
The purpose of this explanation is to provide some background as to why
certain decisions in grammar design may influence efficiency. For reasons
of clarity, I will stick to the basics of the algorithms. Properties and op-
timisations of parsing and generation algorithms that were not used in the
experiments reported in this thesis will not be addressed.

Several tools for parsing and generation have been developed that are re-
lated to research in the delph-in consortium. Linguistic Knowledge Building
(Copestake, 2002, LKB) can both parse and generate and was developed with
the particular purpose to support grammar development. The PET parser
Callmeier (2000) was developed as a platform to test unification algorithms
for efficient parsing with large grammars. It serves as a core parsing com-
ponent in several applications (see Oepen et al. (2007), Frank et al. (2007)
and Suppes et al. (2012), among others). Several improvements have been
added to PET, including subsumption based packing (Oepen and Carroll,
2000) originally developed for LKB, statistical parse ranking (Zhang et al.,
2007) and unknown word handling (Zhang, 2007; Dridan, 2009).

Recently, two new tools have been developed that can be used for parsing and

48

generation with delph-in grammars. The Answer Constraint Engine (Pack-
ard, 2011, ACE) has been developed for efficient processing with delph-in

grammars. Parsing and generation with ACE both perform around 15 times
faster than LKB. Its performance for parsing is comparable to PET, but
ACE can be “significantly faster in certain common configurations” (Pack-
ard, 2011). The other recent addition to parsing tools is agree (another
grammar engineering environment) (Slayden, 2012). The system was built
as part of a project to test a new efficient unification algorithm. Performance
is in league with that achieved by PET, with room to scale up performance
for agree (Slayden, 2012).

The parsers all use bottom-up chart parsing, which will be explained through
the example expression the girls like strawberries. This explanation is based
on Copestake (2002), Malouf (2000) and Oepen and Carroll (2000) writing
about LKB, and Callmeier (2000) and Dridan (2009) writing about PET. It
is followed by a brief explanation of chart generation as implemented in LKB
based on Carroll et al. (1999).

Parsing

Figure 2.11 presents a possible chart for parsing the expression the girls like
strawberries. The expression has two readings, one where the expression is a
sentence and one where it is a noun phrase. According to the most intuitive
reading, there are girls who like strawberries (the sentence reading). The
less intuitive reading is that the girls are like strawberries (the noun phrase
reading). The syntactic structures are represented in Figure 2.12.

Each cell in a chart covers a given span and stores all possible structures that
the grammar licenses for this span. The chart in Figure 2.11 should be read
as follows: The covered span is marked in italics at the bottom of each cell.
The structures are indicated by the name of lexical items or applied rules
and identified with an edge number in square brackets (“[]”) before the rule.
The daughters of each rule are indicated by their edge number in regular
brackets (“()”) after the rule. Items that are not followed by brackets come

49

[16]subj_head_rule(10,12)
[15]spr_head_rule(0,13)

the girls like strawberries

[14]subj_head_rule(3,12)
[13]head_mod_rule(2,11)

girls like strawberriesthe girls like

[12]head_comp_rule(6,9)
[11]head_comp_rule(4,9)

[10]spr_head_rule(0,2)

like strawberriesgirls likethe girls

[9]bare_np_rule(8)
[8]noun_pl_rule(7)
[7]strawberry_n

[6]non-3sg-pres_rule(5)
[5]like_tverb
[4]like_p

[3]bare_np_rule(2)
[2]noun_pl_rule(1)
[1]girl_n

[0]the_det

the girls like strawberries

the girls like strawberries

Figure 2.11: Chart for parsing the girls like strawberries

from the lexicon. The trees in Figure 2.12 can be linked to the chart by the
edge numbers of individual nodes, marked in square brackets.

In the first stage of building up the chart, orthographic rules are applied to the
input tokens of the string to produce possible lemmas of lexical items (Dridan,
2009). These lemmas are looked up in the lexicon and each candidate lexical

S[16]

VP[12]

NP[9]

N[7]V[6]

NP[10]

N[2]

the girls like strawberries

NP[15]

N[13]

PP[11]

NP[9]

N[7]
N[2]

the girls like strawberries

Figure 2.12: Parse trees for the girls like strawberries

50

item is added to the chart. The grammar that would produce the chart in
Figure 2.11 has two lemmas for like and one for the, girl and strawberry.

Next, morphological rules are applied and added to the chart where the
orthography of the surface form and constraints on the rule and its daughter
permit it. For instance, a rule assigning plural to nouns is applied to both
girls and strawberries (edges [2] and [8], respectively). The rule assigning
singular cannot apply, because it would lead to the wrong surface forms. In
the case of like, the rule indicating that the verb has a non third person
singular subject (edge [6]) does not apply to the preposition like, because it
is restricted to verbs.

After the possible structures for a word have been created, they can be
combined by syntactic rules.10 Syntactic rules are applied according to an
agenda based parsing algorithm. This means that active edges (i.e. candidate
phrases that still need one or more daughters to be complete) are placed on
an agenda. The algorithm tries to combine active edges with passive edges
(i.e. complete phrases) from the chart to form new edges, which may be either
active edges to be placed on the agenda or passive edges to be added to the
chart.

Passive edges created by unary rules are added to the same chart cell as their
daughter (e.g. the bare_np_rule creating NPs in edges [3] and [9]). Binary
rules can combine two edges from adjacent cells. The passive edges created
by binary rules are placed in the cell that represents the span of both their
daughters. The parser returns all structures that span the entire input string
and are conform to the defined root conditions. If no edge is created that
conforms to these two conditions, the parse fails. In the example above, two
parses will be created if the root conditions permit noun phrases as well as
sentences. If the root is restricted to sentences, the parser will provide only
one analysis, namely where like is a verb.

10To be precise, it must be defined in the grammar that only words or phrases can be
input of syntactic rules, e.g. that the verb like cannot be used as a daughter for a rule
without the non-3sg-pres_rule having applied. Grammars generally include this restric-
tion. Processors have a related restriction that only lexical rules may be interleaved with
any spelling change rules, conform to lexical integrity.

51

Generation

The LKB generation algorithm (Carroll et al., 1999) generates from MRS
representations to strings in three phases: lexical lookup, chart generation
and modification insertion.

The lexical lookup in generation is similar to the stage in parsing where
possible words in the input string are identified. All instances of the grammar
(lexical items, lexical rules and grammar rules) are indexed according to the
semantic relations they contribute. During lexical lookup, items that are
compatible with the input semantics are selected. This means that all the
items inserted either contain relations that are found in the semantics, or do
not contribute semantic relations. Next, lexical rules that may take selected
items as their input are applied. Just as orthography constrains possible
rules in case of parsing, the semantics constrains which rules may apply
for generation: the semantic contribution of lexical rules (if any) must be
compatible with the input.

Carroll et al. (1999) point out four challenges for the approach. First, more
than one lexical item may contribute the same semantic relation (i.e. entries
for synonyms). This is similar to the ambiguity of like in the parsing ex-
ample. In this case, the generator will create sentences with all synonyms
assuming that they may lead to well-formed expressions. Second, one item
may introduce several relations. This is similar to multiword expressions for
parsing, which I will leave out of scope of this basic explanation.

The third challenge lies in the possibility that part of the semantics comes
from a grammar rule, rather than a lexical entry or lexical rule. Therefore
the semantic index of grammar rules is used to select potential contributors
during lexical lookup. Finally, lexical items that do not contribute semantics
form a challenge, because they could potentially be inserted for generation
from any semantic representations. In most cases, this insertion would only
lead to failure somewhere down the road. In order to prevent this undesirable
behaviour, trigger rules can be defined that determine when lexical items
without relations may be inserted.

52

The second phase of the generation process is chart generation. The approach
taken is bottom-up head-first. It is similar to chart parsing explained above,
but again with the difference that an edge must cover part of the semantic
representation rather than part of a string. When active edges are to be
completed, the generator looks among inactive edges for candidates whose
semantic index leads to a semantic structure compatible to the input MRS
after the rule is completed.

This approach can be problematic when several edges have the same index.
Intersective modifiers form a well-known case where efficiency problems may
occur in chart generation. There may be an indefinite number of intersective
modifiers that may equally well form part of the semantic representation and
their relative order cannot be determined locally. Carroll et al. (1999) ex-
plain this phenomenon through the example of big German consultant, where
(among others) the edge big consultant would be created only to fail later
on when it turns out that it is not possible to add German to the structure
(assuming that the grammar is rather restrictive about the permitted order
of adjectives). Furthermore, structures such as the consultant, the big con-
sultant and the German consultant may all be produced only to fail when
it turns out no other adjectives can be added to the NP. To circumvent this
problem, intersective modification is treated in a separate phase after chart
generation has completed. A description of this process (which does not play
a direct role for the experiments in this thesis) can be found in Carroll et al.
(1999).

2.2.3 Summary

This section provided an overview of grammars implemented as part of
delph-in. Differences between choices in grammar design and theoretical
hpsg have been pointed out. Finally, a brief explanation was given of the
parsing and generation algorithms that can be employed with these gram-
mars.

53

2.3 The LinGO Grammar Matrix

This section presents the LinGO Grammar Matrix (Bender et al., 2002,
2010), a multilingual resource that supports the development of new delph-

in grammars. This project has a central role in the work carried out as part
of this thesis. The Grammar Matrix provided the main inspiration for the
idea of metagrammar engineering and its architecture provided a platform
to implement the idea directly.

The section starts with a short historic overview of the project introducing
the main goals and basic structure of the Grammar Matrix. This is followed
by a more detailed description of the customisation system and the functions
it includes. Additional attention is given to those functions that play an
important role in the metagrammar. The concluding remarks on this sec-
tion address the feedback loop from users to the Grammar Matrix and the
question of how to get most out of grammar customisation.

2.3.1 A historic overview of the Grammar Matrix

The first version of the Grammar Matrix was presented in Bender et al.
(2002). At the time, three large grammars were under development. They
were the LinGO English Resource Grammar (Flickinger, 2000, ERG), the
Jacy grammar of Japanese (Siegel and Bender, 2002) and the German Gram-
mar (Müller and Kasper, 2000; Crysmann, 2005, GG).

Bender et al. (2002) point out that the grammars were mainly developed
independently, despite the fact that they use the same theoretical framework
and formalism. The creation of these grammars had at the time required
between 5 and 15 years of development by experts. They furthermore explain
that each grammar comprises between 35,000-70,000 lines of code and are
documented in a manner that makes it far from trivial to extract knowledge
about analyses or learn about best practices for grammar engineering. These
challenges form the main motivation for developing the LinGO Grammar
Matrix starter kit.

54

The main component of the original Grammar Matrix starter kit is a file
called matrix.tdl. This file defines the top of the hierarchy of typed feature
structures for new grammars. Bender et al. (2002) distinguish several aspects
of the grammar defined in the Grammar Matrix. It includes the general
feature geometry of signs and technical devices, such as lists. Basic lexical
and phrasal rule types are defined, including unary and binary rule types,
headed and non-headed rule types and rule types defining the relative order
of head and non-head daughter. Furthermore, constructions corresponding to
the hpsg schemata are present, with underspecified word order constraints.
Finally, matrix.tdl provides the basics to construct semantic representations
according to the principles of MRS. In addition, the starter kit includes
configuration files to use the grammar with LKB and PET, and more recently
ACE.11

The definitions in matrix.tdl were primarily based on definitions from the
ERG. The Japanese grammar Jacy, a smaller grammar for Spanish and gen-
eral knowledge about typological variation was used to help inform the de-
cisions of what to keep from the ERG with the goal of making matrix.tdl as
language independent as possible. Several grammars have been constructed
that made use of the original Grammar Matrix starter kit since its introduc-
tion. They include grammars for Norwegian (Hellan and Haugereid, 2003),
Spanish (Marimon, 2010), Modern Greek (Kordoni and Neu, 2005), Por-
tuguese (Branco and Costa, 2010), Korean (Song et al., 2010) and Hausa
(Crysmann, 2012).

Since 2004, the Grammar Matrix has been used in a grammar engineer-
ing course taught at the University of Washington (Bender, 2007).12 In this
course, students create initial grammars based on the Grammar Matrix. The
grammars for individual languages are developed in parallel. Course instruc-
tions guide students to cover the basics for a given phenomenon depending
on the properties of the language. Bender soon noticed that instructions such
as ‘if your language behaves like x, then implement y ’ could also be handled

11agree can work with grammars configured for LKB or PET.
12http://courses.washington.edu/ling567/

55

http://courses.washington.edu/ling567/

by a script. This inspired the Matrix developers to create an extension of
the Grammar Matrix that generates language specific analyses based on user
input.

Bender and Flickinger (2005) present the initial steps of what later became
the Grammar Matrix customisation system (Bender et al., 2010). Their sys-
tem includes initial implementations organised in modules for basic word or-
der, yes-no questions, sentential negation and lexical items, including nouns,
transitive and intransitive verbs, auxiliaries, determiners, negation mark-
ers and case marking adpositions. Drellishak and Bender (2005) describe
a module for coordination that was integrated in the same system. As the
customisation system grew to cover more phenomena, it soon became clear
that there was not much modularity between the modules, and they were
renamed libraries.

The original customisation system was mainly based on linguistic variations
known to the developers. The extensions introduced by Drellishak and
Bender (2005) were the first to be made based on a broad typological study
(Drellishak, 2004). Drellishak (2009) introduces further improvements based
on profound typological research for case, agreement for person, number and
gender and an implementation for direct-inverse marking.13 The possibilities
of the system were further increased by the introduction of iterators. The
aforementioned modules were static; only a fixed set of questions could be
answered to trigger language specific implementations. Iterators allow the
user to answer specific questions an arbitrary number of times, for instance
to add all cases occurring in a language or a large number of lexical items. A
more detailed explanation of the possibilities and structure of the customisa-
tion system will be provided in Section 2.3.2. The library for morphotactics
(O’Hara, 2008; Goodman, 2012) makes use of iterators to create inflectional
lexical rules.

More recently, minor revisions to ensure correct word order for verbs and
13Some languages mark arguments differently based on a grammatical scale, where they

are ranked according to how appropriate they are to occur as the subject of the clause
(Drellishak, 2009, 89). This phenomenon is called direct-inverse marking.

56

auxiliaries and a basic implementation for verb second word order were intro-
duced by Fokkens (2010). Saleem (2010) added a library covering argument
optionality, or pro-drop, across languages. Poulson (2011) made significant
improvements to capture tense, aspect and mood. She mostly improved the
possibility of building type hierarchies that represent semantic properties or
syntactic features. Crowgey (2012) improved the negation library. Recently,
Sanghoun Song has extended the Grammar Matrix and its customisation sys-
tem to support information structure (Song and Bender, 2012; Song, 2014).

Several grammars have been created using the Grammar Matrix customisa-
tion system. They include medium-sized linguistic grammars for Wambaya
(Bender, 2008a), ManGO for Mandarin Chinese, BURGER for Bulgarian
(Osenova, 2010) and the RRG for Russian (Avgustinova and Zhang, 2010) to-
gether with its included core of Slavic types (Avgustinova and Zhang, 2009).
Smaller experimental grammars to test the behaviour of specific phenom-
ena have been implemented for Turkish (Fokkens et al., 2009), Georgian
(Borisova, 2010), Min Nan by Goodman and Thai by Slayden. Finally, the
class mentioned above has lead to the implementation of 94 small grammars
for 92 languages (http://depts.washington.edu/uwcl/twiki/bin/view.
cgi/Main/LanguagesList, accessed 28 April 2014). The customisation sys-
tem was used for 54 grammars created in 2006 and later years.14

2.3.2 The customisation system

The previous section introduced the main components of the Grammar Mat-
rix through a historic overview of how it was created. This section provides
more detailed information concerning the structure of the customisation sys-
tem, the work-flow when working with it and the methods it uses. The
description below is largely based on Bender et al. (2010) and Drellishak
(2009).

Figure 2.13 provides a schematic overview of the customisation system. The
14In principle, students should select a language that was not used in the class before.

Due to the changes in the course as a result of the improvement of the customisation
system, languages from the earlier years are permitted again.

57

http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/LanguagesList
http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/LanguagesList

Questionnaire
(accepts user

input)

Questionnaire
definition

Choices file

Validation

Customization

Customized
grammar

Core
grammar

HTML
generation

Stored
analyses

Elicitation of typological
information

Grammar
creation

Figure 2.13: Overview of the Grammar Matrix customisation system (Bender
et al., 2010, p. 7)

system is divided in two sections: on the left-hand side the components of
the web-based questionnaire are depicted, the right-hand side depicts the
internal structure of the customisation system itself.

Questionnaire

A static list of question definitions implemented by Matrix developers is
used as input to dynamically create the HTML code for the questionnaire.
Users fill this questionnaire out to define input for the customisation system.
Definitions based on this input are called choices and stored in a so-called
choices file. The HTML displayed on the questionnaire and its subpages
change dynamically in response to user input. Input provided in one section
of the questionnaire (where sections more or less correspond to individual

58

Figure 2.14: Screenshot of questionnaire’s main page, taken 13 August 2012

libraries) can lead to additional options for other sections. Features defined
in sections such as case, person, number, gender, and tense, aspect and mood
are available when defining lexical items or lexical rules. The sentential
negation and argument optionality sections can also trigger features that can
be assigned to lexical items or rules in the relevant sections.

A process called validation, which also leads to updates of the questionnaire,
takes place when users leave the page of a specific library. Validation checks
whether the user’s choices lead to a consistent grammar that can be used for
parsing. When the questionnaire is empty, validation indicates by the means
of red stars that the user should provide a name of the grammar, define basic
word order and indicate which person and case marking the language exhibits

59

(both of which can be set to ‘none’). The lexicon bears a red question mark:
the system allows users to create a grammar with empty lexicon, but this
grammar cannot parse or generate until a lexicon is provided. Users can get
feedback on what red stars mean by hovering over them with their mouse. As
the questionnaire is filled out, validation checks for inconsistencies. If users,
for instance, define auxiliaries in the lexicon, validation makes sure they
indicate that the language has auxiliaries on the word order page and define
the relative word order between auxiliary and verbal complement. When no
inconsistencies or missing information are identified, the user can click the
button “create grammar” to customise their initial grammar.

Grammar Customisation

As depicted on the right-hand side of Figure 2.13, customisation takes a
choices file as input and combines information from a component called ‘core
grammar’ and a component labeled ‘stored analyses’. The core grammar
corresponds to the original components of the Grammar Matrix: an updated
version of matrix.tdl and files to make the grammar work with delph-in

tools. The libraries provide stored analyses that are evoked by definitions in
the choices file.

section=word-order section=lexicon
word-order=v2 noun1_name=1st-pron-nom
has-dets=yes noun1_feat1_name=person
noun-det-order=det-noun noun1_feat1_value=1st
has-aux=no noun1_feat2_name=case

noun1_feat2_value=nom
section=case noun1_det=obl
case-marking=nom-acc
nom-acc-nom-case-name=nominative verb1_name=trans
nom-acc-acc-case-name=accusative verb1_valence=nom-acc

Figure 2.15: Small extract of a choices file

Figure 2.15, taken from Fokkens et al. (2012a), presents an excerpt of a

60

Grammar Matrix choices file. During customisation, an object containing
definitions from the choices file is created. Next, tdl files for all language
specific properties are initiated. They include files for phrasal rules, inflection
rules, non-inflecting lexical rules, the lexicon, root conditions and the bulk
of the language specific type hierarchy in a file called language_name.tdl,15

where language_name stands for the name of the language as defined in the
choices file.

Customisation then walks through the code of individual libraries. The most
central function in this process is the function add for tdl objects. It takes
at least two arguments: a tdl object and a definition written in tdl syntax.
A comment and section definition (indicating where in the final tdl file the
definition should appear) can be added optionally. When a type is already
present in a tdl object, the function add merges the old and new definitions
by default. This way, Matrix developers can define properties of types at
different locations of the customisation system. The function add is crucial
for capturing interactions between phenomena, especially when properties
defined in different libraries must be combined to define a specific type.

The most basic functions in customisation are if-then-else conditions or iter-
ators. In the simplest case, property x defined in the choices file leads to
definition y added to a tdl object. More sophisticated methods are provided
to create user defined type hierarchies, to determine the correct location of
feature value pairs in the feature geometry and to create the correct relations
between lexical rules. I will briefly elaborate on the customisation of type
hierarchies and morphotactics, because they play an important role in the
flexibility and development speed of climb grammars.

Customising type hierarchies

User defined type hierarchies for case, the agreement features person-number-
gender, verbal features tense-aspect-mood and features belonging to the open

15The root conditions can also contain language specific properties and naturally, in-
stances included in the lexicon, inflectional rules and phrasal rules are language specific.

61

category ‘other features’ are formed in three stages, occurring before, during
and after the treatment of lexical items and morphosyntax. First, a tdl

hierarchy object is initiated for the feature values in question. This object
includes definitions of individual types and their supertypes according to the
user’s input. Later, these hierarchy objects are updated to include under-
specified types corresponding to disjunctive feature values specified in the
lexicon and morphosyntactic rules of the language. After lexical items and
morphosyntax has been treated, these individual hierarchy objects are used
to add the appropriate definitions to language_name.tdl.

Properties that can be assigned to lexical items or morphosyntactic rules
have a well-defined location in the feature geometry. For instance, person,
number and gender will be part of the index of nouns, whereas [case case] is
a property of the head of the noun. For nouns, users simply define the name
of the feature and its value in the questionnaire. A library called features
determines the complete feature path based on the name of the feature and
the fact that it is assigned to a noun. Verbs, on the other hand, can assign
these feature values to the index or head of their subject or object. For verbs,
users must define whether the feature is a property of the verb or one (and
which one) of its arguments. Again, the full feature path is determined by
the customisation system.

Morphotactics

The customisation system’s morphotactics library, originally implemented by
O’Hara (2008) and improved by Goodman (2012) is one of the most powerful
parts of the customisation system.16

Inflection can be defined for nouns, verbs and determiners. First, slots are
defined in so-called “position classes”. As the name indicates, these classes
define the location of morphemes. The position of a morpheme depends on
two factors: when it is added (e.g. directly next to the root or next to another

16The description in this thesis is limited to the possibilities offered by the morphotactic
library. See Goodman (2012) for a more detailed description and explanations about how
the morphotactic implementations work.

62

position class) and whether it precedes or follows the stem it is attached to.
When defining the position class, the user indicates what input it can take
(i.e. where it can be attached to the word), whether it is a prefix or a suffix
and whether it is optionally or obligatorily filled.

Each position class has one or more lexical rules for which it determines their
surface position. The lexical rules are responsible for assigning grammatical
properties to the word, such as tense or case values or agreement properties.
A lexical rule can have one or more instances which may be an overt affix
or not (e.g. a plural noun lexical rule for English may have an instance with
the suffix s, and the singular noun rule an instance without an overt affix).
Lexical rules can be defined hierarchically. It is for instance possible to define
lexical rules assigning tense and lexical rules defining agreement properties.
If tense and agreement are merged into one marker, the appropriate lexical
rules can be defined by inheriting from the right tense and agreement markers.

Finally, constraints can be used to make sure morphological rules interact
correctly. Constraints can require or forbid another morpheme. They can
be defined on lexical items, position classes or individual lexical rules. Con-
straints can model a variety of phenomena including circumfixes (such as
German participles, where the prefix requires a specific suffix), morphological
classes (such as the four main conjugation classes in French) or assimilation
phenomena (such as vowel harmony in Turkish).17

Completing customisation

After all libraries are called, the definitions stored in individual tdl objects
are printed in relevant tdl files. The thus created tdl files and configuration
settings form the output grammar of the customisation system, which can
be downloaded, tested, inspected and improved manually.

17It should be noted, however, that the morphotactics page covers the interaction
between morphology and syntax only and is not designed to support morphophonolo-
gical phenomena. Even though vowel harmony can be modelled with the morphotactics
system, Bender and Good (2005) recommend to use an external morphology for languages
with a rich morphophonology such as Turkish.

63

Regression testing

Regression testing is important for all longterm software development pro-
jects and the Grammar Matrix, like metagrammar development, is no excep-
tion. The customisation system contains a setup for regression setting that
can readily be adopted for metagrammar engineering. When adding or im-
proving a library in the customisation system, Matrix developers add choices
files and gold standard output of a test suite covering phenomena from that
library to the regression tests (Bender et al., 2007). Before updating the
live customisation system, regression tests are run that customise grammars
from these choices files and parse all items in the associated test suite with
it. The coverage, overgeneration and semantics output are compared to the
gold standard using the [incr tsdb()] competence and performance pro-
filing system (Oepen, 2001). Regression tests fail if coverage, overgeneration
or the semantic representations changed.

2.3.3 Concluding remarks on the Grammar Matrix

This section has introduced the LinGO Grammar Matrix. A historic overview
was given introducing the two main components of the Grammar Matrix: the
static core of the Grammar Matrix and the dynamic customisation system.
Section 2.3.2 provided a more detailed description of the technology behind
the latter, walking through the process of creating a starter grammar through
the web-based questionnaire.

Two aspects of the Grammar Matrix related to this thesis have not been
addressed in the descriptions above. The first aspect concerns the insight
that can be gained from individual grammars and may improve the Gram-
mar Matrix. The original matrix core was mainly based on grammars for
English and Japanese. The idea was that this would function as a set of
hypotheses for generally crosslinguistically applicable types, which could be
continuously be revised based on experience from individual grammars us-
ing the core. Investigations in Chapter 6 will show that this feedback loop
has not functioned as well as initially hoped. In general, grammar engineers

64

do not inform developers of the Grammar Matrix when they find errors or
suboptimal implementations in the core.

The second aspect relates to the question of how to get the most out of the
customisation system. The previous section indicated that the customisation
system allows users to define type hierarchies and an indefinite amount of
lexical items and morphotactic rules. Mainly because of these properties,
the full range of possibilities provided by the customisation system may not
always be transparent to users. The Grammar Matrix aims at theory in-
dependent descriptions, that should be easy to understand and not require
elaborate explanations. Designing such questions for specific implemented
analyses is, in my experience, one of the most challenging tasks in the de-
velopment process of Grammar Matrix libraries. Because it is not trivial to
translate specific implementations to short, logical and intuitive descriptions,
it is not always clear for users which answers in the questionnaire lead to the
desired result at first sight. This can clearly be seen in the evaluation carried
out by Bender et al. (2010). In that paper, we present results on test data
after filling out the questionnaire once for each language as well as results
after optimising the customisation input. Even though this evaluation was
carried out by experts, results significantly improved for all languages in their
evaluation. Borisova (2010) manages to implement an analysis for Georgian
polypersonal agreement almost exclusively using the customisation system.
Creating the correct morphosyntactic model for this complex phenomenon
required a fair amount of research.

Bender et al. (2011) provide a work flow for grammar engineering. Grammar
engineering starts by a the creation of test suites containing grammatical
and ungrammatical examples related to given phenomena. When an imple-
mentation is added, the grammar is compiled and tested both on data for
the phenomenon that is currently treated and data of phenomena previously
included in the grammar. The grammar is debugged based on observations
on the test data until the phenomenon is covered correctly without breaking
previous implementations. This general grammar engineering methodology
should ideally be adopted from the first moment of working with the custom-

65

isation system. The results from Bender et al. (2010) as well as Borisova’s
(2010) achievement show that it can be worthwhile to ‘debug’ grammars
by changing the input of the questionnaire until good coverage of phenom-
ena covered by the customisation system is reached. Fokkens et al. (2012b)
provide elaborate documentation on how to fill out the questionnaire.

2.4 Summary

This chapter presented the context of the work carried out as part of this
thesis. The main contribution of this thesis is a new methodology for gram-
mar engineering that, in first place, was developed to support long term
development of delph-in grammars. Section 2.1 provided a basic introduc-
tion to hpsg, the theoretical framework that forms the basis of delph-in

grammars. Section 2.2 described formal properties of delph-in grammars
as well as the basics behind the algorithms used to parse and generate with
these grammars. Finally, the Grammar Matrix was introduced in Section 2.3.
The climb methodology makes use of the software developed as part of the
Grammar Matrix. The tight link between these two projects will be explained
in more detail in the next chapter, which introduces climb.

66

Chapter 3

The CLIMB Methodology

There are few areas of science in which one would seriously consider the possibility of developing a general,

practical, mechanical method for choosing among several theories, each compatible with available data.

(Chomsky, 1957, p.53)

This chapter introduces climb: Comparative Libraries of Implementations
with a (grammar) Matrix Basis; (Fokkens, 2011a; Fokkens et al., 2012a).
climb’s main contribution is that it introduces a new methodology for gram-
mar engineering. This methodology allows grammar writers to monitor al-
ternative models for grammars of natural language. As mentioned in Chapter
1, the observation that such an approach addresses a major challenge in gram-
mar design is, to my knowledge, first made in Fokkens (2011a) and climb is
the first approach that tries to address this challenge.

climb is closely related to the Grammar Matrix described in Chapter 2, Sec-
tion 2.3. Recall that the Grammar Matrix customisation system automat-
ically generates implementations of linguistic precision grammars. Whereas
code generation is used only once to create a starter grammar in the Gram-
mar Matrix, its application is generalised in climb to be used throughout
the entire grammar development process. The basic idea behind climb is
that code generation allows the grammar engineer to maintain alternative

67

analyses in parallel supporting more effective and systematic exploration of
the analysis space.

climb uses the basic architecture of the Grammar Matrix. It should be
noted, however, that the software presented in this chapter can in principle
be used to develop any grammar in tdl and the basic idea is theory and
framework independent.

This chapter is organised as follows. Section 3.1 introduces climb in its
traditional form which was used for the implementations in this thesis. The
section starts with a description of the process leading to the idea behind
climb. Subsection 3.1.1 elaborates on the relation between the Grammar
Matrix and climb. An overview of the system and the workflow of applying
the methodology are given in Subsection 3.1.2.

The climb metagrammars developed as part of this thesis mainly consist of
procedural implementations in Python that generate tdl. This means that
developing climb requires procedural programming which may be difficult
for grammar engineers who are used to implementing their grammars de-
claratively in tdl. An alternative version that allows grammar engineers to
write the metagrammar declaratively, mainly using tdl, has been developed
to make climb more accessible. This version of climb, described in Sec-
tion 3.2, will be called declarative climb in this thesis. The term climb

alone will refer to the original setup of climb, which will occasionally be
specified by procedural climb.

Section 3.3 introduces four tdl processing algorithms that were developed
to support climb. The spring cleaning algorithm (Fokkens et al., 2011) can
identify types included in the grammar that do not have an impact on its
competence. The main goal of this algorithm is to support a cleaner design of
grammars. Its intended use in this context is to identify differences between
grammars without taking left-overs of old analyses into account. The other
three algorithms are a set that can abbreviate and complete paths in feature
structure definitions. The first of the three algorithms uses the basics of the
spring cleaning code to extract the feature structure of the grammar. The
second and third use the extracted feature structure to create abbreviated

68

paths for the declarative metagrammar and to complete these abbreviated
paths if the declarative metagrammar is used to generate a linguistic precision
grammar.

Section 3.4 presents several applications for climb. In addition to monit-
oring alternative models for a grammar in parallel, it increases modularity,
it supports multilingual grammar development and adaptations for altern-
ative dialects as well as alternative versions for different applications. The
setup facilitates a phenomenon-based organisation of the grammar, where its
flexibility can manipulate whether rare phenomena are included or excluded
in the grammar. Finally, the processing tools provide support to investig-
ate properties of the grammar. The presentation of climb applications is
followed by a summary of the chapter in Section 3.5.

3.1 An introduction to CLIMB

The idea behind climb originates in research on word order analyses for the
LinGO Grammar Matrix. Fokkens (2010) describes a basic flat analysis for
verb second word order based on Bender’s (2008a) grammar for Wambaya.
The analysis used in the Wambaya grammar differs from the standard hpsg

analysis for verb second word order in Germanic languages, where a filler-
gap construction is used to ensure that conjugated verbs appear in second
position. The differences between these analyses will be explained in more
detail in Chapter 4. The two analyses for verb second order lead to questions
about how to handle such situations in the Grammar Matrix.

Multilinguality may influence the choice between alternative analyses in sev-
eral ways. On the one hand, the possibility of using the same analysis to
capture phenomena across languages may be a reason to adopt it rather
than an alternative. On the other hand, this crosslinguistically applicable
analysis may not be the best option for every language that exhibits the
phenomenon it captures. If a resource like the Grammar Matrix provides an
analysis that is not the right option for a language, it may harm the resulting

69

grammar. The grammar engineer is set on a wrong path at the beginning
of development. It cannot be foreseen in such a case what the burden may
be to adapt the customised analysis when it is discovered that another op-
tion would work better, if this gets discovered at all. It could be that the
‘wrong’ analysis influenced a number of other implementations that need to
be revised. Likewise, these implementations may no longer be the most suit-
able way to capture a phenomenon. The ‘wrong’ analysis may have excluded
more suitable options that have become possible after it was adapted. Fur-
thermore, the revision may have a negative impact on some interactions with
other analyses. For these suboptimal solutions resulting indirectly from the
original ‘wrong’ analysis in the customisation system, it also holds that they
may remain unnoticed.

It is hard enough to verify whether a given analysis can capture a phe-
nomenon across a set of languages. Investigating whether an analysis is ideal
within a given language also forms a major challenge. It would probably take
a team of researchers several years to combine these two and find out whether
an analysis also forms an optimal solution across languages in large gram-
mars. We therefore decided to make a choice between the two alternatives
of a flat verb second analysis based on Wambaya and the filler-gap analysis
that hpsg literature proposes for German.1 The Wambaya based analysis
was included in the Grammar Matrix following the assumption that users
working on a long term project for a Germanic language would familiarise
themselves with hpsg literature and make a well-informed decision on how
to treat word order early in the development process. Further discussion of
the matter can be found in the Upcoming Work section Grammar Matrix
documentation on word order (Fokkens et al., 2012b).

The challenge came up again, when time came to integrate correct interac-
tions between verb second word order and auxiliaries. Bender (2010) had
shown in the meantime that an alternative analysis for auxiliaries signific-
antly improved efficiency of the Wambaya grammar. Before updating the
Grammar Matrix, I wanted to investigate whether this alternative analysis

1This decision was taken together with Emily Bender.

70

would also improve efficiency in grammars for Germanic languages.

For this purpose, I compared the new analysis to the standard hpsg analysis
in small grammars covering Danish, Dutch and German word order (Fokkens,
2011a). For practical reasons, I extended the syntactic libraries from the
Grammar Matrix customisation system. New analyses had to be shared
both across languages and across different versions of the grammar (using
alternative analyses for auxiliaries) and code generation was the fastest way
to do this. Moreover, it guaranteed consistency among grammars for analyses
that were not directly concerned with the experiment, but could influence
the performance of the grammar.

As the grammars covered more phenomena, it became clear that the overall
approach of using customisation could address a problem often observed in
linguistic research: a hypothesis merely shown to be more likely than an
alternative is taken to be ‘the’ correct solution and is used as a basis for
future research. The adopted analysis may even be used as proof to exclude
analyses for other phenomena that cannot interact correctly with it, even if
the new analysis would work perfectly fine with the abandoned alternatives.
When code generation is used as a general methodology, several hypotheses
can be maintained in parallel as the grammar grows. Alternatives can be
explored systematically until enough evidence is found to select an analysis,
leading to more consistent research on linguistic structure.

The general approach of writing code that can generate an implemented
grammar rather than writing the grammar itself is called metagrammar en-
gineering (Fokkens, 2011a). In this thesis, the climb setup is used, where
the Grammar Matrix forms the basis of the metagrammar. The next sub-
section addresses the differences between the Grammar Matrix and climb.
Subsection 3.1.2 explains the workflow of this methodology.2

2The climb workflow has previously been described in Fokkens et al. (2012a), from
which the description below was largely taken.

71

3.1.1 The Grammar Matrix and CLIMB

The introduction of climb has shown that it is tightly linked to the Grammar
Matrix. However, both the philosophy behind the projects as well as the
practice of applying them differ. The Grammar Matrix aims at lowering the
hurdle of starting a new grammar. It is therefore essential that the system be
easy to use and cover a wide typological range. The output of the Grammar
Matrix customisation system is meant to provide the basics of an analysis.
It can help starting grammar engineers and provide a quick way to try out
an analysis in a small grammar (Fokkens et al., 2009). The Grammar Matrix
only plays a role in the early stages of the development process.

climb, on the other hand, is a methodology that particularly pays off on
long term projects. It is meant to improve flexibility, investigate alternative
analyses in a complex setting and provide a more modular way for imple-
menting hpsg precision grammars. Users of climb can be expected to be
experts for whom it pays off to invest in the architecture of their system
and in techniques that may facilitate maintenance. I will elaborate on the
consequences of these differences below.

The standard approach when using the Grammar Matrix is to create a gram-
mar through the web interface and extend this grammar manually. Most of
the linguistic properties defined through the questionnaire do not reveal a
direct link to the customisation system or even to hpsg theory. The only ex-
ception is the possibility of creating hierarchies of supertypes and subtypes,
which points to typed feature structures and type hierarchies. The Gram-
mar Matrix’s basic approach thus emphasises the central control of “hidden”
logic behind the scenes of the customisation process. The user can explore
provided analyses in tdl, but no direct insight into how the customisation
system came to the resulting grammar can be obtained while merely using
the web interface.

climb takes a radically different approach by placing the customisation
source code under control of the grammar engineer, so that different lay-
ers of parameterisation can be achieved in individual grammar development

72

projects. Users are encouraged to explore the possibilities of the customisa-
tion system and expand it for their language specific needs.

Another difference between the Grammar Matrix and climb is the wide
typological variations the Grammar Matrix aims to capture. Sharing im-
plementations across languages is one of the main purposes of the Gram-
mar Matrix. Even though climb takes advantage of this possibility, the
method was originally introduced to examine different analyses for the same
phenomenon without (necessarily) addressing any linguistic or dialectal vari-
ation. In other words, climb was created to allow grammar engineers to
compare analyses that can deal with the exact same data. One could say
that the Grammar Matrix explores one analysis that can be used in different
manifestations of a phenomenon, whereas climb explores one specific mani-
festation of a phenomenon that can be analysed in more than one manner.
In the end, the Grammar Matrix and climb complement each other. The
former makes grammar engineering accessible to a wider public and provides
a starting point for new grammars. The latter can be used to improve gram-
mar development on long term projects.

The climb approach has been tested through development of gclimb: a me-
tagrammar that covers general word order phenomena in German, Danish
and Dutch (Fokkens, 2011a) and has been extended to cover several phe-
nomena for German only. The metagrammar contains alternative analyses
for verb second word order, auxiliaries and adjectives. The metagrammar
contains one regular analysis for adjectives and an alternative which sup-
ports grammar checking. Alternatives for word order and auxiliaries form
the true test of the approach: word order interacts with all other phenom-
ena and auxiliaries interact with most. An explanation and more elaborate
motivation for the alternative analyses included in gclimb will be provided
in Chapter 4. The next subsection will present the setup and workflow of
climb in its original form.

73

Metagrammar
(Python)

word-order=v2

v-cluster=post-objectival

v2-analysis=filler-gap

...

grammar (tdl)
choices

Figure 3.1: Basic overview of climb

3.1.2 CLIMB overview and workflow

Basic structure of CLIMB

Figure 3.1 provides a schematic overview of climb. The metagrammar takes
a choices file as its input and produces a grammar in tdl. The choices file
defines phenomena and properties that are generated using the metagram-
mar’s libraries as described for the Grammar Matrix in Section 2.3.2. Choices
are directly linked to implementations in the libraries and their parameters.
The grammars reproduced by climb are thus the combined result of a spe-
cific choices file and a specific version of the metagrammar. It follows that
both the metagrammar and the choices file are needed to reproduce a specific
grammar. Likewise, extensions and corrections to grammars are obtained by
modifying the metagrammar, the choices file or, in most cases, both.

The CLIMB workflow

A simplified overview of the general workflow of climb is provided in Fig-
ure 3.2. There are two general strategies for including new analyses in climb

depending on experience of the grammar engineer and the complexity of the
phenomenon. The first strategy follows the workflow depicted on the left
in Figure 3.2. After identifying a phenomenon and designing an analysis,
grammar engineers generate the latest versions of the grammar using the

74

identify
phenomenon

design
analyses

generate
current

grammars

implement/
debug
analyses

test
grammar

integrate
analyses in

metagrammar

update
choices

generate
grammars

Figure 3.2: Simplified overview of the climb workflow

latest choices files and the metagrammar. Then they follow the traditional
grammar engineering approach, extending the grammar manually, testing it
on test data (both data representing the new phenomenon and data for re-
gression testing) and debugging the grammars accordingly as described in
Bender et al. (2011). The analysis can be integrated in the metagrammar as
soon as the grammar has achieved the desired competence. Another testing
round follows to make sure that metagrammar and (updated) choices file
produce the grammar as intended.

If grammar engineers follow the second strategy, they directly implement new
analyses in the metagrammar. This approach is typically taken for new lex-
ical categories and morphotactic properties. As described in Section 2.3.2,
these libraries contain many general functions that can combine complex

75

properties. Simple changes to the source code of climb and a set of defini-
tions in the choices file can give a major boost in grammar coverage. In this
case, the climb method can be faster than traditional grammar engineering.
This is illustrated by the development of an analysis for German adjectives,
which was implemented within six hours (Fokkens et al., 2012a). This in-
cluded the basic setup to cover adjectives themselves and phrases to combine
them with nouns (both of which are not included in the Grammar Matrix
customisation system, though basic types are included in the matrix core)
and German specific properties such as inflection depending on determiner,
number, gender and case.3

As mentioned above, which of the two approaches is used depends on how
experienced the grammar engineer is with climb and on the complexity of the
phenomenon. In many cases, the two approaches will be combined. While
integrating a new analysis that does not have many interactions with the
alternative versions of the grammars, a typical approach will be to implement
this analysis in one version of the grammar and use the metagrammar to
generate alternative versions of the grammar with the new analysis. Minor
changes that need to be made to fix interactions (such as sharing a feature
value) will typically be made directly in the metagrammar. It is on the other
hand not uncommon to quickly try something out in a generated grammar,
even if most work is done directly in the metagrammar.

Setting up a CLIMB metagrammar

The description above provided the workflow to advance the metagrammar,
but we have not seen yet how a climb metagrammar is initiated. The easiest
way to begin developing a grammar with climb is to start from an existing
metagrammar and set of choices files. Both metagrammar and choices files
can be adapted to remove irrelevant properties and add language specific
variations.

3The six hours also included looking the correct behaviour up in online descriptive
grammars for German.

76

Three resources can be used to start a climb metagrammar: the Grammar
Matrix, Germanic climb (gclimb) or Slaviclimb, a climb metagrammar
for Slavic languages that covers the Russian Resource Grammar (Avgustinova
and Zhang, 2010, RRG) including a Slavic core grammar (Avgustinova and
Zhang, 2009).4 The Grammar Matrix and gclimb are available under the
MIT license and Slaviclimb under LGPL-LR. Section 3.2.3 provides a de-
scription of how to use climb with grammars that have been developed the
traditional way, either for temporarily supporting alternative versions or to
convert to climb step by step.

If a metagrammar for a Germanic or Slavic language is to be created, gclimb

or Slaviclimb clearly form the best starting point. Both metagrammars in-
clude choices files that cover the latest versions of the grammars for German,
Dutch and Danish (gclimb) and Russian (Slaviclimb), respectively. The
choices files can be adapted for the new language and be used as a starting
point for the development process.

If the language or languages in question do not have clear commonalities with
Germanic or Slavic languages, an initial choices file can be created using the
Grammar Matrix web interface. The grammar customisation system itself
will form the initial metagrammar. gclimb and Slaviclimb both cover a
range of lexical categories and phenomena that are currently not covered by
the Grammar Matrix. They can serve as examples of how to proceed while
extending the new climb metagrammar. Each metagrammar will contain
analyses that are not relevant for the new language(s), either because the
language does not exhibit a particular phenomenon or because the grammar
engineer decides not to explore a proposed analysis. I will briefly elaborate
on the motivations to either keep irrelevant analyses in climb or remove
them.

4See Chapter 6, Section 6.3 for a more elaborate description of Slaviclimb.

77

Advantages and disadvantages of Matrix libraries in CLIMB

gclimb maintains the complete implementation of the Grammar Matrix cus-
tomisation system. This decision was taken so that the project could be used
to gain insight into the interaction between analyses provided by the original
customisation system and new analyses added to gain analytical depth for
Germanic specific phenomena. On the one hand, this possibility forms an ad-
ditional strength of climb. Users working on new languages may use gclimb

to retrieve basic analyses for phenomena that are not covered by the Gram-
mar Matrix customisation system yet, and include them in a grammar that
has language specific implementations for those phenomena that are covered
by the Matrix.

On the other hand, the structure of a climb resource may be simplified
significantly by removing options and implementations covering typological
variations that do not occur in the language or languages under investigation.
In a thus reduced climb resource, choices files can be kept simple as well,
only indicating the choice of analysis and (optionally) a list of phenomena
to be included. A simpler metagrammar is more accessible to new users and
grammar engineers just learning to use climb. This approach is therefore
considered the preferred approach for Slaviclimb, where several grammar
engineers who do not necessarily have a strong background in programming
may work with the metagrammar (cf. Section 6.3).5

3.1.3 Coding CLIMB

Like the Grammar Matrix customisation system, climb is implemented in
Python. Figures 3.3 (repeated from Section 2.3.2, p. 60) and 3.5 provide
samples of a choices file and Python code found in a syntactic library, re-
spectively.

The definitions in choices can be roughly divided in three categories: (i)
5SlaviCLIMB is currently in a transition state, where some libraries have been cleared

from irrelevant Grammar Matrix analyses and others still contain the full spectrum.

78

section=word-order section=lexicon
word-order=v2 noun1_name=1st-pron-nom
has-dets=yes noun1_feat1_name=person
noun-det-order=det-noun noun1_feat1_value=1st
has-aux=no noun1_feat2_name=case

noun1_feat2_value=nom
section=case noun1_det=obl
case-marking=nom-acc
nom-acc-nom-case-name=nominative verb1_name=trans
nom-acc-acc-case-name=accusative verb1_valence=nom-acc

Figure 3.3: Small extract of a choices file

the fact that the language exhibits a specific phenomenon, (ii) the specific
behaviour of a phenomenon in the language and (iii) the properties of in-
dividual elements in the language, in particular lexical items and morph-
emes. For instance, choices may include the definition passivization=yes
which will invoke general properties needed to create passives. The defini-
tions pass1_marking=aux, pass1_form=participle indicates that there is a
form of passivisation that is marked by an auxiliary taking the passivised
verb in participle form as its complement. The passive auxiliary itself is
defined as part of the lexicon.

aux3_name=passive
aux3_sem=no-pred
aux3_subj=np-comp-case
aux3_aux-select=sein

aux3_compfeature1_name=form
aux3_compfeature1_value=pass-participle
aux3_stem1_orth=werden

Figure 3.4: Example lexical entry for German passive auxiliary werden

Figure 3.4 provides an example definition for the auxiliary werden which is
used to mark passives in German. Definitions of lexical items can be much
more complex. Feature values can be assigned on the item itself or on its
argument, capturing agreement. The same holds for the definition of mor-
phological markings. Alternative analyses are mostly triggered by definitions

79

wo = ch.get(’word-order’)

if wo == ’v2’:
mylang.add(’head-initial-head-nexus := head-initial & \

[SYNSEM.LOCAL.CAT.MC na & #mc, \
HEAD-DTR.SYNSEM.LOCAL.CAT.MC #mc].’)

mylang.add(’head-final-head-nexus := head-final & \
[SYNSEM.LOCAL.CAT.MC bool, \

HEAD-DTR.SYNSEM.LOCAL.CAT.MC na].’)

#rules shared among free and v2

if wo == ’free’ or wo == ’v2’:
mylang.add(’head-subj-phrase := decl-head-subj-phrase & \

head-initial-head-nexus.’)
mylang.add(’subj-head-phrase := decl-head-subj-phrase & \

head-final-head-nexus.’)

Figure 3.5: Sample code from word order library: implementations triggered
by word-order=v2 in choices

similar to those from category (ii) defined above, i.e. definitions that indicate
the specific behaviour of a phenomenon in the language. The statement v2-
analysis=filler-gap, for instance, selects the filler-gap analysis for verb second
word order. Definitions that fall under category (iii), statements on proper-
ties of specific elements of the language such as lexical items or morphemes,
also offers room for alternative analyses. It can for instance be used to create
a small grammar where all forms are fully inflected or design the grammar
so that it can import a lexicon and morphology from external resources.

The code presented in Figure 3.5 will be called because of the definition
word-order=v2 in the choices file. Functions in climb are typically if-then-
else conditions or for-loops. The code in Figure 3.5 illustrates a typical case
of an if-then condition used in climb. In principle, only basic programming
skills as used in Figure 3.5 are needed to work with climb in its original
setup. The most complex components needed to use climb are the functions
that process and merge tdl objects. These functions are provided in the
Grammar Matrix source code and need not be touched by the grammar

80

engineer.

Nevertheless, the requirement to switch back and forth between declarative
implementations written in tdl and procedural implementations in Python
may become a burden to the grammar engineer. Despite the many advant-
ages of using climb on the level of organisation, consistency, flexibility and
enhancement of empirically testing alternative analyses, this hurdle may pre-
vent grammar engineers from adopting the approach. In order to address this
problem, a more user-friendly version of climb has been developed. The next
section will describe this alternative version of climb.

3.2 Declarative CLIMB

This section describes declarative climb and how it can be used in gram-
mar engineering. There are two development lines in this version of climb.
Section 3.2.2 describes the setup and tools for organising newly developed
grammars in declarative libraries. Section 3.2.3 introduces a tool that can
be used to create climb libraries that interact with a large grammars de-
veloped using the traditional (non-climb) method. The latter can also be
used to switch from the traditional grammar engineering approach to declar-
ative climb. Both approaches have been implemented and the correctness
of the algorithms have been verified through small specific tests on gclimb

and Jacy, but they have not been used to actually develop grammars with
alternative analyses at this point. Because they are easier to work with then
standard climb, it is expected that they can also be used to apply climb

to long term grammar development. This section ends with a brief summary
and discussion of declarative climb and a presentation of future work.

3.2.1 An introduction to declarative CLIMB

Declarative climb allows users to write a metagrammar in tdl. This has
several advantages over the original climb approach explained above. First,
the grammar engineer does not need to learn procedural programming in

81

Python
that

processes
tdl

include:word order

include:case A

include:rel clause

...

case

A

case

B

word

order

rel

clause

...

...

grammar
choices

climb libraries (tdl)

input 1
selects

input 2

Figure 3.6: Schematic overview of declarative climb

Python. Because the metagrammar is defined in tdl, it is easier to im-
plement the metagrammar directly. This avoids the two step procedure of
first manually extending one or more of the generated grammars and then
adapting the metagrammar. The only additional step in writing a declarat-
ive metagrammar in tdl compared to writing a grammar in tdl is related
to the organisation in libraries. I believe that most grammar writers would
agree that this requirement to organise the grammar can only be seen as an
advantage of the approach. The climb software includes an algorithm that
allows users to abbreviate paths in type definitions, which will be explained
in detail in Section 3.3. This feature makes writing tdl statements in climb

less cumbersome than writing them directly in the grammar. Overall, de-
clarative climb significantly lowers the hurdle to use climb, though it does
not offer the full flexibility of the original climb approach.

3.2.2 Declarative libraries

Figure 3.6 provides a schematic overview of declarative climb. As illustrated,
the original customisation part of climb (cf. Figure 3.1, p.74) is split up in
two components: a component that takes care of tdl processing written in
Python and a component containing the actual libraries, mostly written in
tdl. The Python implementations can be treated like a black box: the gram-

82

mar engineer does not need to interact with them at any time. Declarative
climb can optionally take a choices file as input. If no choices are provided,
all analyses in the metagrammar will be included in the generated grammar.
This option can be useful for engineers who are not testing alternative ana-
lyses, but would like to use declarative climb to structure their grammar
differently or use abbreviated paths. Figure 3.7 shows the implementation
of a basic type for object raising in declarative climb. The boxes on the
left of the image present two snippets of alternative choices. The large box
provides sample code of an implementation in declarative climb. The type
definitions on top and on the bottom of the image indicate the output for
the upper and, respectively, bottom choices.

The user can define which analyses should be excluded in the grammar in
choices. The definitions in choices are thus direct statements about imple-
mentations (i.e. statements about chunks of code to include in the grammars)
rather than statements about linguistic properties. For instance, choices
in procedural climb may contain a definition stating word-order=v2 or
person=1-2-3, indicating verb second word order or that the language dis-
tinguishes first, second and third person. In declarative climb, one or more
implementations to capture the phenomenon will be included in the meta-
grammar, where it is associated with an identifier which could be similar
to the definitions in choices in procedural climb (e.g. filler-gap-v2 or
person-123). Choices states whether these analyses should be included in
the grammar.6 Ideally, these two (implementations and linguistic properties)
coincide and choices contains a list of phenomena and specific analyses that
should be excluded from the resulting grammar. Each definition in choices
points to a specific implementation in the metagrammar. This means that the
metagrammar is best organised according to phenomena and their analyses
rather than according to specific types as seen in the resulting grammar.

If a declarative metagrammar is organised according the phenomena it covers,
some of the definitions in choices will be quite similar to definitions found in

6The current implementation of declarative climb includes all analyses in the meta-
grammar, unless choices specifically states the analysis should not be included.

83

obj-raising-verb-lex := non-refl-verb-lex &

ditrans-second-arg-raising-lex-item &

[SUBJ < #subj >,

SPR < >,

SPEC < >],

ARG-ST < #subj & [SPR < >], [], [] >].

Begin=aux-rule-vc

obj-raising-verb-lex :=

[COMPS < #obj, #vcomp >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >] >].

End=aux-rule-vc

Begin=basic-vc

[COMPS < #obj, #vcomp . #comps >,

ARG-ST < [], #obj & [SPR < >],

#vcomp & [SUBJ < [] >,

COMPS #comps] >].

End=basic-vc

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

2

category=analysis

exclude=basic-vc

category=analysis

exclude=aux-rule-vc

if ch.get(‘obj-raising’) == ‘yes’:

if ch.get(‘has-reflexives’):

mylang.add(‘obj-raising-verb-lex := non-refl-verb-lex.’)

else:

mylang.add(‘obj-raising-verb-lex := main-verb-lex.’)

typedef = \

‘obj-raising-verb-lex := ditrans-second-arg-raising-lex-item & \

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, \

SPR < >, \

SPEC < >], \

ARG-ST < #subj & [LOCAL.CAT [VAL.SPR < >]], [], [] >].’

mylang.add(typedef)

if ch.get(‘vc-analysis’) == ‘aux-rule’:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL.SUBJ < [] >] >].’

else:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp . #comps >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL [SUBJ < [] >, \

COMPS #comps]] >].’

mylang.add(‘obj-raising-verb-lex := ’ + comps_struc)

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

1

if ch.get(‘obj-raising’) == ‘yes’:

if ch.get(‘has-reflexives’):

mylang.add(‘obj-raising-verb-lex := non-refl-verb-lex.’)

else:

mylang.add(‘obj-raising-verb-lex := main-verb-lex.’)

typedef = \

‘obj-raising-verb-lex := ditrans-second-arg-raising-lex-item & \

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >, \

SPR < >, \

SPEC < >], \

ARG-ST < #subj & [LOCAL.CAT [VAL.SPR < >]], [], [] >].’

mylang.add(typedef)

if ch.get(‘vc-analysis’) == ‘aux-rule’:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL.SUBJ < [] >] >].’

else:

comps_struc = \

‘[SYNSEM.LOCAL.CAT.VAL.COMPS < #obj, #vcomp . #comps >, \

ARG-ST < [], #obj & [LOCAL.CAT.VAL.SPR < >], \

#vcomp & [LOCAL.CAT.VAL [SUBJ < [] >, \

COMPS #comps]] >].’

mylang.add(‘obj-raising-verb-lex := ’ + comps_struc)

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL.SUBJ <[]>] >].

obj-raising-verb-lex := non-refl-verb-lex &

ditransitive-second-arg-raising-lex-item &

[SYNSEM.LOCAL.CAT.VAL [SUBJ < #subj >,

SPR < >,

SPEC < >,

COMPS < #obj, #vcomp . #comps >],

ARG-ST <[], #obj & [LOCAL.CAT.VAL.SPR < >],

#vcomp & [LOCAL.CAT.VAL [SUBJ <[]>,

COMPS #comps]] >].

1Figure 3.7: Snippet of declarative climb code with alternative choices and
their output

84

choices for procedural climb, as shown above. However, statements about
lexical items and morphosyntactic properties radically differ. In procedural
climb, lexica are defined by detailed lists of properties for each lexical type
included in the grammar. Each morphosyntactic rule also has its own defini-
tion including detailed information on the features to include in choices. This
functionality of defining a large lexicon and morphosyntactic rules in choices
requires manipulation of typehierarchies and the feature geometry by librar-
ies written in Python. It is therefore not supported in declarative climb

at this point; the possibilities when using declarative climb are limited to
including or excluding a definition.

Functionality and workflow of declarative CLIMB

The workflow of declarative climb is closer to traditional grammar engineer-
ing compared to procedural climb. Since the implementations are written
in tdl, analyses can be integrated directly in the metagrammar, even if the
climb approach is new to the grammar engineer.

The differences between directly implementing types in a grammar and im-
plementing them in a declarative climb metagrammar are the following:

1. Types can be defined partially at different locations in the metagram-
mar in declarative climb. This differs from adding definitions to a
previously defined type using addenda,7 because climb will merge all
partial definitions into one type in the resulting grammar.

2. Types in declarative climb may contain abbreviated paths. Though
it is possible to fully define each path, using abbreviated paths may
have advantages when planning minor changes to feature geometry (see
Section 3.3.2 for further details).

3. The metagrammar may contain contradictory type definitions and in-
consistencies. Of course, the grammar engineer should make sure that

7See Section 2.2.1 for a description of addenda.

85

choices prevents contradictory definitions from being included in the
same grammar.

Note that all three properties mentioned above can be used optionally. It
is also possible to define all types at one location only, use full paths at
all times and include only types that should be included in the generated
grammar. In other words, a declarative climb metagrammar can be identical
to a traditionally implemented grammar, though there is no reason to use
declarative climb and not make use of any of the possibilities it offers.

The workflow for using declarative climb is as follows. First, the analyses
are included (directly) in the metagrammar. Declarative climb is used to
generate a grammar by calling the associated Python script from the com-
mand line. The grammar engineer can run new tests and regression tests,
which may lead to revisions in the metagrammar. When the debugging
and testing phase is finished, statements that identify the new implementa-
tions can be added to the metagrammar. New libraries can either be placed
in their own file or indicated by Library=name-of-library in the meta-
grammar. Analyses that do not form a library of their own can be marked
by Begin=name-of-analysis and ended by End=name-of-analysis or by
a statement that another analysis begins. There is no fundamental differ-
ence between libraries and analyses in declarative climb, though libraries
generally form a complete set of grammatical properties dealing with a phe-
nomenon (e.g. a library for all nominal forms in a language) and analyses
tend to deal with more specific grammatical properties (e.g. an analysis for
reflexive pronouns). A library can contain multiple analyses. It is thus pos-
sible to include a library but exclude some of the analyses it contains. On the
other hand, if a library is excluded, all analyses it contains will be excluded
as well.

The final step in grammar development with declarative climb consists in
documenting the new analyses and their associated choices. This particularly
holds when a new analysis is incompatible with certain other analyses in the
metagrammar.

86

Alternative analyses in declarative CLIMB

Declarative climb provides several methods to include alternative accounts.
The most straightforward option is to create individual libraries for altern-
ative analyses. Libraries can be organised in separate files or by statements
indicating the start of a new library within a metagrammar file. A meta-
grammar for German could for instance include two libraries for verb second
word order, one that follows the traditional hpsg filler-gap analysis and one
that follows the Wambaya based flat analysis. In this case, choices selects
alternative analyses by including or excluding specific libraries.

It may not always be the most logical choice to place all properties associated
with an analysis in an associated library. This particularly applies to small
sets of constraints that ensure alternative analyses interact correctly with
other analyses. For instance, the flat word order analysis for verb second
languages uses features that are not included in the grammar when a filler-gap
analysis is used. Passivisation rules must pass the value of these features up,
but only if the flat analysis is selected. The software also supports statements
that can associate small chunks that may consist of individual tdl definitions
with a particular option in choices to facilitate the implementation of such
interactions.

Finally, type names can be used to indicate an association with an analysis.
The user can indicate that a given type is related to a particular analysis
by a specific affix in the type name. Choices can state that all types with a
specific affix should be excluded from the grammar if the associated analysis
is not selected. Likewise, choices will include type names with affixes related
to the selected alternative analyses. Note that this approach can only include
or exclude complete type definitions. It is therefore not suitable for analyses
that touch many parts of the grammar.8 Rare phenomena that should not

8One way to work around this would be to use general types containing all properties
that are shared across analyses and use specific subtypes that only assign analysis specific
properties. However, every analysis-specific subtype is likely to be the supertype of at
least one other type, whose definition will need to be adapted as well (since the name
of this supertype changes according to the selected analyses). Hence, other methods of
modifying types provided by declarative climb are preferable in this case.

87

always be included in the grammar form an example of where such an ap-
proach would typically work. For instance, gclimb includes an analysis that
accounts for a form of partial VP fronting, where part of the verbal cluster
is fronted to the Vorfeld and other verbs remain in the Right Bracket, cf.
Section 4.4.2. The phenomenon is quite rare and its analysis consists of a
rule that introduces additional ambiguity that can only be resolved after the
entire sentence is processed. Because the analysis uses additional types and
does not introduce additional constraints on existing types, it can easily be
identified by the type names associated to the analysis.

The idea that we can use affixes to select analyses has its origins in a delph-

in discussion about how to identify analyses for specific phenomena in the
grammar. One of the options that was uttered during this discussion was to
use type names to index phenomena.9 Using type names to identify specific
analyses thus does not only provide an indication that climb can use to
include or exclude a type from the grammar, but also offers a way for other
grammar engineers to find types associated with a specific analysis in the
resulting grammar.

Components of declarative CLIMB

Declarative climb consists of the following implementations:

1. A script called create_grammar.py. This script is called to generate a
grammar based on a choices file.

2. TDL processing files that take care of merging type definitions and
path completion. They are:

(a) tdl.py. This script takes care of merging type definitions and com-
pleting paths. It largely corresponds to the tdl processing file in-
cluded in the Grammar Matrix but was extended to support path
completion.

9This discussion took place 26 June 2011 in Suquamish, USA (http://moin.delph-in.
net/SuquamishGrammarIndexing)

88

http://moin.delph-in.net/SuquamishGrammarIndexing
http://moin.delph-in.net/SuquamishGrammarIndexing

(b) abbreviate_paths_in_climb.py. This script can abbreviate paths
automatically, but also interprets the feature geometry so it may
be used for path completion.

(c) extract_feature_geometry.py. This script can extract the feature
geometry from a grammar.

The grammar engineer needs to provide the following components to create
a grammar with declarative climb:

1. A feature geometry which can either be extracted from the grammar
automatically using extract_feature_geometry.py or defined manually.
It indicates where in the feature structure certain attributes may be
situated.

2. A file indicating the supertypes of a specific type, if it is not a subtype
of sign. This information is necessary for path completion.

3. A set of libraries (optionally) containing alternative analyses. The ana-
lyses are written in tdl and abbreviated paths may be used.

I will give a short description of the algorithm used to create the grammar.
Section 3.3.2 describes the path completion algorithm. First, the algorithm
goes through choices and collects all tdl files, libraries, chunks or analyses
that should be excluded from the grammar. It then goes through the tdl

files of declarative climb that are not explicitly excluded by choices. If the
script finds a statement indicating the beginning of a library or a chunk, it
checks whether the library or chunk in question is to be excluded from the
grammar according to choices. If this is not the case, it collects the type
definitions from the metagrammar. For each type, the script verifies whether
it has a suffix that is marked for exclusion. If no such suffix is identified,
the definition is processed using an extended version of the tdl processing
code from the Grammar Matrix and added to the type hierarchy of the
grammar. This version takes type definitions with abbreviated paths as input
and completes their paths using the feature-geometry and the super-subtype

89

chain of the type in question. Like the original tdl processing algorithm, it
merges definitions added to types that are already defined elsewhere. Once
all tdl files are processed, the type hierarchy is printed out to a set of tdl

files which can be used as a regular delph-in grammar.

Setting up declarative CLIMB

The tools to use declarative climb have been integrated in gclimb. When
generating a grammar with gclimb, an initial setup to continue grammar
development with declarative climb is included. The output of gclimb

includes a folder called climb in addition to the grammar, which it generates
as before. The climb folder contains a file declaring the feature geometry
of the created grammar, the declarative climb processing tools including
feature geometry extraction, path abbreviation and completion and a set of
declarative climb libraries.

The declarative libraries are organised according to the architecture of pro-
cedural gclimb, i.e. each library in procedural climb places the analyses it
generates in a corresponding declarative library. All paths in the declarative
library have been abbreviated using the feature geometry extraction and path
abbreviation algorithms described in Section 3.3. The output of gclimb has
been used to test whether declarative climb works properly. The algorithms
included in declarative climb were used to recreate grammars previously
created using procedural climb.

It is also possible to start using declarative climb for grammars that have
been developed the traditional way. Either part of the grammar can (tempor-
arily or permanently) be stored in a metagrammar, or the complete grammar
can be converted stepwise. The tools to use declarative climb on large cov-
erage grammars are presented in the next subsection.

90

3.2.3 Large coverage grammars and CLIMB

Introduction to SHORT-CLIMB

The climb workflow provided above describes how the climb approach may
be used in new grammar development projects. The originally proposed
version of climb requires the entire grammar to be included into a meta-
grammar of Python libraries. In order to get the most out of the approach,
it should indeed be adopted from the first steps of grammar development.
This does not necessarily mean that climb can only be useful for new gram-
mars, or grammars in an early stage of development. This section describes
short-climb (Starting High On the Roof Top-climb), a tool that has been
developed to provide support for developers working on larger resource gram-
mars (Fokkens, 2012).10 The typical scenario for using short-climb would
be a major revision to a large grammar. short-climb allows the engineer
to flip back and forth between the old and revised version of the grammar
until a final decision is made. The tool is available under the MIT license.11

The main idea behind climb for large grammars is that grammar developers
can create libraries for alternative analyses without converting the entire
grammar into climb. When using the approach, the engineer defines a set
of changes (adding, removing or modifying type definitions) in a new library.
This library also defines where (near which type in the tdl file) changes must
be made in the grammar. short-climb takes the original grammar and the
library as input and creates a new grammar that has been adapted according
to the definitions in the library. It can also create a mirror library that
reverses all changes as additional output. I will elaborate on the properties
of short-climb below. A more elaborate guide to using short-climb can
be found in the documentation.12

10http://moin.delph-in.net/ClimbShortClimb
11short-climb is available at svn://lemur.ling.washington.edu/shared/matrix/

branches/antske-germanic-development/short_climb.tar.gz.
12http://moin.delph-in.net/ClimbShortClimb

91

http://moin.delph-in.net/ClimbShortClimb
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/short_climb.tar.gz
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/short_climb.tar.gz
http://moin.delph-in.net/ClimbShortClimb

Modifications

short-climb provides three kinds of modifications to the grammar: type
removal, type insertion and type replacement. Removals are defined by the
statement removal=type_name, where type_name stands for the type to be
removed. The specification ,addendum indicates that the original type defin-
ition should be maintained and only addenda (statement using operator :+

to add properties to a type defined elsewhere, cf. Section 2.2.1) are to be
removed. Without this specification, the original statement and addenda (if
present) will be removed from the grammar.

When new type definitions are to be included, the engineer simply adds their
type definition in tdl to the library, immediately preceded by the statement
location=type_name, where type_name indicates the location of the new
type definition in the grammar in the tdl file. The type will be inserted
above the type defined as location. Types that are to be removed can also
be used as location, in which case the new definition will occur at the location
of the removed type.

Type modifications can be defined in several ways. Additional constraints on
a type can be inserted by including a (partial) type definition in the library.
The original type and new constraints will be merged by the function add

explained in Section 2.3.2. It must be noted that additions to type definitions
should use operator := rather than the addendum operator :+. When the
operator :+ is used and the original grammar does not contain an addendum
to the type already, the statement will be ignored. New addenda are inserted
into the grammar when preceded by a location= statement only.

Properties can be removed from types by using a new operator :− introduced
for this purpose. short-climb compares the type definition following :−
in the library to the definitions following := or :+ for the same type in the
original grammar. A new type definition is created including the original
definitions minus those specified to be removed by :−. Lists form a special
case in this process. It is not possible to remove an element completely from
a list. Properties of elements on a list, on the other hand, can be removed

92

using :−. Examples are the type of an element on the list, or a constraint
defined on a lists element. If all properties of an element on the list are
removed, an underspecified element (defined by []) will be found in its place.

The final way to change a type definition using short-climb is to provide the
complete new definition of the type preceded by the statement complete=on.
This statement will remove the original definition from the grammar and
replace it by the new definition from the library. This method can be used
to change the length of a list or difference list.

The algorithm used in short-climb is similar to the one used for declarat-
ive climb. First, the algorithm goes through the modification files and col-
lects additions, subtractions, removals and substitutions defined as described
above. The algorithm then goes through the tdl files of the grammar and
checks for each type whether it falls in one of the categories above. If it does,
the type is modified or removed according to the indication. The algorithm
also checks whether the type is mentioned as the location for a new type. In
this case, it adds the new type first. If the original type is not indicated for
removal, it will be added after the inserted type, either in its original version
if no modifications applied or in a modified form.

Users can also request the inverse modification file when running short-

climb. The file can be used to change the grammar back in its original
state, the definitions of removed types as well as completely modified types
are stored during the modification process. They are added to the inverse file
as additions or modifications, respectively. Partial modifications are included
by changing :+ into :− and vice versa.

I tested the algorithm and both outputs described above by making various
kind of changes to Jacy using short-climb. These changes included remov-
ing types, adding them and changing various properties of types. They were
selected to verify different parts of the algorithm, but were not related to a
specific phenomenon. After running short-climb, the newly created gram-
mar was inspected to see if modifications were attributed as intended. The
tests also included flipping back and forth between two versions using the
automatically generated file with inverted modifications and testing whether

93

the grammar was indeed reestablished in its original state.

Starting a metagrammar with SHORT-CLIMB

short-climb can also be used to start to convert the structure of the gram-
mar to a metagrammar setting.13 As before, the grammar engineer defines a
library of changes and short-climb modifies the grammar accordingly. Ad-
ditionally, short-climb can create a reduced version of the grammar that
no longer includes types stated to be removed, constraints and definitions
removed by operator :−, or types up for complete revision (indicated by
complete=on). The reduced grammar is accompanied by two new libraries.
The first can be used to create the new version of the grammar. It con-
tains the additions defined in the original modification library as well as all
definitions meant to completely replace an old type. The second is meant
to create the original version of the grammar. It includes type definitions
of types removed by the revision library, removed constraints as additional
constraints (replacing the :− operator by := or :+) and the original defin-
ition of types marked for complete substitution. The algorithm created this
reduced grammar was also tested by making various changes to Jacy.

The reduced grammar forms the new core of the metagrammar, meaning that
its definitions will all be included in the grammar regardless of what libraries
and properties are selected. The newly created libraries both contain a set
of definitions directly related to a specific analysis for a phenomenon. From
this starting point, more libraries can be created. When short-climb is run,
implementations related to a specific analysis will be removed from the core
and placed in a library. The grammar engineer can remove an analysis for a
specific phenomenon without creating an alternative by simply providing a
set of removal statements (which can be either complete types or properties
of types). This strategy could be of interest to developers of a small to
medium-sized grammar considering whether to switch over to declarative
climb.

13See http://moin.delph-in.net/ClimbShortClimb for a more elaborate explanation
of how to use short-climb.

94

http://moin.delph-in.net/ClimbShortClimb

Adjective forms following one of the following words (in any form):
der, dieser, jener, jeder, mancher, solcher, welcher, aller, sämtlicher, beide
(weak inflection)
case masculine feminine neutral
nom der gute Wein die gute Milch das gute Bier
gen des guten Wein(e)s der guten Milch des guten Bier(e)s
dat dem guten Wein der guten Milch dem guten Bier
acc den guten Wein die gute Milch das gute Bier
Adjective forms following one of the following words (in any form):
ein, kein, mein, dein, sein, ihr, unser, euer, Ihr (mixed inflection)
case masculine feminine neutral
nom ein guter Wein eine gute Milch ein gutes Bier
gen eines guten Wein(e)s einer guten Milch eines guten Bier(e)s
dat einem guten Wein einer guten Milch einem guten Bier
acc einen guten Wein eine gute Milch ein gutes Bier
Adjective forms not preceded by a specifier (strong inflection)
case masculine feminine neutral
nom guter Wein gute Milch gutes Bier
gen guten Wein(e)s guter Milch guten Bier(e)s
dat gutem Wein guter Milch gutem Bier
acc guten Wein gute Milch gutes Bier
Adjective endings for plural adjectives
case “der ” specifier “ein” specifier no specifier
nom die guten Weinen keine guten Weinen gute Weinen
gen der guten Weinen keiner guten Weinen guter Weinen
dat den guten Weinen keinen guten Weinen guten Weinen
acc die guten Weinen keine guten Weinen gute Weinen

Table 3.1: Overview of German adjective endings

3.2.4 Discussion of declarative CLIMB

This section introduced declarative climb, an alternative version of climb

that lowers the hurdle for adopting the approach. A disadvantage of declar-
ative climb is that it does not support a number of useful functions from
the customisation system. This mainly concerns iterative functions creating
lexical items and morphosyntactic rules and implementations which make
use of procedural functions in Python. I will illustrate the difference through
the example of the aforementioned implementation of adjectives. Table 3.1

95

provides an overview of German adjectives.14

adj_strength = ‘’
adj_strength = self.get(‘strength-marking’)
if adj_strength:
if adj_strength != ‘none’:
features += [[‘strong’, ‘bool|bool’, ‘local.cat.head.strong’]]
features += [[‘strong’, ‘-|-’, ‘local.cat.head.strong’]]
features += [[‘strong’, ‘+|+’, ‘local.cat.head.strong’]]
if adj_strength == ‘triple’:
features += [[‘strong’, ‘luk|luk’, ‘local.cat.head.strong’]]
features += [[‘strong’, ‘na-or–|na-or–’, ‘local.cat.head.strong’]]
features += [[‘strong’, ‘na-or-+|na-or-+’, ‘local.cat.head.strong’]]
features += [[‘strong’, ‘na|na’, ‘local.cat.head.strong’]]

Figure 3.8: Code snippet to add the feature path and values for strong

Implementing generic types for adjectives and rules for combining adjectives
and nouns is similar in declarative climb and procedural climb. I will
therefore focus on the implementation of specific types for adjective and
morphological rules where differences are most apparent. Figures 3.8 and 3.9
illustrate the basic implementations that were added to gclimb for capturing
German adjectives. German adjective endings depend on the determiner that
is present in the noun phrase (or on the determiner being absent). The feature
strong is used to ensure the adjective has the correct ending.15 The path
to this feature, its possible values and how these can be triggered in choices
are defined in choices.py. The definitions are illustrated in Figure 3.8.

14Paradigms such as the one in Table 3.1 can be found in many German grammar books
and online information about German grammar. In linguistic literature, information about
adjective endings can also be found. For instance, Müller (2007) provides an overview of
adjective endings and all grammatical properties they may have. The endings in Table 3.1
have been verified against his description (Müller, 2007, p. 214). Note however that Müller
(2007) refers to strong and weak determiners rather than weak and strong inflection.
Strong determiners are followed by adjectives with weak inflection and vice versa.

15The current implementations of the customisation system and climb do take the type
hierarchy into account while interpreting possible values for choices. Therefore all possible
values including subtypes must be defined explicitly.

96

for adj in ch.get(‘adj’,[]):
name = get_name(adj)

features.customize_feature_values(lang, ch, hiers, adj, atype, ‘adj’)

for stem in adj.get(‘stem’,[]):
orth = stem.get(‘orth’)
orthstr = orth_encode(orth)
pred = stem.get(‘pred’)
id = stem.get(‘name’)
id = id.replace(‘’,‘_’)
typedef = \
TDLencode(id) + ‘ := ’ + atype + ‘ & \

[stem < “’ + orthstr + ‘" >, \
synsem.lkeys.keyrel.pred “’ + pred + ‘"].’

lexicon.add(typedef)

Figure 3.9: Code snippet for generating adjectives

The implementation presented in Figure 3.9 is responsible for generating
lexical types for adjectives and adding lexical entries to the lexicon. The
complete implementation for adjectives also defines more general types of
adjectives which form the supertypes of the lexical types created by the
code in Figure 3.9. These implementations are similar to those that would
be used in declarative climb, as mentioned above. Other requirements for
including adjectives and their morphology in the grammar are met by generic
functions in climb. All other properties for including German adjectives in
the grammar can be defined in choices. A sample of the required choices is
provided in Figure 3.10.

Additional adjectives and adjective endings can be added rapidly in this im-
plementation. The generic morphotactic and feature geometry implement-
ations in climb take care of the rest. It should furthermore be noted that
it is easy to create grammars with different analyses for adjective endings.
As Table 3.1 shows, several adjective endings can stand for more than one
case, number, gender and “strength” combination. The choices in Figure 3.10
define two morphological rules. One rule assigns mixed strength, dative or

97

adj1_name=intersective adj-pc1_lrt2_name=mixed-weak-nomacc-pl
adj1_kind=int adj-pc1_lrt2_feat1_name=case
adj1_arg-str=none adj-pc1_lrt2_feat1_value=nom, acc
adj1_stem1_orth=riesig adj-pc1_lrt2_feat2_name=strong
adj1_stem1_pred=_riesig_m_rel adj-pc1_lrt2_feat2_value=na-or–
adj1_stem2_orth=herrlich adj-pc1_lrt2_feat3_name=number
adj1_stem2_pred=_herrlich_mod_rel adj-pc1_lrt2_feat3_value=plural
adj2_name=scopal adj-pc1_lrt2_feat3_head=mod
adj2_kind=scop adj-pc1_lrt2_feat4_name=prd
adj2_arg-str=none adj-pc1_lrt2_feat4_value=-
adj2_stem1_orth=unglaublich adj-pc1_lrt2_lri1_inflecting=yes
adj2_stem1_pred=_unglaublich_m_rel adj-pc1_lrt2_lri1_orth=en
adj-pc1_name=adj-inflection
adj-pc1_obligatory=on
adj-pc1_order=suffix
adj-pc1_inputs=adj1, adj-pc2_lrt1
adj-pc1_lrt1_name=mix-weak-datgen
adj-pc1_lrt1_feat1_name=case
adj-pc1_lrt1_feat1_value=dat, gen
adj-pc1_lrt1_feat2_name=strong
adj-pc1_lrt1_feat2_value=na-or–
adj-pc1_lrt1_feat3_name=prd
adj-pc1_lrt1_feat3_value=-
adj-pc1_lrt1_lri1_inflecting=yes
adj-pc1_lrt1_lri1_orth=en

Figure 3.10: Sample of choices defining adjectives and their morphology

genitive case and any gender or number and the other assigns mixed strength,
nominative and accusative plural with the same ending. A few changes in
choices would result in a single rule for mixed strength and plural endings,
and one for dative and genitive in singular. The procedural implementation
thus offers a lot of flexibility for experimenting with alternative analyses.

The equivalent rules in declarative climb are represented in Figure 3.11. It
is relatively easy to extend the grammar based on these two types to cover
all adjective endings for German. The workload is comparable to extending
choices in Figure 3.10. However, in order to add a rule for adjectives that
can modify a noun in nominative, dative or accusative case, for instance, the
case hierarchy of the grammar needs to be checked and possibly revised in
order to make sure that the required type is included. This is not necessary
in procedural climb where hierarchies are created automatically based on

98

mixed-datgen-lrule := infl-lex-rule & adj-inflection-lex-rule-super &
[HEAD [CASE gen+dat,

STRONG na-or--,
PRD -]].

mixed-nomacc-pl-lrule := infl-lex-rule & adj-inflection-lex-rule-super &
[HEAD [CASE nom+acc,

STRONG na-or--,
MOD.NUM plural,
PRD -]].

Figure 3.11: Two morphotactic rules for adjectives in declarative climb

properties of lexical items and morphological rules. Declarative climb is
thus less flexible. Moreover, constraints that make sure that obligatory mor-
phological rules apply, that rules do not apply twice and that they interact
correctly with optional rules such as comparative or superlative marking need
to be created by hand for each new lexical category in declarative climb.
Procedural climb has general rules in place that can be used directly for
this purpose. The presence of general software for creating type hierarchies,
paths for features and interaction of morphological rules played an import-
ant role in the rapid inclusion (six hours) of adjectives and their marking in
gclimb. It is unlikely that this could be achieved in the same time while
using declarative climb.

This result indicates that procedural functions in climb can help to speed up
grammar development and provides additional flexibility that is not found
in declarative climb. On the other hand, it is easy for grammar engineers
to learn how to use declarative climb that are trained in writing grammars
with tdl. This is an advantage that should not be underestimated. Future
work will therefore focus on combining the strengths of the two approaches.
In particular, this will involve the development of a tool where grammar
engineers can define parameters and iterative functions with help of a GUI.

99

3.3 TDL processing tools

This section describes a set of tdl processing tools that have been developed
as part of research related to climb: The spring cleaning algorithm (Fokkens
et al., 2011) and path completion. Spring cleaning was originally developed to
help and compare two similar versions of a grammar in order to find which
differences should be included in the metagrammar. Path abbreviation is
used in declarative climb and simplifies the introduction of minor changes
in the feature geometry.

3.3.1 Spring cleaning

The spring cleaning16 algorithm (Fokkens et al., 2011) identifies portions of
the grammar that do not influence its competence in any way. The com-
petence of the grammar is defined as the set of analyses that it provides for
any possible input strings; for strings the grammar does not recognise, this
will be the empty set. Artefacts that do not effect competence can accrue in
a grammar because abandoned analyses are not completely removed or be-
cause the grammar is built on a crosslinguistic resource but does not use all
of the infrastructure that resource provides. The spring cleaning algorithm
takes a grammar as input and returns an equivalent grammar from which all
extraneous types have been removed.17

As explained in the Section 2.2, the delph-in processors take instances as
starting points for parsing and generation. Instances thus have a direct
influence on the competence of the grammar. There are several ways in which
types may be relevant, i.e. play a role in the definition and functioning of
instances. The first and most direct way is if a type is an instantiated type,
meaning that it either has an instance or has a subtype that has an instance.
Instantiated types thus directly define the instances of the grammar. The

16The spring cleaning algorithm was originally introduced in Fokkens et al. (2011) which
was joint work with Yi Zhang and Emily Bender. The text of this section is mostly taken
from there.

17Note that the grammar may still contain extraneous features.

100

second way a type has an impact on instances is by defining features or
values that are part of the definition of one or more instantiated types.
Finally, a type may be relevant to instances, because it defines a lower
bound between two relevant types. In this case, the type influences the
possibility of unification, i.e. if a type t forms the only lower bound between
types t1 and t2, t permits unification between t1 and t2, which can no longer
take place if t is removed from the grammar.18

Types that do not influence instances in any of the three possible ways defined
above do not have an impact on the competence of the grammar. The ‘spring
cleaning’ algorithm goes through the type definition files and identifies such
irrelevant types. This process takes place in two stages. In the first stage,
it identifies types that are necessary for the definition of the instantiated
types. This means that they either (i) are instantiated types, (ii) define
values of features of instantiated types, or (iii) introduce attributes used to
define an instantiated type. The correctness of this stage of the algorithm
can be verified during compile time of the grammar: if a type is removed
that is required for the definition of an instantiated rule or lexical entry, the
grammar will not load in LKB. Similarly, the PET ‘flop’ command, used to
compile the grammar, will fail (and report an error) on a grammar missing
such a type.

Types that permit unification between other types, but play no direct role
to another type’s definitions, are only relevant at runtime. These types are
identified in the second stage of the process. After separating types needed
to define instantiated types from those that are not, the algorithm checks
for relevance at runtime of the latter types. It creates a hierarchy h of types
that lead to instances and their values. For each type from the original
grammar that is not defined in h, the algorithm checks whether it permits
the unification of types from h that would otherwise fail.

The original spring cleaning approach verified whether a type t1 that was
marked for removal was a common subtype in the complete grammar of

18Recall that the delph-in joint reference formalism adopts a closed-world assumption,
i.e. all types that play a role in the grammar must be explicitly defined.

101

types t2 and t3 that were included in the reduced grammar. If this was the
case and the reduced grammar did not include any other common subtype for
types t2 and t3, t1 would be included in the grammar. If the reduced grammar
already contained a common subtype of t2 and t3, t1 would be removed.

The implementation of spring cleaning has been modified based on a closer
study of the greater lower bound (glb) completion algorithms included in
LKB and PET. As it turns out, ensuring that two types that have at least
one common subtype in the original grammar also have at least one common
subtype in the reduced grammar does not guarantee that the reduced gram-
mar has the same competence as the original. If the original grammar had
more than one subtype and the reduced grammar has exactly one subtype,
possibilities of unifying can differ, because constraints are ignored in the glb
completion algorithms. Figure 3.12 illustrates the difference of a simple type
hierarchy as defined (left) and after glb completion has applied (right).

T

t1 t2

t3:[feat d] t4:[feat e]

a

b c

d e f

T

t1 t2

glb1

t3:[feat d] t4:[feat e]

a

b c

d e f

Figure 3.12: Illustration of glb completion when subtypes have features

Consider Figure 3.12: the type glb1, introduced by the glb completion al-
gorithm does not bear any constraints. This means that t1 and t2 can unify
if one of these types bear the feature value [feat c] or [feat f]. If the
reduced grammar contains only t3 or t4 this is not the case: then t1 and t2
may only bear [feat d] or [feat f], respectively. Note that it is not evid-
ent that features are ignored during glb completion. One may equally well
introduce a common supertype of features d or e as feature value of feat in
the grammar, or assign its greater upper bound (in this case the value b).

102

The current implementation of the spring cleaning algorithm checks how
many common subtypes two types had in the original grammar and how
many remain in the reduced grammar. If these types had more than one
in the original grammar and none in the new grammar, it introduces a new
glb instead of reintroducing a random common subtype originally marked
for removal. If two types only have one common subtype in the reduced
grammar, the algorithm checks whether this type has features and if so, a
glb without features is introduced. This glb becomes the new supertype of
their joint common subtype. This addition is necessary, because the original
grammar had a glb which also did not have features due to the way the glb
completion algorithm works. If no additional type without features is added,
the reduced grammar would thus be more constrained. The decision to in-
troduce a new glb rather than leaving the original types in the grammar was
taken, because there may be cases where there may be several original types
with complex definitions. Leaving them all in the grammar may misleadingly
give the impression they play a role in the grammar. Introducing a special
glb type provides better insight into the structure of the original grammar
and leads to a cleaner grammar.

The final output of this algorithm is three sets of files: (i) modified versions
of the files of the original grammar, in which the definition files include only
those types that are either needed to define instances or identified as relevant
at runtime, (ii) copies of the original definition files and (iii) files that list
removed types for each definition file. The structure of the original grammar
is preserved by this process. This includes types that are used to capture
generalisations so that a given constraint need be stated in only on place.
Thus the result is a grammar that is ‘cleaned up’ with respect to the input
without being more compact in ways that might make it more opaque to the
grammar engineer.19

19Fokkens et al. (2011) also present a grammar compression algorithm implemented by
Yi Zhang. This algorithm indicates which types are required to create a grammar with
equivalent competence. The main differences between the two algorithms are that (1) the
grammar compression algorithm (currently) does not produce a reduced grammar and (2)
if it did output a grammar, it would modify the structure. A more detailed explanation
is given in Chapter 6 as part of the spring cleaning evaluation.

103

Spring cleaning can be used on any grammar in tdl. The impact is likely to
be biggest on grammars written in the traditional way. Because climb stim-
ulates an organisation that clearly identifies which implementations are part
of a specific analysis, chances are that pieces that belong to old analyses re-
main in the grammar less often. Nevertheless, spring cleaning was originally
designed as part of the climb approach. After a complex analysis has been
integrated in a grammar manually, one way to identify which implementa-
tions should be added to the metagrammar is to generate a clean version
of the grammar and compare it to the extended grammar. Spring cleaning
makes sure that only relevant types of the grammar are considered, so that
trials are disregarded and types that are only needed in the old analysis do
not turn up in the revised analysis. In future work, spring cleaning will be-
come part of a bigger application that automatically extracts the differences
between two versions of a grammar.

3.3.2 Reduced Paths

[
head 1

head-dtr|head 1

][
synsem|local|cat|head 1

head-dtr|synsem|local|cat|head 1

]

Figure 3.13: The Head Feature Principle in full and abbreviated form

Figure 3.13 represents one attribute value matrix containing full paths (left)
and one indicating the same constraint through an abbreviated path (right).
Types in delph-in grammars must be defined using full paths. The basic
idea behind the tools described in this subsection is to let grammar writers
define their types in a manner that is common practice in theoretical hpsg

papers. This involves three algorithms. The feature geometry extraction
algorithm automatically extracts the feature geometry of a grammar, i.e. it
extracts where attributes are introduced (by which type) and provides chains
of sub- and supertypes for types that introduce an attribute. The path
abbreviation algorithm can automatically reduce paths to the shortest form

104

that can still be completed deterministically. It can furthermore complete the
feature geometry extraction algorithm in that it stores the default values of
lists and difference lists. The path completion algorithm allows grammar
engineers to use abbreviated paths in climb.

Feature Geometry Extraction

The feature geometry extraction algorithm can identify the feature geometry
of a grammar written in tdl. The algorithm reuses implementations from
the spring cleaning algorithm. Feature geometry extraction first determines
which type in the type hierarchy introduces an attribute. After it has listed
which type introduces an attribute and what the value of this attribute is,
it extracts inheritance chains for all types concerned. This information is
required, because an attribute may also appear in a tdl definition as part
of a constraint on a type that is a supertype or subtype of the type that
introduced it.

The output of the feature geometry extraction algorithm is a file that defines
for each attribute which type introduces it and the type of its values. This file
furthermore contains representations of chains including super- and subtypes
of all types that introduce features or are feature values.

Path Abbreviation

The path abbreviation algorithm automatically reduces the paths in type
definitions. The input is a grammar where all types have fully defined types
and a feature geometry file which can be defined manually or created by the
feature extraction algorithm described above. The algorithm first creates
two Python dictionaries from the feature geometry file. The first links every
attribute defined in the grammar to the type that introduces it. The second
dictionary contains types that introduce at least one attribute and links them
to a list containing all attributes that may take this type as a value. This
list of attributes is created using the super- subtype chains of the respective
types. These two dictionaries are used to reduce paths. Figure 3.14 presents

105

the pseudo code of the path reduction process.

Algorithm 3.3.1: ReducePath(fullPath, attr2itype, t2attrs)

comment: Paths have form ATTR1.ATTR2, starting at the end.

attributes← fullPath.split(′.′).reversed()
comment: The last attribute in the path is always included.

new_path← attributes[0]
comment:

Go through the attributes. Check preceding attribute.
The preceding attributes is the next element on the list.
for i← 0 to attributes.length()− 2

do

attr ← attributes[i]
prec_attr ← attributes[i+ 1]
comment:Retrieve type introducing the current attribute.

intro_type← attr2itype.get(attr)
comment:Retrieve attributes taking intro_type as value.

pot_prec_atts← t2attrs.get(intro_type)
comment:

If the preceding attribute is not included,
print out a warning.
if not prec_attr ∈ pot_prec_atts
then

{
print “Warning: potentially ill defined path: ”
+ fullPath

comment:

If more than one potential preceding attributes, then
the preceding attribute must be maintained.
else if pot_prec_atts.length() > 1
then new_path.append(prec_attr)

red_path = new_path.reverse()
return (red_path)

Figure 3.14: Pseudo code for path reduction

The algorithm goes backwards through the defined path and checks whether
the preceding attribute could be determined deterministically from the fea-

106

ture geometry. To establish this, the algorithm first retrieves which type
introduces the current attribute. It then checks which attributes can take
this type as their value. If there is only one such attribute and it corresponds
to the attribute preceding the current attribute, then this preceding attribute
need not be maintained in the reduced path. In the example in Figure 3.13
for instance, it would retrieve that head is introduced by cat and that cat

is the only attribute in the grammar that has cat (or any of its subtypes) as
its value. It will therefore remove cat from the complete path.

The path abbreviation algorithm includes a special treatment for lists. If an
attribute takes a list as its value, the type definition does not necessarily state
what kind of elements will appear on this list. They can be anything, but
in a well written grammar, a particular attribute will always have elements
of compatible types on its list. For instance, subj, comps and spr always
have a list of synsem as their value. When the path abbreviation algorithm
encounters a list, it will try to establish the type of the elements on this list
by looking at the attributes of the first element. Figure 3.15 provides the
pseudo code for this algorithm.

I will illustrate how this algorithm works for a path used to indicate case
marking for the second element on the comps list. The complete path of
attributes would look as follows:

synsem|local|cat|val|comps|rest|first|local|cat|head|case

The algorithm presented in 3.15 goes through the attributes starting at the
left until it finds first. It retrieves the attribute following first, in this
case local, which is stored as the first attribute of the list. It then goes
backwards starting at first going towards the beginning of the path until
it finds the first attribute that is not an attribute of a list or difference list.
In the example above, it skips rest and finds comps, identifying comps as
the attribute that took the list as its value. Now that it has found which
attribute introduces the list and the first attribute of an element of the list,
it checks whether a default value for the list of comps is defined. If not, the
algorithm performs an additional check to see whether comps takes a list or

107

Algorithm 3.3.2: IdentifyDefaultType(path, a2it, a2vt, t2a)

atts← path.split(′.′)
for i← 0 to atts.length()− 1

do

if atts[i] == ‘FIRST’

then

if atts.length > i
then first_att_list← atts[i+ 1]

j = i
while j 6= 0

do

j ← j − 1
if not atts[j] ∈ [‘REST’,‘LIST’,‘LAST’]

then
{
att_with_list_val← atts[j]
break

if first_att_list and att_with_list_val

then

old_val← a2vt[att_with_list_val]
if not ‘,’ ∈ old_val
then itype← a2it[first_att_list]

if ‘list’ ∈ old_val

then

new_val← old_val + ‘,’+ itype
a2vt[att_with_list_val]← new_val
t2a[itype].append(att_with_list_val)

else print ‘Warning: found list as value of’
+ att_with_list_val

Figure 3.15: Pseudo code for finding the default types of lists

a difference list as its value. If the value of comps is indeed a list or difference
list, it adds synsem, the type introducing local, as a default value for the
elements on the comps list. If comps does not have a list or difference list
as its value, a warning is printed. The updated feature values (now including
the default values of the list’s elements) are stored in the feature geometry
file.

The attribute first is thrown away when reducing paths including lists,
since it is always part of the path for a list. Instances of the attribute rest

remain, because they indicate which element of the list bears the feature
value in question.

108

Path Completion

Path completion works in a similar manner to path abbreviation. It takes a
feature path defined in tdl and a feature geometry definition file as input.
The feature geometry definition file is centred around attributes. It includes
the value of each attribute, as well as the type that introduces it. For each
value, a list of sub- and supertypes is provided as well. The algorithm goes
backwards through the abbreviated path. I will explain the procedure for
the example in Figure 3.13. If the path head is provided as the abbreviated
path, the algorithm will retrieve the feature that declares the attribute head

from the feature geometry. In Matrix grammars, head is introduced on
the type cat. The algorithm checks whether the input attribute (head) is
already preceded by an attribute that may take cat as a value. In this case,
the algorithm will continue with the preceding attribute as its input. In
our example, this is not the case. Because there is a unique attribute in the
feature geometry that takes cat as a value, the algorithm inserts this attribute
(cat) in front of head in the path. It then continues the search with cat

as input. The algorithm introduces local before cat and synsem before
local in a similar manner. The algorithm stops looking for attributes when
it reaches an attribute introduced by sign or by a supertype, a subtype or
the type itself that bears the constraint defined through the path. If the
algorithm identifies more than one possible attribute that may precede the
input attribute and none of them precedes the attribute in the abbreviated
path, it produces an error. Finally, the algorithm always provides the shortest
path possible. Paths in typed feature structures can be recursive. This means
that the grammar engineer must explicity indicate any attribute that leads
to recursion. For instance, subj take a list of synsem as its value allowing all
attributes of synsem to occur again. If the grammar writer intends to define
a property of a synsem of the subject list, the attribute subj must therefore
be present. If a property of the subject of the subject is defined, subj should
be indicated in the abbreviated path twice, etc.

If the preceding attribute in an incomplete path has a list as its value, the
algorithm checks what the default value of this list is in the feature geometry.

109

It completes the path up until this default value and then includes the ap-
propriate values to place the element at the intended location of the list.
This means that it will introduce the attribute first if necessary. While
defining lists in abbreviated form, one thus only needs to make sure to in-
clude rest for elements that do not appear at the beginning of a list. For
instance [subj.case nom] will be completed to assign the nominative case
to the subject (first element on the subject list), [comps.rest.case acc]
will assign the accusative case to the second element of the complements list.
An additional rest will assign the value to the third member on the list,
etc.

Concerning abbreviated paths

As mentioned above, the algorithms described in this section are included
in declarative climb. The current implementation of (procedural) gclimb

both generates a grammar and a declarative climb version of the grammar
with abbreviated paths. The feature geometry extraction algorithm and
path abbreviation algorithm provide error warnings when there are problems
with the type hierarchy. These error messages help to identify bugs in the
metagrammar or choices file. Most of the errors lead to compiling problems
of the grammar and would also be spotted while loading the grammar in
LKB or flopping them with PET (cf. Section 2.2.2). These identifications,
described in the following sentences, thus mainly help to identify errors before
loading or flopping the grammar. The feature geometry extraction algorithm
indicates when a given type has no supertypes, a type has a supertype that
is not defined in the grammar or the typehierarchy contains a cycle (where
a type is its own supertype or two types are both each other super- and
subtypes). The path abbreviation algorithm indicates whether features are
placed at the wrong location or attributes are not introduced. In addition,
path abbreviation can also spot an error that are not related to a formal
error in the type hierarchy, but generally is the result of a mistake and
will not lead to the desirable behaviour of the grammar. It identifies which
types are generally placed on a specific list and indicates cases where an

110

incompatible type was found. Because lists do not formally constrain what
kind of elements are placed on them, LKB can only spot such errors when a
conflicting constraint is defined for that exact same element. If the element
on the list is only defined at one location, the grammar compiles as usual,
but will not lead to the desired unifications.

A potential additional advantage of abbreviated paths is that it may simplify
revisions to the feature geometry. If signs are consistently defined using ab-
breviated paths, the engineer need only change the feature geometry behind
the path completion algorithm and definitions directly related to the revi-
sion in the geometry. Likewise, path abbreviation may simplify the process
of combining analyses from grammars using slightly different feature geomet-
ries. Abbreviated definitions will be completed to the correct path by the
path completion algorithm, unless the difference in feature geometry is reflec-
ted in the abbreviated path (in which case it must be corrected manually).
As such, path abbreviation can be used to increase the modularity of the
grammar. Section 3.4 addresses increased modularity and other advantages
of using climb and its related tools in more detail.

3.4 CLIMB applications

Advantages of climb and the tdl processing tools presented in the previous
section have been mentioned in Chapter 1 and throughout this chapter. This
section places several advantages next to each other as an overview of ways
to use climb and the other tools presented in this chapter.

3.4.1 Systematic comparison

As explained in Chapter 1, the main motivation for introducing climb is
to provide a more systematic methodology for grammar engineering. It ad-
dresses a joint effect of two well-known challenges in syntax and grammar
engineering. Namely, the facts that (1) often more than one formal analysis
can be found to account for a phenomenon and (2) phenomena (and the

111

analyses that account for them) interact.

In both syntactic research and grammar engineering, the typical scenario
when more than one plausible analysis can be found to analyse a phenomenon
is to compare the analyses according to their ability to account for the data,
elegance and interaction with other analyses (Bierwisch, 1963; Müller, 1999;
Bender, 2008a). In grammar engineering, the criterion of efficiency may
also be taken into account to decide between analyses. The best analysis
according to these criteria is picked and the syntactician or grammar engineer
moves on to the next phenomenon.

The problem lies in testing interaction with other analyses. This is an im-
portant distinguishing criterion: an analysis should not only work well in
isolation, but also in the larger context of a grammar. However, new ana-
lyses are only tested with those analyses that were selected in the past. Al-
ternatives that were equally or almost equally plausible at the time are not
considered. It may therefore occur that an analysis is chosen that excludes
the best possible analysis for a phenomenon that still needs to be accounted
for in future work. Consequently, the theoretical or implemented grammar
is partially the result of the order in which grammar engineers looked at
individual phenomena. To my knowledge, Fokkens (2011a) and the work
presented in this thesis are the first to explicitly point out this problem.

climb provides grammar engineers with the means to address this challenge.
In cases where no conclusive evidence is found to decide between alternat-
ive analyses, all possible alternatives can be stored in climb. When adding
new analyses to the grammar, the grammar engineer can test them with all
alternatives maintained from past decision points. This way, evidence from
phenomena treated in future work can also be taken into account in the pro-
cess of deciding between alternative analyses and more generally, decisions
will be given a stronger empirical foundation. The grammar generation al-
gorithm and overall setup of climb ensure that the grammar engineer has full
control over which properties vary and which remain consistent across gram-
mars. The approach is thus more systematic than the obvious alternative of
simply maintaining separate versions of the grammar in parallel.

112

Naturally, the grammar engineer must still make sure alternative analyses
all interact correctly with other implementations. During the creation of
gclimb, time investment in adjusting interactions varied from none at all
to two days in the most extreme case for including object control. Typic-
ally, less than half an hour was needed. Chapter 5 will discuss the difference
between traditional grammar engineering and implementing with climb as
part of the evaluation carried out with gclimb. The result of this evaluation
indicates that, even when alternative analyses are maintained, grammar de-
velopment time when using climb seems to be at least comparable (and
possibly shorter) than when only one analysis is integrated using a tradi-
tional method.

climb can however not completely prevent certain analyses from being more
dominant than others in design decisions. This risk is especially present when
one analysis is dominant in the literature. This analysis will have influenced
the course taken in theoretical syntax and hence will influence the grammar
engineer when consulting the literature in support of grammar development.
It may also happen that the grammar engineer is biased towards an analysis
or finds it easier to work with. In this case, the grammar engineer may tend
to start looking at new phenomena using grammars containing the preferred
analyses. Alternatives that work well with these analyses are more likely to
be tested than those that would work better with others.

In the end, climb is not a magic wand that solves all problems related
to interactions and alternatives. It nevertheless greatly improves on the
traditional approach, where comparison in a larger context was cumbersome
and not systematic. Furthermore, climb could form an essential contribution
to syntactic research. One of the motivations for using grammar engineering
is to test analyses empirically and climb provides a platform to do so more
systematically. The main message to syntacticians therefore is: grammar
engineering is good for syntax and metagrammar engineering is even better.

113

3.4.2 Modularity

Ways to use climb involve sharing a set of analyses and plugging in altern-
ative analyses for syntactic research, individual languages or dialects or to
highlight coverage or precision, depending on the intended application for the
grammar. Plugging in alternative implementations requires a certain level
of modularity. This increased level of modularity is a positive by-product of
the climb methodology.

climb allows grammar engineers to spread type definitions over different lib-
raries. The implementations in these libraries interact on many levels, so they
cannot be developed independently as in a fully modular approach. Never-
theless, climb manages to address most desiderata for a modular approach to
writing typed unification grammars as defined by Sygal and Wintner (2011)
(see Section 7.5.1). Namely, climb fulfils signature focus, partiality,
extensibility, parsimony, associativity and flexibility and procedural
climb can, in principle, support privacy and remote reference. The
consistency criterion is partially fulfilled by running the feature extraction
and path abbreviation algorithms when creating grammars with climb. Sy-
gal and Wintner (2011) point out that the Grammar Matrix customisation
system introduces a modular setup, but has the problem that the developer
has no control over the libraries. climb differs from the Grammar Matrix
in exactly this property. The similarities between the setup of climb and
the proposal by Sygal and Wintner (2011) is striking. The criteria defined
by Sygal and Wintner (2011) as well as their approach and how it compares
to climb will be discussed in detail in Section 7.5.2 as part of related work.

Path abbreviation

Modularity can be further increased by making extensive use of path abbrevi-
ation. Moshier (1997b) illustrates the problem of lack of modularity through
the revision in feature geometry that has taken place between the original
introduction of hpsg by Pollard and Sag (1987) and Pollard and Sag (1994),
where the original distinct features syntax and semantics were merged

114

into the single feature synsem. Major principles, such as the Head Feature
Principle, had to be redefined because either the feature syn or sem would
be included in their definition. The decision to merge syn and sem had,
however, nothing to do with the Head Feature Principle and no impact on
the idea behind it. This revision in the principle was thus an undesirable con-
sequence of the revision in feature geometry. Moshier (1997b) proposes to
use category theory to redefine the formalism behind hpsg so that principles
may be defined independently of the feature geometry.

Path abbreviation does not provide this mathematically sound solution, but
it proposes a practical solution that avoids part of this problem. If all paths
in the metagrammar are abbreviated and completed by the path completion
algorithm, the paths of individual principles and language specific constraints
can be changed by changing the feature geometry behind the algorithm. Mer-
ging syn and sem or separating synsem again in two features can be done
without changing principles and probably even without changing any ana-
lyses in the grammar. It is, however, less principled as an approach than
Moshier’s proposal. The algorithm requires that the path can be completed
deterministically. Revisions in the feature geometry that change the posi-
tions where multiple completion options occur may still require changes in
principles or analyses that are not related to the revision in feature geometry
from a linguistic point of view. Moshier’s proposal, on the other hand, is
a theoretical proposal and has, to my knowledge, not been implemented to
this date.

Phenomenon-based organisation

The increased modularity allows the grammar engineer to group grammat-
ical properties according to the analysis they represent rather than according
to the individual types. Within climb, the grammar can thus be organ-
ised according to phenomena. For the developers of the grammar, such a
structure can be advantageous when revising the grammar. Even for a well-
documented grammar, one gets a better overview of an implementation if all
relevant definitions for an analysis can be found at one (or few) well-defined

115

location(s) reserved for that particular analysis alone. Developers of other
grammars may benefit from the structure for the same reason. If they want
to see how a specific phenomenon is implemented, they do not need to work
through large files containing many irrelevant definitions.

There are two (main) challenges in organising a grammar according to phe-
nomena or analyses of phenomena. The first challenge lies in the question of
how to define phenomena in the first place. The second challenge lies in the
interaction of phenomena. A full discussion about the question regarding the
definition of phenomena goes beyond the scope of this work, but an elaborate
study can be found in Lehmann (2000). The topic has been discussed during
delph-in summits at several occasions.20 It has been suggested during these
discussions to take a practical approach to classifying phenomena (i.e. where
is someone trained in syntactic analyses most likely to look?) and to index
classifications by examples illustrating the phenomenon.

One of the problems with this approach is that it is common for a single type
to contain constraints that are relevant for different phenomena. Because
climb makes it possible to define different properties of a type in different
libraries, the grammar can be organised according to phenomena in a larger
extent. Each constraint can be assigned to a type in the library addressing
the phenomenon it is related to, even if other properties of this type are
defined elsewhere in the metagrammar. The grammar that is ultimately
generated will contain a definition of the type including all constraints defined
in individual libraries.

However, there are also cases where a specific constraint is the result of the
interaction between to phenomena. This leads to the question of where con-
straints that are the result of the combination of two phenomena should be
placed. There are several ways to deal with such cases. Implementations re-
lated to more than one phenomenon can either be located at only one of the
phenomena, at the location of all phenomena involved or at a special location

20Most notably, 26 June 2011 in Suquamish, USA (http://moin.delph-in.net/
SuquamishGrammarIndexing) and 2 July 2012 in Sofia, Bulgaria (http://moin.
delph-in.net/SofiaLinguisticPhenomena)

116

http://moin.delph-in.net/SuquamishGrammarIndexing
http://moin.delph-in.net/SuquamishGrammarIndexing
http://moin.delph-in.net/SofiaLinguisticPhenomena
http://moin.delph-in.net/SofiaLinguisticPhenomena

that deals with the interaction of the phenomena involved. The decision de-
pends on a number of factors. If phenomenon A will always be present in the
grammar when phenomenon B is included, implementations that deal with
interactions can be added to the implementation of phenomenon B (with
documentation pointing to them at the implementation of phenomenon A).
If several phenomena require the same constraint, it is best to make sure this
constraint is added as part of the implementation of each phenomenon separ-
ately. The resulting grammar is not affected by doubling up implementations
and it is easily forgotten that an analysis relies on a definition included else-
where. This leads to ill-formed grammars when the phenomenon introducing
the constraint is not included. A special location for a specific interaction
mostly makes sense when several constraints are related to the interaction of
two phenomena.

3.4.3 Grammar Investigation

The tdl processing tools that have been developed as part of the climb

effort allow the engineer to explore properties of the grammar. The spring
cleaning algorithm forms the basis of these processes. The operations re-
quired to establish spring cleaning can be used to explore other aspects of
the grammar. As suggested above, it can be used to extract the feature
geometry of the grammar, which can then be used for path completion.

A more linguistically oriented investigation that could be carried out is the
extraction of all reentrancies. Following an initiative of Lars Hellan, a dis-
cussion was started to simplify feature structures in delph-in grammars.21

For general constraints and contributions to the semantics, the exact loca-
tion of a feature in the feature geometry is not (that) relevant. As long as all
references use the right path, locations of features should not affect the com-
petence or performance of the grammar. This does not apply for structure
sharing. Features placed under head are shared between mother and head
daughter by the Head Feature Principle. If a feature is moved from head to

21http://moin.delph-in.net/SofiaCLIMBAndReducingComplexity

117

http://moin.delph-in.net/SofiaCLIMBAndReducingComplexity

cat, this is no longer the case. When simplifying the feature geometry, it is
therefore the essential that features are maintained if they bundle a group of
other features that are structure-shared together through reentrancies. Re-
trieving all reentrancies that are actively used in the grammar thus provides
significant insights to the question of whether the feature geometry can be
simplified. Note that grammars must be spring cleaned first: the Grammar
Matrix provides a systematic set of lexical rules that share all but one feature
from sign. It should therefore first be established which of these rules are
actually used in the grammar.

The study described above is planned for future work as part of the afore-
mentioned attempt to simplify feature structures.

3.4.4 Parallel Grammar Development

The possibility of including both shared aspects of analyses as well as contra-
dictory information makes climb particularly suitable for parallel grammar
development for related languages. This functionality of climb can be seen
as an extension of the functionality offered by the Grammar Matrix custom-
isation system. There is, however, a major difference. In the case of climb,
the user has full control of the system and can extend it in any direction. By
limiting the amount of typological variation, climb users can move quickly
towards more analytical depth and a wider range of covered phenomena.

A start in exploring this aspect of climb has been made in Fokkens (2011a),
where grammars cover word order and auxiliary interaction for German,
Dutch (both Flemish and Northern Dutch) and Danish. The SlaviCore
(Avgustinova and Zhang, 2009) project has recently started to use climb

(Fokkens et al., 2012a). The goal of this project is to develop a Slavic core
grammar that supports the development of grammars for individual lan-
guages. In its original design, only a static core was planned containing
analyses of phenomena that occur across Slavic languages. The addition
of climb to the project will provide more possibilities of also sharing im-
plementations that capture the wide variation found in Slavic languages.

118

Chapter 6 will describe the Slaviclimb addition to SlaviCore in detail.

3.4.5 Dialectal differences and language change

Closely related to parallel grammar development is the possibility of captur-
ing dialectal variations and language change. In particular, short-climb

can be used to create grammatical alternations found in dialects of a lan-
guage. The idea to model language change has been developed independ-
ently by Sygal and Wintner (2011) and Fokkens (2011b). Fokkens (2011b)
particularly suggests combining research on language change and dialects,
where the grammar would model new variations in related dialects as well as
changes that make language grow closer to the variety considered “standard”,
e.g. Hochdeutsch for German.

3.4.6 Alternative versions for applications

climb may also capture variations that adapt the grammar for a particular
application. In general, robustness is highly valued when the grammar is used
for parsing. Precision is more important for natural language generation. But
even within these two applications, the desired behaviour of the grammar
may depend on the final task of the system it is part of. If the grammar is
used, for instance, to extract examples from a large amount of text, it may
be of little importance whether it returns an analysis for each individual
sentence. As long as enough examples are found in the text, it may be
better to have a more precise grammar that only returns correct examples.
If the grammar is used to analyse a complete text, robustness may be more
important. For natural language generation, the grammar should provide
more variations if it is used for paraphrasing or to support a human translator
than when it is used to generate a single utterance as output of an application.

The grammars in gclimb are mostly tuned to reach decent coverage and pre-
cision when parsing text. However, it can also generate versions of the gram-
mar that can identify errors in adjective endings. How implemented gram-

119

mars can be used to provide detailed feedback on detected errors (Bender
et al., 2004; Suppes et al., 2012) is discussed in more detail in Chapter 6.

3.4.7 One in a thousand phenomena

The final usage of climb suggested in this thesis is closely related to ad-
apting the grammar for specific applications. It relates to the possibility of
completely including or excluding analyses for a given phenomenon. This
property can be useful if large amounts of text need to be parsed: It may
be advantageous to first use a grammar that does not cover phenomena that
occur rarely, but have significant negative impact on the efficiency of the
grammar. Because time-out still is a common reason for the parser to fail,
this would not only reduce processing time, but could also increase overall
parsing coverage.

The remaining sentences could be parsed by a grammar containing analyses
for rare phenomena. Ideally, these sentences would be classified first accord-
ing to the kind of rare syntactic phenomenon they may exhibit. Even though
this is not straight-forward as a task, it should certainly be possible to at
least exclude some possible phenomena based on the part of speech of the
words in the sentence.

Ultimately, one could imagine corpus studies that rank phenomena in cor-
pora. When generating the grammar, one could decide to exclude phenomena
that occur less than a certain frequency, e.g. a small and efficient grammar
excluding all phenomena that on average occur less than once in ten thou-
sand sentences.22 From the suggested ways to use climb presented here, it
is the only usage which is completely left for future work at present.

22This idea of creating grammars covering one-in-a-thousand, one-in-ten-thousand or
one-in-a-hundred-thousand phenomena emerged from a discussion with Dan Flickinger.

120

3.5 Summary

This chapter has introduced climb and described additional software de-
veloped as part of this thesis. Section 3.1 provided an overview of how the
main idea behind climb was developed, compared the climb approach to
the Grammar Matrix and described the climb workflow. An alternative de-
clarative version of climb that lowers the hurdle for applying the approach,
but currently does not support the full functionality of procedural climb was
introduced in Section 3.2. The same section also described short-climb,
which allows grammar engineer to apply climb advantages to grammars
developed the traditional way. Section 3.3 presented the spring cleaning al-
gorithm and path abbreviation facilities. Finally, Section 3.4 provided an
overview of possible applications for climb.

This chapter has proposed a wide variety of applications for climb, includ-
ing monitoring alternative analyses, increasing modularity, multilin-
gual grammar development, supporting different dialects as well as altern-
ative versions for different applications, phenomena based organisation
and creating variations where rare phenomena are included or excluded in
the grammar. Finally, the processing tools provide support to investig-
ate properties of the grammar. Several of these properties, such as in-
creased modularity, support for multilingual grammar development or phe-
nomena based organisation are typical advantages of using a metagrammar
(see Candito (1998), Ranta (2009), among others). A more detailed com-
parison between climb and other grammar development methodologies will
be provided in Chapter 7. The possibility of including alternative analyses
in the metagrammar to provide systematic comparison over time truly dis-
tinguishes climb from other approaches. Even though this functionality is
technically supported by several systems (e.g. the eXtensible MetaGrammar
(Duchier et al., 2005) and Grammatical Framework (Ranta, 2011)), I am not
aware of any approach that has explored this possibility.

121

Chapter 4

CLIMB for Germanic languages

The climb methodology has been tested through the development of re-
source grammars for German containing alternative analyses for word order
and auxiliaries. These analyses were developed in a metagrammar for Ger-
manic languages called gclimb. This chapter describes the main properties
of climb analyses for German.1 The first section of this chapter explains the
general motivation for a German grammar and the alternative analyses that
will be compared.

The following sections describe the main phenomena and alternative analyses
used in the comparative studies of this thesis. Describing all implementations
in gclimb in detail would result in (at least) a book in itself2 and the topic
of this thesis is empirical research in grammar engineering and not German
syntax. The description of German word order in Section 4.2 is therefore
restricted to a presentation of basic facts on German word order with a small
set of illustrative examples. Evidence for the correctness of the descriptions
through contrasting negative and positive examples will not be provided in
this thesis (relevant references will be provided). Similarly, as far as the
analyses are concerned, descriptions are limited to those properties that are

1This grammar resource mainly focuses on German, but includes variations to cover
word order and auxiliary interactions in Dutch and Danish as well. This chapter focuses
on German exclusively.

2To illustrate: Müller (2002) and Müller (2007), two books that describe large fragment
of German syntax, do not cover all phenomena included in gclimb.

122

directly related to coverage and efficiency. This holds both for the standard
hpsg analyses presented in Section 4.3, as well as the climb alternative
presented in Sections 4.4.2 and 4.4.1, respectively.

4.1 Motivation of gCLIMB for German

This study started with an investigation on analyses for verb second word
order for the Grammar Matrix. The first version of the metagrammar de-
scribed in Fokkens (2011a) covers basic word order of Danish, Dutch and
German. I decided to focus on German for the rest of this investigation,
because two comparable resources for this language exist that use the same
linguistic theory, the same formalism and the same tools for implementation,
parsing and generation. They are GG (Müller and Kasper, 2000; Crysmann,
2005) and Cheetah (Cramer and Zhang, 2009; Cramer, 2011). Observations
from comparing these resources will be presented as part of the evaluations in
Chapter 5. There are several reasons why word order and auxiliary subcat-
egorisation are interesting phenomena for investigating alternative analyses.
I will elaborate on the motivation behind the chosen alternative analyses in
this section.

The word order analyses contained in gclimb are the standard hpsg ana-
lysis for German word order (originally developed within gpsg3 by Uszkor-
eit (1987)) and the Grammar Matrix customisation analysis for verb second
word order (Fokkens, 2010). The latter is based on Bender’s (2008a) ana-
lysis for the verb second language Wambaya. The comparison between these
two analyses addresses an issue pointed out previously in Chapters 1 and
3: the two sides of crosslinguistic applicability in comparative syntax. On
the one hand, crosslinguistic applicability may serve as evidence to prefer
one analysis above another. On the other hand, crosslinguistically occurring
phenomena can be a hindrance in determining which analysis is best, because
the optimal solution may differ from one language to another. Investigating
these two analyses for Germanic languages and an Australian one forms a

3Generalised Phrase Structure Grammar

123

starting point to investigate this question for verb second languages.

Similar motivations apply to the alternative analyses for auxiliaries. Bender
(2010) provides convincing evidence that a new analysis using a construction
to share arguments between auxiliaries and their complements is preferable
for Wambaya compared to the standard hpsg argument composition ana-
lysis. The customisation system currently provides argument composition,
but the question is whether this should generally change to Bender’s altern-
ative or whether both variations should be provided by the customisation
system. The impact of these analyses in a German resource grammar could
help to answer this question.

The two phenomena together form a suitable test case for the climb method-
ology, because they interact heavily with other components in the grammar.
They also occur frequently enough to influence efficiency in parsing open
text visibly. German sentences often include auxiliaries. In fact, 40.5% of
the first 200 sentences in the TiGer Treebank (Brants et al., 2002) contain
an auxiliary, raising or control verb which all share arguments through dif-
ferent mechanisms depending on the chosen analysis. The choice of word
order analysis has impact on parsing or generation of any sentence. The fol-
lowing section provides background information on German word order and
auxiliaries. It describes the main properties that have influenced the choice
of analyses in hpsg.

4.2 German word order and auxiliaries

4.2.1 Main clauses

The easiest way to describe German word order is through topological fields
(Erdmann, 1886; Drach, 1937). According to this model, the sentence struc-
ture for declarative main clauses consists of five topological fields: the Vorfeld
(“pre-field”), the Left Bracket (LB), the Mittelfeld (“middle field”), the Right
Bracket (RB) and the Nachfeld (“after field”). The fields are represented in

124

Vorfeld LB Mittelfeld RB Nachfeld
Der Mann hat den Jungen gesehen nach der Party
The man.nom has the boy.acc seen after the party
Der Mann hat den Jungen nach der Party gesehen
Den Jungen hat der Mann gesehen nach der Party
Nach der Party hat der Mann den Jungen gesehen
Nach der Party hat den Jungen der Mann gesehen
Den Jungen
gesehen hat der Mann nach der Party
Gesehen hat der Mann den Jungen nach

der Party

Table 4.1: Basic structure of German word order in main clauses

Table 4.1 along with some variations in word order.4

Topological fields are defined with regard to verbal forms, which are placed
in the Left and Right Brackets. Each topological field has syntactic restric-
tions of its own. The Vorfeld must contain exactly one constituent in an
affirmative main clause.5 The Left Bracket contains the finite verb and no
other elements. These conditions on the Vorfeld and the Left Bracket cre-
ate German’s verb second word order. Other verbal forms (if not fronted to
the Vorfeld) must be placed in the Right Bracket. The Right Bracket may
only contain verbs. If more than one verb is placed in the Right Bracket
they must thus been adjacent. The Right Bracket then contains a so-called
verbal cluster. Most non-verbal elements are placed in the Mittelfeld. When
main verbs are placed in the Vorfeld, their object(s) may stay in the Mit-
telfeld. This kind of partial VP fronting is illustrated by the last example in
Table 4.1.

The Nachfeld typically contains subordinate clauses and sometimes adverbial
phrases. Constituents placed in the Nachfeld are often ‘heavy constituents’.
In German, the respective order between the verbs in the Right Bracket is
head final, i.e. auxiliaries follow their complements. The only exception is
auxiliary flip: under certain conditions in subordinate clauses, the finite verb

4For reasons of space, the glosses are simplified in the table. Full glosses can be found
in Example 1 below. Furthermore, the table does not provide all possible word order
variations for this sentence.

5See Müller et al. (2012) for recent work on apparent multiple constituents in the
Vorfeld.

125

LB Mittelfeld RB Nachfeld
daß der Mann den Jungen gesehen hat nach der Party
that The man.nom the boy.acc seen has after the party
daß der Mann den Jungen nach der Party gesehen hat
daß den Jungen der Mann gesehen hat nach der Party
daß nach der Party der Mann den Jungen gesehen hat
daß nach der Party den Jungen der Mann gesehen hat

Table 4.2: Basic structure of German word order in subordinates (not ex-
clusive)

precedes all other verbal forms. The behaviour of the auxiliary flip will be
discussed in Section 4.2.3.

Polar questions can be formed by changing the word order of the clause from
verb second to verb initial. Example 1 illustrates the most typical order for
the sentence in Table 4.1 rephrased as a polar question.

(1) Hat
Have.3sg.pres

der
the.m.sg.nom

Mann
man.sg.acc

den
the.m.sg.acc

Jungen
boy.sg.acc

nach
after

der
the.f.sg.dat

Party
party.sg.dat

gesehen?
see.ptc

‘Did the man see the boy after the party?’ [deu]

4.2.2 Subordinate clauses

Table 4.2 presents topological fields and (a subset of) possible variations in
word order for German subordinate clauses. The Left Bracket contains the
word that induces the subordinate clause. The subordinate conjunction daß
fulfils this role and position in Table 4.2. In relative clauses, the position in
the Left Bracket is taken by the relative pronoun. The finite verb is placed
in the Right Bracket. Because the Nachfeld does not contain any elements
in most sentences, subordinate clauses in German are considered verb final.

In the linguistic literature, this change in position is often explained by the
assumption that only one element may be found in the Left Bracket (see Jac-
obs (1986) for an analysis along these lines in gpsg and, among others, Kiss
and Wesche (1991); Oliva (1992); Netter (1992) in hpsg). Since the position

126

is taken up by the subordinate conjunction or relative pronoun, the finite
verb must occur in the other position reserved for verbs: the Right Bracket.
Additional evidence for this idea comes from subordinate clauses in spoken
German, where the complementiser daß is dropped. Without the comple-
mentiser, the word order of the subordinate clause must be verb second.

4.2.3 Word order and verbal forms

This section discusses the word order of verbal forms in both main clauses
and subordinates in more detail. Two properties that play a direct role in
the design of the grammar are highlighted here. The first is the auxiliary flip,
which has played a significant role in the analysis of auxiliaries in theoretical
hpsg. The second is a form of partial VP fronting, where some verbal forms
are fronted and some remain in the Right Bracket. This property provides
the main linguistic evidence against the more efficient alternative analysis.
The related analyses will be presented in Sections 4.4.1 and 4.4.2.

Auxiliary flip

The auxiliary flip and its consequences for analysing German word order have
been pointed out by Hinrichs and Nakazawa (1994). Examples (2) and (3)
are taken from their work (Hinrichs and Nakazawa, 1994, p. 12) (glosses were
adapted to conform to the standard used throughout this work). Example (4)
illustrates standard German word order.

(2) Ich
pn.1sg

wußte,
know.1sg.past

daß
that

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

hat
have.3sg.pres

bestehen
pass.nfin

können.
can.nfin

‘I knew that he could pass the exam.’ [deu]

(3) Ich
pn.1sg

wußte,
know.1sg.past

daß
that

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

würde
would.3sg.pres

bestehen
pass.nfin

können.
can.nfin

‘I knew that he would be able to pass the exam.’ [deu]

127

(4) Ich
pn.1sg

wußte,
know.1sg.past

daß
that

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

bestehen
pass.nfin

würde.
would.3sg.sjv

‘I knew that he would pass the exam.’ [deu]

In (2) and (3), word order in verbal cluster (situated in the Right Bracket)
differs from the standard word order in German subordinate clauses. In prin-
ciple, verbs follow their complement in German and the finite verb would thus
be expected at the final position of the clause, as in (4). This construction,
where the finite verb is followed by its infinitive complement also known un-
der the name double-infinitive construction (Den Besten and Edmondson,
1983), in addition to auxiliary-flip (Hinrichs and Nakazawa, 1994).

Structures like the ones seen in (2) and (3) are highly restricted in German.
Only a small set of auxiliaries can occur in first position of the Right Bracket
while being followed by their verbal complements. The grammaticality of
auxiliary flip furthermore depends on the verb governed by the auxiliary
and its verbal form (i.e. its morphological marking). The governed verb also
determines whether the auxiliary flip takes place obligatory or optionally
(Hinrichs and Nakazawa, 1994). In Examples (2)-(4), only the represented
orders are allowed. A more detailed account of the auxiliary flip in German,
as well as references to other work on this topic can be found in Hinrichs and
Nakazawa (1994).

Partial VP fronting

The German Vorfeld may contain verbal forms that either form a VP or a
partial VP as illustrated by the last two examples in Table 4.1. There is
another form of partial VPs, where auxiliaries remain in the Right Bracket,
but the main verb is fronted to the Vorfeld. This form of partial VP fronting
is provided in Example 5:

128

(5) Bestehen
pass.bse

hat
have.3sg.pres

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

können.
can.bse

‘He could pass the exam.’ [deu]

This form of partial VP fronting results into a structure with verbal forms in
three topological fields: bestehen (‘pass’) is placed in the Vorfeld, the finite
verb hat (‘has’) occurs in the Left Bracket and können (‘can’) occurs in the
Right Bracket.

Crossing branches

daß er das examen hat bestehen können

bestehen hat er das examen können

Figure 4.1: Dependency structures of German examples violating the adja-
cency principle

The dependency structures of the examples illustrating the two phenomena
are represented in Figure 4.1. Within dependency representations, constitu-
ency is captured by the adjacency principle (MelÊźčuk, 1988). This principle
dictates that dependency arrows should not cross and no arrow should cross
over the root of the utterance. The adjacency principle is not respected in
structures that exhibit the auxiliary flip or partial VP fronting.6 The de-

6Violation of the adjacency principle are quite common in German clauses, e.g. object
fronting when the clause contains an auxiliary. The reason why these are different will be
explained in detail as the analyses for German word order are presented.

129

pendencies violating adjacency are marked in bold. When the auxiliary flip
occurs, the dependency from main verbs to their object cross the depend-
ency from the finite verb to its complement. This also occurs in the case
of partial VP fronting, with the additional violation that the dependency
between können (‘can’) and bestehen (‘pass’) crosses the root of the sentence
hat (‘has’).

The auxiliary flip excludes analyses which propose that the main verb forms
a VP with its complements in the Mittelfeld. Partial VP fronting of one
verb leaving its head behind in the Right Bracket does not form a special
challenge to standard analyses for German verb second word order, but it
provides linguistic evidence against an efficient alternative for the standard
hpsg analysis, as will be explained in Section 4.4.2. The next section will
present standard hpsg analyses for word order and auxiliaries. This section
will clarify why auxiliary flips have played an important role in German
syntax, despite their limited occurrence.

4.3 Standard HPSG analyses for German

4.3.1 Verb secondness

The standard analysis for German word order in hpsg treats the fact that one
constituent is placed in the Vorfeld as a long distance dependency. This ana-
lysis was originally worked out within Generalised Phrase Structure Gram-
mar (Gazdar et al., 1985, gpsg) by Uszkoreit (1987). Uszkoreit (1987) based
his analysis on Diderichsen (1962) and Welin (1979) working on Danish and
Swedish, respectively. In hpsg, this is handled by the so-called Filler-Gap
construction. I will illustrate this through the example of a basic German
sentence. This is followed by a short explanation of the Filler-Gap analysis
in hpsg.

130

V

val

[
subj 〈〉
comps 〈〉

]

slash 〈〉

filler-head

V

val

[
subj 〈〉
comps 〈〉

]

slash
〈

1

〉

comp-extraction

V

val

subj 〈〉

comps
〈

3

[
loc 1

]〉

slash 〈〉

head-subj

NP
[
loc 1 acc

]

V

val

subj

〈
2

〉

comps
〈

3

〉

slash 〈〉

2 NP
[
nom

]

das Buch kennt jeder

Figure 4.2: Basic analysis of Das Buch kennt jeder

A basic German sentence

Figure 4.2 presents the basics of a hpsg analysis for the German sentence
presented in (6):

(6) Das
the.n.sg.acc

Buch
book.sg.acc

kennt
know.3sg.pres

jeder.
everyone.nom

‘Everyone knows the book.’ [deu]

131

It is inspired by an example of Müller (Müller, 2007, 168), but adapted to fit
the Filler-Gap analysis as provided by the Grammar Matrix as well as the
German specific assumptions used in gclimb. The object of the sentence
das Buch (‘the book’) is found in the Vorfeld. The analysis as presented here
presupposes that de object das Buch is extracted from the Mittelfeld, i.e.
it supposes the objects canonical position is where it is found in case of a
question (cf. (7)) or subject fronting (cf. (8)).

(7) Kennt
know.3sg.pres

jeder
everyone.nom

das
the.n.sg.acc

Buch?
book.sg.acc

‘Does everyone know the book?’ [deu]

(8) Jeder
everyone.nom

kennt
know.3sg.pres

das
the.n.sg.acc

Buch.
book.sg.acc

‘Everyone knows the book.’ [deu]

This analysis first combines the finite verb kennt (‘knows’) with its subject
jeder (‘everybody’). Next, the object is extracted and its local values are
placed on the slash list of the mother.7 The sentence is completed by the
head-filler-phrase, where the missing element in the slash list is found and
added to the structure. As can be observed in the coindexes, the local

value of das Buch is identical to the value in slash, which in return is
identical to the local value of the verb’s object. Through this mechanism,
the constituent in the Vorfeld is identified as the verb’s object leading to
the correct semantic interpretation.8 The rest of this subsection will present
the complement-extraction rule and the head-filler rule and explain how they
achieve the desired syntactic behaviour.

7My analysis differs from the one presented in Müller (2007) in these two points. Müller
introduces a phonetically empty gap first and then combines the verb with its subject.

8Syntactic accounts for German word order also generally assume that the finite verb
in polar questions and main clauses also leaves a trace in the Right Bracket. This analysis
is not used in my grammars and will not be discussed in this work for reasons mentioned
in the introduction of this chapter.

132

Filler-Gap in HPSG

Figure 4.39 presents a simplified representation of complement extraction as
provided by the Grammar Matrix. Similar rules are included in the grammar
for subject extraction and argument extraction. The complement-extraction
rule states that the first element on the head-dtr’s complement list is a gap,
which places its local value on its own slash list. The mother’s slash

value is identical to the slash of the gap. The gap itself is no longer part
of the complement list of the mother. The resulting phrase is not looking
for the complement locally anymore, but stores the requirement that it must
find this element somewhere else in the structure under slash.

synsem

[
local|comps 1

non-local|slash 2

]

head-dtr|comps

〈
gap

[
local 3

non-local|slash 2 <! 3 !>

]〉
⊕ 1

Figure 4.3: Simplified representation of complement-extraction

The value of slash of lexical items is the concatenation of the value of
slash from its arguments. Figure 4.4 represents how this achieved for a
lexical item taking two arguments. Phrases that combine a head with one of
its arguments pass the slash value of the head daughter up to the mother.
Because the head daughter’s slash value is made up of the concatenation
of the slash value of its arguments, elements extracted from one of these
arguments will end up on the mother’s slash. Head-modifier phrases use
the same mechanism as presented in Figure 4.4 to collect items on the slash

list of its daughters.10

9<! ... !> indicates that the value of a feature is a difference list, <! !> a difference
list with zero elements on it. See (e.g.) Copestake (2002) for an explanation of difference
lists.

10This approach for gathering elements in the slash of arguments on the head of the

133

synsem|non-local|slash

[
list 1st

last last

]

arg-st

〈

non-local|slash

[
list mid

last last

]

non-local|slash

[
list 1st

last mid

]

〉

Figure 4.4: The slash of a basic-two-arg lexical item in the Grammar Matrix

The slashed element will be introduced in the structure elsewhere through the
Head Filler Schema. A basic version of the Head-Filler Schema for German is
presented in Figure 4.5. Like the analysis in Figure 4.2, it is based on Müller
(2007) but adapted to the feature geometry from the Grammar Matrix and
constraints as used in gclimb.

non-local|slash <! !>

head-dtr

local|cat

head|form finite

val

[
subj < >

comps < >

]

non-local|slash <! 1 !>

non-head-dtr

[
local 1

non-local|slash <! !>

]

Figure 4.5: Simplified Head-Filler Schema for German

The head daughter must be a verb in finite verb form with an empty subject
and complements list. The slash of the head daughter contains exactly one
element. This element is token-identical to the local values of the non-head

phrase is loosely based on Bouma et al. (2001). It was implemented in the ERG and later
in the Grammar Matrix.

134

daughter (which must have an empty slash list itself). The resulting phrase
has an empty slash. These restrictions make sure that the clause is headed
by a finite verb that has picked up all its arguments and modifiers except for
one that was extracted. Up until this point, the structure of the sentence is
(finite) verb initial. The extracted element is added left of the finite verb by
the head-final filler-head rule. The grammar requires the filler-head rule to
apply exactly once at the end of creating the structure to create a well-formed
declarative main clause with verb second word order.

Motivation

The long distance dependency analysis for elements in the German Vorfeld
is mainly motivated by the fact that it provides a uniform analysis for verb
second word order. First, the structure of the sentence is similar regardless of
whether a subject, object, verbal complement or adjunct is placed in the Vor-
feld. The verb combines with the arguments and modifiers in the Mittelfeld
and Right Bracket and either a missing argument or, when all arguments are
present, an adjunct are placed in the slash. The verb-initial structure forms
a declarative main clause by the filler-head phrase that combines it with the
constituent left of the verb, corresponding to the element previously placed
in slash. The only difference is found in the extraction rules used.11

The analysis correctly predicts that the preferred relative order for elements
remaining in the Mittelfeld is the same as when the fronted element was
present. Extraction from subordinated clauses are typical examples of long
distance dependencies. Further linguistic evidence (and possibly the most
significant evidence for this analysis) comes from the fact that elements from
subordinated clauses can be placed in the Vorfeld as well, resulting in a
uniform account regardless of whether the fronted constituent comes from a
subordinate clause or not.

11Müller (2007) uses one list for all subcategorised elements, not distinguishing subj and
comps, resulting in a more uniform account using only one rule for argument extraction
and one rule for adjunct extraction.

135

4.3.2 German Auxiliaries

The standard analysis that is currently used for German auxiliaries in hpsg

was introduced by Hinrichs and Nakazawa (1989, 1994). They present their
analysis as an alternative analysis to Uszkoreit’s (1987) work on German in
gpsg. Uszkoreit’s analysis assumes that the main verb combines with its
argument and modifiers in the Mittelfeld before it combines with any auxil-
iaries. Figure 4.6, based on Hinrich and Nakazawa’s example (12), (Hinrichs
and Nakazawa, 1994, 19), presents the structure of Mittelfeld and Right
Bracket under this analysis.

V

vform bse
aux +

mc −

V
wirdV

[
vform bse
aux +

]

V
können

V
[
vform bse

]

NP NP V

Peter das Buch finden

Figure 4.6: Mittelfeld and Right Bracket based on Uszkoreit (1987)

Uszkoreit’s analysis addresses word order of NPs in the Mittelfeld. It does not
investigate auxiliary structures in detail. Hinrichs and Nakazawa (1994) point
out that under closer examination of auxiliary structures, and in particular
auxiliary flip, the analysis is problematic.

Let us consider the structure of the subordinate clause in Example (2) re-
peated in (9).

136

(9) Ich
pn.1sg

wußte,
know.1sg.past

daß
that

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

hat
have.3sg.pres

bestehen
pass.nfin

können.
can.nfin

‘I knew that he could pass the exam.’ [deu]

According to Uszkoreit’s analysis, the subject er (‘he’) and object das Exa-
men (‘the exam’) would combine with the main verb bestehen (‘pass’) first.
However, this phrase is interrupted by the head of the subordinate clause hat
(‘has’). The formalism and theoretical assumptions in hpsg at that time12

would not allow this structure to occur under Uszkoreit’s analysis.

val

subj 1

comps

〈

head verb

val

[
subj 1

comps 2

]

⊕ 2

〉

Figure 4.7: Subcategorisation of raising auxiliaries

Hinrichs and Nakazawa (1994) therefore propose an alternative approach
where the verbal forms in the Right Bracket combine with each other before
they pick up arguments in the Mittelfeld. In order to make sure the subcat-
egorisation requirements of the main verb are maintained, auxiliaries raise
all arguments of their verbal complements. Figure 4.7 presents the subject
and complement values of auxiliaries under this analysis, following general
assumptions concerning feature geometry found in the Grammar Matrix.

The subj value of the auxiliary is identical to the subj value of its verbal
complement. Likewise, the complements of this verbal complement are ap-

12Reape (1994) proposes an alternative analysis using a structure similar to Uszkoreit’s
covering the auxiliary-flip through domains. The observation from Hinrichs and Nakazawa
was first made in Hinrichs and Nakazawa (1989), before domains were proposed in hpsg.
Kathol (2000) argues argument composition as proposed in Hinrichs and Nakazawa (1994)
and Reape’s domains work best.

137

pended to the auxiliary’s own comps list. In our example, können (‘can’)
combines with bestehen (‘pass’) raising its requirements of a nominative sub-
ject and accusative object. The same happens when hat (‘has’) combines
with bestehen können (‘pass can’). The structure hat bestehen können thus
has the same subcategorisation requirements as bestehen started out with.
The basic structure and subcategorisation values of the fragment er das Ex-
amen hat bestehen können are presented in Figure 4.8.

V

[
subj < >

comps < >

]

V

subj 1

〈[
nom

]〉

comps < >

V

subj 1

〈[
nom

]〉

comps 2

〈[
acc
]〉

V

[
subj 1

comps < 4 ⊕ 2 >

]

NP
[
nom

]

NP
[
acc
]

4 V

[
subj 1

comps 2

]

3 V

[
subj 1

comps 2

]
V

[
subj 1

comps < 3 ⊕ 2 >

]

er

das Examen

hat

bestehen können

Figure 4.8: Tree for Mittelfeld and Right Bracket following Hinrichs and
Nakazawa (1994)

It has been generally accepted by researchers working on German in hpsg

that Hinrichs and Nakazawa (1994) show that German auxiliaries raise all
their arguments (see, among others, Müller (2007); Kathol (2000); Pollard

138

(1994)). The problem of this analysis is that the underspecification of the
auxiliary’s valency leads to inefficiencies (Bender, 2010; Fokkens, 2011a). The
next section will present an alternative analysis that addresses this question.

4.4 Alternative analyses in gCLIMB

In this section, alternative analyses included in gclimb will be described.
Section 4.4.2 will present an alternative approach that uses a construction
for argument raising. This alternative is attributed to Dan Flickinger13 and
shown to be more efficient in Wambaya (Bender, 2010) and for German and
Dutch in small grammars (Fokkens, 2011a). Before this alternative analysis is
introduced, I will present the verb second analysis provided by the Grammar
Matrix customisation system. Together, the variations in analyses for verb
second behaviour and variations for auxiliaries form the main alternatives
explored by gclimb.

The descriptions in this section focus on differences between the analyses.
Phenomena and interactions with other analyses that behave in the same
manner for the standard hpsg analyses described above and the alternatives
described in this section will not be addressed.

4.4.1 The verb second alternative in CLIMB

This subsection presents an alternative analysis for verb second word order
that has been included in gclimb. gclimb also contains the Filler-Gap
analysis which has been explained above. The alternative analysis presented
here comes from the Grammar Matrix customisation system and was based
on the Bender’s (2008a) Wambaya grammar (Fokkens, 2010).14

13A partially similar solution is proposed in Müller (1997), see below.
14Part of this description is also included in Fokkens (2010) and can be found on http:

//moin.delph-in.net/MatrixDoc/WordOrder, accessed September 19, 2012.

139

http://moin.delph-in.net/MatrixDoc/WordOrder
http://moin.delph-in.net/MatrixDoc/WordOrder

The Main-Clause feature for V2 word order

The idea behind the verb second analysis provided by the customisation
system is that the verb combines with all elements present on its right, and
exactly one element on its left. The category feature [mc luk] standing for
‘main-clause’ is used to ensure this behaviour. The mc feature registers
whether the structure is verb-initial, or verb-second. Its value luk, a three-
valued type named after Jan Łukasiewicz and taken over from the ERG
(Flickinger, 2000), can be seen as an elaborate version of boolean. Because
this value is widely used in gclimb and places a prominent role in analyses
for German word order, its subtypes are presented in Figure 4.9. Note that
bool and +-or-− can be used interchangeably: they unify with the exact
same set of values (+, −, luk and each other). The presence of +-or-− in
the Grammar Matrix is an error (Bender p.c.).

luk

+-or-− bool na-or-+ na-or-−

+ − na

Figure 4.9: Type hierarchy for luk as included in the Grammar Matrix

The mc feature was originally introduced to distinguish main clauses from
subordinate clauses. In the Grammar Matrix customised verb second ana-
lysis, it registers which rule was last used. The desired behaviour is that
exactly one constituent appears before the verb that heads the sentence.
This is achieved by making sure that the head of a clause cannot attach to
any other element as soon as it has been head-final once.

Verbs start out with the value [mc na]. Both head-final and head-initial
rules require this value on their head-daughter. The head-initial rules pass
the value of mc up from their head-daughter to the mother. The head-final
rules, on the other hand, assign the value + to mc,15 so that neither head-

15In the original analysis for Wambaya the value bool (for boolean) was assigned, since

140

final rules nor head-initial rules can apply thereafter. The root condition in
the grammar specifies that only sentences with the feature-value pair [mc +]
are acceptable main clauses. The grammar will thus only accept sentences
where the head-final rule has applied exactly once, placing the head of the
sentence in second position.

The basic idea behind this analysis has remained unchanged in gclimb. How-
ever, the analysis interacts with the two alternative analyses for auxiliaries
which will be presented in Section 4.4.2. Necessary changes to incorporate
the alternative analysis for auxiliaries will be presented below. gclimb also
introduced a small change in the verb second analysis for grammars using
argument composition. The same principle is used, but the structure is a
mirror image of the original analysis: exactly one element is picked up on
the left of the finite verb and then it optionally combines with one or more
elements on its right. The reasons for this change do not have an impact
on the main questions addressed in the grammar and will therefore not be
explained in detail here.

The verbal cluster

Verbal clusters are treated using the syntactic feature [vc bool] (Fokkens,
2010).16 Words that can be part of the verbal cluster bear the value [vc

+], other words are [vc −]. Phrases inherit their vc value from the non-
head-daughter. Rules that build up the verbal cluster can only have non-
head-daughters that are [vc +]. As soon as verbs in the Right Bracket have
combined with an element that cannot be part of the verbal cluster, they can
no longer be taken up in the verbal cluster themselves. In other words, all
verbal forms in the Right Bracket must combine with each other before they
can pick up elements in the Mittelfeld. This way all elements belonging the
Right Bracket will be placed after all elements belonging in the Mittelfeld.

embedded clauses can also exhibit verb second word order in Wambaya. For German, the
mc value of a clause is − if the finite verb is placed in final position and na otherwise.

16The idea of using a feature to distinguish between phrases that can occur in the verbal
cluster and those that can occur in the Mittelfeld is also found in Müller (1997) who uses
the feature lex. The exact way this feature is used differs.

141

Verb-final and verb-initial structures

The word order analysis using mc to create verb second word order straight-
forwardly extends to verb-final order in subordinate clauses. Verbs and verbal
phrases in the Right Bracket bear the value [mc −]. Subordinate conjunct-
ive markers require this value on their complement. Informal verb second
subordinate clauses are licensed by a unary rule.

Polar questions are formed by unary rules applying to the finite verb in the
main clause. These inversion rules block head-final structures that place
elements in the Vorfeld resulting in a verb initial sentence. They also restrict
the semantics of the clause from prop-or-ques (proposition or question) to
ques (question).

4.4.2 An alternative analysis for Auxiliaries

This subsection presents the alternative analysis for auxiliaries included in
gclimb which can be used in combination with the mc word order ana-
lysis presented above. The argument composition analysis presented in Sec-
tion 4.3.2 above can capture the grammatical behaviour of auxiliaries in
German.17 However, grammaticality and coverage is not all that matters
for grammars of natural language. Efficiency remains an important factor,
and argument composition has some undesirable properties on this level.
The problem lies in the fact that lexical entries of auxiliaries have under-
specified elements on their subcategorisation lists. With the current chart
parsing and chart generation algorithms (Carroll and Oepen, 2005), an aux-
iliary in a language with flexible word order will speculatively add edges to
the chart for potential analyses with the adjacent constituent as subject or
complement. Because the length of the lists is underspecified as well, it can
continue wrongly combining with all elements in the string. In the worse case
scenario, the number of edges created by an auxiliary grows exponentially in
the number of words and constituents in the string.

17The text of this subsection is based on Fokkens (2011a).

142

Figure 4.10 illustrates the problem through a simplified partial parse chart
for the sentence in (10).18

(10) Sie
pn.3sg

hat
have.3sg.pres

die
thepl.acc

süßen
sweetpl.acc.weak

Erdbeeren
strawberry.pl

gerne
with pleasure

gegessen.
eat.ptc

‘She enjoyed eating the sweet strawberries.’ [deu]

The analysis in the illustration uses a binary structure where verb second
order is achieved by picking up one constituent to the left of the finite verb
and then one or more to its right (see Section 4.4.1). The finite verb hat may
be head of a declarative verb second clause or of a head-initial polar question.
It can combine with sie (‘she’) as its subject (hs) or as a complement (hc).
The same holds for the determiner die. The string sie hat die forms 2*2
edges. Likewise, the word süßen can be added to hat die or Sie hat die as
an additional subject or an additional complement. Moreover, it may form a
constituent with the word die, so it is also possible to combine both structures
for sie hat (where sie is subject or complement) with die Süßen (‘the sweet
ones’) in two ways (with die Süssen as subject or complement). The next
line of cells would continue with 62 new edges for sie hat die süßen Erdbeeren
and 36 edges for hat die süßen Erdbeeren gerne.

Even in this simplified version of the grammar, it is clear that many su-
perfluous edges are created. The auxiliary can only exclude ungrammatical
structures as it combines with the main verb gegessen (‘eaten’). If we now
take into account that the auxiliary and main verb may stand much further
apart than in this relatively short example sentence, it is clear there is an un-
desirable effect on efficiency. In this example, lexical ambiguity was ignored
and the grammar rule allowing a head to combine with the second comple-
ment on its list was excluded from the representation in Figure 4.10. The
parser would actually create three edges (head-subj, head-comp, head-second-

18As for Figure 2.11, p. 2.11 the numbers in square brackets indicate the edge number,
the numbers in round brackets indicate which edges are combined. Rule names are abbre-
viated: s stands for subject, c for complement, sp for specifier, m for modifier and h for
head

143

[24]hs (13,3)
[26]hs (14,3)
[28]hs (15,3)
[30]hs (16,3)
[32]hs (7,11)
[34]hs (8,11)

[25]hc (13,3)
[27]hc (14,3)
[29]hc (15,3)
[31]hc (16,3)
[33]hc (7,11)
[35]hc (8,11)

[36]hs (17,4)
[38]hs (18,4)
[40]hs (19,4)
[42]hs (20,4)
[44]hs (21,4)
[46]hs (22,4)
[48]hs (9,12)
[50]hs (10,12)
[52]hs (1,23)

[37]hc (17,4)
[39]hc (18,4)
[41]hc (19,4)
[43]hc (20,4)
[45]hc (21,4)
[47]hc (22,4)
[59]hc (9,12)
[51]hc (10,12)
[53]hc (1,23)

[13]hs (7,2)
[14]hs (8,2)
[15]hc (7,2)
[16]hc (8,2)

[17]hs (9,3)
[18]hs (10,3)
[19]hc (9,3)
[20]hc (10,3)
[21]hs (1,11)
[22]hc (1,11)

[23]sph (2,11)

[7]sh (0,1)
[8]ch (0,1)

[9]hs (1,2)
[10]hc (1,2)

[11]sph (2,3) [12]mh (3,4)

Sie[0] hat [1] die[2] süßen[3] Erdbeeren[4] gerne[5] gegessen[6]
she has the sweet Strawberries gladly eaten

Figure 4.10: Chart for Sie hat die süßen Erdbeeren gerne gegessen using
argument composition

comp) for each constituent headed by the finite auxiliary and each possible
neighbouring word or constituent, including multiple edges for ambiguous
words that can be linked to more than one lexical entry.

The efficiency problem is even worse for generation: while the parser is re-
stricted by the surface order of the string, the generator will attempt to
combine all lexical items suggested by the input semantics, as well as lexical
items with empty semantics, in all possible orders.

The auxiliary+verb construction

Bender (2010) presents an alternative approach to auxiliary-verb structures
for Wambaya. The analysis introduces auxiliaries that only subcategorise for
one verbal complement, not raising any of the complementsâ arguments or
its subject. Auxiliaries combine with their complement using a special aux-

144

(i)

subj 〈 〉

comps
〈[

head verb
]〉

 (ii)

val

[
subj 1

comps 2

]

head-dtr|val| comps 3

non-head-dtr 3

val

[
subj 1

comps 2

]

Figure 4.11: Auxiliary’s valence (i) and Auxiliary+verb Construction (ii)

iliary+verb construction. Figure 4.11 presents this alternative solution. In
principle, the new analysis uses the same technique as argument composition
in that the auxiliary+verb combination inherits the valence requirements of
the verb. The difference is that the auxiliary now starts out with only one
subcategorised element and can only combine with potential verbal comple-
ments that are appropriately constrained. The structure that combines the
auxiliary with its complement places the remaining elements on the com-
plement’s subj and comps lists on the respective lists of the newly formed
phrase, as can be seen in Figure 4.11 (ii). The constraints on raised ar-
guments are known when the construction applies. The efficiency problem
sketched above is thus avoided.

Because arguments are shared between auxiliary and its verbal complement,
it can handle phenomena such as the auxiliary-flip or subjectless main verbs
showing up as a complement in a similar way as the standard lexical argument
composition analysis. Related phenomena such as object control can be
handled by structures similar to the one presented in Figure 4.11.19

Figure 4.12 shows the parse chart for the sentence sie hat die süßen Erdbeeren
gerne gegessen using the auxiliary+verb construction. Ambiguity of lexical
entries was ignored (like in Figure 4.10). The rule combining a head with
the second complement, on the other hand, did not need to be excluded to
maintain the overview. The length of the complement list and its syntactic
properties are clear at all stages and this rule can therefore not apply. In

19See Section 5.1.3 p.5.2 for a brief explanation and example of object control.

145

[18]sh (0,17)

[17]aux+c (1,15)

[15]ch (10,9)
[16]sh (10,9)

[13]ch (8,9)
[14]sh (8,9)

[10]sph (2,8) [11]ch (4,9)
[12]sh (4,9)

[9]mh (5,6)[8]mh (3,4)[7]sph (2,3)

[0]Sie [1]hat [2]die [3]süßen [4]Erdbeeren [5]gerne [6]gegessen
she has the sweet Strawberries gladly eaten

Figure 4.12: Chart for Sie hat die süßen Erdbeeren gerne gegessen using
argument composition

fact, the chart in Figure 4.12 contains all edges that will be created under
this analysis if lexical ambiguity is ignored. Note that Erdbeeren, süßen Erd-
beeren and die süsse Erdbeeren are all potential subjects or objects, because
the determiner is optional for plural noun phrases (as in English) and the
determiner, adjective and noun endings can indicate either nominative or
accusative case. Had the phrase been unambiguously marked as accusative,
only head-comp edges would be created combining the NPs with the main
verb.

The verb second analysis

The original mc analysis for verb second word order needed to be adapted
to work correctly with the auxiliary+verb construction. As explained above,
auxiliaries must combine with their verbal complement before they can com-

146

bine with any of its arguments. If its verbal complement is in the Right
Bracket, the finite auxiliary picks up this element on its right and then one
element on its left as before. When this verbal complement is fronted on
the other hand, the finite auxiliary must pick up the fronted constituent in
the Vorfeld before picking up any elements on its right. The auxiliary+verb
construction thus requires a separate set of rules for fronted verbal forms,
just as it did for Wambaya (Bender, 2010).

Partial VP fronting: a challenge

The advantage in efficiency of the auxiliary+verb construction analysis com-
pared to argument composition is clear. However, the analysis cannot deal
elegantly with the complete range of data in German. In its basic form,
the auxiliary+verb structure cannot handle partial VP fronting as presen-
ted in Section 4.2.3. In this form of partial VP fronting, the main verb is
placed in first position leaving one or more verbal forms behind in the verbal
cluster. Example (5) illustrating this form of partial VP fronting is repeated
in (11). Its dependency structure reflecting subcategorisation as provided in
the lexicon is presented in Figure 4.13.

(11) Bestehen
pass.bse

hat
have.3sg.pres

er
pn.m.3sg.nom

das
the.n.sg.acc

Examen
exam

können.
can.bse

‘He could pass the exam.’

bestehen hat er das examen können

Figure 4.13: Dependency structures of partial VP fronting

147

The problem is that the subject and object in this sentence cannot combine
with the verbs of the sentence. The verb können (“can”) in the Right Bracket
only subcategorises for a verbal complement. In this case, its complement is
bestehen (“pass”). Under the auxiliary+verb construction analysis, können
only raises arguments of its complement bestehen, when the latter is identified
as its verbal complement. Auxiliary können thus needs to combine with
bestehen before it can combine with das Examen (“the exam”) or er (“he”).
However, können and bestehen cannot combine first, because the finite verb,
subject and object are placed between the two of them. Similarly, hat (“has”)
cannot combine with the subject and object or the verb bestehen. It only
subcategorises for one verbal complement (können in this sentence) and the
subject and object of bestehen are standing in between the auxiliary and
its verbal complement. Auxiliary hat would need to raise the subject and
object from bestehen first. However, it could only combine with bestehen
after raising this verbal complement from können, i.e. only by combining
with können which is not possible.

This shortcoming is no reason to immediately dismiss the proposal. Struc-
tures such as found in (11) are extremely rare. The difference in coverage of
a parser that can and a parser that cannot handle such structures is likely to
be tiny, if present at all, nor is it vital for a sentence generator to be able to
produce them. However, a correct grammar should be able to analyse and
produce all grammatical structures. I therefore implemented an additional
version of the auxiliary+verb construction using two rather complex rules
that capture examples such as (11).

The basic idea behind the analysis is that the finite verb combines with the
fronted verb even though this verb is not its complement. This is achieved by
the first special rule (the noncomp-head-rule). While it combines with this
verb, it raises its arguments. It can then combine with arguments on the Mit-
telfeld. The second special rule (insert-aux-rule) adds the verbs in the Right
Bracket to this structure. The original analysis provided in Fokkens (2011a)
pretended that the fronted verb was the complement of the finite verb. The
noncomp-head-rule allowed the two to combine, even if subcategorisation re-

148

strictions did not match, and marked that the insert-aux-rule should apply
later on. The insert-aux-rule checked whether the inserted auxiliary (or aux-
iliary group) matched the subcategorisation requirements of the finite verb
and whether the group itself subcategorised for a verbal form like the fronted
verb. The semantics were fixed by breaking up the relation between the finite
verb and the main verb, creating new relations between the finite verb and
the auxiliary group and the auxiliary group and the main verb. This solution
works, but radically violates the principle of semantic compositionality. The
solution was therefore revised into a more elegant alternative which will be
described briefly below.20 The tree in Figure 4.14 represents the analysis for
the first part of the sentence in (12).

(12) Ausruhen
rest.bse

hat
have.3sg

er
pn.m.3sg.nom

können
can.bse

(nur
just

schlafen
sleep.bse

nicht).
not

‘He could rest (just not sleep).’

The structure of the analysis remains the same as described above: the finite
verb combines with the fronted verb through a special noncomp-head rule,
presented in Figure 4.15, and auxiliaries in the Right Bracket are added
higher in the tree through an insert-aux rule. However, the new solution does
not temporarily pretend that the fronted verb is the verbal complement of the
finite verb building incorrect semantics. The verbal complement of the finite
verb remains on the mother’s complement list. The fronted verb is identified
with the complement of this verbal complement. The insert-aux functions
as a regular head-comp rule, except that it explicitly creates the semantic
relation between the fronted verb and the auxiliary that subcategorises for
it. Figure 4.16 represents the semantics of the insert-aux rule.

The solution described above respects semantic compositionality, but it is
still not in line with MRS algebra as described in Copestake et al. (2001). In
MRS algebra, a phrase builds up semantics by filling positions to be filled or
so-called holes in the semantic head daugther with the hook element of other
daughters. The insert-aux daughter fills one of the holes of the daughter

20The basic idea for this improved solution came from Dan Flickinger.

149

4 V

[
subj < 1>

comps < >

]

Ausruhen

V

[
subj < >

comps < 2 >

]

hat

V

subj < 1>

comps < 2

[
comps < 4>

]
>

noncomp-head

V

subj < >

comps < 2

[
comps < 4>

]
>

head-subj

V

[
subj < >

comps < >

]

head-subj

1NPnom

er

2 V

[
subj < >

comps < 4 >

]

können

Figure 4.14: Tree structure for Ausruhen hat er können

that is not the semantic head with a hook that is already embedded in the
semantics of the head daughter. Making an embedded hook available to build
up the semantics is not in line with MRS algebra. The search for a more
elegant solution will therefore be continued in future work.

Nevertheless, this solution forms a significant improvement to the previous
solution, where an incorrect semantic structure was built temporarily and
corrected by breaking up the incorrect semantic relation into two while in-
serting the auxiliary.

As far as efficiency is concerned, the full coverage version will ideally remain
efficient enough as the grammar grows. But if this turns out not to be

150

subj 4

comps
〈

1 ⊕ 2

〉

head-dtr|comps
〈

1

[
comps 3

]〉

non-head-dtr 3

[
subj 4

comps 2

]

Figure 4.15: Simplified representation of the noncomp-head rule

the case, the decision can be made to exclude the additional rules from
the grammar or to use them as robustness rules that are only called when
regular rules fail. Given the metagrammar engineering approach, it will be
straightforward to decide at a later point to exclude the special rule, if corpus
studies reveal that this leads to better results.

A similar analysis

Müller (1997) proposes an analysis that is in many ways similar to the aux-
iliary+verb construction. His analysis also addresses the efficiency problems
originating in an underspecified comps list and proposes to constrain the

comps < >

hcons

〈
!
[
harg h1

larg l1

]
... !

〉

head-dtr

comps < 1 >

hcons

〈
!
[
harg h1

larg l2

]
... !

〉

insert-dtr 1

hook.ltop l1

hcons <!
[
larg l2

]
... !>

Figure 4.16: Simplified representation of the insert-aux rule

151

list until the moment auxiliary and verbal complement are combined. This
proposal particularly addresses partial VP fronting. It offers a solution for
the problem sketched above where the main verb is fronted, its arguments
are in the Mittelfeld and the verb that governs it is situated in the Right
Bracket.

Müller’s (1997) analysis uses the filler-gap strategy to capture verb second
word order. If the main verb is fronted while subcategorised by an auxiliary
in the Right Bracket, it is placed on the slash of this auxiliary by a unary
rule at the beginning of the derivation. When this rule applies, the subcat-
egorisation properties of the main verb are shared with the auxiliary. Müller
(1997) states: “When the hearer of a sentence hears the words that have to
be combined with a trace or introduce the nonlocal dependency in another
way, he or she has already heard the phrase actually located in the Vorfeld.
Therefore, the information about the nonlocal dependency is present and
can be used to license the extracted element” (Müller, 1997, 15). However,
the information is not present locally when building the phrase with the ex-
tracted main verb. This is solved by an implementation of the parser that
allows it to search for elements non-locally. The idea is that the parser looks
through the string, finds the main verb bearing the morphological markings
required by the auxiliary and identifies it as the verbal complement of the
auxiliary before the main verb has actually entered the structure. Having
identified the auxiliary’s verbal complement, it can now raise its arguments
while placing it in the auxiliary’s slash. The delph-in parsers and generat-
ors do not support such operations and it is thus not possible to implement
this solution in climb.

4.4.3 Summary of alternative analyses in gCLIMB

This chapter has presented the main analyses included in gclimb to capture
German word order and auxiliary structures. This subsection sums up which
alternations are provided.

The previous subsections have presented two alternative analyses for word

152

order and two alternative analyses for auxiliaries in gclimb. The analyses
for auxiliaries can also include or exclude partial fronting of the verbal group.
In total, five variations can be created for German auxiliaries and word order
using climb. They are four variations using the mc word order analysis:
argument composition with all forms of partial VP fronting, argument com-
position without partial verb group fronting, the auxiliary+verb construc-
tion with all forms of partial VP fronting, and auxiliary+verb construction
without partial verb group fronting. The Filler-Gap analysis is only provided
with argument composition and complete coverage of VP fronting, because
it cannot be combined with the auxiliary+verb construction in a straight-
forward manner. The following paragraph elaborates on the most important
properties of the auxiliary+verb analysis and will explain why it does not
necessarily work well combined with the Filler-Gap analysis.

The descriptions above have shown that the auxiliary+verb construction
provides a more efficient solution to argument sharing than lexical argument
composition, the standard hpsg solution. However, the auxiliary+verb ana-
lysis has two shortcomings. As pointed out above, an inelegant solution
is required to account for partial fronting of the verbal group. Another
drawback is that it cannot be combined straightforwardly with the standard
solution for verb second word order in hpsg. Section 4.4.1 explained that
two sets of rules are required when the auxiliary+verb constructions is used.
The auxiliary must always combine with its verbal complement first. When
the Filler-Gap analysis is used, fronted verbal forms enter the structure last
through the filler-head rule. The uniform analysis for verb second order thus
disappears if the auxiliary+verb construction were adopted in combination
with the Filler-Gap analysis for verb second order.

A possible solution might be to change the Filler-Gap into a Filler-Release
structure. Under this analysis, the Filler would attach low, as an identified
element that must combine with another part of the sentence later. The
semantics and subcategorisation cancellation take place when the canonical
position of the element is found (i.e. where the gap would be introduced in
the old Filler-Gap analysis). One might consider adopting this structure as

153

a general alternative for Filler-Gap or to restrict it to fronted verbal phrases.
A toy grammar incorporating a Filler-Release analysis covering main clauses,
intransitive, transitive and ditransitive verbs and adverbs has been developed,
but the analysis has not been integrated in gclimb at this point.

The difficulty of combining the auxiliary+verb construction and the Filler-
Gap analysis can be seen as an illustration of the main challenge addressed
in this thesis. The auxiliary+verb construction has clear advantages over
argument composition, but it has not been considered seriously by syntac-
ticians working on German in hspg until now. The reason may very well
be that the Filler-Gap analysis was introduced in the early stages of phrase
structure grammar for German (recall that it was already used in Uszkoreit
(1987)). It was the only analysis seriously considered when Hinrichs and
Nakazawa started investigating auxiliaries. The auxiliary+verb construction
was therefore excluded as an option in advance.21

The next chapter will present the evaluation of gclimb. This both includes
coverage and overgeneration of phenomena included in the grammar as well
as changes in efficiency.

21There is, of course, no guarantee that auxiliary+verb would have been considered
had another analysis been chosen to capture verb second order. Even if it would have
occurred to syntacticians at the time, parsing efficiency is not necessarily a major concern
in theoretical syntax and argument composition fits better in the lexicalist tradition of
hpsg.

154

Chapter 5

Evaluation

This chapter presents the main evaluation of the climb methodology. Its
principle purpose is to test whether the methodology can be adopted as a gen-
eral method for grammar engineering. In other words, it examines whether
the climb methodology can be used to develop large scale grammars, while
maintaining alternative analyses for a central phenomenon. It attempts to
provide an indication of the effects of using climb for long-term development,
both concerning the resulting grammars and development time.

The second part of the evaluation illustrates the kind of research that can be
carried out using climb. Experiments comparing the efficiency of the altern-
ative analyses included in climb are presented. These experiments address
both parsing and natural language generation. In addition, two directions
for future work with climb are described. The first direction is concerned
with comparing climb analyses to analyses found in other hpsg grammars
written for German. The second direction addresses the interaction between
grammar and lexicon. In particular, the question of how to use a treebank to
get a decent basic lexicon is addressed. Preliminary results for these research
directions indicate its potential interest, but for both it holds that a complete
investigation of this topic is out of scope of this thesis.

The chapter is structured as follows. It starts with a brief description of
the development process of the German grammars through climb. The con-

155

ditions, goals and development time of the climb grammars for German
are presented in this section. This is followed by a discussion about the
challenges of evaluating a methodology and, particularly, the impossibility
of providing exact comparison between different methodologies. Neverthe-
less, the outcome of this experiment indicates that the climb methodology
scales to long-term development for resource grammars. Section 5.2 describes
the stages of grammar development in more detail, together with charts of
comparative efficiency of alternative analyses as the grammars cover more
phenomena. The aforementioned outlook for future research directions with
climb is given in Section 5.3. This is followed by a summary of the chapter.

5.1 CLIMB development

This section describes the development of gclimb that was carried out as part
of the evaluation. The goal of this evaluation is to test whether the approach
initially tested with small grammars in Fokkens (2011a) can be applied to
large scale grammar development and what the influence of the method is on
the development process. It is not easy to address such questions since there
is no exact definition of what a large scale grammar is. Furthermore, there
are many influential factors to grammar development. It is not possible to
compare climb grammar engineering to non-climb grammar engineering in
a setting where all other influential factors are equal.

The fact that it is not possible to provide a solid scientifically sound com-
parison does not mean that a comparative study is uninformative. If the
climb method can be used to create a grammar that is comparable to an
existing one in more or less the same time, it shows first and foremost that
climb can be used to create such a grammar. Even though such a study
cannot prove that grammar engineering with climb has no negative im-
pact on development speed (because speed is influenced by many factors), a
similar development time does indicate that any potential negative impact
remains in acceptable ranges and, in my opinion, the advantages of climb

would outweigh any possible slow-down (if present). On the other hand, if

156

the grammar covers significantly less phenomena after the same development
time, this outcome could indicate that using climb would put an additional
burden on the grammar engineer. An additional advantage of aiming to cre-
ate a grammar similar to an existing grammar is that it sets a clear standard:
the development time to achieve the same coverage can be measured, or (de-
pending on the outcome) the coverage obtained in similar development time
can be used as evaluation. In this evaluation, the core grammar of Cheetah
(Cramer, 2011) was used to set the standard for the coverage that should be
obtained by gclimb.

Cheetah is a grammar for German that was created as part of Bart Cramer’s
thesis. Creating a grammar similar to Cheetah’s core grammar would make
a reasonable case for arguing that climb can be used to develop large scale
grammars, because Cramer (2011) used this grammar to show that his ap-
proach of combining a core grammar and treebank makes large scale grammar
development more feasible.

Circumstances of the development of Cheetah and climb are relatively sim-
ilar, but there are also differences. Cramer aimed for high coverage on the
TiGer Treebank (Brants et al., 2002). He kept his output relatively close
to the representations in TiGer and evaluated his grammar directly on the
corpus. While improving his grammar, he created a development corpus
for regression testing representing the phenomena covered by his grammar.
gclimb maps strings to MRS representations which cannot be compared to
TiGer annotations directly. I therefore focused on covering the phenomena
in the development corpus, which could be evaluated manually.

Cramer reports that the development of this core grammar took two years
where approximately half of the time was spent on developing the core gram-
mar, resulting in one person year (Cramer p.c.). The goal of the present
evaluation was to either implement a grammar in gclimb covering all phe-
nomena in the development corpus in approximately one person year or less
time, or to cover as many phenomena as possible that are also covered by
the Cheetah core grammar in one year. I developed a metagrammar that
covers the same phenomena in the development set created for regression

157

testing in less than six person months using climb. This outcome provides
an indication that using climb does not lead to a significant slow-down in
grammar development and possibly speeds it up.

The rest of this section describes the process of developing a grammar for
German that covers at least the 93 examples reportedly captured by Cheetah
(Cramer, 2011) out of a development set of 106 examples. The Cheetah
development set represents a variety of linguistically interesting phenomena
(see Appendix A) and was used as a guideline for designing the Cheetah
core grammar. Cramer (2011) does not provide an in depth explanation of
how the examples were selected, but indicates he followed the literature on
German in hpsg while he implemented Cheetah’s core grammar.

This section is structured as follows. First, I will outline the overall approach
in Section 5.1.1. This is followed by a description of the main differences
between Cheetah and the gclimb grammars in Section 5.1.2. Section 5.1.3
provides an overview of the phenomena covered by gclimb and an indication
of its performance on open data. Finally, a discussion of climb as a method
for developing large scale grammars is given in Section 5.1.4.

5.1.1 Methodology

The grammars described in Fokkens (2011a) cover basic word order facts of
main clauses in German, Dutch and Danish. Using implementations from
the Grammar Matrix customisation system, the metagrammar used in these
experiments handled case marking, subject agreement, tense marking, auxili-
aries, intransitive, transitive verbs and coordination for nouns, noun phrases,
verbs and sentences. Required lexical items and morphosyntactic rules to
support these phenomena were also included. I extended the metagrammar
to cover auxiliary clusters in main clauses both clause-final as found in Ger-
man and Dutch and verbal clauses that precede objects as found in Danish.
Ditransitive verbs were added to the grammar and the Grammar Matrix
analysis for coordination was adapted as to correctly interact with the word
order phenomena of these languages. Other phenomena such as negation,

158

adjectives coordination (with agreement)
polar questions negation
adverbs adpositions
sentential complements copula
subject control object raising

Table 5.1: Phenomena covered by carrying out assignments of ling567

polar questions and argument optionality have basic implementations from
the Grammar Matrix, but no Germanic specific analyses were presented in
the initial version of the metagrammar.

I reimplemented the metagrammar described in Fokkens (2011a) to create a
clean implementation that could serve as a basis for developing a metagram-
mar for German. In the first stage, the course assignments of Knowledge
Engineering for NLP1 (Bender, 2007) were carried out, except for the as-
signment on information structure. The analyses developed as part of these
assignments were added to the metagrammar. The phenomena covered in
the course are listed in Table 5.1. Small test suites containing positive and
negative examples were created for each phenomenon to evaluate the beha-
viour of the grammars. The total test suite at the end of this stage consisted
of 258 positive examples and 334 negative examples (592 in total).

Cramer’s (2011) set of 106 development examples formed the basis for the
next stages of development. I primarily focused on the 93 examples that
are also covered by Cheetah. The standard hpsg analysis for verb second
word order, filler-gap as described in Section 4.3.1, was also added to the
metagrammar during this stage. I created an extended development set in-
cluding positive and negative examples for each phenomenon in the Cheetah
development set. Additional examples were based on linguistic literature on
German. The complete development set includes 508 positive examples and
630 negative examples (leading to a total of 1138).2 Table 5.15 page 186 will

1http://courses.washington.edu/ling567/2010/, accessed 08-02-2013
2The development set can be found at svn://lemur.ling.washington.edu/shared/

matrix/branches/antske-germanic-development/phd_evaluation/development_
process/

159

http://courses.washington.edu/ling567/2010/
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/phd_evaluation/development_process/
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/phd_evaluation/development_process/
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/phd_evaluation/development_process/

provide an overview of the size of the development set at different stages of
grammar development.

Throughout development, I used the output MRSs of the ERG and GG to
compare and validate the output MRS produced by gclimb. The ERG and
hpsg literature were consulted to develop the analyses. Occasionally, ex-
amples were parsed with GG or Cheetah to see what their coverage, overgen-
eration or output MRS was. However, I did not look at their implementations
or output syntax trees at any time in this stage of the development process.
Investigating implementations or the syntactic structure in previously imple-
mented grammars could have made the task of implementing the grammar
significantly easier which would have rendered the outcome of this evaluation
meaningless.

In order to measure development time for the grammar, I counted the weeks
in which any work on gclimb was carried out. This included weeks where
most time was dedicated to other work or conference attendance. Weeks that
were exclusively spent on work that was not related to developing gclimb

were not counted. The full set covered by Cheetah was covered in a total de-
velopment time of approximately twenty five weeks, leading to an estimated
development time of less than six person months. This includes the devel-
opment time of the original grammars described in Fokkens (2011a) and the
reimplementation mentioned above.

Coverage of the gclimb grammars was slightly higher on this set than Chee-
tah’s. All gclimb grammars covered a total of 98 examples from the original
set and two versions covered 99 examples. The phenomena in question will
be presented in Section 5.1.3 after a discussion of the differences between
gclimb and Cheetah in the next section.

For a set of phenomena this size, it is not manageable to automatically cre-
ate complete sets of all possible negative examples as was done in Fokkens
(2011a). Therefore, the following approach was taken to create test suites
for development. First, the examples from the Cheetah set were extended to
cover interactions with other phenomena (mainly word order, coordination,
and wh-questions). Second, two measures were taken to avoid overgenera-

160

tion. Spurious analyses were investigated as to see whether they may lead
to parses of ungrammatical sentences. Furthermore, a criterion was set that
the number of negative examples had to exceed the number of positive ex-
amples. This criterion was used because not all forms of overgeneration lead
to spurious edges in grammatical sentences. In particular, expressions that
are highly ungrammatical and violate several constraints may remain un-
noticed. As mentioned above, the total development set had 508 positive
examples and 630 negative examples.

5.1.2 Differences between gCLIMB and Cheetah

There are several differences between climb for German and Cheetah. The
main differences are briefly discussed in this section.

Multilingual aspect of gCLIMB

The project of building grammars with climb started out as a multilingual
project for Germanic languages. Word order for main clauses including aux-
iliaries, intransitive, transitive and ditransitive verbs was developed to cor-
rectly capture data in German, Dutch and Danish (Fokkens, 2011a). Dutch
variations have been developed for adjectives, adverbs, yes-no questions and
object raising in addition to these basic phenomena. The evaluation of the
multilingual applicability of gclimb will be presented in Chapter 6.

There are two sides to this multilingual aspect of gclimb. On the one hand,
covering Danish and Dutch variations led to extra work at the beginning of
the development of the grammar. On the other hand, it led to more coverage.
Cheetah does for instance not support the auxiliary flip.3 This phenomenon
could easily be implemented with gclimb, because the metagrammar already
included complex variations in auxiliary word order as part of the standard
implementation for Dutch. The auxiliary flip did not require any additions
to the metagrammar, but could be integrated in the grammar by providing

3See Section 4.2.3, page 127 for an explanation of this phenomenon.

161

the right definitions in choices.

Semantic output

mrs
ltop h1 h
index e2 [e]

rels

〈
_pper_er_rel
lbl h3 h
arg0 x4 [x]

,

_v_haben_s-oc_rel
lbl h5 h
arg0 e2

arg1 x4

arg2 e6 [e]

,

_a_herrlicher_mo_rel
lbl h7 h
arg0 e9 [e]
arg1 x8 [x]

,
_n_wein_det_rel
lbl h10 h
arg0 x8 [x]

,

_v_trinken_s-oa_rel
lbl h11 h
arg0 e6

arg1 x4

arg2 x8

,

_adp_als_cc-obj_rel
lbl h12 h
arg0 e13 [e]
arg1 e6

arg2 x14 [x]

,
_pper_du_rel
lbl h15 h
arg0 x14

〉

Figure 5.1: MRS output Cheetah for Er hat herrlicheren Wein getrunken
als Du.

Perhaps the most important difference between Cheetah and gclimb is the
difference in semantic output. Cramer (2011) explains that Cheetah adopts
the overall MRS format, but otherwise stays close to syntactic dependencies,
whereas gclimb follows MRS as it is used in the ERG. The difference between
a Cheetah analysis and a gclimb analysis is illustrated by the representations
of the sentence:

(13) Er
he

hat
have.3sg.pres

herrlicheren
delicious.comp.acc

Wein
wine

getrunken
drink.ptc

als
than

Du.
you

‘He drank more delicious wine than you did.’ [deu]

The simple MRS output of Cheetah and gclimb are represented in Fig-
ures 5.1 and 5.2, respectively.

Several differences can be observed when comparing these two representa-
tions apart from minor differences such as the predicates of pronouns. First,

162

mrs
ltop h1 h
index e2 [e]

rels

〈
_pro_n_rel
lbl h3 h
arg0 x4 [x]

,

_exits_q_rel
lbl h5 h
arg0 x4

rstr h6 h
body h7 h

,

_herrlich_mod_rel
lbl h8 h
arg0 e9 [e]
arg1 x10 [x]

,

_comp_rel
lbl h11 h
arg0 e13 [e]
arg1 e9

arg2 h18 h

,
_wein_n_rel
lbl h8

arg0 x10

,

_exits_q_rel
lbl h14 h
arg0 x10

rstr h15 h
body h16 h

,

_trinken_v_rel
lbl h17 h
arg0 e2

arg1 x4

arg2 x10

,

_ellipsis_ref_rel
lbl h18

arg0 e12 [e]
arg1 x19 [x]

,
_pro_n_rel
lbl h20 h
arg0 x19

,

_exits_q_rel
lbl h21 h
arg0 x19

rstr h22 h
body h23 h

〉

hcons

〈qeqharg h6

larg h3

,
qeqharg h15

larg h8

〉

Figure 5.2: MRS output climb for Er hat herrlicheren Wein getrunken als
Du.

the Cheetah output does not include hcons, which indicates scopal relations.
The treatment of scope was left out of Cheetah, because scopal properties
of lexical items (e.g. whether an adjective is scopal or intersective) are not
provided in the TiGer treebank. As mentioned above, Cramer (2011) used
the TiGer treebank both to derive the Cheetah lexicon and to create a gold
standard for Cheetah’s evaluation. Second, the treatment of syntactic func-
tion words in Cheetah differs from the climb analysis. In Cheetah, all words
introduce their own predicate including hat (“have”) which marks past tense
in this sentence and als (“than”) which is selected for by the comparative.
These two words are not found in the climb representation. Tense marking
as provided by hat is represented on the main verb trinken (“drink”) (though
this information is hidden in a simple MRS representation).

The grammars generally differ as it comes to introducing predicates.The
gclimb representation introduces several predicates that do not correspond
to individual words in the sentence. They include quantifiers of the nouns
which are not preceded by articles, the comparative introduced by the ending

163

-er of herrlicher (“more delicious”) and the VP ellipsis relation. The Cheetah
representation has exactly the same number of predicates as it has words.
Each word has its predicate and no new predicates are introduced. Relat-
ive clauses are a notable exception which will be explained in Section 5.1.3,
p. 166. Passives form a second exception where the Cheetah analysis is not
restricted to purely syntactic relations. The subject of passive sentences is
analysed as the deep object (though demoted subjects are not recognised as
such). Passives are discussed in more detail in Section 5.1.3, p. 174.

In the Cheetah semantic representation, als Du (“than you”) modifies the
event of er - den Wein getrunken (“he drank the wine”). The word herr-
licheren (“more delicious”) is treated as a normal adjective with herrlicher
(the comparative form of herrlich) as its predicate. There is no explicit
indication in its semantics that we are dealing with a comparative in the
Cheetah semantic representation. Cheetah actually provides nearly the same
semantics for the following sentence, the only difference being that the form
of the adjective is herrlichen:

(14) Er
he

hat
have.3sg.pres

herrlichen
delicious.acc

Wein
wine

getrunken
drink.ptc

als
than

Du.
you

‘He drank delicious wine as you.’ [deu]

This example is also parsed by the grammar created with gclimb, but the
fact that herrlichen is not a comparative is directly reflected in the (rather im-
plausible) semantics. In the gclimb representation, als Du (“as you” or “than
you”) is a modifier of the sentence.4 Furthermore, the Cheetah output does
not include a VP-ellipsis to indicate that the comparative in these sentences
is related to who drank the most delicious wine. In fact, the output of the
following example is nearly identical to the representation of example (13):

(15) Er
he

hat
have.3sg.pres

herrlicheren
delicious.comp.acc

Wein
wine

getrunken
drink.ptc

als
than

4The highly implausible semantics of this sentence may lead to the impression that it
is not grammatical at all. The sentence means that “he” drank delicious wine when he was
“you”.

164

Dein
your

Wein.
wine

‘He drank more delicious wine than your wine.’ [deu]

The gclimb representation for the sentence in example (15) clearly distin-
guishes this structure from the VP-ellipsis in example (13). The comparat-
ive relation takes Dein Wein (“your wine”) as its second argument, instead
of scoping over the ellipsis relation as can be seen in the representation of
example (13) in Figure 5.2. Section 5.1.3 will provide additional examples of
differences in the semantic representation of gclimb and Cheetah.

From the observations above it follows that Cheetah only covers syntactic
dependencies and though it can parse comparative structures and VP-ellipsis,
it does not provide a full linguistic analysis for these phenomena. Cramer
(2011) made a conscious decision to stick to syntactic dependencies, because
the information required to create standard MRS representations was not
included in TiGer. He could read the lexical information required to make
syntactic dependencies off the TiGer treebank and use the treebank as a
gold standard. If semantic dependencies were used, as in standard MRS,
additional specifications that can only be made manually would have to be
applied to the retrieved lexicon. Furthermore, additional treebanking would
have been required to evaluate the output of the grammar.

The gclimb grammars focused first and foremost on producing correct se-
mantic interpretations, based on MRS as it is used in the ERG. Even though
the lexicon produced as part of Cheetah can be integrated in a grammar
produced by gclimb, it was not the main goal of this project to produce
a TiGer-treebank based grammar. Rather, gclimb was developed to test
whether the climb approach could be used for long-term grammar develop-
ment of linguistic precision grammars. Aiming for a correct semantic repres-
entation formed an important part of this.

165

5.1.3 Coverage of gCLIMB

Tables 5.2 to 5.9 provide an overview of the main phenomena in the Cheetah
test set that are covered by Cheetah as well as gclimb illustrated by an ex-
ample. Each table presents a small set of related phenomena. This division
was made for reasons of readability and to provide space for short explan-
ations. It is not intended to provide a theoretically sound classification of
phenomena.

A short description as well as differences between the analyses provided by
Cheetah and gclimb grammars will be given for each set of examples. Most
observations can be related back to the difference in overall goal and approach
illustrated in the previous section. The goal of these description is not to
further compare Cheetah and gclimb, but rather to illustrate the main phe-
nomena included in the grammar and what aspects are involved when they
are treated in a grammar that focuses on linguistic precision on a semantic
level rather than syntactic dependencies. In other words, this section aims at
illustrating the linguistic coverage and complexity of the gclimb grammars.

phenomenon
Example
expletives
Es gibt Wein.
expl give.3s.pres wine
There is wine. [deu]
reflexives
Er hat sich auf den Wein gefreut.
pro.3s.m.nom have.3s.pres refl on the.m.acc wine rejoice.ptc
He looked forward to the wine. [deu]
object control
Er versucht den Wein zu trinken.
pro.3s.m.nom try.3s.pres the.m.acc wine to drink.inf
He tries to drink the wine. [deu]
raising
Er sieht mich den Wein trinken.
pro.3s.m.nom see.3s.pres pro.1s.acc the.m.acc wine drink.inf
he sees me drinking the wine. [deu]

Table 5.2: gclimb phenomena in Cheetah test set: mismatches between
syntactic and semantic arity

166

The first phenomena we consider, presented in Tabel 5.2, involve mismatches
between syntactic and semantic arity. Expletives are pronouns without a
referent and reflexive pronouns corefer to the subject. According to main-
stream linguistic analyses, raising and control involve the covert pronouns
pro (a phonetically empty pronoun that receives a thematic role in control
structures) and PRO (a phonetically empty pronoun that does not receive
a thematic role in raising structures). The differences in semantic represent-
ation explained in Section 5.1.2 play an important role in these structures.
The expletive pronoun es (expletive it) is not semantically empty and sich
(“himself”) introduces its own predicate which is not explicitly linked to the
subject in the semantic structure in the representations provided by Chee-
tah. Furthermore, the Cheetah MRS does not indicate that Er (“he”) is an
argument of both trying and drinking in the control structure. Pronoun mich
(“me”) is an argument of sehen (“see”) instead of trinken (“drink”) in Chee-
tah. The gclimb MRS representations do capture the behaviour of these
phenomena.

phenomenon
Example
complement including adpositions
Er hat sich darauf gefreut.
pro.3s.m.nom have.3s.pres refl on that rejoice.ptc
He looked forward to that. [deu]
determiner including adpositions
Er geht zum Weinladen.
pro.3s.m.nom go.3s.pres to the.m.dat wine store
He is going to the wine store. [deu]
argument structure of modifiers
Er gibt mir Wein ohne ihn zu trinken.
pro.3s.m.nom give.3s.pres pro.1s.dat wine without pro.3s.m.acc to drink.inf
He gives me wine without drinking it. [deu]
NP argument structure
Er hat keine Ahnung wo der Wein liegt.
pro.3s.m.nom have.3s.pres no.f.acc clue where the.m.nom wine lie.3s.pres
He has no idea where the wine is. [deu]

Table 5.3: gclimb phenomena in Cheetah test set: unusual argument struc-
tures

Table 5.3 presents examples where either (a part of) the argument is contrac-

167

ted with the head or an item takes more arguments than it typically does.
The adpositional phrase in the first example consists of one word corres-
ponding to an adposition with demonstrative pronoun as a complement (“on
that”). The second example illustrates the contraction of an adposition with
the determiner of its complement. The ending of the adposition indicates a
definite determiner that is masculine or neutral singular bearing dative case.
The third and fourth utterances are examples of adverbs and nouns that take
sentential complements.

The semantics of the examples in Table 5.3 are relatively straight-forward.
The only difference between semantics provided by Cheetah and gclimb

concerns the quantifiers introduced for determiners by gclimb for zum (“to
the”), whereas Cheetah simply provides a predicate zum. Another minor
difference is that Cheetah overgenerates and accepts the following expression:

(16) * Im
In the.dat.m.sg

dem
pro.m.dat.sg

Kindes-
child-

und
and

Jugendalter
youth age

‘At the age of childhood and youth’ (intended) [deu]

This form of overgeneration is however not due to Cheetah not taking into
consideration that Im (“in the”) is a contraction that already includes a de-
terminer but rather the combination of two other factors. First, Cheetah
does not prevent demonstrative pronouns from taking a determiner. Second,
Cheetah misses a constraint indicating the case of the phrase Kindes- und Ju-
gendalter and treats it like a genitive modifier (though its case is nominative,
dative or accusative).

Table 5.4 exemplifies three phenomena related to word order variations.
Verbal particles are elements that are part of the verb that must be placed in
the right bracket. They are prefixes of the verbal form when the verbal form
is placed in the Right Bracket. When the verb is placed in the Left Bracket,
the particle is separated from the verb. As illustrated in the examples below:

(17) Er
pro.3.sg.m

schlägt
suggest.3.sg

Wein
wine

vor.
.part

‘He suggests wine.’ [deu]

168

phenomenon
Example
verbal particles
Er schlägt Wein vor.
pro.3s.m.nom propose.3s.pres wine part
He proposes wine. [deu]
postpositions
Dem Mann zufolge trinkt er den Wein.
the.m.dat man according drink.3s.pres pro.3s.m.nom the.m.acc wine
According to the man, he drinks wine. [deu]
extraposition
Er hat besseren Wein getrunken als deinen Wein.
pro.3s.m.nom have.3s.pres better.m.acc wine drink.ptcp than your.m.acc wine
He drank better wine than your wine. [deu]

Table 5.4: gclimb phenomena in Cheetah test set: word order phenomena

(18) ...
...

weil
because

er
pro.3.sg.m

Wein
wine

vorschlägt.
suggest.3.sg

‘...because he suggests wine.’ [deu]

Both Cheetah and gclimb capture the fact that vorschlägt never appears in
the Left Bracket5 and schlägt and vor do not appear separately in the Right
Bracket. However, Cheetah treats this phenomenon by including two entries
for vorschlagen in the lexicon: one with a particle on its argument list (with
main forms that can only appear in the Left Bracket) and one with vor in
the stem and no particle as complement (which can only appear in the Right
Bracket). The gclimb analysis uses lexical entries with the particle on the
complement list and a lexical rule that removes it from the complement list
and adds it as a prefix.

As far as extraposition is concerned, Cheetah covers the restrictions applying
to forms that may be placed in the Nachfeld. However, the expression als
dein Wein (“than your wine”) in the extraposition example above is treated
modifier of getrunken (“drunk”). Table 5.5 provides examples of extrapos-
ition that are covered by both Cheetah and gclimb. gclimb covers some
additional examples of extraposition that are not covered by Cheetah. These

5See Section 4.2, p. 124 for an explanation of topological fields (including “Nachfeld”
and the Left and Right Bracket).

169

phenomenon
Example
wh-complements
Sie weiß bei welchem Käse er diesen
pro.3s.f.nom know.3s.pres with which.m.dat cheese pro.3s.m.nom this.m.acc

Wein trinkt.
wine drink.3s.pres
She knows which cheese he has this wine with. [deu]
wh-questions
Welchen Wein trinkt er?
which wine drink.3s.pres pro.3s.m.nom
Which wine does he drink? [deu]

Table 5.5: gclimb phenomena in Cheetah test set: wh-phrases

examples will be provided in Table 5.10.

There are no major differences between the grammars as far as treatment of
wh-phrases, illustrated in Table 5.5, is concerned. The only difference is that
MRS representations in Cheetah do not include information on whether the
clause is declarative or interrogative. The gclimb grammar does indicate
that a question is asked when one of the arguments or modifiers is a question
word.

The difference in semantics for the example with the subordinate clause is
as expected based on the different goals of Cheetah and gclimb. First, the
expletive es (there) is not present in the gclimb MRS, but represented as
an underspecified argument of gibt (gives) in Cheetah’s output. Second, the
subordinate clause is analysed as a scopal modifier by the gclimb grammars,
whereas Cheetah (which does not deal with scopal relations) represents weil
(because) as a predicate taking the index of trinkt (drinks) as its first argu-
ment and the index of gibt (gives) as its second argument.

Relative clauses also lead to a different output in the two grammars, as expec-
ted based on the general differences in semantic representation. Figures 5.3
and 5.4 represent the semantic output for (19) provided by Cheetah and
gclimb, respectively.

170

mrs
ltop h1 h
index e2 [e]

rels

〈

_d_der_det_rel
lbl h3 h
arg0 x4 [x]
arg1 x5 [x]

,
_n_wein_det_rel
lbl h6 h
arg0 x5

,
_rel_der_rel
lbl h7 h
arg0 x8 [x]

,
_pper_er_rel
lbl h9 h
arg0 x10 [x]

,

_v_trinken_s-oa_rel
lbl h11 h
arg0 e12

arg1 x10

arg2 x8

,

rel-clause
lbl h13 h
arg0 e14 [e]
arg1 x5

arg2 e12

,

_v_sein_s-pd_rel
lbl h15 h
arg0 e2

arg1 x5

arg2 e16 [e]

,

_a_herrlich_mo_rel
lbl h17 h
arg0 e16

arg1 u18

〉

Figure 5.3: MRS output Cheetah for Der Wein den er trinkt ist herrlich.
(see Table 5.6, example on “relative clauses” for glosses and a translation)

(19) Der
the.nom.m.sg

Wein
wine

den
rel.acc.m.sg

er
pro.nom.3.sg

trinkt
drink.3.sg

ist
be3.sg

herrlich.
delicious

‘The wine that he is drinking is delicious.’ [deu]

Cheetah treats the two clauses, including the subject NP and its coreferring
relative pronoun, as separate entities. They can be linked to each other by
the additionally inserted elementary predication rel-clause, which takes the
modified noun as its first argument and the event described by the relative
clause as its second argument. This semantic representation is not strictly
correct (the relative structure does not introduce an additional event other
than the event expressed by the clause and the relative pronoun and mod-
ified noun have the same referent and should thus have the same index).
Cheetah’s representation has, however, some advantages over pure syntactic
dependencies. The arg1 of the relative clause and main verb are coindexed.
Because we know that the arg1 of the relative clause should refer to the
same entity as the relative pronoun, we can infer that the subject of ist (“is”)
is the same entity as the object of trinkt (“drinks”). All relevant information

171

phenomenon
Example
subordinates
Weil es Wein gibt trinkt er Wein.
because expl wine give.3s.pres drink.3s.pres pro.3s.m.nom wine
Because there is wine, he drinks wine. [deu]
relative clauses
Der Wein den er trinkt ist herrlich.
the.3s.nom wine rel.m.acc pro.3s.m.nom drink.3s.pres be.3s.pres delicious
The wine he is drinking is delicious. [deu]
relative clauses with PP
Der Mann mit dem er Wein trinkt lacht.
the.3s.nom man with rel.m.dat pro.3s.m.nom wine drink.3s.pres laugh.3s.pres
The man with whom he drinks wine is laughing. [deu]
relative clause introduced by determiner
Der Mann dessen Wein er trinkt lacht.
The.3s.nom man rel.det wine pro.3s.m.nom drink.3s.pres laugh.3s.pres
The man whose wine he drinks is laughing. [deu]

Table 5.6: gclimb phenomena in Cheetah test set: subordinates and relative
clauses

mrs
ltop h1 h
index e2 [e]

rels

〈

_def_q_rel
lbl h3 h
arg0 x5 [x]
rstr h4 h
body h6 h

,
_wein_n_rel
lbl h7 h
arg0 x5

,
_pronoun_n_rel
lbl h8 h
arg0 x9 [x]

,

exist_q_rel
lbl h10 h
arg0 x9 [x]
rstr h11 h
body h12 h

,

_trink_v_rel
lbl h7 h
arg0 e13 [e]
arg1 x9

arg2 x5

,

_herrlich_mod_rel
lbl h14

arg0 e2

arg1 x5

〉

hcons

〈qeqharg h4

larg h7

,
qeqharg h11

larg h8

〉

Figure 5.4: MRS output climb for Der Wein den er trinkt ist herrlich. (see
Table 5.6, example on “relative clauses” for glosses and a translation)

172

phenomenon
Example
adverbs modifying PP
Wein trinkt er nur bei Käse.
wine drink.3s.pres pro.3s.m.nom only with cheese
He drinks wine only with cheese. [deu]
adverbs modifying determiner
Selbst der Wein von Peter trinkt er.
even the.m.nom wine of Peter drink.3s.pres pro.3s.m.nom
He drinks even Peter’s wine. [deu]
genitive modifiers
Der Wein des Mannes ist herrlich.
the.m.nom wine the.m.gen man.gen be.3s.pres delicious
The man’s wine is delicious.
NP-adverbs
Dieses Mal trinkt er Wein.
this time drinks he wine
This time, he is having wine.

Table 5.7: gclimb phenomena in Cheetah test set: modification

can thus be derived from Cheetah’s output.

The gclimb representation on the other hand does not explicitly indicate
that there was a relative clause in the sentence, but directly uses the same
index for the two arguments.

This example also indicates a difference in treatment of predicative adjectives.
The gclimb representation makes der Wein (“the wine”) a direct argument
of herrlich (“delicious”), whereas Cheetah relates herrlich and der Wein by
making them both arguments of sein (“to be”). The arg1 of herrlich is
underspecified in the Cheetah representation. This difference is expected
given Cheetah’s goal to produce syntactic dependencies.

Table 5.7 presents various forms of modification. Semantic representations
of these structures are relatively straight-forward and similar between the
grammars, though a small difference can be observed in the treatment of
genitive modifiers. Cheetah introduces a relation called gen-mod to indicate
the genitive modifier des Mannes (“of the man”). This is similar to the treat-
ment of relative clauses, where the presence of a specific syntactic structure
is also indicated by an inserted relation explicitly referring to this structure.

173

phenomenon
Example
comparatives
Dein Wein ist herrlicher als mein Wein.
your wine is delicious.comp than my wine
Your wine is more delicious than my wine.
VP-ellipsis
Er hat herrlicheren Wein getrunken als Du.
he has delicious.comp wine drink.ptc than you
He drank more delicious wine than you did.

Table 5.8: gclimb phenomena in Cheetah test set: comparatives

The gclimb representation follows a paraphrasing approach and is identical
to the representation of Der Wein von dem Mann (“the wine of the man”).

Table 5.8 represents the comparative examples that were already discussed
in Section 5.1.2.

phenomenon
Example
passives
Der Wein wird von ihm getrunken.
the wine aux of him drink.ptc
The wine is being drunk by him.
vocatives
Peter, der Wein ist herrlich!
Peter, the wine is delicious
Peter, the wine is delicious!
compound nouns
Frau Schmidt trinkt Wein.
Mrs Schmidt drinks wine
Mrs Schmidt is drinking wine.
truncated coordination
Vier- bis fünfhundert Männer lachen.
Four- to five hundred man laugh
Four to five-hundred man are laughing.
possessives
Dein Wein ist herrlich.
your wine is delicious
Your wine is delicious.

Table 5.9: gclimb phenomena in Cheetah test set: various

As mentioned above, passives form one of the exceptions where Cheetah

174

diverts from providing strict syntactic dependencies. Cheetah correctly links
the subject of the passive to the arg2 of the verb (i.e. to what would be
the object in the active counterpart). If the sentence includes a demoted
subject such as von ihm (“like him”) in the example above, it is treated like
regular modification. The gclimb output includes both a representation
where the demoted subject is linked to the arg1 of the sentence as well
as the Cheetah variant, where arg1 remains underspecified and von ihm
is a regular modifier. In addition to the differences shown above, gclimb

introduces a possessive relation for dein (“your”) whereas Cheetah treats it
as a regular determiner with poss-dein-rel as its predicate.

Table 5.10 presents a set of phenomena that are not included in the Cheetah
grammar, but do have a gclimb analysis.

Based on the evaluation presented above, it seems that gclimb covers more
linguistic phenomena than Cheetah. However, Cheetah’s development did
not merely consist in covering as much data from the development set as
possible. Cramer also worked on improving efficiency and coverage on the
TiGer corpus. Unsurprisingly, Cheetah performs significantly better on this
corpus. In order to establish whether gclimb can nevertheless be seen as
a resource of comparable complexity, an additional evaluation was carried
out on the Babel corpus (Müller, 1996, 2004). This corpus contains a set
of complex linguistic phenomena and was not taken into account during the
development of Cheetah or gclimb. I will first briefly discuss performance
of gclimb on TiGer and then present results on the Babel corpus.

Coverage on TiGer with Cheetah and gCLIMB

I carried out an additional evaluation on sentences 1,001-2,000 from the Ti-
Ger treebank (Brants et al., 2002) with both gclimb and Cheetah. This
experiment is described in more detail in Section 5.3.2. Here I will briefly
preview those parts that are relevant to the current discussion.

The lexicon that Cheetah read off the TiGer treebank during Cramer’s (2011)
second development stage was incorporated into gclimb for this purpose.

175

phenomenon
Example
auxiliary-flip
...daß er den Wein wird trinken können
...that he the wine aux drink.inf can.inf
...that he will be able to drink the wine
participle as adjective
Der getrunkene Wein ist herrlich.
The drink.ptc wine was delicious
The wine that was drunk was delicious
impersonal passive
Es wird getanzt.
It aux dance.ptc
There was dancing
object fronting and control6

Den Wein versucht er zu trinken.
The wine tries he to drink
He is trying to drink the wine
extraposition
Er hat den Wein versucht zu trinken.
He has the wine try.ptc to drink
He tried to drink the wine
VP coordination
Er lacht und will den Wein trinken.
He laughs and wants the wine drink
He laughs and wants to drink the wine
Polar question coordination
Atmet der Wein und will er den Wein trinken?
Breaths the wine and wants he the wine drink
Is the wine breathing and does he want to drink the wine?
Long distance dependency, argument extraction
Was denkt Peter dass er getrunken hat?
What thinks Peter that he drink.ptc has
What does Peter think he drank?
Long distance dependency, adjunct extraction
Wie denkt Peter dass sie den Wein getrunken hat?
How thinks Peter that she the wine drink.ptc has
How does Peter think she drank the wine?

Table 5.10: Phenomena additionally covered by gclimb

176

I extended the metagrammar to generate a lexical hierarchy that cross-
classifies subcategorisation lists for verbs and type names of items in Chee-
tah’s derived lexicon and morphology were adapted to fit this hierarchy. Sen-
tences 1,001-2,000 were then parsed with both Cheetah and gclimb gram-
mars.

Cheetah covers 47.3% of the sentences, whereas gclimb’s best grammar cur-
rently covers 21.3%. In later stages of grammar development, Cramer used
the first 500 sentences as a development corpus and later carried out some
optimisation based on the most frequent errors in following sentences. This
may account for some of the difference, but the most common cause for not
arriving at a full parse are time outs or hitting the maximum number of
edges. Upon inspection of the first 100 sentences in this evaluation set, it
turned out that most sentences did not exhibit phenomena not covered by
gclimb. This strongly indicates that the difference lies in efficiency of the
grammars. In particular, the interaction between analyses and lexicon is
likely to play a role. Cheetah was designed to be used with a lexicon read
off the TiGer treebank. The development of gclimb only aimed for cover-
ing analyses from the development corpus. Reproducing the entire process
of Cheetah development was out of scope for this study and could not be
used for comparison, because gclimb’s output cannot be compared directly
to Cheetah. As mentioned above, Section 5.3.2 will discuss the interaction
between grammar and lexicon in more detail.

Evaluation on the Babel testset

The Babel test suite was created by Stefan Müller to evaluate his German
grammar created in Babel (Müller, 1996, 2004). It consists of 547 positive
examples and 182 negative examples illustrating a wide range of linguistic
phenomena. As mentioned above, the test suite was not taken into considera-
tion while developing Cheetah or gclimb. The purpose of this evaluation was
to compare the coverage of these grammars on an independently developed
set of linguistically motivated examples.

177

grammar Coverage overgeneration
dependencies MRS

Cheetah 54.7% 17.2% 28.1%
gCLIMB (aux-rule) 60.5% 51.2% 25.4%

Table 5.11: Coverage and overgeneration on Babel corpus

Just like in earlier evaluations, lexical coverage was not taken into account
in the evaluation. Cheetah’s static lexicon was therefore extended to cover
the items in the test suite and gclimb was adapted so that it could combine
lexical items defined in choices with lexical items defined as part of the
Cheetah lexicon. No new types were defined in Cheetah or climb except
for two lexical types in Cheetah. The types in question exhibit intransitive
structures where the only argument bears dative or, respectively, accusative
case. They could be integrated in gclimb easily without adding new type
definitions in the metagrammar. Because they lead to a significant increase
in coverage and do not reflect the complexity of the grammar, they were
added to Cheetah as well.

The results of this evaluation are presented in Tables 5.11-5.13.7 Table 5.11
provides indication of treebanked coverage and overgeneration. The first
coverage column presents the percentage of positive examples for which the
semantics provides the correct dependencies. The second coverage column
indicates in which cases a correct MRS is provided.8 Correct MRS represent-
ations always provide correct dependencies. The results in the second column
thus form a subset of the first. The final column indicates overgeneration on
ungrammatical examples of both grammars.

The number of examples associated with a specific phenomenon varies in the
set. I therefore examined examples that did not get a correct analysis in

7The grammars that were used for this evaluation, the test suite and an in-
dication of examples illustrating the phenomena mentioned in the tables can
be found in svn://lemur.ling.washington.edu/shared/matrix/branches/
antske-germanic-development/phd_evaluation/babel-experiments.

8Semantics of determiners and bare NPs were ignored in the evaluation of MRSs pro-
duced by Cheetah, because they are all different from general assumptions in MRS and
occur in every sentence.

178

svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/phd_evaluation/babel-experiments
svn://lemur.ling.washington.edu/shared/matrix/branches/antske-germanic-development/phd_evaluation/babel-experiments

both examples and associated them with phenomena. Table 5.12 provides
an overview of phenomena where performance differs between gclimb and
Cheetah. The columns indicate whether the grammars can handle all ex-
amples related to a phenomenon in the corpus (complete) or part of the
phenomena (partial).

gCLIMB outperforms Cheetah
Phenomenon Cheetah gCLIMB

partial complete partial complete
demoted subject passive x
adjective as noun x
raising, control (semantics) x
verbs as adjectives x
impersonal passives x
verb order variation x
partial VP fronting x
attachment rel. clause x x
flexible position adverbs x x

Cheetah outperforms gCLIMB
Phenomenon Cheetah gCLIMB

partial complete partial complete
particles and matrix questions x
embedded extraposition x
coordination of relative clauses x
VP coordination x x
multiple complex arguments x x
extraposition x x

Table 5.12: Comparison of coverage of phenomena in Babel corpus

Table 5.13 presents phenomena that overgenerate in one language, but not
the other. Phenomena marked by an asterix (*) lead to an increase of cover-
age as compared to the other grammar. An overview of phenomena for which
neither grammar finds the correct analysis or both grammars overgenerate
can be found in Appendix C.

The Babel corpus provides a set of examples that represent challenging lin-
guistic behaviour in German. The results for both grammars can be con-

179

gCLIMB only
adjective inflection when taking complements
subject extraction
multiple expletive complements
case restriction when raising*
verb used as adjective*
impersonal passive*
Cheetah only
particles in the Mittelfelt
multiple relative clauses, one extracted
auxiliary selection for perfectives
adjective endings
determiner restrictions imposed by nouns
adjectives with pp complements*
irregular coordination*

Table 5.13: Comparison of overgeneration

sidered good results given that the corpus was not taken into account dur-
ing their development. gclimb slightly outperforms Cheetah on coverage,
overgeneration and number of examples handled correctly. These results
show that gclimb can thus be considered comparable to Cheetah when look-
ing at coverage of linguistic phenomena.

5.1.4 Discussion and Observations

The previous subsections described the process of developing grammars in
climb that cover the same phenomena in Cheetah’s development set as Chee-
tah’s core grammar. This undertaking served the purpose of investigating
whether climb can be applied to large scale grammar development and of
getting a first indication of the impact on using climb. As mentioned above,
it is not easy to answer these questions. I will explain in this subsection why
it is not possible to set up a scientific test to answer these questions. This
does not mean that the implementation of gclimb is meaningless as an eval-
uation. The observations that can be made based on this effort do provide

180

an indication of the impact of climb for developing resource grammars.

Discussion

There are several problems in answering the questions addressed above. First
and foremost, there is no clear definition of a large scale grammar compared
to a medium sized grammar or a small grammar. Should this depend on
properties of the grammar such as the number of types, lexical items, syn-
tactic rules and lexical rules? Or rather on properties of the grammar such
as the linguistic phenomena it covers or the coverage it has on open text? All
three criteria provide some indication of the size and scale of the grammar,
but none of them offers a well defined line as to when a grammar can be
considered to be “large scale”.

The challenge of comparing the method to traditional grammar engineering
is even harder to overcome. It is impossible to provide conditions for a fair
comparison between two methods of grammar development, because there are
several factors that influence development speed and quality of the grammar
that cannot be controlled for.

The engineer in charge of implementing the grammar probably has the most
influence on development speed and quality of the resulting grammar. Ex-
perience and recent practice are two of the main factors that makes one
engineer faster and more accurate than another. It is therefore not possible
to use the same engineer in two projects (even if time would allow for this),
because the engineer will be more experienced the second time. This effect is
even stronger when both projects use the same language and materials: the
second time will be a repetition of the earlier project, resulting in a major
speed-up. The closer the language, the greater the impact of previous exper-
ience. On the other hand, the phenomena of the language and whether they
are known and treated in the literature also influences development time.
It is therefore not possible to compare projects for languages that have few
linguistic properties in common.

Using the same engineer is therefore not a reasonable options to compare

181

the two methods. As a result, one of the most influential factors on the
development project already differs in any comparison experiment. Other
factors that influence the development process such as the language, materials
from the literature and other grammars that are available can be controlled
for.

Ideally, several grammar development efforts using the climb method would
be compared with several efforts not using it. The main difference is expected
to be seen on long-term grammar development and many grammar engineer-
ing efforts would need to be compared in order to get a reliable indication of
the impact of the method. It is therefore not feasible within the timeframe
of a dissertation to set up a scientifically sound experimental environment
to compare climb to standard grammar engineering. An opportunity for
such a comparison may be found in the future when more researchers have
adopted the climb method and their efforts can be compared to those of
other grammar engineers.

Observations

Despite the fact that the development of gclimb cannot lead to scientific
proof, it can provide an indication of its scalability and the impact of using
climb. This section has described a wide range of phenomena covered by
gclimb. As far as quantity is concerned,9 gclimb was built on top of a
version of the Grammar Matrix that had 3,651 lines of code in the linguistic
libraries. The metagrammar’s libraries now consist of 13,032 lines of code,
compared to 6,250 lines of code in the current version of the Grammar Matrix
customisation system.10 The choices files for these grammars have 1,970 lines
of definitions (for small grammars used for testing) up to 3,657 lines (for
creating the complete Cheetah core grammar and incorporating its lexicon).
A customised grammar consists of approximately 7,300 lines of code and
1,300 language specific types. The phenomena the grammars cover show that
climb can be used to write grammars of a reasonable level of complexity.

9These numbers have previously been reported in Fokkens and Bender (2013).
10The lines of code where taken from version number 26977 of the Grammar Matrix.

182

The size of the metagrammar and customised grammars indicate that it can
be used to write grammars of a decent size.

Several observations can be made based on the impact of the method. Sev-
eral influential factors for creating Cheetah’s core grammar are known and
were controlled for while developing gclimb. Cramer (2011) used literature
on German in hpsg, but GG or other implementations of hpsg based gram-
mar for German were not used. I followed the same principle for climb.
Moreover, Cramer also implemented his grammar as part of his PhD thesis
and was a native speaker of Dutch living in Germany at the time of devel-
opment. This gives reason to believe we are somewhat comparable in skills
and development speed. Section 5.1.2 pointed out that variations for other
Germanic languages were included during the earlier stages of developing
gclimb and gclimb aims for semantic representations rather than repres-
entations that mirror syntactic dependencies. These two differences between
gclimb and Cheetah both form additional efforts that were made for gclimb

and not for the development of Cheetah.

Cramer (2011) on the other hand aimed for efficiency of the grammar and
designed the grammar so that it could easily be used with the TiGer treebank.
It is, however, not possible to determine in hindsight what portion of the one
person year spent to develop Cheetah was invested in this effort.

The overall development time for gclimb was less than six person months
compared to one year for Cheetah’s core grammar (Cramer, 2011). The
one year of development for Cheetah’s core grammar was generally received
as an acceptable time for such an undertaking by the delph-in community.
The gclimb grammars cover the same phenomena in Cheetah’s development
set as Cheetah partially covering variations for other languages and captur-
ing more complex semantic aspects than Cheetah and slightly outperformed
Cheetah on an external testset of linguistic phenomena. The fact that it was
developed in less than half the time does not allow us to conclude that us-
ing climb speeds up the grammar engineering process for reasons explained
above. However, even if the shorter time is purely due to the different engin-
eer or if using climb even slowed the development process down, this result

183

does show that a potential negative impact on development speed remains
within an acceptable range.

5.2 Comparative efficiency evaluation

This section presents a comparative evaluation of the grammars included
in gclimb. Fokkens (2011a) presented a comparison in efficiency for the toy
grammars that formed the basis of this evaluation. In this section, we will see
how differences in efficiency developed as the grammars produced by gclimb

covered more phenomena. I will compare three grammars containing the
argument composition analysis (henceforth arg-comp), the auxiliary and
verbal construction analysis (aux+verb) both using the Grammar Matrix-
based flat analysis for verb second word order or the filler-gap analysis (filler-
gap). Descriptions of the individual analyses can be found in Chapter 4.

5.2.1 Parsing efficiency

As explained in Section 4.4.2, German auxiliaries share the arguments of their
verbal complements. Under the argument composition analysis, auxiliaries
are defined in the lexicon to take a verbal complement and add whatever re-
mains on the subj and comps list to its own argument lists. The argument
lists of auxiliaries are thus (partially) underspecified. As a result, any pos-
sible constituent in the sentence is a potential subject or complement of the
auxiliary. The aux+verb analysis based on Bender’s analysis for Wambaya
(Bender, 2010) is designed to address the inefficiency caused by this under-
specified argument list. Under this alternative analysis, the auxiliary only
selects a verbal complement and cannot combine with any other element in
the sentence. Auxiliary and complement are combined using a special con-
struction, which makes sure the auxiliary picks up any remaining elements on
the subj and comps list of its verbal complement. Fokkens (2011a) presents
the first comparative evaluation in efficiency for Germanic languages using
toy grammars that cover basic phenomena in German, Dutch, Flemish and

184

Danish.

Average Performed Tasks
Language Complete Coverage No Split Cluster

arg-comp aux+v red. arg-comp aux+v red.
Dutch 524 149 71.6% 480 134 72.1%
Flemish 529 150 71.6% 483 137 71.6%
German 684 148 78.4% 486 136 72.0%
Average 579 149 74.3% 483 135.7 71.9%

Average Created Edges
Language Complete Coverage No Split Cluster

arg-comp aux+v red. arg-comp aux+v red.
Dutch 58 25 57.9% 52 25 51.9%
Flemish 58 26 55.2% 52 25 51.9%
German 67 23 65.7% 52 24 53.8%
Average 61 24.7 59.6% 52 24.7 52.5%

Average Memory Use (kb)
Language Complete Coverage No Split Cluster

arg-comp aux+v red. arg-comp aux+v red.
Dutch 9691 6692 30.9% 8944 6455 27.8%
Flemish 9716 6717 30.9% 8989 6504 27.6%
German 10289 5675 44.8% 8315 5468 34.2%
Average 9898.7 6361.3 35.7% 8749.3 6142.3 29.8%

Average CPU Time (s)
Language Complete Coverage No Split Cluster

arg-comp aux+v red. arg-comp aux+v red.
Dutch 0.04 0.02 - 0.03 0.01 -
Flemish 0.04 0.02 - 0.03 0.01 -
German 0.06 0.01 - 0.04 0.01 -

Table 5.14: Differences in efficiency as found in Fokkens (2011a)

The toy grammars used in the original comparative evaluation showed a
clear advantage in efficiency for the aux+verb analysis. Table 5.14 provides
an overview of the results presented in Fokkens (2011a). Small grammars
for German, Dutch and Flemish showed an average reduction of 73.1% in
performed tasks, 56.1% in produced passive edges and 32.8% in memory when
the aux+verb grammars were used as compared to the arg-comp analysis.

185

The average CPU time was too short for a meaningful comparison with [incr

tsdb()]. Therefore no reduction rate and average numbers are provided for
CPU time.

Stage Phenomena repository test set
pos neg

0 phenomena from Fokkens (2011a) 19578 114 157
1 adjectives 19589 135 220
2 polar questions, negation 19613 161 240
3 adverbs, adpositions and cps 19617 206 287
4 copula (predicative adjectives and pps) 19626 248 334
5 subject control 19672 279 375
6 object raising 19732 300 416
7 wh-sentences, filler-gap analysis 19978 349 463
8 argument structures, subordinates 20019 427 539
9 passives and relative clauses 20189 485 607
10 possessives, extraposition, comparatives 20975 508 630

Table 5.15: Development stages and phenomena that were treated in them

The grammars used in Fokkens (2011a) only covered basic word order facts,
intransitive, transitive and ditransitive verbs and no modification, subordin-
ates or complex predicates. This section presents an evaluation that examines
how efficiency of the alternative analyses is affected as the grammars cover
more phenomena. For the purpose of this evaluation, the process of devel-
oping gclimb up to covering Cheetah’s core grammar was split up in 10
stages based on complete working versions checked into the gclimb reposit-
ory. They are presented in Table 5.15 together with their repository version
number and the number of positive and negative examples in the evaluation
set for each stage.

The graphs in Figures 5.5-5.8 illustrate the performance of grammars with
alternative analyses on the development set at each stage. The filler-gap
analysis was implemented in stage 7 and was only taken up in the evaluation
from that stage. Figure 5.5 indicates the average number of tasks carried out
per sentence, Figure 5.6 provides the average number of etasks, Figure 5.7
illustrates the average memory that was used and the average CPU time

186

Figure 5.5: Number of tasks carried out per sentence for different grammars

per sentence is found Figure 5.8. For all performance related measures, the
same pattern can be observed. I will use the average number of edges (Fig-
ure 5.5) to illustrate how each analysis influences performance in different
development stages.

The number of edges used by the arg-comp analysis increases significantly as
object raising and wh-clauses are added to the grammar. The efficiency of the
aux+verb analysis, on the other hand, remains relatively stable. After this
significant increase, additional constraints to prevent further increase of edges
that do not lead to a parse were added to the grammar. Rules that combine
heads with their subject or a complement where restricted to only take non-
head daughters that can occur in this position in German. In other words,
determiners, adjectives, adverbs, adpositions and verbs where excluded from
being subjects and determiners and adverbs from becoming complements.
This lead to a significant improvement in efficiency as can be seen by the
sharp drop in average edges per sentence in the graph. The aux+verb analysis
reveals a slow increase in edges per sentence as the grammar covers more

187

Figure 5.6: Number of active edges used per sentence for different grammars

Figure 5.7: Average Memory used per sentence for different grammars

188

Figure 5.8: Average CPU time per sentence for different grammars

phenomena with a noticeable increase as relative clauses and extraposition
are added to the grammar. The same increase for these two phenomena is
observed for the arg-comp and filler-gap analysis.

The restrictions on the non-head daughter lead to significant differences in
efficiency for the arg-comp analysis. A draw-back of these additional con-
straints is that they go against the lexicalist character of hpsg. Schemata
(as the rules that combine heads with their complements or modifiers are
called in theoretical hpsg) are supposed to be general and constraints on
which words may be combined by them are supposed to come from the syn-
tactic properties of the lexical items. It is on the other hand quite common
for delph-in grammars not to follow the idea of a small set of universally
applicable schemata, as explained in Section 2.2.1, Chapter 2.

The fact that determiners do not occur as arguments or that all subjects
bear nominative case are properties of the German language. It therefore
seems acceptable to give the efficiency of the grammars a boost with these

189

additional constraints. There are thus two defensible visions on whether
non-head-daughters should be constraints in the grammar or not and one of
the main strengths of climb is that it provides a framework to test both
options. Table 5.16 presents the results of this comparative study. The
results compare the performance of individual analyses on the 508 positive
examples of the full development set.11

Average Performed Tasks
Analysis constraints no constraints
filler-gap 4530 11269
arg-comp 4831 14388
aux+verb 3937 4042

Average Created Edges
Analysis constraints no constraints
filler-gap 156 438
arg-comp 141 461
aux+verb 120 120

Average CPU Time (s)
Analysis constraints no constraints
filler-gap 0.22 0.68
arg-comp 0.23 0.92
aux+verb 0.19 0.21

Average Memory Use (kb)
Analysis constraints no constraints
filler-gap 7184 26932
arg-comp 7140 33166
aux+verb 5809 5979

Table 5.16: Comparative efficiency of grammars with or without constraints
on the non-head daughter

The results reveal a striking difference in impact of these additional con-
straints between the grammars that use argument composition (i.e. the filler-
gap and arg-comp grammars) on the one hand and the grammar using the
aux+verb construction (aux+verb) on the other hand. Whereas efficiency is
hardly influenced by these constraints when the auxiliary+verb construction

11These experiments were carried out with climb repository version 26558. The choices
files used are included in the repository.

190

Average Performed Tasks
Analysis constraints no constraints
filler-gap 13.1% 64.1%
arg-comp 18.5% 71.9%

Average Created Edges
Analysis constraints no constraints
filler-gap 23.1% 72.6%
arg-comp 14.9% 74.0%

Average CPU Time
Analysis constraints no constraints
filler-gap 13.6% 69.1%
arg-comp 17.4% 77.2%

Average Memory Use
Analysis constraints no constraints
filler-gap 19.1% 77.8%
arg-comp 18.6% 82.0%

Table 5.17: Improvement in efficiency when aux+verb analysis is compared
to other analyses

is used, the constraints on non-head daughters have a great impact on the
results when the grammar uses argument-composition. The number of tasks
decreases by a factor of 2.49, the average number of edges used by a factor
of 2.81, CPU time by 3.09 and memory by 3.75 for the filler-gap analysis.
Differences are even bigger when the flat verb second analysis is combined
with argument composition. We see a factor 2.98 decrease in the number
of tasks and a factor of 3.27 decrease in number of edges used. The CPU
time is 4 times as much if the non-head daughters are not constrained and
memory increases by a factor of 4.65.

The difference in efficiency between the aux+verb rule and the arg-comp
or filler-gap analysis are presented in Table 5.17. The original experiments
reported in Fokkens (2011a) revealed an average reduction of 73.2% in per-
formed tasks, 56.3% in produced edges and 32.9% in memory when using the
aux+verb instead of arg-comp analysis. The gain in efficiency for performed
tasks is slightly lower (now 71.9%) for these bigger grammars, which may

191

be due to the size of the feature structures which increased for all analyses.
The difference in efficiency for both produced edges and memory increased
to 74.0% and 82.0%, respectively. The number of edges required is most
directly related to the interaction of auxiliary structures with the rest of the
grammar. Moreover, hitting the maximum number of permitted edges is a
common cause for the parser to fail. I therefore conclude that these results
confirm that, without additional constraints on the schemata, differences in
efficiency increase as predicted in Fokkens (2011a).

Conclusion on parsing efficiency

The results in this section have shown that the aux+verb analysis remains
more efficient than the arg-comp analysis as the grammars generated by
gclimb cover more phenomena. This difference can be reduced significantly
by adding constraints to the grammar restricting which kind of elements
(part-of-speech or case marking) may appear as a subject or complement of
verbal forms. These constraints have the draw-back that they are not in
line with the lexicalist character of hpsg, but seem acceptable because they
capture properties of the German language.

Even though the aux+verb analysis was the most efficient grammar in all ex-
periments presented in this section, more investigation is needed to draw firm
conclusions about the relative efficiency of the two analyses cross-linguistically.
Chapter 6 describes multilingual aspects of climb and there we will see that
the aux+verb analysis may not always be the most efficient choice for the
grammars that can be generated for Dutch. Furthermore, the efficiency of the
arg-comp analysis also suffers from the decision taken in the Grammar Mat-
rix to have separate subj and comps lists. GG (Müller and Kasper, 2000;
Crysmann, 2005) has only one list called subcat where both the subject and
other complements a lexical item selects for are defined. The efficiency issue
due to underspecified elements is thus reduced to only one list instead of two.
One of the first steps in future research related to gclimb will therefore be
to include GG implementations as alternatives in climb.

192

5.2.2 Natural Language Generation

Fokkens (2011a) includes an evaluation of comparative efficiency when altern-
ative analyses are used for natural language generation (NLG). The aux+verb
analysis can potentially lead to bigger improvements in efficiency compared
to the arg-comp analysis, when used in natural language generation. The
reason the arg-comp analysis is suboptimal for efficiency lies in its under-
specified argument list. In the case of parsing, this results in the auxiliary
combining with any possible word or constituent in the sentence starting
from the ones adjacent to it, moving on to potential constituents next to
those, etc. In other words, the possible combinations are restricted by the
word order in the surface string that is being parsed. When the sentence
is generated from the semantics, the order of the words is still open. The
auxiliary can thus combine with any word or constituent that is formed and
corresponds to part of the semantics. It is thus not surprising that the eval-
uation in Fokkens (2011a) comparing efficiency for generation is even more
significant than that found for parsing. A German sentence with one aux-
iliary and a ditransitive verb saw an increase in efficiency of at least 98.5%
when the aux+verb analysis was used.

This section examines another phenomenon that was observed while con-
ducting the experiments reported in Fokkens (2011a), but was not reported
at the time because the result was too preliminary. It concerned variations in
efficiency when different word order constraints applied in the Dutch verbal
cluster. The word order between auxiliary and verbal complement is free in
Dutch, except when modals are in infinitive form (then they must precede
their complement) or when verbs taking participle complements are in par-
ticiple form (then they must follow their complement). A more complete
overview of Dutch word order will be given in Chapter 6, Section 6.2. When
comparing efficiency in different Dutch structures, it turned out that it was
more efficient to generate sentences containing verbs that must precede their
complement than generating those with verbs that must follow their comple-
ment. The experiments in this section examine whether this observation still
holds now that the grammars are more complex.

193

For each analysis, aux+verb, arg-comp and filler-gap, five grammars based
on Dutch were created with gclimb. The coverage for Dutch phenomena in
gclimb is less than for German. The grammars have around 330 language
specific types and the language specific file consists of 1,300 lines of code
compared to approximately 1,300 language specific types defined in 7,300
lines of code for German grammars. Each grammar has different word order
properties. Namely,

• aux-comp-only: all auxiliaries must precede their complement

• comp-aux-only: all auxiliaries must follow their complement

• both: all auxiliaries can follow or precede their complement

• both-a-c: both orders are allowed in the grammar, but the auxiliaries
in our example must precede their complement

• both-c-a: both orders are allowed in the grammar, but the auxiliaries
in our example must follow their complement

The grammars are identical except for the differences in word order outlined
above. This comparison provides insight into the question of whether the
relative order of auxiliary and complement has any influence on efficiency for
generation. This effect can be investigated for all three alternative word order
analyses. Finally, efficiency differences between the three analyses when used
for generation can be investigated. Note that the first two grammars, which
restrict auxiliary order for all auxiliaries in the grammar, are not correct
grammars of Dutch. They are included in this study to investigate whether
a global restriction on auxiliary order has the same effect as a restriction on
particular auxiliaries.

An important aspect of this evaluation is the fact that the experimental set-
up merely required changing a few lines in the choices files to create grammars
that exhibit these linguistic variations in word order. These minor changes in
the choices file make sure that implementations concerned with word order

194

are changed, but all other implementations remain stable. The same exper-
iment can be carried out with the same guarantees about implementations
not related to word order as the metagrammar grows and covers more phe-
nomena. Facilitating studies like the one presented in this section is one of
the strengths of climb.

Experimental setup

The experiment is set up in similar lines as the experiment conducted in
Fokkens (2011a). Each grammar was used to generate realisations for eight
semantic structures with varying numbers of auxiliaries, arguments and mod-
ifiers.12 Table 5.18 provides an overview of the main elements used in the
sentences. The verbs in the table are presented in the order of their subcat-
egorisation, i.e. the verb described on the far left is the finite verb, followed
by its verbal complement, followed by the complement of the verbal comple-
ment, etc. In all sentences, the subject was a personal pronoun in first person
singular and all other NPs present in the sentence consisted of a definite de-
terminer and a noun. The modifiers in the last two structures both modify
the main verb. Examples of the canonical realisation of the corresponding
Dutch sentences with glosses can be found in appendix B, page 363.

MRS representations including the elements mentioned in Table 5.18 were
used as input for generation.

5.2.3 Results and observations

Table 5.19 presents the number of edges required to generate all possible real-
isations of the input MRS with a particular grammar. Each column repres-
ents different word order conditions. The aux-comp and comp-aux columns
provide the number of required edges if the grammar only accepts one fixed

12The experiments in Fokkens (2011a) only varied the number of auxiliaries and argu-
ments, since modifiers where not included in the metagrammar at that time. Chapter 6
will provide a description of extensions made to Dutch analyses in the metagrammar since
Fokkens (2011a).

195

Abbreviation Structure
iv-2aux auxiliary, raising verb, intransitive verb
iv-3aux auxiliary, raising verb, auxiliary, intransitive verb
tv-2aux auxiliary, raising verb, transitive verb
tv-3aux auxiliary, raising verb, auxiliary, transitive verb
dv-2aux auxiliary, raising verb, ditransitive verb
dv-3aux auxiliary, raising verb, auxiliary, ditransitive verb
dv-3aux-1mod as above, with adverb
dv-3aux-2mod as above, with additional pp-modifier

Table 5.18: Overview of structures included in NLG experiment

order between auxiliaries and complements. In the third column, both orders
are permitted and the auxiliaries used can either precede or follow their com-
plement. The columns both-a-c and both-c-a represent grammars in which
both orders are allowed, but the auxiliaries used in the example must precede
(both-a-c) or follow (both-c-a) their complement. As mentioned above, the
first two grammars are not correct grammars of Dutch, because both orders
are observed in the language (and permitted depending on the auxiliary and
morphological marking of the complement). It is nevertheless interesting to
examine these grammars, because we can observe whether differences are
caused by the existence of rules for both orders or just the restriction of the
auxiliary itself. An upperbound of 100,000 edges was used: if the grammar
needed more than 100,000 edges to complete generation, no further experi-
ments were conducted to determine the exact number of edges required.

The results show that for the aux+verb analysis, structures where auxiliaries
must precede their complement are indeed more efficient for generation than
structures where they must follow it. This holds both for structures in gram-
mars permitting only one order between auxiliary and complement as well
as for structures where all auxiliaries impose have a particular word order,
even if the grammar in principle also contains auxiliaries exhibiting different
word order.

Grammars that use the arg-comp analysis (regardless of whether they use
the filler-gap analysis for second word order or not) do not show such a sig-

196

nificant difference between the two orders. When the grammar only allows
for one order, generation is slightly more efficient when auxiliaries must pre-
cede their complement. However, these differences are much smaller than for
the aux+verb analysis. When the grammar permits both orders, structures
where the auxiliary must follow the verb may even be more efficient. In both
cases, the number of required edges for complete generation are relatively
close. Generation in these grammars is less efficient when both orders are

auxiliary+verb construction
aux-comp comp-aux both both-a-c both-c-a

iv-2aux 253 269 381 314 299
iv-3aux 563 610 1806 818 767
tv-2aux 466 494 705 569 541
tv-3aux 1051 1126 3453 1474 1371
dv-2aux 794 846 1234 975 929
dv-3aux 1827 1958 6280 2558 2383
dv-3aux-1mod 3398 7258 14263 4763 8206
dv-3aux-2mod 19334 62808 99819 26971 70906

argument-composition, no filler-gap
aux-comp comp-aux both both-a-c both-c-a

iv-2aux 733 743 848 796 791
iv-3aux 1560 1598 2822 1878 1854
tv-2aux 1967 1977 2163 2049 2046
tv-3aux 4039 4077 6347 4452 4439
dv-2aux 5999 6028 6307 6090 6087
dv-3aux 11706 11867 15665 12191 12178
dv-3aux-1mod 46010 47366 52918 46419 46406
dv-3aux-2mod >100,000 >100,000 >100,000 >100,000 >100,000

filler-gap and argument composition
aux-comp comp-aux both both-a-c both-c-a

iv-2aux 2046 2056 2411 2157 2154
iv-3aux 8649 8681 16119 10770 10759
tv-2aux 7100 7110 8248 7381 7380
tv-3aux 31188 31220 56996 38697 38698
dv-2aux 26645 26655 30511 27522 27521
dv-3aux >100,000 >100,000 >100,000 >100,000 >100,000
dv-3aux-1mod >100,000 >100,000 >100,000 >100,000 >100,000
dv-3aux-2mod >100,000 >100,000 >100,000 >100,000 >100,000

Table 5.19: NLG experiment results: minimal number of edges required

197

allowed as compared to only one order being allowed, but which of the two
orders is permitted hardly has an impact on the efficiency.

When comparing the efficiency of the grammars according to the analysis that
is used, we see that the aux+verb analysis reveals significant improvement as
compared to both grammars that use argument composition. Differences do
not seem to be as extreme as the ones reported in Fokkens (2011a), though
it is difficult to tell what the impact is exactly for the longer sentences. For
the first grammar that needed more than 100,000 edges for generation, an
additional attempt was made with a maximum 200,000 edges which was not
sufficient. Because this attempt took over 12 hours, the upperbound was set
at 100,000 for the rest of the experiment. It thus remains unclear how many
edges would be needed to complete generation for these structures. Therefore
the exact impact of the different analyses remains unclear.

In Fokkens (2011a), I predicted that the difference between the argument
composition analysis and the aux+verb analysis would increase as the gram-
mars cover more phenomena and sentences become more complex. The res-
ults in Table 5.19, however, reveal smaller differences than the original study.
This can be explained by the constraints on non-head-daughters mentioned in
Section 5.2.1, which reduce the number of edges needed to generate with arg-
comp grammars significantly. I ran an additional experiment to see whether
the prediction that differences in efficiency increase for more complex gram-
mars does hold when these constraints are not used. An alternative version
of the most efficient argument composition grammar (only allowing for aux-
comp order) without constraints on the non-head daughter was created. The
results are presented in Table 5.20. The results of the argument compos-
ition analysis with constraints and the aux+verb analysis are repeated for
convenience.

When the grammar with constraints is used, the number of edges required
drops by 81.2% for sentences with two auxiliaries and an intransitive main
verb and the reduction for sentences with three auxiliaries and a transitive
main verb is at least 96%. In order to see whether the aforementioned pre-
diction made in Fokkens (2011a) holds, I also compared these results to a

198

Structure no constraints constraints on rules aux+verb
iv-2aux 3901 733 253
iv-3aux 32190 1560 563
tv-2aux 21840 1967 466
tv-3aux 100,000< 4039 1051
dv-2aux 100,000< 5999 794

Table 5.20: Required edges for NLG with arg-comp without constraints on
non-head-dtr

grammar scaled up to cover additional phenomena and using aux+verb ana-
lysis. The number of required edges drops by 93.5% for sentences with two
auxiliaries and an intransitive main verb. A 31.3% reduction was found for
the toy grammars in Fokkens (2011a) confirming an increase in the difference
in required number of edges. Furthermore, where aux+verb can generate
sentences with ditransitive verbs and two auxiliaries with 794 edges, the arg-
comp analysis needs more than 100,000. For this structure, the aux+verb
analysis thus leads to a reduction of required edges of at least 99.2%.

The final observation that can be made from this experiment is that the
filler-gap analysis seems to be less efficient than the flat Matrix-based ana-
lysis for verb second word order. It should be noted, however, that no conclu-
sions about this matter can be drawn for the moment. The combination of
the Matrix-based analysis for second word order and argument composition
has been part of gclimb from the beginning, whereas the filler-gap analysis
has been added at a later stage. Because the filler-gap analysis has never
shown major issues in parsing efficiency and it has not been included in the
metagrammar for long, less effort has been made to increase its efficiency.
Efficiency issues related to the filler-gap analysis as compared to the Matrix-
based analysis for verb second word order should be addressed in future work.
The next section will describe experiments that can be used to address this
question as well as other possible experiments to be conducted with gclimb

as part of future work.

199

5.3 Outlook

This section describes two lines of investigation that were started during the
creation of climb, but whose completion would require substantial additional
research. They are described here because they illustrate the kind of research
that may be conducted using climb. The outcome of these projects could
result in new (linguistic) insight in German grammar as well as insights into
the interaction of grammars and automatic approaches to lexical acquisition.

5.3.1 Comparing grammars for German

One of the reasons for choosing German as the language to use in the exper-
iment exploring whether the climb methodology scales to broader coverage
grammars was that two grammars for this language have been developed
within delph-in. These resources thus provide material to compare gclimb

with. Even though a comparison between these three grammars cannot lead
to conclusions about the impact of using climb as a methodology, a com-
parison does provide basic insight into the complexity of gclimb. This holds
even more for comparing gclimb to GG than for comparing it with Chee-
tah. GG has been developed by different grammar writers over several years.
Especially because of the significantly longer development time, GG will
probably cover more linguistic phenomena. Insight into these differences can
be used as the basis of new research. By combining analyses of the three
resources, gclimb can be used for further experiments in comparative ef-
ficiency. Furthermore, coverage of gclimb can increase through additional
phenomena included in GG or the more efficient and pragmatic approach
followed in Cheetah. This section presents the first steps of an analysis of
the differences between these three resources.

A basic comparison

In order to get some idea of how the grammars compare, the Cheetah devel-
opment set and the extended set used to develop gclimb were parsed by all

200

Cheetah gCLIMB development Set
coverage overgeneration coverage Treebanked MRS

Cheetah 85.7% 16.6% 80.9% 78.7% 57.5%
GG 81.0% 10.5% 93.0% 92.2% 92.2%
gclimb-ac 94.3% 0.0% 99.8% 98.0% 98.0%
gclimb-ar 94.3% 0.0% 99.8% 98.6% 98.6%
gclimb-fg 93.3% 0.8% 99.4% 97.8% 97.8%

Table 5.21: Results of the grammars on Cheetah and gclimb development
set

grammars.13 Results are presented in Table 5.21.

The first column indicates coverage on Cheetah’s development set. The fol-
lowing two columns indicate what coverage and overgeneration of the gram-
mars are on the extended set used to develop gclimb. The column labeled
“Treebanked” indicates how often the correct parse, as intended by the gram-
mar, was included in the output. The final column indicates for how many
sentences the grammar produced a defensible MRS representation of the sen-
tence. GG and gclimb aim at producing correct MRSs, which means that
they must produce a defensible MRS representation in order to produce a
correct parse. Cheetah generally aims at analyses that are closer to syntactic
dependencies, but as the results show this corresponds to the correct MRS in
most cases; 73% of the analyses Cheetah produced as desired corresponded
to MRSs as produced by GG and gclimb.

Considering the fact that Cheetah and gclimb used the dataset during devel-
opment, GG’s coverage is comparatively high. The quality can furthermore
be seen by the fact that almost all sentences that are parsed also result in
a correct analysis. Furthermore, GG covers 33.7% of 1,000 sentences taken
from TiGer compared to 21.3% and 47.3% by gclimb and Cheetah, respect-
ively. If we consider the fact that Cheetah and gclimb use lexica that are
tailored for these corpora (i.e. the development corpus and 1,000 sentences
from TiGer), which was not possible to do for GG, these results provide a
strong indication that GG is indeed the richest resource of the three.

13A similar evaluation was carried out in Fokkens et al. (2012a).

201

Due to the significantly longer development time, another outcome of a com-
parative study would have been surprising. The differences in coverage and
overgeneration between Cheetah and gclimb are also expected. A com-
parison between the grammars as a whole therefore does not provide any
additional information on climb. The interest of comparing these resources
lies in their different strengths.

Expanding gCLIMB using other grammars

The main purpose of developing gclimb was to test whether climb can
be adopted as a general methodology for grammar engineering. It was not
possible to use analyses of existing grammars or even closely examine them,
because that would have lead to an unrealistic scenario: in most cases, there
will not be a grammar developed within the same framework yet and defin-
itely not a grammar the size of GG. However, GG contains a vast amount
of knowledge. It has for instance always used the filler-gap analysis for verb
second word order and a significant amount of work has gone into improving
efficiency of the grammar. If gclimb can generate analyses closer to the ones
used in GG, a clearer answer to the question raised in the previous section
concerning the efficiency of the filler-gap analysis in generation may be found.

Cheetah was developed to achieve decent coverage on TiGer in a short time.
Efficiency on frequent structures generally had priority over gaining coverage
on complex linguistic phenomena. Another interesting property of Cheetah
is the analyses used for treating German word order. Cramer (2011) uses
types to define topological fields. Word order is treated as if strings (in case
of parsing) are passed through an automaton that ensures that each structure
is placed in a field that can indeed contain it.

The strength of climb is that it provides a platform for implementing in-
teresting variations from gclimb, Cheetah and GG and evaluate them while
controlling for other properties of the grammar. The primary future plan for
gclimb is therefore to investigate analyses from Cheetah and GG for word
order and auxiliaries in addition to those already present in gclimb. One

202

of the main challenges lies in the significant differences in feature geometry
between GG and gclimb. Because GG only has one arguments list, all rules
combining subjects, complements or specifiers to heads as well as the entire
lexical hierarchy are affected. The code developed for spring cleaning and
path reduction and completion described in Section 3.3.2 can be extended to
handle more complex differences, but this is not a trivial task.

If gclimb is to be used to investigate German syntax in hpsg, BerliGram
(Müller, 2007) should be considered as well. This grammar contains analyses
that are primarily designed as part of linguistic investigation. Grammar en-
gineering is used to support linguistic research in a stronger way than this
was done in the case of GG, which was primarily designed with applications
in mind. Müller can stay closer to hpsg theory, because his grammar runs
on TRALE (Meurers et al., 2002; Penn, 2004). This platform provides a
more flexible formalism than that interpreted by the delph-in parsing and
generation tools. The differences between delph-in grammars and theoret-
ical hpsg outlined in Chapter 2, Section 2.2 do not apply to BerliGram. In
order to include analyses from BerliGram to gclimb, climb will need to be
able to produce grammars that run on TRALE. There are no fundamental
differences between the way grammars are defined in both platforms, so this
adaptation should be relatively straight-forward. It does however lead to an
additional dimension to be considered while maintaining gclimb: in addition
to the interaction between analyses that needs to be taken into account, the
grammar writer also needs to take into consideration which analyses work on
both platforms and which can only work on TRALE.

5.3.2 The grammar and the lexicon

The original implementations of lexical types in gclimb were an extension
of the lexicon library in the customisation system. Syntactic and semantic
properties of lexical items can be defined in the choices file and these defini-
tions can be combined with an arbitrary number of stem and pred values
for individual instances. All early grammars created with climb and the

203

Description Lexical items Lexical types
Core lexicon only 534 172
Core + TiGer, no optional arguments 73,724 376
Core + TiGer, optional arguments 71,365 583

Table 5.22: Lexicon size and number of lexical types for grammars using the
TiGer lexicon

core component of current climb grammars use these implementations to
define lexical items.

In order to increase lexical coverage, implementations were added to create
grammars that can work with the lexicon and morphology derived from the
TiGer Treebank (Brants et al., 2002) for Cramer’s (2011) Cheetah. This
lexicon and morphology will henceforth be called the TiGer lexicon and TiGer
morphology. The metagrammar includes a library that can create lexical
types combining all possible subjects with all possible complements creating
a large variety of intransitive, transitive and ditransitive verbs as well as
verbs taking four arguments. It is possible to filter the frames so that only
those that are found in the TiGer lexicon are included. An overview of the
size of the lexicon and number of lexical types when the TiGer lexicon is
used is given in Table 5.22. This addition to gclimb opens a new door to
address a variety of research questions. This section describes preliminary
observations on how the lexicon and grammar interact and indicates related
research questions that may be examined in future work.

A morphology and lexicon read off TiGer

The TiGer morphology treats all morphological variation as irregular. Each
surface form is related to the lemma it received in the TiGer annotation by a
rule that assigns grammatical properties of the word. This includes properties
such as person and gender for nouns, which remain constant throughout
morphological variation and are generally associated with lexical items rather
than morphological rules. Subcategorisation frames in the lexicon are directly
read off observations in the corpus. This means that for each token, its

204

grammar coverage overgeneration
arg-comp 74.5% 24.5%
arg-comp, optional args 65.1% 21.4%
filler-gap 76.9% 27.8%
filler-gap, optional args 72.2% 26.9%
aux+verb 77.6% 28.2%
aux+verb, optional args 67.6% 24.2%

Table 5.23: Results of parsing the development corpus with the TiGer lexicon

arguments or the element it modifies are checked and a new entry is added
to the lexicon if this token has not been used with this subcategorisation
frame or this modifiee before. As a result, certain linguistic generalisations
are not captured in the lexicon. Verbs with optional arguments for instance
may have several entries in the lexicon. The expletive es is optional for some
verbs and CPs may sometimes occur instead of NPs as arguments. In all
these cases, the surface subcategorisation is added to the lexicon. Adverbs
form another example receiving new entries depending on the item they are
modifying. Therefore, many commonly occurring words are more ambiguous
in the TiGer lexicon than they would have been if more generalisations were
captured.

This relatively high lexical ambiguity leads to inefficiencies in the gram-
mar. This is shown by the results of parsing the development corpus with a
grammar using the TiGer lexicon and morphology presented in Table 5.23.
Coverage drops to 65.1%-77.6% and overgeneration increases to 21.4%-28.2%
depending on the chosen analysis for word order and whether optional argu-
ments are used in the TiGer lexicon. The grammars have full lexical coverage
for this corpus. All loss in coverage is due to the maximum number of edges
being hit before finding a complete parse. I will address the difference in
coverage caused by using optional arguments in a discussion about revising
subcategorisation alternation below.

205

Parsing TiGer

In order to get an impression of the coverage of gclimb grammars on a cor-
pus, the gclimb grammars with the TiGer lexicon and morphology were also
run on 1,000 sentences from TiGer. The most efficient word order and aux-
iliary analysis managed to cover 21.0% of this set. Because of problems in
efficiency, some initial experiments were carried out where analyses for rare
phenomena that decrease efficiency of the grammar were excluded from the
grammar. As explained in Chapter 3, climb facilitates creating grammars
that include or exclude a specific analyses from the grammar. These exper-
iments could thus easily be run in a clean set-up, where the metagrammar
ensures that only types and constraints related to specific analyses are not
included in the alternative version of the grammar.

Results remained around 20%. For instance, when excluding partial VP
fronting where some auxiliaries remain in the verbal cluster, coverage goes
up to 21.3%. Five new sentences are covered and two sentences are no longer
covered. However, the two sentences no longer covered do not exhibit partial
VP fronting. This indicates that the results that were originally produced
by the grammar were probably the result of overgeneration rather than the
grammar producing a correct parse. The overgeneration is likely the result of
a combination of the structure of the grammar originally designed to capture
linguistic generalisations where possible, the lexicon read off a corpus and
the possibility of parsing phrases that are not complete sentences. This last
property was included in the grammar to allow it to parse headlines.

As mentioned in Section 5.1.3, Cheetah has a coverage of 47.3% on the same
1,000 sentences from the TiGer corpus. Two aspects may have played a
role in this superior coverage of TiGer. First, Cramer (2011) reports using
the first 500 sentences of TiGer as a development corpus to improve the
grammar. Thus, Cheetah can be expected to contain some additional corpus-
specific analyses. The development of gclimb only covered the first stage of
grammar development of Cheetah and therefore only considered the examples
of Cheetah’s primarily linguistically motivated development set. Second,

206

Cheetah was developed from the start with the idea of gaining lexical coverage
from the TiGer treebank and the grammar may therefore be more suited to
the lexicon that was derived from the treebank.

The grammar and lexical acquisition

The interaction between grammar and the lexicon form an interesting topic
for future work. Both investigation in lexical acquisition and in alternative
structures of the grammar can lead to new insights into the balance between
precision and lexical coverage as well as efficiency and ambiguity. Lexical ac-
quisition is the task of automatically identifying the lexical class of unknown
words for a given computational grammar. Cholakov (2012) describes the
following two-step process for lexical acquisition methods (Cholakov, 2012,
p.34):

1. Identify word(s) in the lexicon that are most similar to the unknown
word

2. Identify and analyse the lexical categories of the similar word, so that
the proper category or categories of the unknown word can be derived

When this is applied to hpsg grammars, this means that the approach aims
to find words in the lexicon with similar syntactic properties and assigns a
lexical type to the unknown word based on these similar words. This may lead
to the identification of generalisations that apply to particular lexical types.
There are three reasons that may explain why Cramer (2011) did not follow
this approach for deriving a lexicon from TiGer. First, reading of a lexicon
from a treebank is not the same as lexical acquisition from an unannotated
corpus. The treebank provides annotations so that the syntactic properties
in the particular sentence are known, unlike a lexical acquisition approach
where these properties have to be derived from the context. The need to
collect evidence from several structures is thus not as strong when creating
a lexicon from a treebank. Furthermore, the examples with a given word are
limited to those occurring in the treebank, which may not provide enough

207

evidence to compare new lexical items to existing ones. Finally, in order
to compare new lexical items to existing ones, a reliable lexicon of a decent
size should be present in the first place. In the case of Cheetah, only a core
lexicon of high frequency closed class lexical items (prepositions, determiners
and auxiliary verbs) was present. All open class lexical items were read off
the treebank. There was thus no linguistically motivated material to compare
new items to.

If we want to investigate how we might create a linguistic precision gram-
mar in relatively short time using a treebank, it would be interesting to
investigate how a lexicon read off a treebank can be used as a basis for a
linguistic precision lexicon. Classes of similar lexical items can be created
based on the information read off the treebank or external resources. For
instance, investigating which words have similar alternative subcategorisa-
tion frames can provide insight into common alternations in subcategorisa-
tion. Semantic classes may also share syntactic properties which may help
to identify whether a verb has optional arguments (e.g. eat that may appear
without an object) or assigns different roles depending on the number of ar-
guments (e.g. I broke the window versus the window broke). In other words,
we can learn from lexical acquisition approaches to create classes of words
based on what was read off the treebank. These classes can be studied to
form lexical types that capture general syntactic properties of the language
and the entries found in the treebank can be mapped to appropriate types.
Such a lexicon could be used as a basis to apply further approaches for lexical
acquisition using corpora that are not annotated.

Finally, several studies have addressed deep lexical acquisition for delph-

in grammars (among others Baldwin (2005); Blunsom and Baldwin (2006);
Marimon et al. (2007); Zhang (2007); Cholakov (2012)). Most of these ap-
proaches use the grammar itself in combination with corpora and (in some
cases) linguistic information created by other resources to predict the lex-
ical type of unknown words. These approaches have been applied to several
grammars for different languages, but (to my knowledge) no studies have
been carried out comparing the interaction between choices made in gram-

208

mar design and lexical acquisition. In particular, the structure of the lexical
type hierarchy and approaches for dealing with subcategorisation alterna-
tion may lead to new insights. Alternative approaches to subcategorisation
alternation form an interesting topic of investigation independently of its
interaction with lexical acquisition. I will elaborate on this below.

Revising subcategorisation alternation

Flickinger (2000) shows that efficiency in a grammar can be improved by a
reduction of roughly 30% in time and 20% in heap space by using optional
arguments rather than multiple lexical entries. I have created a version of the
TiGer lexicon that uses optional arguments to reduce the size of the lexicon.
Subcategorisation frames that occur for the same stem were compared. If the
arguments of one frame were a superset of the other frame, the stem received
a lexical entry with all arguments of the superset where the ones missing from
the smaller frames were made optional. This reduces the average number of
lexical entries per stem for verbs from 2.03 to 1.76. gclimb can produce
grammars with this lexicon as well as with the lexicon that does not use
optimal arguments. Table 5.24 provides an overview of the coverage on all
sentences and average number of tasks and edges, average CPU time, average
memory usage per sentence. Contrary to the findings of Flickinger (2000),
results vary with a tendency towards less efficiency when optional arguments
are used. The decrease in coverage, which we also observed in the evaluation
data presented in Table 5.23, is caused by an increased number of examples
where the parser hits the maximum number of edges. This unexpected result
is caused by interactions between rules ensuring argument optionality, local
word order constraints and long distance dependencies. The outcome may be
different as soon as basic analyses for word order, extraction and argument
optionality are revised using knowledge from GG.

Haugereid (2011) proposes an alternative analysis for alternative subcategor-
isation frames, where unary rules to drop optional arguments from the ar-
gument’s list are avoided. The approach supposes an additional feature in
lexical items that captures all possible subcategorisation frames for a given

209

arg-comp filler-gap aux-rule
measure full lex opt-arg full lex opt-arg full lex opt-arg
Coverage 18.2% 17.6% 18.6% 17.4% 21.2% 19.2%
Tasks 157,534 194,609 180,354 200,552 208,057 189,267
Edges 4,368 5,179 6,658 6,388 8,112 6,049
CPU (s) 1.27 1.82 2.00 2.27 1.30 1.17
Memory (kb) 23,038 26,392 32,615 31,561 31,717 26,991

Table 5.24: Difference in efficiency with and without optional arguments

word. As the verb is combined with potential arguments, it is verified against
this additional feature whether they can occur as an argument of this par-
ticular verb or not. Furthermore, it can be checked whether the resulting
structure forms an admissible subcategorisation frame for the verb in ques-
tion after it has combined with all of its arguments in the sentence. Be-
cause this approach avoids unary rules capturing argument optionality, it
may also avoid the inefficiencies found in the first preliminary experiment for
reducing the size of the lexicon. Haugereid’s (2011) analysis requires includ-
ing analyses with fundamental differences in feature geometry. Integrating
Haugereid’s proposal thus involves the same challenge as the integration of
GG’s treatment of argument structure addressed in Section 5.3.1. Because
both research related to including alternative analyses from other grammars
for German as well as this investigation on efficient treatment of lexical am-
biguity involve this challenge, one of the first steps in future work will be
to revise climb so that it provides additional support for alternative feature
geometries. The path reduction and completion algorithms outlined in Sec-
tion 3.3.2 provide basic functions for manipulating the feature geometry and
can be extended to support this functionality.

5.3.3 Summary of the outlook

This section presented an outlook of work that can be carried out with
gclimb. First, I provided a basic comparison between GG, Cheetah and
gclimb. Each of these resources has different strengths. The strength of

210

climb is that it provides the means to combine the strengths of individual
sources. One of the first steps in future work will be to include analyses
from Cheetah and GG in gclimb. Alternative word order analyses provide
new material to compare efficiency of different approaches and coverage of
linguistic phenomena can be extended with knowledge included in GG. It
was pointed out that, when investigating German hpsg, BerliGram is par-
ticularly interesting to look at. It remains closer to hpsg theory, which is
possible because it runs on TRALE. Including BerliGram analyses thus re-
quires adapting climb so that it can output grammars for TRALE requiring
minor revisions of the software.

The second part of the outlook addressed possibilities of extending the gclimb

lexicon through lexical acquisition. Results from an initial effort importing
the Cheetah lexicon were presented. These results are relatively low (21%
coverage on 1,000 sentences with full lexical coverage). The main reason for
this results appears to be that the grammar was not designed to use lex-
ical types that were directly read off a treebank. Future work could address
the interaction between analyses in the grammar and different approaches for
lexical acquisition. In particular, the question of how to deal with ambiguous
subcategorisation frames can have a big impact on efficiency. The following
section will provide a summary of the entire chapter.

5.4 Summary

This chapter has presented the main evaluation of climb. It addressed two
aspects that play a role in determining the merit of the methodology. First,
the question of whether climb can be used in long-term grammar develop-
ment projects was addressed in Section 5.1. This was investigated through
the development of gclimb, a metagrammar that can create German gram-
mars covering at least all phenomena included in Cheetah’s development set
and covered by Cheetah’s core grammar. An overview of phenomena included
in gclimb with basic indications of how their treatment differed from Chee-
tah was given. This overview provided an indication of the complexity of the

211

analyses in gclimb. The grammars were also evaluated on a portion of the
TiGer corpus, where Cheetah outperformed gclimb because of efficiency and
the Babel corpus where gclimb outperformed Cheetah handling more lin-
guistic phenomena correctly. In the discussion of this section, I addressed the
fact that it is impossible to compare different methodologies for grammar de-
velopment in a scientific manner and that no clear definition can be given for
when a grammar should be considered large scale. Nevertheless, it was shown
that gclimb covers a wide range of linguistic phenomena indicating that the
approach scales and is suitable for large scale grammar development. Fur-
thermore, gclimb was developed in less than half the time of Cheetah’s core
grammar while partially addressing crosslinguistic variation and adapting a
more challenging standard for its semantic output. This strongly indicates
that if the method were to have a negative impact on development time, this
stays within an acceptable range.

Section 5.2 provides a different means of evaluating the climb methodology,
this time in terms of the additional experiments that it enables. I presented
two experiments addressing efficiency of the alternative analyses included in
gclimb. The first experiment compared parsing results showing that the
aux+verb analysis remains more efficient as the grammar grows, but that
this difference can be greatly reduced by constraining the non-head-daughter
in subject and complement rules in the arg-comp grammars. If no such
constraints are assigned, the difference in efficiency of the two analyses in-
creases significantly as the grammars grow, just as predicted by Fokkens
(2011a). Similar observations are made in the natural language generation
experiment. This experiment furthermore examines how specific linguistic
properties of a language interact with different analyses. Grammars with
slightly different word order properties were created and their performance
was compared. This experiment is particularly interesting, because it is easy
to set up using climb. These different grammars were created by changing a
few lines in choices files. It would be much harder to create all these versions
of a grammar by manually adapting and maintaining them. Furthermore, the
metagrammar ensures that properties that are not related to the changes un-

212

der investigation remain stable. As such, this experiment shows that climb

facilitates research that would be extremely difficult to carry out without the
tools provided by climb.

Section 5.3 describes two future directions of research that can be carried
out using gclimb. The first direction would dive deeper into the comparison
of different visions on German syntax. If analyses from other hpsg based
grammars for German are included in gclimb, the resource can truly be
used to gain insight into German syntax. In particular, the inclusion of
BerliGram analyses would be interesting for this purpose, since this grammar
has as primary goal to provide theoretical sound analyses for German syntax.
The second direction would explore the interaction between the grammar
and the lexicon. This research would explore how to include generalisations
when obtaining lexical items from a treebank or how to deal with ambiguous
subcategorisation frames. In both directions of research, alternative analyses
play a significant role. They present directions of research where climb

provides a framework for more systematic research.

213

Chapter 6

Multilingual aspects of CLIMB

This chapter describes multilingual and crosslinguistic aspects of climband
delph-in grammars in general. First, multilingual grammar development
with climb will be introduced in Section 6.1. The crosslinguistic aspects in
climb for Germanic languages (gclimb) are highlighted in Section 6.2. This
is followed by the introduction of Slaviclimb, a version of climb for Slavic
languages that is part of the SlaviCore project (Avgustinova and Zhang,
2010). Section 6.4 describes climb for second language learners. Finally,
this chapter investigates how delph-in grammars for different languages use
the language independent core provided by the Grammar Matrix. Because
this investigation requires insight into which types each grammar actually
uses, the spring clean algorithm is revisited and applied to several grammars
in Section 6.5. Changes and use of the Grammar Matrix core in gclimb and
other grammars are described in Section 6.6.

6.1 Sharing between related languages

The general setup used in climb, where partial implementations are linked
to definitions in choices, forms a practical platform for parallel grammar
development. There are several reasons why parallel grammar engineering
and sharing information between grammars may be interesting. From the

214

engineering point of view, sharing implementations helps to speed up the de-
velopment of individual grammars. While describing grammars, considering
commonalities and differences between a set of languages can help to bet-
ter describe them and pinpoint language specific properties. Furthermore,
considering multiple languages may support research that can explain the
influence of the languages a student already speaks on their ability to learn
a specific new language. Comparison may show what the new language has
in common with languages the student already knows and reveal properties
that may pose a challenge.

It is not surprising that climb facilitates parallel grammar development,
since the Grammar Matrix customisation system providing the basis for
climb was designed for this purpose. There is, however, an important dif-
ference between parallel grammar development with climb and extending
the Grammar Matrix customisation system to cover more phenomena. This
difference lies in the open world approach of the Grammar Matrix (provided
phenomena should ideally cover any natural language) versus the closed world
situation when grammars for a specific set of languages are developed in par-
allel. Because all required variations are known when development is intended
for a closed set of languages, the focus lies on analytical depth rather than
typological breadth. This difference is mainly exploited in the Slaviclimb

project discussed in Section 6.3, which will elaborate on the consequences of
this difference. First, Section 6.2 will describe variations for different Ger-
manic languages.

6.2 CLIMB for Germanic languages

The first experiments run with gclimb covered basic phenomena in Dutch,
German and Danish. gclimb was further developed for German. The res-
ulting grammar has been described in Chapter 5. This section describes the
variations gclimb includes to cover Dutch and Danish data. I will start with
a description of the main linguistic variations that were included in the early
development phase of climb. The next part of this section will present two

215

small experiments examining to what extent gclimb can be used for creating
grammars for Dutch and Danish now that gclimb has grown significantly
focusing on German only. This is followed by a third experiment which in-
vestigates whether the analyses in gclimb apply to Northern Frisian, another
Germanic language which was not considered at any time during the devel-
opment of gclimb. The experiment for Dutch also includes a comparison
between alternative analyses for auxiliaries and word order. This was not
done for Danish and Northern Frisian, because all analyses had the same
coverage and overgeneration and only minor differences in efficiency could be
seen in the small test suites that were used for Danish and Northern Frisian
in the evaluations.

6.2.1 Word order variations for Dutch

gclimb covers several main word order variations found in Germanic verb
second languages. These variations include fixed order or free order of ar-
guments in the Mittelfeld, placement of the verbal cluster before or after
(indirect) objects and whether or not partial VPs can be placed in sentence
initial position. They are based on linguistic properties of Danish, Dutch
and German. I will discuss these variations by comparing Dutch and Dan-
ish word order to German word order described in Chapter 4. Dutch word
order resembles German order most and will be presented first.1 Table 6.1
represents topological fields and basic word order for Dutch.

Dutch word order can be modelled by the same topological fields as Ger-
man. The variations found in this example for Dutch correspond to those in
Table 4.1, page 125 except for one difference. The German set of sentences
also contained an example where the object preceded the subject in the Mit-
telfeld. Even though this order is admittedly awkward in German, it is pos-
sible for objects to be placed before subjects in the Mittelfeld. Example (20)
presents a more natural sounding example that exhibits this order.

1The description of Dutch word order is an extended version of the description given
in Fokkens (2011a).

216

Vorfeld LB Mittelfeld RB Nachfeld
De man heeft aardbeien gegeten na het feest
The man has strawberries eaten after the party
De Man heeft aardbeien na het feest gegeten
Aardbeien heeft de man gegeten na het feest
Na het feest heeft de man aardbeien gegeten
Aardbeien gegeten heeft de man na het feest
Gegeten heeft de man aardbeien na het

feest

Table 6.1: Basic structure of Dutch word order in main clauses (not exclusive)

(20) Nach
after

der
the.f.sg.dat

Party
party.sg.dat

hat
have.3sg.pres

sie
pro.3pl.acc

keiner
pro.neg.sg.nom

essen
eat.bse

wollen.
want.bse

“No one wanted to eat them after the party.” [deu]

Dutch is not as tolerant about such alternations in the Mittelfeld. There is a
strong requirement that the subject immediately follows the verb if it is not
placed in the Vorfeld. Exceptions are possible, but hardly ever occur and are
highly marked.

Example (20) has two properties that influence information structure in a
manner that allow the object and subject to switch general preferred order.
First, the object is a personal pronoun which preferably stands close to the
left bracket. Second, the subject is an impersonal pronoun and impersonal
pronouns are elements that are more flexible in their position.

Dutch generally strongly requires the subject of a main clause to immediately
follow the conjugated verb if it does not precede it. The Dutch equivalent of
example (20) presented in (21) is nevertheless not completely unacceptable
because of the influential factors mentioned above.

The sentence in (20) will most likely be interpreted as glossed in the right
context, but without context the sentence is also interpreted as if She didn’t
want to eat anybody after the party (where ze (“she”) is interpreted as the
subject) despite its implausible semantics.

217

(21) *? Na
after

het
the.sg

feestje
party.sg

heeft
have.3sg.pres

ze
pro.3pl

niemand
pro.neg.sg

willen
eat.bse

eten.
want.bse

“No one wanted to eat them after the party.” (intended) [nld]

A similar difference applies to the relative order of direct and indirect ob-
ject. In German, this order is flexible with a preference that depends on the
verb. Dutch requires the indirect object to precede the direct object. As for
subject-object order, some flexibility may occur when pronouns are involved.
The preference in order is strong (despite occasional exceptions) and lack of
overt case marking on Dutch noun phrases would lead to significant amounts
of ambiguity if all orders were generally accepted. gclimb therefore includes
an analysis that enforces the canonical Dutch word order of arguments in the
Mittelfeld.

This analysis mainly involves restrictions on rules that pick up the second ar-
gument on the comps list: for fixed argument order, this is only allowed if the
first argument is a verbal projection and the subject has already been found.
Two additional features keep track of changes in argument order and indicate
whether a main verb and argument combination are allowed to appear as a
partial VP in sentence initial position. The values of these features must be
passed up when several other rules apply. Finally, the grammar includes an
additional rule which makes sure flexible argument order is supported when
split verbal clusters2 are permitted and the argument composition analysis
is used. In total, there are ten places in the metagrammar where grammat-
ical properties are included or excluded depending on argument order being
flexible or fixed. In two cases, properties are added to ensure flexible order
and the other eight properties help to constrain the order of arguments. Five
constraints are added regardless of the analysis that is used for auxiliaries
and word order and sixteen constraints interact with the analysis.3 Proper-

2See Section 4.2.3, p. 128 for a description of this phenomenon.
3Note that more than one constraint can be added at the same location in the meta-

grammar. There can thus be more constraints than places where argument order being
fixed or not plays a role.

218

ties related to argument order are found in three libraries: one is related to
the feature geometry, one to passivisation and all others are included in the
library for verb second word order.

The second difference between German and Dutch word order concerns the
order of verbs in the Right Bracket. German word order in the verbal cluster
is generally head-final with the exception of the auxiliary flip.4 The order of
auxiliaries and their complements is less rigid in Dutch and typically head-
initial. Most Dutch auxiliaries can occur in both orders, but this may be
restricted according to their verb form. Haeseryn (1997) distinguishes four
groups of auxiliary verbs that have different syntactic restrictions.

1. Verbs selecting for participles which may appear on either side of their
complement (e.g. hebben (“have”), zijn (“be”)).

2. Verbs selecting for participles which prefer to follow their complement
and must do so if they are in participle form themselves (e.g. blijven
(“remain”), krijgen (“get”)).

3. Modals selecting for infinitives which prefer to precede their comple-
ment and must do so if they appear in infinitive form themselves
(e.g. willen (“want”), kunnen (“can”)).

4. Verbs selecting for “to infinitives” which must precede their complement
(e.g. lijken, schijnen (“seem”)).

While there is some variation among speakers, the generalisations above are
robust. The permitted variations for a combination of verbs of the 3rd and
1st category in the right bracket are presented in Table 6.2. The numbers
behind the verbs indicate order of subcategorisation (verb1 subcategorises for
verb2, etc.). The variant %De man zou haar kunnen gezien hebben is typical
of speakers from Belgium (Haeseryn, 1997). Speakers from the Netherlands
tend to regard such structures as ungrammatical. gclimb can both generate

4Part of this description was taken from Fokkens (2011a).

219

a Flemish grammar5 accepting all variations in Table 6.2 and a (Northern)
Dutch grammar which forces participles to appear at the edge of the verbal
cluster. gclimb provides the possibility of including the feature edge (on
cat). This feature registers whether a verbal form is placed at the edge of
the cluster or not. The value of this feature can be set for individual lexical
items or morphological and lexical rules. It thus provides a general solution
for making sure verbal forms are situated at the edge of the cluster based on
the kind of verb and morphological properties.

VF LB MF RB
De man zou1 aardbeien kunnen2 hebben3 gegeten4
the man would strawberries can have eaten
De man zou1 aardbeien gegeten4 kunnen2 hebben3
%De man zou1 aardbeien kunnen2 gegeten4 hebben3
The man may have been eating strawberries

Table 6.2: Word order variation in the right bracket

The two variations described above (fixed argument order and the order of
verbal forms depending on verb class and verbal morphology) cover the main
differences in word order requirements between German and Dutch. Two
more variations are included to cover Danish word order.

6.2.2 Word order variations for Danish

Table 6.3 provides topological field representation for Danish as proposed by
Ørsnes (2009a). The example is based on (Müller and Ørsnes, to appear,
p.27) and presents a subordinate clause, a declarative main clause and an
imperative.

The main difference between Danish on the one hand and Dutch and German
on the other hand lies in the position of the Verbal Field. The verbal cluster

5I will not discuss the question of whether Flemish and (Northern) Dutch are the same
language. The variation was included because Flemish speakers accept more variation in
word order. Whether this is a dialectal difference or a difference between languages is not
relevant for this discussion.

220

Vorfeld T/C Sentence Field
Verbal Field

at drengen ikke har set filmen
that the boy not has seen the movie

Drengen har ikke set filmen
the boy has not seen the movie

se ikke filmen!
watch not the movie

Table 6.3: Topological model for Danish word order

in this field precedes objects. The verbal cluster forms a VP with its com-
plements. When subjects are not fronted, they stand between the finite verb
and the verbal cluster (if present). This is also the correct position for the
negative adverb ikke (“not”). gclimb provides the options of a verbal cluster
preceding objects (Danish) and a verbal cluster following objects (Dutch and
German). The analyses for alternative placements of the verbal cluster are
similar. The difference is captured by using head-initial rules to combine
verbal heads in the cluster with its objects for Danish and head-final rules
for Dutch and German.

Danish furthermore differs from German and Dutch in the syntactic con-
ditions on fronted verbal elements. When verbal elements front in Danish,
the complete VP must be placed in the Vorfeld. In other words, partial VP
fronting is not permitted in Danish. gclimb provides partial VP fronting
as an option that can be turned on for Dutch and German and excluded for
Danish. If the Filler-Gap analysis is chosen for Danish, the correct behaviour
is achieved by forcing auxiliaries to take VP complements.

The variations found in Danish have led to two more parameters in gclimb;
verbal clusters that must precede objects (Danish) and clusters that must
follow it (Dutch and German) and partial VP fronting (Dutch and German)
or no partial VP fronting (Danish). Together with the two parameters based
on difference between German and Dutch this leads to four parameters to
capture basic properties for these three languages. The three languages re-
ceived equal attention during the development of the grammars prepared
for the comparative experiments carried out in Fokkens (2011a). An addi-

221

tional verification of how the metagrammar dealt with Dutch was carried
out at stage four of the development of gclimb for German as presented in
Table 5.15, page 186. Afterwards, the project focused on German exclusively.
The following subsections present the results of experiments with grammars
created with the early version of gclimb as well as the results of an experi-
ment that uses the current version of gclimb to create grammars for Dutch
and Danish.

6.2.3 Dutch Evaluation

Evaluation data

The first part of the evaluation of gclimb’s multilingual applicability con-
sisted of an experiment to see whether the phenomena gclimb covers for
German are also covered for Dutch. The evaluation particularly addresses
whether early implementations for Dutch still worked in the larger grammar
and whether additional phenomena added for German could easily be adap-
ted for Dutch. Linguistic coverage for German was verified by a manually
created development set of 1138 examples (508 positive and 630 negative
examples), as described in Section 5.1.1. The development set of 93 positive
examples covered by Cheetah formed the basis of this set.

In order to examine the possibilities of covering these phenomena for Dutch
with gclimb, I translated the German development set into Dutch. The set
had to be adapted slightly to better reflect the behaviour of the phenomena
in Dutch. I reduced the large variation to capture German adjective endings
to adequately express Dutch variation (adjectives modifying neutral single
nouns with an indefinite determiner do not have an ending, all others take
the suffix -e) in a minimal setting of examples. Word order variations that
do not occur in Dutch were adapted so that the set can be used to check for
overgeneration and examples verifying German’s case marking were removed.
Leaving such examples in the test suite would artificially boost results for
Dutch.

222

The Dutch set was extended to include the more complex word order vari-
ations of Dutch in the verbal group, dative shift and morphological marking
of finite verbs in second person singular, which depends on word order. Dat-
ive shift in Dutch (22-23) and the word order variation for the second person
singular (24-26) are illustrated below.

(22) Marie
Marie

geeft
give.3.sg.pres

hem
pro.3.sg.acc

het
det.n.sg

boek.
book.

“Marie gives him the book.” [nld]

(23) Marie
Marie

geeft
give.3.sg.pres

het
det.n.sg

boek
book

aan
to

hem.
pro.3.sg.acc.

“Marie gives the book to him.” [nld]

(24) Je
pro.3.sg

hebt
have.2.sg.pres.subj-prec

hem
pro.3.sg.acc

het
det.n.sg

boek
book

gisteren
yesterday

gegeven.
give.ptc

“You gave him the book yesterday.” [nld]

(25) Heb
have.2.sg.pres.subj-fol

je
pro.2.sg

gisteren
yesterday

hem
pro.3.sg.acc

het
det.n.sg

boek
book

gegeven?
give.ptc

“Did you give him the book yesterday?” [nld]

(26) Gisteren
yesterday

heb
have.2.sg.pres.subj-fol

je
pro.2.sg

hem
pro.3.sg.acc

het
det.n.sg

boek
book

gegeven.
give.ptc

“Yesterday, you gave him the book.” [nld]

The variation of morphological marking for the verb hebben (‘have’) observed
in Examples (24) and (25) applies to all verbs in present tense including
irregular verbs, such as zijn (‘to be’). If a second person singular precedes a
finite verb in present tense, it ends in the suffix -t, which is dropped if the
subject follows the verb, regardless of whether this is the result of object or
modifier fronting or the formation of a yes-no question.

223

Finally, adpositional phrases that introduce relative clauses function differ-
ently in Dutch from German. Similarly to English, Dutch uses wh-structures
to create such relative clauses. Unlike English, these words cannot be dropped,
nor can wh-phrases be used in relative clauses that are not introduced by an
adpositional phrase. The test suite was adapted to verify correct performance
of the Dutch phenomenon which is illustrated below:6

(27) de
the

tafel
table

waarop
on which

het
the

boek
book

ligt
lies

“the table the book lies on” [nld]

(28) de
the

man
man

waarmee
with who

Marie
Marie

werkt
work.3rd.sg

“the man Marie works with” [nld]

(29) de
the

man
man

met
with

wie
who

Marie
Marie

werkt
work.3rd.sg

“the man Marie works with” [nld]

(30) de
the

man
man

die
that

met
with

Marie
Marie

werkt
work.3rd.sg

“the man that works with Marie” [nld]

(31) * de
the

man
man

die
that

Marie
Marie

ziet
sees

“the man who sees Marie” [nld]

(32) * de
the

man
man

wie
who

met
with

Marie
Marie

werkt
works

“the man who works with Marie” (intended) [nld]

(33) * de
the

man
man

met
with

die
that

Marie
Marie

werkt
works

“the man Marie works with” (intended) [nld]

(34) * de
the

man
man

Marie
Marie

ziet
sees

“the man who sees Marie” (intended) [nld]
6Note that structures such as (34) are not grammatical in German either. Examples

similar to (31) and (34) were also present in the original German test. The examples are
included here to illustrate the difference between Dutch and English.

224

After all adaptations were made, the test suite consisted of 469 positive and
591 negative (a total of 1,050) examples, compared to 508 positive and 630
negative examples in the original German set. As the evaluation was carried
out, corrections to the test suite were made, resulting in a set of 475 positive
and 577 negative examples, a total of 1,052.7

Creating a grammar for Dutch

The Dutch grammars described in Fokkens (2011a) cover basic Dutch word
order properties and intransitive, transitive and ditransitive verbs. A choices
file used to create one of these grammars was used as the basis for creating
a Dutch grammar. I added new phenomena using recent choices for German
and adapting properties for Dutch where necessary. The created grammars
were evaluated against the test suite described above and the choices file and
metagrammar were adapted accordingly to increase the competence of the
grammar.

Table 6.4 presents the competence of the grammar at different stages of this
process. The first run through only attempted to get the grammar running
with the auxiliary construction analysis.8

In addition to presenting the results of the Dutch grammar created with
climb, Table 6.4 reflects the general process of creating a new grammar
with a metagrammar. In particular, the relation of adapting definitions in
choices and adapting actual analyses is telling. After some minor corrections
in the metagrammar (which took around 20 minutes in total) to make sure
the metagrammar produced well-typed grammars, coverage went up from
35.8% to 96.6% without any additions to the metagrammar.9 The bulk of

7The process of testing a precision grammar with a test suite (almost) always leads
to new insights on both the test suite and the grammar (Bender et al., 2011). It is thus
common that corrections to the test data are made.

8Version 23045 contained several changes to the metagrammar, including some fea-
tures that allowed the argument composition analysis to run, the same version number is
therefore repeated for each change that involved revisions in the metagrammar.

9Corrections in the test suite fixed typos in nine positive examples and moved six
examples wrongly classified as ungrammatical to the positive set, contributing 2.0% to the
increase in coverage.

225

attempt & additions coverage overgen. #items svn
0: (grammar did not load) – – – 22129
1: removed German specifics 35.8% 0.3% 1050 22705
hard coded in metagrammar
2: fixed vocabulary in choices 72.1% 2.2% 1050
3: corrected typos in data 80.2% 3.3% 1050
4: corrected data and choices 95.7% 5.5% 1050
5,6: corrected data 96.6% 3.5% 1052
7: added dative shift 97.7% 3.5% 1052 22891
8: added 2sg morphology 98.5% 3.1% 1052 22892
changes
9: add adpositions introducing 99.8% 3.1% 1052 22907
relative clause
10: corrected example in data 100% 3.1% 1052
11: fixing word order settings 100% 2.9% 1052
12: passing up passive feature 100% 2.4% 1052 23045
13: passing up feature prd 100% 0.9% 1052 23045
14: fixing wh-rel 100% 0.5% 1052 23045
15: attempting to fix choices 94.5% 0.5% 1052
for passives
16: removing fix 15, fixing 100% 0.3% 1052 23045
filler-gap

Table 6.4: Process of adapting gclimb for Dutch

this increase was thus due to manipulations to the definitions in choices. This
observation is in line with Bender et al. (2010), where results from the first
attempt to create and evaluate a grammar differed from the final results for
all seven languages. Abkhaz revealed the smallest increase covering 27.8%
more examples and the West-Greenlandic grammar covered 87.8% more of
the data, both simply by adapting choices.

Time wise, producing these results took approximately half a day of work
on the metagrammar and three and a half days of producing and correcting
the definitions in choices for Dutch. It should be noted, however, that the
0.3% overgeneration points to a problem in the word order analyses. This
small percentage in overgeneration actually refers to a fundamental problem

226

in the current analyses for Dutch word order in the verbal group. In order
to fix this problem, completely new analyses for Dutch word order need to
be designed for gclimb, which is likely to take several days.

Overall, the results from this experiment show that the metagrammar is
a suitable tool for parallel development of grammars for related languages
with similar syntactic structures. The last version of the gclimb that was
tested for Dutch variation captures only 18.9% of the positive examples in
the development set. Even though Dutch variations were not taken into
account during most time in the development process of gclimb, a grammar
for Dutch capturing a large range of phenomena could be created in four
days. But it also showed that not all similar phenomena in related languages
can be accounted for by a small set of adaptations. In order to create a
decent grammar of Dutch that can move towards a resource grammar, the
word order analyses will need to be revised. It should be noted that Dutch
word order was implemented and behaved correctly for the small grammars
examined in Fokkens (2011a): changes to expand the grammar and capture
more phenomena led to the current analyses for word order that do not
handle Dutch word order correctly.

It would have been possible to maintain the old analyses in gclimb, but
this was not done because these analyses could not handle German word
order correctly as gclimb covered more phenomena. The possibility that
they may still be the right analysis for Dutch was not taken into account
at the time. This outcome shows that, in cases where the main purpose of
climb is to support multilinguality, the range of variations of the individual
languages will need to be taken into account and be examined carefully for
each phenomenon. It is important to run regression tests for all languages
covered by the resource and examine whether a necessary revision for one
language is indeed necessary for other languages as well. Otherwise, old
analyses should be maintained in climb.

227

Alternative analyses for Dutch

After achieving 100% coverage and staying with a small percentage of overgen-
eration that presents a challenge to fix, I created grammars with the altern-
ative analyses for auxiliaries and word order described in Chapter 4. The
word order variation includes the filler-gap analysis for verb second order,
which is the standard analysis for German and Dutch in theoretical hpsg

and a flat analysis using the mc feature to make sure exactly one constitu-
ent ends op before the conjugated verb. The second analysis is based on
Wambaya and included in the Grammar Matrix customisation system. The
second point of variation concerns auxiliaries, which either use the argument
composition analysis as proposed by Hinrichs and Nakazawa (1994) or an
alternative proposed by Bender (2010) which has been shown to be more
efficient for Wambaya by Bender (2010). I have shown in Chapter 5 that this
analysis is also more efficient for parsing German and for generating sentences
in Dutch. The analysis was more efficient for German, Dutch and Flemish
in Fokkens (2011a). This alternative analysis is currently only compatible
with the flat mc analysis. This resulted into three alternative grammars:
filler-gap (standard hpsg analyses for both phenomena), argument compos-
ition (flat verb second analysis, but standard hpsg argument composition
analysis for auxiliaries) and auxiliary construction (flat verb second analysis
and alternative auxiliary analysis).

The additions for the interaction between the position of subjects in second
person singular and morphology on the verb use features covered these phe-
nomena for the auxiliary construction analysis (henceforth aux+verb). Minor
revisions had to be made to the metagrammar to make sure the grammars
containing the argument composition analysis (henceforth arg-comp) and
filler-gap analysis were well-formed and could handle the phenomenon. The
final results, including average number of edges and CPU time per sentence,
for the Dutch dataset are presented in Table 6.5.

Unlike in all other experiments carried out in this thesis, the arg-comp ana-
lysis has the best results in performance when comparing the number of

228

analysis coverage overgen. edges cpu (s)
aux+verb 100% 0.3% 108 0.21
arg-comp 100% 0.2% 100 0.24
filler-gap 97.1% 1.0% 170 0.30

Table 6.5: Parsing results of gclimb for Dutch

required edges. Previous experiments on parsing German or generating sen-
tences in Dutch (see Section 5.2.2) all showed that the aux+verb analysis was
more efficient than the arg-comp analysis on all accounts (number of required
edges, CPU time, memory and carried out tasks). This is an important res-
ult, because it shows that the evidence that has been collected so far does not
provide conclusive evidence for the hypothesis that the aux+verb analysis is
the more efficient option for every Germanic grammar. Because competence
and efficiency depend on several properties of the grammar which are not
independent of each other, it will always remain difficult (if it is possible at
all) to provide conclusive evidence of an analysis’ superior efficiency.

However, I would still be inclined to say that the results in this thesis provide
strong evidence that the aux+verb analysis is more efficient than the arg-
comp analysis. First, the difference in efficiency observed in Table 6.5 is small
in comparison to results from previous experiments. Second, the grammars
used in this experiment do not model Dutch word order completely correctly.
It is possible that the bug that is leading to overgeneration in these grammars
is also responsible for the higher number of edges that are needed when using
the aux+verb or filler-gap analysis. The fact that overgeneration is higher
for these two grammars provides further support for this hypothesis. I have
pointed out in Chapter 5 that future research should further investigate under
what conditions the aux+verb analysis is more efficient than the arg-comp
analysis. One of the first questions to answer in this regard is whether the
arg-comp analysis is still more efficient for parsing once gclimb is fixed and
captures Dutch word order correctly again.

229

6.2.4 Danish Evaluation

The Danish component in gclimb is evaluated by using the test suite accom-
panying DanGram (Müller and Ørsnes, to appear)10 of 58 positive examples,
1 example marked by a ? and 29 negative examples (not considering ex-
amples that were commented out in the test suite). The evaluation was
carried out after the evaluation on Dutch was completed. The metagrammar
thus already contained all corrections that were made for Dutch. Develop-
ment time was not registered in detail, but the first two stages took approx-
imately one working day and stages three to seven were carried out in five
evenings.

This evaluation is more challenging than the evaluation for Dutch for two
reasons. Danish word order differs more from German than Dutch word order
making it more likely that gclimb does not contain the required analyses.
Furthermore, the Dutch test suite was based on the original development
set for gclimb and therefore covered more or less the same phenomena. The
DanGram test suite has been developed completely independently of gclimb.

Evaluation setup

The evaluation makes use of information included in the test suite only. Ex-
amples in this section come from the test suite.11 Based on the descriptions
accompanying the data, one (positive) example was corrected where the de-
scription said a pronoun should bear accusative case, but the nominative
pronoun was found. The grammar cannot parse this sentence regardless of
the case of the pronoun, so this correction did not influence the results of the
evaluation. The set includes two examples which were marked as ungram-
matical, but turned out to be grammatical with a pragmatically implausible

10http://hpsg.fu-berlin.de/Fragments/Danish/, accessed 3 February 2013, part of
the release of 12 January 2012.

11The test suite did not include complete IGT, but rather only word-by-word glosses
(in some cases). In order to present full IGT for the examples in this section, I made
translations and glosses where they were missing in the original examples.

230

http://hpsg.fu-berlin.de/Fragments/Danish/

reading.12

Grammar development

Table 6.6 presents the outcome of this evaluation. The numbers in brackets
represents the score if we regard the example that was marked with a question
mark (presented below) as ungrammatical.

(35) ? Giver
Give.3sg

Bjarne
Bjarne

Peter
Peter

den
pro.n.3.sg

ikke?
neg

“Does Bjarne not give it to Peter?” [dan]

I will briefly elaborate on the individual stages of the evaluation. As men-
tioned above, the verbal cluster precedes objects in Danish. The first version
of gclimb thus included a separate set of rules that places objects after the
verbal cluster. These rules and all possible interactions were ignored while
gclimb grew to cover more phenomena in German. This is reflected in the
early stages of creating a grammar for Danish with gclimb. The first attempt
failed on a bug in gclimb and no grammar was created. The grammar that
was created during the second attempt also allowed objects to precede the
verbal cluster (accidentally including rules not applicable to Danish) leading
to higher overgeneration than coverage (fixed in attempt 2). The Danish
experiment was interrupted for several weeks between the second and third
attempt. Several changes were made to gclimb in this period while eval-
uating gclimb on the TiGer treebank as described in Section 5.3.2. This
included the possibility of parsing fragments in addition to full sentences.
Attempts 3 and 4 were run after fixing typos in choices and the test suite
and including the possibility of parsing phrases.

The fifth attempt includes the only addition of a new phenomenon to gclimb

that was made as part of the evaluation of Danish. Danish nouns can take
suffixes that mark definiteness. These suffixes have the same effect on se-
mantics as definite articles and are mutually exclusive to specifiers preceding

12This grammaticality judgement was confirmed by Bjarne Ørsnes (p.c.).

231

attempt & additions coverage overgeneration svn
0: (no grammar created) - - 23313
1: fix: bugs in gclimb 10.2% (10.3%) 17.2% (16.7%) 23975
2: fixing position verbal cluster 5.1% (5.2%) 0% (0%) 23976
3: choices and typos 22.0% (22.4%) 27.6% (26.7%) 26689
4: allowing for phrase as root 33.9% (34.5%) 34.5% (33.3%)
5: definite suffix and copula 50.8% (51.7%) 24.1% (23.3%)
6: added rules for modification 54.2% (55.2%) 20.7% (20.0%)
7: passivisation 57.6% (58.6%) 20.7% (20.0%) 26911
8: corrected judgement 59.0% (60.0%) 14.8% (14.3%)

Table 6.6: Performance of gclimb grammars on Danish test suite

the noun. The following examples from the DanGram test suite illustrate
this:

(36) bogen
book.def

“the book” [dan]

(37) den
def

bog
book

“the book” [dan]

(38) * den
def

bogen
book.def

“the book” (intended) [dan]

Because definite suffixes occur in several examples of the set, this addition res-
ulted in a significant increase in coverage. Some corrections to the definitions
of copula verbs in the choices file reduced overgeneration. The metagrammar
did not include rules to cover modification for languages with verbal clusters
that precede objects prior to svn revision 26911. This was corrected in stage
6. Finally, a minor correction to the analysis for passivisation was made in
the metagrammar leading to the final results in this evaluation.

Stage 8 does not represent a new version of the grammar, but a correction
in the test suite. As mentioned above, it was confirmed by Ørsnes that

232

two examples that lead to overgeneration as measured in this evaluation are
actually syntactically well-formed. They illustrate fixed word order of direct
and indirect object in ditransitives. Example (39) presents one of these
examples followed by its well-formed counterpart in (40).

(39) * Manden
man.def

giver
give.3.sg

bogen
book.def

Max.
Max

“The man gives Max the book.” (intended) [dan]

(40) Manden
man.def

giver
give.3.sg

Max
Max

bogen.
book.def

“The man gives Max the book.” [dan]

The sentence in (39) is not actually ungrammatical, but rather only gram-
matical with a pragmatically unlikely reading. It conveys the implausible
reading The man gives Max to the book. The results in stage 8 provide the
coverage and overgeneration of the grammar if the two sentences that illus-
trate word order for ditransitives are classified as positive examples.

Error analysis

The results for Danish are less good than those for Dutch: the final grammar
has a coverage of around 59% and overgenerates on approximately 15% of the
examples in the test suite. Table 6.7 provides an overview of the phenomena
causing overgeneration (overgen.) and lack of coverage (undergen.). These
phenomena can only be captured by including completely new analyses in
gclimb.

Most errors are caused by lack of an adequate analysis for the position of
adverbial modifiers, notably the negation marker. Another notable phe-
nomenon that is not covered is the position of negated object NPs. Rather
than their canonical position following the verbal cluster, they must precede
the cluster taking positions that are usually filled by adverbs:

(41) Bjarne
Bjarne

arbejder,
work.3.sg,

hvis
if

han
pro.m.3.sg.nom

ingen
no

bog
book

læser
read.3.sg

233

Description overgen. (# ex) undergen. (# ex)
Word order and negation 2 9
Negated NPs in adverbial position 1 2
Modification word order 1 1
Interrogatives and word order 4
Expletive in subordinates 2
Subject extraction 4
Coordination and extraction 1

Table 6.7: Overview of over- and undergeneration DanGram test suite

“Bjarne works if he is not reading a book.” [dan]

(42) Bjarne
Bjarne

arbejder,
work.3.sg,

hvis
if

ingen
no

bog
book

han
pro.m.3.sg.nom

læser
read.3.sg

“Bjarne works if he is not reading a book.” [dan]

(43) * Bjarne
Bjarne

arbejder,
work.3.sg,

hvis
if

han
pro.m.3.sg.nom

læser
read.3.sg

ingen
no

bog
book

“Bjarne works if he is not reading a book.” (intended) [dan]

Clausal complements may include an additional expletive pronoun, a phe-
nomenon that is also found in Dutch but currently not covered by gclimb.
This phenomenon was not present in the German or Dutch development sets
and therefore not addressed in the development of gclimb. It is illustrated
in (44).

(44) Bjarne
Bjarne

spørger,
ask.3.sg

hvem
who

der
expl

læser
read.3.sg

bogen.
book.def

“Bjarne asks who is reading the book.” [dan]

Conclusions about the evaluation for Danish

This section investigated the competence of Danish grammars created with
gclimb on a test suite consisting of 88 examples created by Müller and Ørsnes
(to appear). The final grammars covered 59% of the 60 positive examples and
overgenerated on 14.8% of the 28 negative examples. These numbers provide

234

a rather limited insight into the competence of the grammars and can not
be compared directly to the results for Dutch. The test suite was created
as part of a grammatical description and grammar development effort that
(partially) focused on different phenomena than gclimb. It is therefore not
tailored to evaluating gclimb’s phenomena in the way the development set
for Dutch did. As a result, the Danish test suite contains phenomena that
were never considered in the development of gclimb. Second, the set consists
of a rather small number of examples. It is therefore not clear whether
the Danish grammar indeed cover all variations of the included phenomena
correctly. Nevertheless, the outcome of this experiment and in particular the
error analysis of phenomena that gclimb does not cover provides insight into
the current possibilities of creating grammars for Danish with gclimb.

The evaluation of Dutch coverage and performance presented in the previ-
ous section led to two observations. First, gclimb can produce a Dutch
grammar that can handle a wide range of phenomena correctly. Second, if a
resource is intended to create grammars for related languages, it is import-
ant to take the variations of all language into account while adapting the
grammar. The Danish evaluation presented in this section mostly confirms
the second observation. Even though the grammars handle most examples
correctly, fundamental revisions and several additions of new phenomena are
required in order to cover phenomena that are not handled correctly yet.
This includes phenomena such as the word order of adverbial modifiers and
negation. These revisions can only be carried out in collaboration with nat-
ive speakers, given that there will always remain open questions concerning
the behaviour of the language.

6.2.5 Northern Frisian Evaluation

Nigel Kilmer and Woodley Packard created a grammar for Northern Frisian
in the context of the Knowledge Engineering for NLP13 course. In this course
(which has been mentioned at various occasions throughout this thesis), stu-

13http://courses.washington.edu/ling567/, accessed 29 November 2013.

235

http://courses.washington.edu/ling567/

dents create grammars for languages using the Grammar Matrix customisa-
tion system as a starting point. The grammar Kilmer and Packard created
is made available together with final choices file and test suite as part of
Language CoLLAGE (Bender, 2014).14 The final test suite consists of 109
positive items and 55 negative items. The test suite is based on the descrip-
tion of Northern Frisian from Lasswell (1998) and 30 positive examples were
taken from this work. KiIlmer and Packard, who are not (native) speakers of
Northern Frisian, created additional examples they needed in order to test
their grammar. These examples (55 negative and 79 positive in total) are
based on Lasswell’s (1998) descriptions.

Evaluation setup

The final evaluation carried out to examine the multilingual applicability of
gclimb examined the possibility of creating a grammar for Northern Frisian
based on Kilmer and Packard’s test suite and choices file. Northern Frisian
has not been taken into consideration at any point in time during the de-
velopment, but it is a Western-Germanic language known to exhibit word
order phenomena that are similar to Dutch and German (Hock and Joseph
(1996)). It is spoken in the North of Germany around the Danish border and
reveals similarities to these two langauges. I followed the Knowledge Engin-
eering for NLP course in the initial stages of developing gclimb for German.
This means that most phenomena included in the test suite are included in
gclimb. The evaluation mostly tests whether the specific behaviour of the
phenomenon in Northern Frisian can be captured using gclimb.

Grammar development

The evaluation of gclimb’s competence for Northern Frisian was carried
out after the experiments for Dutch and Danish. The metagrammar thus
included all corrections and adaptations that were made during the exper-

14http://www.delph-in.net/matrix/language-collage/, accessed 29 November
2013.

236

http://www.delph-in.net/matrix/language-collage/

iments described above. In this experiment, I investigated the possibilities
of gclimb in a limited time frame. I therefore only fixed minor bugs in the
metagrammar and did not revise analyses. All other improvements to the
grammar consisted of adapting choices. Minor bugs are situations where, for
instance, two phenomena need a feature, but only one of them introduces it.
The grammar will work correctly if both phenomena are included, but not
if the phenomenon that introduces the feature is missing while the other is
included. The metagrammar was adapted in these cases, so that both phe-
nomena introduce the feature. Another typical (related) case would be that
the phenomenon needing (and introducing) the feature is not present in the
grammar, but analyses for other phenomena still share the value of this fea-
ture. In this case, the metagrammar should check if the phenomenon requir-
ing the feature is present in the grammar and only add the constraints sharing
the feature’s value in that case. These corrections only form minor revisions
in the metagrammar. Similar revisions were made for Dutch and Danish,
but I also actively added phenomena that were not included in gclimb for
both of these languages (e.g. position dependent morphology for the second
person singular for Dutch, morphologically marked definiteness for Danish).

The evaluation of gclimb’s performance on Northern Frisian started by
creating a grammar from Kilmer and Packard’s original choices file with
gclimb. Table 6.8 provides an overview of the results of grammars created
with gclimb, the results of a grammar created by the Grammar Matrix
and Kilmer and Packard’s final grammar. I will elaborate on the individual
development stages below.

The starting point of this evaluation was, as mentioned above, Kilmer and
Packard’s final choices file for Northern Frisian and gclimb without any ad-
aptations. However, some minor revisions in the choices file were needed to
make sure a grammar could be created and loaded. The latest version of
the Grammar Matrix customisation system allows users to identify super-
types of lexical items. At the time, this functionality was only present for
lexical rules and not for lexical items in gclimb. Several types for nouns in
Kilmer and Packard’s choices inherit information about their determiner from

237

Development stage Coverage Overgeneration svn
Grammar Matrix customised 45.0% 9.1% 26861
Kilmer and Packard’s grammar 70.6% 1.8% -
0: gclimb and original choices - - 26911
1: gclimb and adapted choices 43.1% 20.0% 26911
2: adding supertypes, original choices 45.0% 5.5% 26913
3: choices & bug fixes 94.5% 7.2% 26977
4: two minor revisions 94.5% 0% 27000

Table 6.8: Overview of Northern Frisian evaluation

their supertype. Because gclimb ignored information about the supertype,
it raised an error that information on determiners was missing for several
nouns. I copied the choices concerning determiners from the supertype to its
subtypes in the choices file, so that gclimb could create a grammar. The
coordination library in gclimb can handle agreement between constituents.
The implementation for coordination agreement in gclimb at the time had
a bug creating agreement rules with empty values if no form of agreement
was defined in the choices file resulting in an ill-formed grammar. I therefore
added a choice requesting verbal forms to agree.

The revisions made in the second development stage addressed both the
problems outlined above. The bug in the coordination library was fixed. I
included the implementations from the Grammar Matrix allowing users to
define supertypes of lexical items and use inheritance in gclimb. gclimb

could now create a grammar with Kilmer and Packard’s original choices file.
The changes in gclimb led to only a small increase in coverage of the gram-
mar, but strongly reduced overgeneration. This result is not surprising con-
sidering that supertypes were being ignored in the grammar created in the
first stage.15 Supertypes can introduce additional constraints, in this case
restrictions on person, number, gender and case. The absence of these con-
straints leads to overgeneration, but does not stand in the way of coverage
of the grammar.

15gclimb and the Grammar Matrix customisation system both ignore choices they do
not understand.

238

The grammar has the same coverage as a grammar generated by the Gram-
mar Matrix customisation system from the same choices. Overgeneration
is reduced by 3.6% when gclimb is used instead of the Grammar Matrix
customisation system (see Table 6.8, Grammar Matrix customised). This
is caused by incorrect interaction between implementations for information
structure and verb second analysis in the customisation system. Constraints
required to ensure verb second word order are not taken up in phrasal rules
introduced by the information structure library. There is no information
structure library in gclimb and, as such, related definitions in the choices
file are ignored by gclimb.16

The third stage reflects the final results on this set obtained by grammars
generated using gclimb without revised analyses. In this stage, lexical items
and grammatical properties were added to choices in order to cover all lexical
items in the test suite (including those used in ungrammatical examples).17

One example exhibited several complex phenomena that are not covered
by gclimb and some lexical items only included in this example were not
included. In total, 508 choices were added resulting in a choices file containing
968 choices. Minor bugs of the nature explained above were repaired in the
metagrammar during this stage as well.

The evaluation of the resulting grammar led to the identification of two bugs
in gclimb analyses which were fixed in the fourth stage of the evaluation.
First, the rule changing word order requirements on finite verbs in order
to form yes-no questions did not require verb forms to be fully inflected,
nor did it pass on information indicating whether these forms were inflected
or not. The grammar furthermore accepted sentences where the negation
adverb was placed in the Vorfeld. An option that prevents scopal adverbs
from occurring in this position was therefore added to the metagrammar.
The remaining errors made by gclimb grammars after these changes are

16Note that this also means that the MRSs produced by gclimb grammars is less rich
than those produced by Grammar Matrix customised grammars and the ultimate grammar
created by Kilmer and Packard. MRSs produced by gclimb do not include icons. I
checked MRSs produced by the gclimb grammars manually for plausibility, but did not
compare them to the MRSs produced by Kilmer and Packard’s grammar.

17None of the ungrammatical examples tested had illformed morphotactics.

239

Description undergeneration (# ex)
Word order & optional subject 2
V2 order in subordinate 1
Asyndetic coordination 1
VPP and VP ellipsis 1
Imperatives 1

Table 6.9: Overview of remaining errors in Northern Frisian grammar

described below.

Error analysis

Table 6.9 provides an overview of the five phenomena that could not be
handled properly by the gclimb grammars after all relevant choices were
added an bugs were fixed. I will elaborate on these phenomena and why
they are not covered below.

The first phenomenon that is not covered is problematic because of the in-
teraction between word order in yes-no questions and pro-drop for subjects.
The Grammar Matrix core introduces the basic rule for removing optional
subjects from the subj valency list. This rule requires the comps list to
be empty. This constraint was meant to prevent spurious analyses (for in-
stance that the rule applies to the verb, to the verb after picking up its first
complement, after it picking up yet another complement, etc.). However,
this constraint leads to problems in situations where word order constraints
require the subject to be picked up before the complements. If the subject
can be dropped in a language with strict VSO or OSV order, structures with
verbs subcategorising for complements and a non-overtly expressed subject
cannot be parsed. The subject cannot be removed from the subj list, be-
cause the comps list is not saturated and the comps list cannot be saturated,
because the verb has not combined with its subject yet. This situation oc-
curs in Northern Frisian, where subjects must immediately follow the clause
initial verb in yes-no questions and second person singular subjects can be
dropped. The constraint that subjects may only be dropped if the comps

240

list is saturated should be considered a language specific property (since it
does not apply to all languages) and must be removed from the Grammar
Matrix core.18

A second phenomenon that is not handled properly are subordinate clauses
in Northern Frisian, which may have verb second word order even if a com-
plementizer is present. This is illustrated in the following example:

(45) Ik
pro.1.sg

gesi
guess.1.sg

dat
comp

ik
pro.1.sg

iit
eat.1.sg

jam.
pro.3.pl

“I guess that I can eat them.” [frr]

Dutch does not allow for verb second word order in subordinate clauses at all.
They occur in informal German, but are only acceptable if the complement-
izer is dropped. The combination of complementizer and verb second order
required to account for Northern Frisian was therefore not considered during
the development of gclimb. The sentence in (45) is the only sentence that
is covered in Kilmer and Packard’s final grammar, but not by the grammars
created with gclimb.

The third phenomenon that leads to problems is asyndetic coordination,
which is covered by the Grammar Matrix customisation system (Drellishak
and Bender (2005)). Asyndetic coordination is a form of coordination where
the coordinates are placed next to each other without a coordination marker.
Because this form of coordination does not occur in German or Dutch, its
interaction with phenomena added to gclimb was not verified during devel-
opment. Including asyndetic coordination for sentences in a grammar that
includes a decent range of complex phenomena without ensuring that the
right features are shared and restrictions on the application of such rules
are imposed leads to inefficiencies in the grammar. Coverage of the grammar
drops to 85.3% when adding choices for asyndetic coordination in the choices
file.19

18The constraint was removed from the Matrix core included in gclimb after the eval-
uation. This also required a revision of the word order libraries adding the constraint for
languages that do not exhibit VSO and OSV word order in combination with subject drop.

19Kilmer and Packard’s original choices file did not include asyndetic coordination.

241

The forth phenomenon that is not covered is verb phrase pronominalisation
(VPP), which has not been considered in gclimb. Furthermore, VP ellipsis
has been limited to comparative structures for now. The test suite contained
one example that exhibited both asyndetic coordination and VPP which
could not be captured. Finally, one example formed an imperative structure,
which is also not covered by gclimb.

As mentioned above, (45) illustrates the only example that gclimb currently
cannot handle, but is covered by Kilmer and Packard’s grammar. In this ex-
ample, verb-second word order is found in combination with a complement-
izer. All other phenomena that gclimb cannot handle are also not treated
in Kilmer and Packard’s original grammar. The Grammar Matrix custom-
isation system does not provide correct analyses for any of the phenomena
described in this section.

Conclusion about Northern Frisian evaluation

As far as can be told from this small test suite, gclimb can create a de-
cent grammar of Northern Frisian. The two phenomena that are currently
not covered (the interaction between word order and dropped subject and
verb second order in subordinate clauses) can be added without much effort.
However, there are not enough details available in the test suite at hand to
determine whether Northern Frisian word order can be captured correctly,
or whether similar challenges as observed in the Dutch or Danish evaluations
will be found.

This test nevertheless indicates that variations in related languages can eas-
ily be captured when using climb. The grammar was created in approxim-
ately eight hours and covered 94.5% of the test suite without overgeneration.
Kilmer and Packard’s grammar was developed over several weeks and covered
70.6% of the test items and overgenerated on 1.8%. It should be taken into
consideration that Kilmer and Packard also had to develop the test suite
which is an effort that cannot be neglected. However, the significant differ-
ence in development time and superior competence of the grammar developed

242

Source Covered (# ex) Not covered (# ex) Coverage (%)
Lasswell (1998) 8 22 26.7%
Kilmer & Packard 69 10 87.3%
Total 77 32 70.6%

Table 6.10: Coverage per source for Northern Frisian

using gclimb cannot be explained completely by this additional task. As ex-
plained in Chapter 5, it is not possible to compare two efforts of grammar
engineering due to the multiple influential factors, but given the fact that
Packard is the developer of the ACE parser and generator and has profound
knowledge of delph-in grammars makes it unlikely that climb played no
part in the difference in results (both in terms of development speed and
competence of the grammar).

It should be noted that Kilmer and Packard’s test suite contained a num-
ber of challenging examples. The 30 examples taken from Lasswell (1998)
often exhibited more phenomena than the one they were meant to illus-
trate. Table 6.10 represents the coverage of Kilmer and Packard’s final gram-
mar on examples taken from Lasswell (1998) compared to the coverage on
the examples they created themselves. The results in this table confirm
that Lasswell’s (1998) examples were comparatively challenging; only 26.7%
were covered compared to 87.3% of the examples created by the authors.
Moreover, six of the ten examples from Kilmer and Packard that are not
covered were adaptations from examples provided by Lasswell. As I will ex-
plain below, this partially explains why the Northern Frisian grammar got
so much benefit from gclimb. I will end this part of the evaluation with
a note about the importance of a decent test suite which ideally is created
with help of a native speaker or field linguist. In particular, I will address
the challenges when the linguistic description of a language and grammar
engineering efforts are not carried out by the same person and the people
involved are not in touch.

Two examples that exhibited phenomena that were not covered at all by the
grammar were all intended to evaluate other phenomena. The imperative

243

structure illustrated a bare NP and the sentences coordinated in an asyndetic
conjunction illustrated a passive sentence. The Northern Frisian test suite
contains several examples that are meant to illustrate a basic phenomenon,
but also include complex ones. The gclimb grammars for Northern Frisian
include implementations of phenomena that were treated in the later stages of
the development of gclimb, such as long distance dependencies and relative
clauses. This partially explains why coverage of the gclimb grammars is so
much higher than the coverage achieved by Kilmer and Packard’s grammar
(94.5% versus 70.6%).

I would be reluctant to say however that the grammars I have created for
Northern Frisian include correct analyses for the phenomena they cover, even
for those phenomena where all examples in the corpus were handled ad-
equately. In many cases, more examples would be needed to know how the
language truly behaves. These properties of the test suite reveal that it is
extremely difficult to build a grammar based on literature alone. Grammar
engineering works best if one has simple examples revealing all possible vari-
ations one can think of for a phenomenon and access to native speakers is
necessary to obtain such sets. Ideally, the grammar engineer would collab-
orate with the field linguist (Bender et al., 2012). The grammar engineer
has much to gain by such a collaboration, because finding out how the lan-
guage works exactly is the most difficult step in grammar engineering and
an adequate description plays an important role in that process. The fact
that information is often missing when one starts implementing a grammar
also shows why this collaboration may also be interesting for field linguists.
Grammar engineering forces researchers to think of the details and can lead
to questions that they would not have thought of asking while focusing on
describing the language or carrying out pen-and-paper syntax.

6.2.6 Summary of gCLIMB evaluation

This section presented three evaluations that examined whether gclimb can
easily be used to create grammars for Germanic languages other than Ger-

244

man. The first notable outcome of these experiments is that the argument
composition analysis turned out to be slightly more efficient in Dutch than
the auxiliary+verb and filler-gap analysis. Even though this may be related
to errors in the latter two (which result in more overgeneration), this out-
come reveals the complexity of determining which analysis is more efficient.
It underlines the importance of systematic testing in a wide range of settings.

When looking at possibilities of creating grammars for other Germanic lan-
guages, the results show that climb offers a certain amount of flexibility.
Creating the grammars that provided the ultimate results took a couple of
days in all three experiments and all three grammars could capture at least
part of the behaviour found in the test suites correctly. It is unlikely that
similar results could have been achieved using the Grammar Matrix and its
customisation system alone. On the other hand, all grammars had shortcom-
ings and in all three languages, behaviour was found that was not foreseen
during the development of gclimb. New implementations and fundamental
revisions of some of the existing analyses will be required to capture this be-
haviour correctly. The outcome of these experiments shows that the method
is in principle suitable for multilingual grammar development, but that it is
essential that all variations found in the languages that the metagrammar
should cover are considered during development. Focusing on one language
only can push certain analyses in a direction that is not suitable for other
languages. The evaluation of Dutch revealed that gclimb no longer supports
Dutch word order correctly. The original analysis was completely abandoned
based on evidence from German. It would have been possible to maintain
the original analysis in climb, which would have allowed me to “time travel”
back to the original analysis for Dutch. This outcome shows that it may be
of advantage to make use of this functionality of climb more extensively, es-
pecially when more than one language is taken into consideration. The next
section describes Slaviclimb, a direction of future work where multiple lan-
guages will be taken into account throughout the entire grammar engineering
effort.

245

6.3 PaGES, SlaviCore and SlaviCLIMB

PaGES20 (Parallel Grammar Engineering for Slavic languages in DELPH-IN)
(Avgustinova, 2007; Avgustinova and Zhang, 2009)21 is a project that aims
to develop grammars for Slavic languages around a core of typical Slavic
phenomena shared among individual languages. Initial steps have been made
to combine adopt the climb methodology for developing a Russian grammar.
This implementation of climb can also generate SlaviCore (Fokkens et al.,
2012a). This section provides a brief description of PaGES and illustrates
the role climb can play in this project.

6.3.1 SlaviCore

PaGES is a grammar engineering effort largely inspired by the Grammar
Matrix. As explained in Section 2.3, the Grammar Matrix consists of a static
core and a dynamic customisation system that generates language specific
analyses. Part of the static core provides generic types that are thought
to be useful for most (if not all) delph-in grammars. I will use the term
Matrix core to refer to this part of the Grammar Matrix’ static core. The
main idea in PaGES is to provide a structure to share analyses for Slavic
languages crosslinguistically through inheritance. It can thus be seen as
a set of Slavic specific subtypes of the types included in the Matrix core.
Figure 6.1 provides a representation of the original SlaviCore setup.22 Note
that the representation is simplified: not all Slavic languages are included, in
practice individual languages may inherit some properties directly from the
Matrix core and more subcores of SlaviCore are foreseen.

The simplest way to describe SlaviCore would be to see it as a Slavic spe-
cific extension of the Grammar Matrix. It should, however, be noticed that

20http://moin.delph-in.net/SlavicTop, accessed 11 April 2014.
21This section presents joint work with Tania Avgustinova and Yi Zhang (hence the use

of we in this section). Some parts of it have been previously published in Fokkens et al.
(2012a) and Fokkens and Avgustinova (2013).

22This figure is based on discussions about PaGES with Tania Avgustinova and Yi
Zhang.

246

http://moin.delph-in.net/SlavicTop

Matrix Core

SlaviCore

Balkan properties

Polish Czech Bulgarian Russian

West Slavic South Slavic East Slavic

Figure 6.1: Basic architecture of original idea for PaGES

limiting the typological coverage to a closed group of languages provides a
rather different perspective on crosslinguistic language modelling.

As explained in Section 2.3, p. 54, the Grammar Matrix has the ambition
to provide a platform to develop grammars for any natural human language.
Achieving analytical depth is a challenge even for monolingual resources. The
additional ambition to provide large typological coverage imposes limitations
to the analytical depth that can be achieved using the Grammar Matrix. To
illustrate: the first step when working on a Grammar Matrix library is to
define clear boundaries to the phenomena and the level of detail it should
cover (Bender et al., 2010). This must be done, because it is not feasible to
provide options that both capture the exact behaviour of individual languages
and cover the full range of known typological variation.

Grammar engineers using the Grammar Matrix can start with the basic
analysis provided by the customisation system and adapt it manually to
handle the specifics of the language correctly. It is, however, not clear how
these simplified basic analyses may influence the final grammar. On the one
hand, the customisation system provides a basis the grammar writer can

247

work with and can use to focus on other phenomena. On the other hand, it
is not clear whether the basic customised analysis can be adapted easily to
capture the details of the phenomenon correctly. There may be cases where
analyses have to be replaced completely, with the risk of the customisation
system setting the grammar developer on the wrong track. This limitation
does not reflect a lack of quality of the resource, but is a direct consequence
of the ambition to provide support for all languages.

When working with a closed set of languages, it becomes possible to take
the fine details of variation found in individual languages into account. The
resource can therefore provide more elaborate analyses that take even details
in variations between languages into account.

Furthermore, by working on several Slavic languages in a multilingual gram-
mar engineering project, we hope to improve the feedback loop between
developers of the core grammar and engineers working on individual lan-
guages. Current implementation projects in SlaviCore are mainly run by
three researchers, Avgustinova and Zhang working on Russian and Osenova
working on Bulgarian, who collaborate to establish the core grammar. The
Slavic language family does not only reveal many common properties, but
also exhibits a decent range of typological variation. The development of a
common core for these languages can thus lead to valuable insights into lin-
guistic generalisations and different levels of sharing implementations. The
resulting SlaviCore in itself can therefore provide important feedback to the
Grammar Matrix.

6.3.2 SlaviCLIMB

The original design of SlaviCore only shared grammatical properties static-
ally. Slaviclimb adds a dynamic dimension to this approach that plays a role
on both a practical and a theoretical level. This section provides an outline
of climb’s role in developing Slavic grammars around SlaviCore.

248

Static versus dynamic sharing

Sharing analyses statically provides a useful basis for multilingual grammar
development. However, only properties that are completely identical can be
shared across languages. Properties that are shared by a subset of languages
can only be shared by creating subcores (or they are included in some gram-
mars without being used). Furthermore, statically shared analyses are not
suitable for capturing variations in related phenomena. Dynamic sharing
provides more flexibility and can support such variations. This section will
elaborate on the differences between static and dynamic sharing.

SlaviCore allows individual languages to incorporate analyses from SlaviCore
or one of its subcores through inheritance from appropriate types. Minor
crosslinguistic variations can be dealt with either by keeping some properties
underspecified in the core or providing a set of types languages can select
from. In the latter case, properties that do not occur in the language will be
present in the type hierarchy without contributing to an instantiated type.

It is, however, not possible to include contradictory properties in a single
type hierarchy. The possibilities of storing minor variations in climb’s ar-
chitecture can therefore provide a superior model for cross-Slavic variations.
It can include full accounts of linguistic variations of a given phenomenon,
including contradictory properties, which is a more elegant and ultimately
more helpful solution than underspecified analyses in a core. Likewise, the
derived grammars need not contain definitions that are meant to cover prop-
erties of other languages, which forms an improvement to the second solution
for capturing linguistic variation.

I will illustrate the difference between sharing analyses in a static core and
using climb through Avgustinova’s model of case marking. Through this
illustration, I will show that climb provides additional means to verify lin-
guistic hypotheses.

249

Modelling Slavic case

Avgustinova (2007) points out that the notion of case, as it is used in linguistic
theory, is complex. It may refer to a range of linguistic properties at different
levels of description (Avgustinova, 2007, p.25). The main distinction lies
in the reference to case as morphological marking on the one hand and a
syntactic notion where case is linked to a particular function on the other
hand.23

Avgustinova proposes a general model for case that explicitly expresses this
distinction. The type case has two subtypes: f-case for modelling case on
the level of syntactic functions and m-case, which models the morphological
forms of case that may be found. Functional case (f-case) is further divided
into structural case (str-case) and inherent or lexical case (lex-case), following
Heinz and Matiasek (1994) and Przepiórkowski (1996). Avgustinova’s pro-
posal goes beyond those of Heinz and Matiasek (1994) and Przepiórkowski
(1996), because she includes adpositional marking, which plays the same
double role as case in linguistic theory, in her case model.

A partial representation of how this general vision of case is used to model
Slavic case is given in Figure 6.2. Only the top of the hierarchy is represented.
Multiple inheritance is used to link case assignment to case marking. The
part of the hierarchy that establishes this is not shown in Figure 6.2. Mor-
phological cases that mark the form required by an assigned functional case
share a subtype with this case. For instance, the type s-nom for nominative
subjects inherits from subj-case and m-nom.

SlaviCore currently contains an elaborate case hierarchy of 117 types that
captures the wide variety of case marking found in Slavic languages. The
hierarchy in 6.2 is further extended to capture (among others) the range of
subjective cases (most subjects in Slavic cases are nominatives, but dative
subjects occur in Polish and Russian and Russian also has genitive subjects),
objective cases (mostly accusative, but also genitive and instrumental in

23The explanation in this section is simplified from Avgustinova’s (2007) original pro-
posal (which, for instance, also mentions a semantic level where case is linked to semantic
roles). See Avgustinova (2007, p. 24-35) for a more elaborate description.

250

case

f-case

structural lexical

subjective

predicative

m-case

objective

possessive
m-instr

adp-markingmorph-form

m-acc

caseless

obl-subjective

i-objective
l-gen

m-gen

l-dat

core-case
l-instr

...

base
oblique

m-nom

m-dat

m-loc adp-m-case

adp-obl
adp-gen

adp-dat
adp-acc

adp-instr
adp-loc

term-case

Figure 2: Slavic case system

Figure 6.2: Partial representation of Slavic case, created by Avgustinova

Polish and Russian) and Bulgarian’s base case.

Modelling case with CLIMB

The Grammar Matrix customisation system can add types representing un-
derspecified case values when forms with ambiguous case are found in the
language. The hierarchy starts out as a flat hierarchy, where all cases inherit
directly from the type case. When the user defines a lexical item or rule with
ambiguous case marking, the hierarchy is updated to include this ambiguous
value. For instance, the German determiner das which can be nominative
(nom) or accusative (acc) case, leads to a type nom-or-acc, which inherits
from case and is a supertype of nom and acc. This functionality is also used
in climb.

A similar mechanism can be used to create the subtypes that link morpho-
logical cases to the right functional cases. Slaviclimb includes an option
that makes sure the top of the case hierarchy is included in the grammar.
Users can define which morphological cases can be found in a given syntactic
function in choices. Based on these definitions, the metagrammar can adapt
the hierarchy adding the common subtypes of f-case and m-case that are

251

found in the language. Slaviclimb provides the cases the user can select,
but only includes the ones that are defined by the user in the grammar. In
other words, a Slavicist can define lexical items and morphemes with certain
linguistic properties based on observations and the corresponding case hier-
archy will be derived from these definitions. The case hierarchies created in
this manner for individual languages can be compared to the original pro-
posal by Avgustinova. Slaviclimb can provide an environment to empirically
verify Avgustinova’s theoretical work.

Furthermore, climb’s original purpose of parallel analyses can be used to
leave grammar writers at liberty to include the functional-morphological dis-
tinction or not. Bulgarian only has limited overt case marking and burger’s
current implementation is a simple hierarchy where case has two subtypes
(Osenova, 2010). Bulgarian can be modelled through Avgustinova’s model
and this approach makes sense when looking at Bulgarian as part of the Slavic
language family, but when considered in isolation, the simple hierarchy may
be the better option. Slaviclimb supports both strategies.

Current state of SlaviCLIMB

The first stage of integrating SlaviCore and the RRG into Slaviclimb is re-
ported in Fokkens et al. (2012a). At the time 84% of the types in SlaviCore
and 70% of those in RRG was covered after 36 hours of conversion. The com-
plete process of integrating SlaviCore and RRG into climb took 42 hours.
The possibility of distinguishing between phenomena and properties belong-
ing to the language family on the one hand, and language specific properties
on the other hand was added to Slaviclimb from the start.

In this first integration, the full case hierarchy had to be defined through
choices. The current implementation allows users to include the top of the
case hierarchy in the grammar through a single choice. It also supports
a set of crossclassification options and provides the possibility of defining
exceptions.

Revisions to support case modelling as sketched above are currently under

252

development. Section 6.3.3 outlines the vision we have for Slaviclimb on the
long run.

6.3.3 Vision of SlaviCLIMB

The ultimate research goal of PaGES is to investigate crosslinguistic grammar
development for a set of related languages.24 The focus of the project lies in
the development of SlaviCore and components providing common properties
for subgroups of the Slavic language family. Slaviclimb has a supporting role
in this process. The main role of this dynamic environment would be to sup-
port empirical research on shared properties of Slavic languages, as sketched
above for Slavic case. Furthermore, phenomena that can be seen as paramet-
ers (in the sense that some Slavic language exhibit them and some do not)
will remain part of Slaviclimb. Such a setup facilitates the creation of new
grammars and is particularly interesting for creating grammars for dialects
spoken in linguistic border areas where phenomena of both languages are ex-
pected. Finally, Slaviclimb is meant to serve a practical purpose. Grammar
writers will be able to continuously use the customisation machinery to build
new grammars and it will host variations for grammars. For the Russian Re-
source Grammar, for instance, two variations are planned: one that focuses
on elegant linguistic analyses and one that aims at achieving decent coverage
on text with the help of a Treebank derived lexicon.

The main developers of Slavic grammars will, most likely, not be Grammar
Matrix experts and possibly not even be trained as programmers. The desire
to use climb in SlaviCore has been one of the main reasons to develop
declarative climb, which allows grammar engineers to write their alternating
libraries in standard tdl (see 3.2, p. 81 for details). A disadvantage of
declarative climb, however, is that it does not provide the flexibility of
procedural climb to dynamically create types for lexical items and rules or
hierarchies. We therefore propose to design Slaviclimb as a mixture between
procedural climb and declarative climb. The main idea is that Slaviclimb

24The ideas expressed in this section were published in Fokkens and Avgustinova (2013).
Some parts of the text were taken from this paper.

253

will provide an environment where linguists and computational linguists with
different areas of expertise can contribute to SlaviCore and grammars for
individual Slavic languages.

Grammar engineers can design and implement analyses for individual lan-
guages or crosslinguistically occurring phenomena. These analyses can be
written in declarative climb. Cases where crossclassifications plays a role
(e.g. types representing declination or inflection paradigms) procedural climb

will be used. The functions that are used for this in procedural Slaviclimb all
use the same basic structure. In principle, it should be possible to implement
code that can generate the necessary additions to Slaviclimb automatically.
An interface will be designed where grammar engineers can upload a declar-
atively defined type, indicate which feature values they wish to vary and
define the range of variations. Based on this input, procedural Slaviclimb

can then be extended automatically.

Unlike gclimb, where source code and choices files were manipulated directly
at all times, a Slavic specific variation of the Grammar Matrix’ questionnaire
will be developed along side Slaviclimb. This should allow Slavicists to cre-
ate new grammars or extend lexica and morpho-syntactic rules for existing
grammars without being trained as grammar engineers (or even being hpsg

experts). The initial setup can be developed from the current state of climb

with relatively limited effort. However, setting up the exact content is not a
trivial task and will be ongoing research requiring both grammar engineer-
ing and Slavic expertise. One of the main topics of investigation would be
the question of what should be included in the static core, what should be
maintained in the dynamic component and how to design these components
and questionnaire cleverly to support the range of Slavic variations.

Figure 6.3 illustrates the collaboration between a Slavicist and grammar en-
gineer working on a grammar for Bulgarian.25 The ellipses indicate compon-
ents that are generated by the system, the rectangle and diamond represent
components requiring active interaction with experts. Slavicists can specify
linguistic properties in the web-based questionnaire and grammar engineers

25This figure was taken from Fokkens and Avgustinova (2013).

254

Slavicist grammar engineer

web-based

questionnaire
choices Slaviclimb

South

Slavic
Balkan

Bulgarian

SlaviCore

Figure 6.3: Overview of grammar development with Slaviclimb

are mainly responsible for developing the analyses in Slaviclimb. In a perfect
scenario, Slavicists would be able to create high coverage precision grammars
for Slavic languages through the questionnaire. It is not realistic to expect
that this will be achieved. Slavicists will run into limits of the resource and
analyses that do not work as intended. Interaction between Slavicists and
grammar engineers is essential for creating a good resource and it is likely
that grammar engineering expertise will always remain necessary to improve
grammars created through Slaviclimb. A Slavicist who is serious about
creating a large coverage grammar for a Slavic language will thus ultimately
need to get familiar with grammar engineering or collaborate with a grammar
engineer.

Nevertheless, a significant amount of work can be done through this method.
Borisova’s (2010) thesis illustrates the possibilities of using grammar custom-
isation to model complex phenomena. She modelled polypersonal agreement
in (the non-Slavic language) Georgian almost exclusively using the Grammar
Matrix customisation system. Polypersonal agreement refers to the ability of
the verb to agree with more than one of its arguments. Georgian verbs agree
with subjects, objects and indirect objects. Georgian agreement exhibits a
number of complex phenomena including zero and ambiguous morphemes,
varied expressions of the same grammatical function and morphemes being
dropped or altered in presence of specific other morphemes (Borisova, 2010).
Georgian was, to my knowledge, not investigated when agreement was imple-

255

mented in the customisation system. As explained above, Slaviclimb offers
a better setting for creating models of complex phenomena through custom-
isation than the Grammar Matrix, because it only needs to deal with a closed
set of languages. It may not be realistic that Slaviclimb allows Slavicists
to create resource grammars for new Slavic languages from scratch through
the web-based questionnaire, but we expect that it will be possible to create
medium-sized grammars that cover interesting phenomena.

The development of Slaviclimb requires different fields of expertise and can
only be realised if Slavicists and grammar engineering collaborate. Experts in
computational syntax and Slavistics should be able to explore their expertise
in Slaviclimb with a minimum of technical support. As such, PaGES forms
a good platform for investigating whether climb can be adapted as a general
approach to grammar engineering in the delph-in community.

6.4 CLIMB for second language learners

The previous sections have discussed how climb can be used to create gram-
mars for related languages. This section addresses the possibility of creating
alternative grammars for the same language so that they may be used as
part of a system that helps second language learners. It is structured as fol-
lows. Section 6.4.1 will provide background information on creating delph-

in grammars for language learning. This is followed by an explanation of
developing alternative grammars for language learning with climb in Sec-
tion 6.4.2. Section 6.4.3 provides a description of a prototype for language
learning that is included in gclimb.

6.4.1 DELPH-IN grammars for language learning

In order to become fluent in another language, learners must practice. Feed-
back on language use is essential to improve ones language skills. However,
as Bender et al. (2004) point out, there is limited room for practice and
feedback for individuals in classroom settings. Learners need to practice out-

256

side the classroom, where they often cannot get feedback on their language
skills. Bender et al. (2004) describe Arboretum, a prototype system that can
provide such feedback.

Arboretum includes an adapted version of the English Resource Grammar
(Flickinger, 2000, ERG). In this version, so-called mal-rules (Schneider and
McCoy, 1998) were added. These rules can parse sentences containing typ-
ical non-native speaker mistakes and map them to the intended semantics.
Corrected sentences can be generated from the intended semantics. This
approach has since been adopted in two more projects with delph-in gram-
mars. It is used in the Language Arts & Writing (LA&W) course of The
Educational Program for Gifted Youth (EPGY) (Suppes et al., 2012) and in
a Norwegian Grammar Sparrer26 (Hellan et al., 2011).

The basic idea behind Arboretum and the Norwegian Grammar Sparrer can
also be used to help native speakers improve their language skills. The EPGY
program develops courses for American school children. The LA&W course
aims at improving their writing skills. A version of the ERG with mal-rules
of typical mistakes made by school children is used to support sentence and
paragraph composition exercises. The children receive a selection of words
and build sentences by clicking on them. The sentences they produce are
parsed by the ERG. If the sentence can only be parsed using a mal-rule, it is
considered ill-formed. The names of the mal-rules can give insight into the
kind of errors children make. Suppes et al. (2012) show that writing skills of
children improved more compared to other children as they practiced more
with the system.

The goal and setup of the Norwegian Grammar Sparrer are closer to those
described in Arboretum. It is meant for non-native speakers who want to
learn Norwegian. Language learners can access the sparrer through a web-
interface27 where they can type in sentences in Norwegian. The sentence
is parsed by NorSource (Hellan and Haugereid, 2003) augmented with mal-

26http://typecraft.org/tc2wiki/A_Norwegian_Grammar_Sparrer, accessed 14
December 2013.

27http://regdili.idi.ntnu.no:8080/studentAce/parse, accessed 15 December
2013.

257

http://typecraft.org/tc2wiki/A_Norwegian_Grammar_Sparrer
http://regdili.idi.ntnu.no:8080/studentAce/parse

rules. If a structure can only be parsed with mal-rules, a brief explanation
of the error is provided, together with a link to a more elaborate explana-
tion and the possibility of generating well-formed alternatives. Just like in
Arboretum, the semantics of the ill-formed structure is used as input to gen-
erate well-formed alternatives. The Norwegian Grammar Sparrer currently
supports practicing basic structures providing feedback on sentence syntax
(word order, obligatory subjects), verb complementation (form and order of
arguments, obligatoriness, reflexives and interaction between form and co-
ordination) and noun phrases (form, agreement, determiners, genitives and
pronouns).28

6.4.2 Language learning with CLIMB

The previous section outlined the basic approach taken when using delph-in

grammars as part of a system that helps to improve language skills. In this
section, I will outline possibilities provided by climb for such work.29

The systems described above consisted of grammars augmented with mal-
rules. There are several ways in which climb may facilitate the task of creat-
ing such grammars. First, it is easier to create more versions of the grammar
which may help to support tasks with a different focus or aimed at people
with different language backgrounds. Second, climb offers a more modular
implementation environment than traditional grammar writing, which makes
it easier to make fundamental changes in the grammar when this is needed
in order to give precise feedback. I will elaborate on these issues below.

One of the main challenges in using mal-rules is the question of what rules
need to be included in the grammar. Typical errors can be collected by
analysing corpora of texts produced by non-native speakers or school children
(depending on the target of the system). Mal-rules can then be defined to
capture these errors. The name of the mal-rule can indicate which error
was made and trigger specific feedback, as done in the Norwegian Grammar

28http://typecraft.org/tc2wiki/Grammar_sparring_phenomena, accessed 15
December 2013.

29Several ideas presented in this section came out of discussions with Magda Wolska.

258

http://typecraft.org/tc2wiki/Grammar_sparring_phenomena

Sparrer. However, it may become harder to control the behaviour of mal-
rules as the grammar grows. Interaction between rules is already challenging
when writing a grammar that merely captures the correct behaviour. When
this is augmented with mal-rules that need to indicate which error was made
in a given sentence and where, it will become increasingly hard to control
the interaction between these rules. Identifying the error that was made and
making sure the efficiency of the grammar remains acceptable will become
increasingly difficult as the grammar grows.

This challenge may be tackled by focusing on one (or a few) errors at the
time. This approach is followed in several experiments carried out as part of
the Interreg project ALLEGRO.30 For instance, Wolska and Wilske (2010)
describe a task where second language learners practice word order in German
subordinate clauses, whereas their study in Wilske and Wolska (2011) allows
students to practice with German datives. The grammars used in these
studies are encoded in Java Speech Grammar Format and each task requires
a different grammar that needs to be written from scratch (Wolska, p.c.).

In Arboretum, the EPGY program or the Norwegian Grammar Sparrer the
grammars with mal-rules rely on a rich existing grammar and there is no
need to create grammars from scratch for each source. However, alternative
versions of the grammar that focus on different errors also make sense when
delph-in grammars are used. Apart from efficiency issues and challenges
with interaction of many mal-rules mentioned above, it can make sense to ad-
apt the grammar to the level of the students. German has relatively flexible
word order, but it may not be a good idea to permit beginning learners to
build structures that are highly unusual and can only be used under specific
circumstances. More advanced speakers on the other hand should practice
with variations in word order to improve their German. Furthermore, stu-
dents with different native languages tend to make different mistakes. When
the linguistic background of students is known, alternative grammars can
focus on typical mistakes for the group. When using climb, mal-rules cap-
turing specific mistakes can be placed in their own libraries. Grammars can

30http://www.allegro-project.eu/, accessed 15 December 2013.

259

http://www.allegro-project.eu/

be created that focus on a specific error or a set of selected errors using these
libraries. This setup facilitates the maintenance of large grammars meant to
be used for grammar checking.

When looking at errors typically made by speakers from a specific linguistic
background, multilingual climb resources may be particularly interesting.
The mal-rules for one language can be based on the normal rules of another
language in the resource. For instance, native speakers of Dutch will not
easily make mistakes with verb second word order or the relative order of
words in the Mittelfeld in German (since the language show highly similar
behaviour), but they may be inclined to use Dutch word order in the verbal
cluster. Investigating the possibilities of such an approach is however chal-
lenging and would require extensive collaboration with experts on second
language learning.

A final contribution climb provides to adapting grammars for language
learning lies in the increased modularity of climb. When creating altern-
ations in a lexicalist grammar that can parse ungrammatical strings, two
approaches may be followed. The first option is to include alternative ver-
sions of lexical types or to use “mal-lexical types” rather than mal-rules. A
specific type may leave grammatical values of its argument underspecified or
a modifier will not have all its grammatical properties defined so that it can
combine with heads that are otherwise forbidden. Adding such alternative
elements is straight-forward in climb. It is for instance possible to define
instances of the supertypes of a lexical item, in addition to instances of fully
defined types of the item.

A drawback of this approach is that multiple entries are required for each
lexical item that may be used incorrectly. An alternative approach would in-
clude alternative versions of rules in the grammar that allows lexical types to
combine despite conflicting grammatical properties. Again, climb’s flexibil-
ity can come in handy in this case. Constraints may be encoded in manners
making it non-trivial to construct mal-rules that can capture errors related
to these constraints. If a constraint is a head feature for instance, it will
automatically be shared between head-daughter and mother in any headed-

260

basic-head-1st-comp-no-case := basic-head-comp-phrase &
[SYNSEM.LOCAL.CAT.VAL.COMPS #comps,

HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS
<[SYNSEM [LOCAL [CAT [HEAD.FORM #form,

VAL #val,
MC #mc],

CONT #cont,
AGR #agr,
COORD #coord],

NON-LOCAL #non-local,
OPT #opt],

ARGS #args,
INFLECTED #inflected] . #comps >,

NON-HEAD-DTR [SYNSEM [LOCAL [CAT [HEAD.FORM #form,
VAL #val,
MC #mc],

CONT #cont,
AGR #agr,
COORD #coord],

NON-LOCAL #non-local,
OPT #opt],

ARGS #args,
INFLECTED #inflected]] .

Figure 6.4: Simplified representation of a head-complement mal-rule that
ignores case when defined as a head feature

phrase. Furthermore, when a head-daughter subcategorises for an argument
with a specific head value, rules need to be created that unify all features
of the subcategorised element except for this one feature value. The more
embedded this value is, the more complex the rule becomes. If the feature
in question (myfeat) is located inside of head, the path to it in a standard
Matrix grammar is synsem.local.cat.head.myfeat. This means that
all values of synsem except local must be shared. All values of local

except cat must be shared, all values of cat except for head must be
shared and finally all features of head except for myfeat must be shared.
Figure 6.4 provides a simplified illustration of what this may look like if a
head-complement mal-rule ignores the case value of the complement. The

261

structure is simplified in the sense that not all features standardly defined
for signs are represented.

basic-head-1st-comp-no-case := basic-head-comp-phrase &
[SYNSEM.LOCAL.CAT.VAL.COMPS #comps,

HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS
<[SYNSEM [LOCAL #local,

NON-LOCAL #non-local,
OPT #opt],

ARGS #args,
INFLECTED #inflected] . #comps >,

NON-HEAD-DTR [SYNSEM [LOCAL #local,
NON-LOCAL #non-local,
OPT #opt],

ARGS #args,
INFLECTED #inflected]] .

Figure 6.5: Simplified representation of a head-complement mal-rule that
ignores case when it is defined as a synsem feature

If the feature myfeat is located at synsem on the other hand, the rule
only needs to share everything in synsem except for myfeat. The head-
complement rule that ignores case when it is defined as a feature of synsem

rather than of head is provided in Figure 6.5. A setup that facilitates chan-
ging the location of features makes it much easier to create mal-rules that
circumvent violation of specific features.

Adapting lexical items so that they impose less constraints provides a cleaner
and easier implementation than identifying special rules that ignore parts of
the elements they combine. As long as the lexicon is limited to a predefined
set, alternative lexical items is thus preferable to specialised rules. On the
other hand, special rules form a more generic and flexible approach to cover
typical mistakes by language learners. The best option thus depends on the
situation. climb’s flexibility provides support in both scenarios.

262

6.4.3 A prototype in gCLIMB

German adjective endings change depending on case, number, gender of the
noun and the specifier preceding it. The correct endings are provided in
Table 6.11. Other endings lead to ungrammatical noun phrases. The mal-
rules in the grammar should ideally identify the exact mistake made by stu-
dents, i.e. whether they selected an ending based on the wrong number,
gender, case or preceding specifier.

The adjective follows one of the following words (in any form):
der, dieser, jener, jeder, mancher, solcher, welcher, aller, sämtlicher, beide
case masculine feminine neutral
nom der gute Wein die gute Milch das gute Bier
gen des guten Wein(e)s der guten Milch des guten Bier(e)s
dat dem guten Wein der guten Milch dem guten Bier
acc den guten Wein die gute Milch das gute Bier
The adjective follows one of the following words (in any form):
ein, kein, mein, dein, sein, ihr, unser, euer, Ihr
case masculine feminine neutral
nom ein guter Wein eine gute Milch ein gutes Bier
gen eines guten Wein(e)s einer guten Milch eines guten Bier(e)s
dat einem guten Wein einer guten Milch einem guten Bier
acc einen guten Wein eine gute Milch ein gutes Bier
The adjective is not preceded by a specifier
case masculine feminine neutral
nom guter Wein gute Milch gutes Bier
gen guten Wein(e)s guter Milch guten Bier(e)s
dat gutem Wein guter Milch gutem Bier
acc guten Wein gute Milch gutes Bier
Adjective endings for plural adjectives
case “der ” specifier “ein” specifier no specifier
nom die guten Weinen keine guten Weinen gute Weinen
gen der guten Weinen keiner guten Weinen guter Weinen
dat den guten Weinen keinen guten Weinen guten Weinen
acc die guten Weinen keine guten Weinen gute Weinen

Table 6.11: Overview of German adjective endings (repeated)

This is achieved by creating a mal-rule for each individual error. Figure 6.6
represents the basic phrases enforcing individual properties to agree between

263

case-sharing-adj-head := adjective-head-phrase &
[SYNSEM.LOCAL.CAT.HEAD.CASE #case,

NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD.CASE #case].

strength-sharing-adj-head := adjective-head-phrase &
[SYNSEM.LOCAL.CAT.HEAD.STRONG #strength,

NON-HEAD-DTR.SYNSEM.LOCAL.CAT.HEAD.STRONG #strength].

gend-sharing-adj-head := adjective-head-phrase &
[SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG.GEND #gend,

NON-HEAD-DTR.SYNSEM.LOCAL.AGR.PNG.GEND #gend].

number-sharing-adj-head := adjective-head-phrase &
[SYNSEM.LOCAL.CONT.HOOK.INDEX.PNG.NUM #number,

NON-HEAD-DTR.SYNSEM.LOCAL.AGR.PNG.NUM #number].

syn-agr-adj-head-phrase := case-sharing-adj-head &
strength-sharing-adj-head.

sem-agr-adj-head-phrase := gend-sharing-adj-head &
number-sharing-adj-head.

all-agr-adjective-head-phrase := syn-agr-adj-head-phrase &
sem-agr-adj-head-phrase.

all-but-case-adj-head-phrase := sem-agr-adj-head-phrase &
strength-sharing-adj-head.

Figure 6.6: Mal-rules for adjectives enforcing different grammatical proper-
ties

264

adjective and noun. The grammar includes a rule that insists on gender,
number and case, but ignores the specifier. Another rule (the all-but-case-
adj-head-phrase in Figure 6.6) ignores the case value, but insists on the other
three being correct, etc. Finally, the grammar needs one general mal-rule
that ignores all grammatical aspects. This rule can parse sentences where
the adjective was wrong in more than one way. gclimb currently includes
an option that incorporates these mal-rules in the grammar. A toy system
was made that can be run on a terminal. Users can type in sentences that
are sent to the grammar running on a server. A basic script analyses the
set of parse trees that comes back from the grammar. If the set contains a
tree that does not use any mal-rules, the user receives a message that the
sentence is correct. If the sentence needs a mal-rule, the system returns
a message indicating that the grammatical property or properties that the
user got wrong in choosing an ending. The grammars used in this setting are
small and the parser returns all analyses that it finds for a given sentence.
The most general mal-rule always returns a parse when the adjective ending
is wrong. The algorithm going through the parses first looks for the more
specific mal-rules. The message to the user will be tailored to the specific
mal-rules that are identified in the parse forest. If only the most general
mal-rule resulted in a parse, the user receives a generic message indicating
that the ending is wrong without further specification.

The current implementation in gclimb does not alter the feature structure of
adjectives and nouns. The features that ensure correct adjective endings in
climb are case, num, gend and strong.31 In standard German grammars
created by gclimb, the features case and strong are head features, num

and gend are features of the person-number-gender type, which is part of the
index. All features are embedded relatively deeply in the sign. The syntactic
features case and strong are located at synsem.local.cat.head and se-
mantic features gend and num at synsem.local.cont.hook.index.png.
As explained above, the more a feature is embedded, the more other prop-

31The name strong is based on traditional grammars for German which use the term
strong to refer to endings when no specifier is present and weak for endings of adjectives
following a der -word.

265

erties need to be shared explicitly for a rule that exempts this feature from
unification. Moreover, it is inconvenient for the general rule that exempts all
four properties from unification that the features are not located at the same
place. The possibility of changing the feature geometry using the feature
geometry library taken from the Grammar Matrix customisation system and
the path reduction and completion algorithms of climb will be examined in
future work.

6.5 Spring cleaning revisited

Fokkens et al. (2011) describe two approaches for detecting redundancy in
hpsg grammars. The first approach is the spring cleaning algorithm.32

Spring cleaning focuses on identifying portions of the grammar that do not
play any role in the set of sentences it recognises or the structures it assigns to
them. Such artefacts can accrue in a grammar because abandoned analyses
are not completely removed or because the grammar is built on a cross-
linguistic resource but does not use all of the infrastructure that resource
provides. Spring cleaning is intended to be used in the course of grammar
development and as such must leave the grammar in a state that is still easy
to maintain. It largely maintains the original structure of the grammar.

In contrast, the second technique, Ôgrammar compressionÕ, computes the
smallest subset of a type hierarchy that can assign the same structures to
the same sentences as the original grammar. The grammar compression
algorithm, implemented by Yi Zhang, removes not only the types taken out
in spring cleaning, but also those that exist only to express generalisations
over their subtypes.

This section presents the results of running the spring cleaning algorithm and
grammar compression algorithm. First a brief description of the main idea
behind the spring cleaning algorithm will be given followed by an explanation
of grammar compression. The spring cleaning results are part of the prepar-

32Parts of this section are taken from Fokkens et al. (2011).

266

ation for the crosslinguistic grammar comparison presented in Section 6.6.

6.5.1 Spring cleaning and grammar compression

Spring cleaning

Section 2.2.2 explained how parsing and generation with delph-in grammars
work. The type hierarchy defines grammatical properties. During parsing
and generation, the parsing and generation algorithms manipulate instances
that inherit from the type hierarchy. Structures are built by unifying in-
stances. The type hierarchy determines whether unification between two
instances is allowed. This means that types that do not contribute to the
definition of any instance, nor influence the possibility of instances unifying
do not have an impact on the grammar.

The spring cleaning algorithm goes through the grammar starting at its in-
stances. It identifies (1) which types contribute to the instances’ definitions
and (2) which types influence unifications between the types identified in (1).
It returns a version of the grammar including only types that are identified
in these two steps (as well as a copy of the original grammar and files in-
dicating which types were removed). A full description of the algorithm and
revisions made to the version evaluated in Fokkens et al. (2011) can be found
in Section 3.3.1, p. 100.

Grammar compression

The grammar compression algorithm runs on grammars compiled by PET.
The PET parser includes a compiler for tdl grammars. This compilation
consists of several steps which influence which types are ultimately used by
the parser. Recall from Section 2.2.1 that type hierarchies must be a bounded
complete partial order (BCPO). The first step in compilation inserts greatest
lower bounds in the grammar in order to fulfil this requirement. The next
step expands all type definitions so that the constraints they inherit from
their supertypes are directly defined on the types themselves. Finally, a bit-

267

*t
op
*

a b c d e f gl
b1

top 1 1 1 1 1 1 1 1
a 0 1 0 1 1 1 0 1
b 0 0 1 0 1 1 1 1
c 0 0 0 1 0 0 0 0
d 0 0 0 0 1 0 0 0
e 0 0 0 0 0 1 0 0
f 0 0 0 0 0 0 1 0

glb1 0 0 0 0 1 1 0 1

top

a b

c glb1 f

d e

Figure 6.7: Example of a subsumption table in a compiled grammar

matrix is built that encodes all subsumption relations between types in the
grammar. Because inherited constraints are explicitly defined on types and
information on subsumption relations can be read off the matrix directly,
supertype-subtype relations that do not influence subsumption relations do
not play a role in the grammar any longer.

The table on the left hand side in Figure 6.7 displays the subsumption table
for the figure on the right. The rows of a type indicates which types it sub-
sumes (1=subsumption, 0=no subsumption). The type *top* subsumes all
other types in the hierarchy and is only subsumed by itself, type a subsumes,
types c, glb1, d and e and is subsumed by *top* and itself, etc. We can tell
directly from the matrix that type b is equal to or more general than type b,
d, e, f, and glb1, without looking at the complete structure provided by the
type hierarchy.

Zhang’s grammar compression algorithm starts with the instantiated types
and marks them as well as the values of all their constraints (including the
inherited ones). In the next step, it marks the glbs of the types identified in
the first step. This completes the sub-BCPO. All remaining types could be

268

removed from the grammar without having an impact on its behaviour (given
that constraints defined on supertypes are pushed down on their subtypes).
Zhang’s proof that a compressed grammar is equivalent to the originally
defined grammar can be found in Fokkens et al. (2011).

In principle, types that are identified as having no computational impact on
the grammar by the compression algorithm are a superset of those identi-
fied by the spring cleaning algorithm. The grammar compression algorithm
results in a flatter hierarchy. Some of the types that do not have an impact
on the grammar do play a role in representing linguistic generalisations or
in the maintainability of the grammar. The spring cleaning algorithm main-
tains the general structure of the type hierarchy. It only removes parts that
do not contribute to any instances in the grammar from the bottom of the
hierarchy.

6.5.2 Results

The grammars included in the spring cleaning and grammar compression
experiments are presented in Table 6.12. Some preparations needed to be
carried out before the grammars could be spring cleaned or compressed.
Some of the more recent grammars contain comments in the type definition
(indicated by quotes). Neither the compilation component of pet nor the
tdl processing code in the spring cleaning grammar can parse types that are
defined using this format. A script was run on the tdl files of the grammar
to clear these comments out of the type definitions.

Table 6.13 presents the outcome of running grammar compression and spring
cleaning on several delph-in grammars.33 The first column indicates the
total size of the grammar. The second column provides the number of types
identified as inactive by the grammar compression algorithm. The reduction
rate that would be obtained if we were to compress grammars to only com-
putationally active types is indicated in the first column labeled Rate. The

33There are two versions of the Wambaya grammar. They include different analyses for
auxiliaries (Bender, 2010).

269

Name Language Reference
English Resource Gram-
mar (ERG)

English Flickinger (2000)

Jacy Japanese Grammar
(Jacy)

Japanese Siegel and Bender (2002)

GG German Müller and Kasper
(2000), Crysmann (2005)

SRG Spanish Marimon (2010)
LXGram Portuguese Branco and Costa (2010)
KRG Korean Kim and Yang (2003),

Song et al. (2010)
Norsyg Norwegian Haugereid (2011)
MCG Mandarin Chinese Zhang et al. (2011)
BURGER Bulgarian Osenova (2010)
wmb (wmb) Wambaya Bender (2008a)
ManGO Mandarin Chinese –

Table 6.12: Grammars included in spring cleaning/grammar compression
experiment

number of types removed by the spring cleaning algorithm is given in the
fifth column. Finally, the second column that is labeled Rate provides the
reduction rate for the grammar when it is spring cleaned.

The grammars are divided in three groups reflecting the way the grammars
were processed: The ones in the first group were spring cleaned according
to the original spring cleaning methodology, starting from the instances of
the grammar. The version of Norsyg containing the full lexicon cannot be
compiled by pet. It is therefore not possible to run the grammar compression
algorithm on this grammar.

While spring cleaning Jacy and SRG, the algorithm ran into memory issues.
The algorithm had no problem interpreting the type hierarchy, but stalled
while parsing the instances of the grammar. The algorithm was revised to
only store unique supertypes, values and attributes rather than the complete
set of instances (including the complete lexicon), but this did not solve the
problem. It occurs even when parsing small files containing instances and

270

Grammar Size In active Rate Spring Cleaned Rate
Norsyg (small) 5,026 4,005 79.7% 1,320 26.3%
Norsyg (+nlk) 5,026 – – 177 3.5%
wmb (arg-comp) 3,439 2,695 78.4% 178 5.2%
wmb (aux+verb) 3,443 2,703 78.5% 187 5.4%
burger 2,513 1,833 72.9% 368 14.6%
ManGO 1,649 1,400 84.9% 211 12.8%
Jacy 2,548 1,308 51.3% 611 24.0%
SRG 6,118 3,827 62.6% 145 2.8%
LXGram 7,958 6,439 80.9% 201 2.5%
KRG 2,369 1,743 73.6% 260 11.0%
MCG 1,483 1,275 86.0% 435 29.3%
ERG 9,135 4,914 46.2% – –
GG 9,761 3,478 64.4% – –

Table 6.13: Results from grammar compression and spring cleaning

hence, it is likely due to a bug in the tdl processing code. This is the
same code as used in the Grammar Matrix customisation system and it is
rather specific about the characters it accepts in type definitions.34 The tdl

processing code forms a complex module with many interactions and solving
this problem would result in a complete reimplementation of the module.
Therefore, an alternative approach was taken for the remaining grammars.

As explained above, the active types identified by the grammar compression
algorithm are a subset of the types that the spring cleaning algorithm main-
tains in the grammar. The output of the grammar compression algorithm
was taken as the input of the spring cleaning algorithm. This approach did
not only avoid problems in parsing the instances in Jacy and SRG, but also
runs much faster than the original spring cleaning algorithm. It was there-
fore also used for LXGram, KRG and MCG. The spring cleaning grammar
runs into similar problems as found for the instances in the SRG and Jacy
when parsing the type hierarchies of the ERG and GG. These grammars can
therefore not be spring cleaned until the tdl processing module is revised.

34To illustrate: while attempting to spring clean GG, the algorithm choked on an apo-
strophe in a type name.

271

6.5.3 Validating results

As explained in Section 3.3.1, there are two ways in which a type can con-
tribute to the grammar. First, a type may contribute to the definition of
an instance. This is the case if the type is instantiated itself (i.e. it is a
supertype of an instance), introduces an attribute of an instantiated type
or defines a value of an instantiated type. If a type that contributes to the
definition of an instance is removed from the grammar, compilation either
fails or succeeds with a notification that the related instance could not be
created.

The second way a type can contribute to a grammar is when it enables the
unification of instances. These types must also be present in compressed
grammars, which have been proven to be equivalent to the original grammar
(recall that Zhang provides a proof of equivalence in Fokkens et al. (2011)).
This means that a spring cleaned grammar must be equivalent to the original
grammar if it (1) can compile without notifications that were not present
before spring cleaning was applied and (2) includes all types marked as active
by the grammar compression algorithm. This was verified for all spring
cleaned grammars except for Norsyg (+nlk), which could not be compressed.

None of the grammars produced new compilation errors. A verification al-
gorithm was run on the first group in Table 6.13 to make sure no active
types were removed.35 The only exception that was found was the type alts
in ManGO. This type cannot be needed for unification, because it only has
one supertype. The type itself does not occur as a value and the attribute
it introduces (passive) is not used in the grammar. The reason that it is
marked as active by the grammar compression algorithm is probably because
this algorithm marks the most specific type as active rather than the more
general type. Spring cleaning, on the other hand, removes types from the
bottom of the hierarchy only. The fact that it removed this one active type
is thus not an error in the algorithm.

35Recall that the spring cleaning algorithm started of maintaining all active types for
the second group. The second condition thus necessarily holds for these grammars.

272

The verification outlined above ensures that spring cleaned grammars ex-
hibit equivalent behaviour to the original grammar. It does not verify if all
redundant types were removed from the grammar. In the second group of
grammars, there may for instance be cases similar to the ManGO example
discussed above. Spring cleaning always includes all supertypes of a type it
maintains. If the more specific type of a chain was marked as active by the
grammar compression grammar, this type will not be removed if the active
types are taken as input to the spring cleaning algorithm.

As explained above, we consider grammars to be equivalent if they have the
same competence, i.e. they produce the same set of analyses for any possible
input string. In Fokkens et al. (2011), the equivalent competence of gram-
mars was verified by parsing associated test suites with both the original and
reduced grammars. This experiment had the surprising outcome that some of
the MRSs produced by the Wambaya grammar changed after the grammars
were spring cleaned. This happened despite the fact that the grammars for
Wambaya had passed both of the verification tests described above. Upon
examining the differences, it turned out that the experiment did not con-
tradict the claims made above, but rather showed that spring cleaning may
also be used to identify errors in the grammar. The differences in MRSs
turned out to be caused by missing types in the hierarchy of the semantic
values for person and number. Some semantic feature values of the feature
pernum (person and number) had glb-types (greatest lower bound types)
as their value. These types are automatically introduced by the LKB when
compiling the grammar to make sure the type hierarchy is bounded complete
partially ordered (BCPO). They may play a role as a syntactic component
of a derivation, but they should not appear in semantic representations. The
LKB uses numbers to assign each added glb-type a unique name. These
numbers, and thus the name given to a specific type, may differ if the size of
the grammar changes. Because of different number of the glb-types repres-
enting person and number values in Wambaya, we were able to identify the
missing types and improve the Wambaya grammars.

273

6.5.4 Observations

The spring cleaning algorithm removed a noticeable set of types for each
grammar (the smallest number of removed types was 145 for SRG, the highest
number 1,320 for NorSyg (small)). There are several reasons why such types
may be found in the grammar. They may be the remains of an abandoned
analysis or part of a multilingual core that represents a phenomenon that
either is not covered yet by the grammar or simply does not occur. The
grammar writer may be unaware of the fact that the grammar contains these
types. Some types that do not have an impact on the grammar are part of
an analysis that is still under development and they are likely to be used in
the near future. Finally, grammars often include definitions of lexical types
that occur in the language, but there are no instances of these types included
in the current lexicon. In these cases, the grammar engineer is likely to be
aware of their presence in the grammar and probably intends to maintain
them.

Multilingual types will be addressed in Section 6.6 as part of an overview
of how the Grammar Matrix is used. Only the grammar engineer can dis-
tinguish between abandoned analyses and analyses under development. In-
vestigating the kind of types that were removed may nevertheless give some
insight into whether the type is part of an analysis that is not used or whether
it defines a type that is part of an active analysis, but no example of an in-
stance happens to be included. The scenario of a correct analysis but no
example of an instance is far more likely to occur with lexical items than
with syntactic or lexical rules. The difference between NorSyg (small) and
NorSyg (+nlk) can be explained by lexical items. The difference does not
come from the size of the grammar itself (which is the same), but in the size
of the lexicon. NorSyg (small) has a small lexicon that was defined by hand
as part of the grammar development process. NorSyg (+nlk) includes a large
lexicon derived from a treebank. The 1,143 types that are removed from the
NorSyg (small) and not from NorSyg (+nlk) are all needed to define lexical
items included in the nlk lexicon.

274

Grammar lex. types rule types generic types values other
wmb (arg-comp) 9 3 120 45 1
wmb (aux+rule) 9 2 129 46 1
burger 197 1 120 49 1
ManGO 6 32 130 42 1
KRG 29 20 129 91 1
MCG 9 0 142 283 1
Jacy 383 19 99 51 58
SRG 32 39 16 57 1
LXGram 15 6 14 70 96

Table 6.14: overview of kind of types that are removed from grammars

Table 6.14 and 6.15 provide additional information on the kind of types that
were removed from some of the grammars during spring cleaning. The num-
bers in Table 6.14 are the result of a manual count. These results provide
a general indication of the kind of types that were removed during spring
cleaning. The grammars in the top part of the table use the Grammar Mat-
rix core. The SRG and LXGram also started out with the Grammar Matrix,
but either moved Matrix types to other parts of the grammar and stopped in-
cluding the original Matrix (SRG) or redefined a new version of the Grammar
Matrix to support different theoretical assumptions (LXGram). The classes
distinguished in Table 6.14 are the following: lex. types are types that define
specific lexical items, rule types define language specific rules, generic types

Grammar Multilingual Language specific Total
wmb (arg-comp) 162 16 178
wmb (aux+verb) 163 24 187
burger 140 228 368
ManGO 149 62 211
Jacy 90 521 611
KRG 147 113 260
MCG 174 261 435

Table 6.15: Comparing portion removed from multilingual versus language
specific

275

define types that are generally found on top of the type hierarchy: they define
basic rules and lexical types (e.g. a lexical rule that shares all values with its
daughter except val, a zero-arg lexical item, a coordination structure). They
are typically defined in the Matrix core. Finally, values refers to any type
that defines an atomic feature value and other includes any type that does
not fall into any of these categories, such as the nodes to label the syntax
trees.

The grammars that make use of the Matrix core all reveal a similar number
of types that were removed. The bulk of these removed types are defined
in the Matrix core. The number of generic types removed for Jacy is lower,
because the version of the Matrix core included in Jacy does not contain
basic structures for coordination. Table 6.15 indicates how many removed
types were included in multilingual components of the grammars and how
many were defined in language specific files. Section 6.6 will provide more
information on the interaction of individual grammars with the Matrix core.

The relatively high number of values removed in the MCG can be explained
by the fact that this grammar does not use all syntactic head categories
defined in the Matrix core. head values are defined by an elaborate hier-
archy representing types for all possible disjunctions of nine fundamental
head types. A large chunk of this hierarchy could be removed in the MCG:
247 of the removed values in MCG were part of the hierarchy for defining
head values. Other grammars with a relatively high number of removed val-
ues tend to have elaborate hierarchies for expressing semantic relations. This
was specifically noticeable in the KRG were 64 Korean specific relation types
were removed, but it was also observed in other grammars such as Jacy, the
SRG and LXGram. A possible explanation for this may be that grammar
engineers tend to have a clear theoretical idea of the kind of semantic rela-
tions they want to model for their language which prompts them to include a
relatively complete hierarchy earlier on in the grammar development process,
before lexical items that exhibit these relations are added to the lexicon of
the grammar.

The number of removed language specific lexical and rule types is relatively

276

low for all grammars. Two grammars had a large set of types removed that
did not fall in any of the categories. In Jacy, a set of types for transfer
rules were removed. Most of the types removed for LXGram were included
in a file called tree-decoration.tdl which defines the names of the nodes in
syntax trees. If we take into account that (1) many of the generic types and
values that are removed are inherited from a language independent source,
(2) not all removed types are part of the actual grammar and (3) removed
lexical types may be caused by a smaller lexicon included in the version of
the grammar that was spring cleaned, it seems that delph-in grammars do
not contain many forgotten “left overs” from old analyses. As mentioned
above, it is not possible to say with certainty by anyone but the grammar
writer which types are intended for future analyses and which are forgotten.
However, based on my observations as part of this evaluation, I would roughly
estimate the number of types that are part of an old analyses around 10 - 50
for the grammars in Table 6.14. This is only a tiny portion of the grammars
(from less than 1% to maybe 2%). Overall, these results seem to indicate
that delph-in grammars are generally well maintained.

It should be noted that the spring cleaning algorithm only identifies unused
branches of the type hierarchy. It is not guaranteed that all unnecessary
types are identified. As mentioned above, the spring cleaning algorithm
maintains the original structure of the grammar in order to ensure that the
cleaned grammars are at least as maintainable as the input grammars. There
are cases, however, where this structure is more complex than necessary as a
result of an old analysis. The remaining values for head types in the MCG are
an example of such a case. A little over half of the types of this hierarchy are
maintained by the spring cleaning algorithm, but as will be explained in more
detail in Section 6.6.2, several types in this hierarchy no longer fulfil their
intended role now that the rest of the hierarchy is removed. Furthermore, the
spring cleaning algorithm only identifies uninfluential types. Grammars can
also contain attributes that do not influence the behaviour of the grammar. If
an attribute does not provide a contribution to the semantics of an expression
and can never lead to a failure in unification, it does not have an impact on the

277

grammar’s competence. It is feasible to identify straightforward examples of
such attributes and the spring cleaning algorithm may be extended in future
work to remove them from the grammar. Hierarchies of supertypes that are
unnecessarily complex are more difficult to identify automatically. It may be
possible to help the grammar engineer to identify such cases by comparing
the compressed hierarchy to the spring cleaned hierarchy and pointing out
large discrepancies between the two.

6.6 The Matrix core

Section 2.3 provided a detailed description of the LinGO Grammar Matrix.
As explained, the LinGO Grammar Matrix provides a starter kit for develop-
ing new delph-in grammars. One of the main components of the starter kit
is the file matrix.tdl. This file defines the top of the type hierarchy for new
grammars. It includes type definitions for the feature geometry of (differ-
ence) lists, signs including lexical items and unary, binary and ternary rules
and the main properties of signs. The basics needed to construct semantic
principles according to the principles of MRS are provided. Furthermore,
general rules for combining subjects, complements or modifiers with a head
as well as structures for coordination are defined. Throughout this section,
the term Matrix core will be used to refer to the definitions in matrix.tdl.

During the development of gclimb, several revisions were made to the Matrix
core. The changes made during this project formed the biggest revision of the
Matrix core since it first release.36 This is largely due to the fact that almost
no changes were made based on grammars created prior to the development
of gclimb. It is unlikely that grammar engineers working on other languages
have not encountered things that needed to be changed for their grammar.
Some changes made for gclimb were plain errors or revisions to properties
that were still English-specific. I therefore investigated how the Matrix core

36The coordination structures that were added by Drellishak and Bender (2005) consist
of more lines of code than the revisions made for gclimb. However, this change forms
an extension rather than a revision of the Matrix core. The same applies to more recent
additions for information structure described in Song (2014).

278

is used in other Matrix based grammars. This study looks at two aspects.
The first aspect is concerned with the actual changes that are made to types
defined in the Grammar Matrix. Secondly, an analysis of the types from
the Matrix core that are actually used in current grammars is given. This
analysis is based on the output of the spring cleaning algorithm. Section 6.6.1
describes the changes made to the Matrix core in gclimb. The outcome of
the investigation on other languages is presented in 6.6.2.

6.6.1 Changes inspired by gCLIMB

The revisions made to the Grammar Matrix core as part of this thesis can
be divided in two categories. As more advanced phenomena were added to
gclimb, it turned out that some types in the Matrix core did not behave
as intended, regardless of the properties of German. I consider these revi-
sions to be simple error corrections, i.e. they correct bugs in the Grammar
Matrix. Other revisions had to be made, because the definitions in the core
conflicted with language specific properties of German. These revisions form
improvements to the multilingual applicability of the Matrix core. In total,
the Matrix core was updated 20 times, resulting in 55 lines of code changed,
143 lines added and 35 removed.37

Table 6.16 provides an overview of the error corrections that were made in
the Matrix core. In addition to the changes listed in Table 6.16, a constraint
was added to the type coord-phrase which defines the basic structure for co-
ordination. The value of slash is shared between the phrase itself and both
coordinated elements. This feature is used for treating long distance depend-
encies. The additional constraint is based on a hypothesis that it is not pos-
sible to coordinate phrases if a particular element is extracted from one and
not the other. It furthermore supposes that if an element is extracted from
two coordinated examples, this is the same element and must be retrieved
elsewhere in the sentence. Finally, the constraint implies that if nothing is

37Counts are based on manual inspection after running the unix command diff. Lines
that were changed in order to add or remove another line where not considered to be
“changed”.

279

type name explanation
basic-head-filler-phrase supertype headed-phrase replaced by the more

specific head-compositional. The semantics
breaks if c-cont is not shared with cont of
the head-daughter.

basic-extracted-subject added head-compositional as a supertype,
again, to ensure the semantics is well-formed.

basic-mod-adj-lex supertype raise-index-mod-lex-item replaced by
norm-sem-lex-item: adjectives have an index of
type event and nouns have the incompatible
type index.

basic-mod-adp-lex supertype raise-index-mod-lex-item replaced by
norm-sem-lex-item: if adpositions share their
index with the element they modify, they can-
not be the locative complement of copula.

head-mod-phrase-simple removed this type from the Grammar Mat-
rix, transferring its supertype basic-head-mod-
phrase-simple to its subtypes. The constraint
this type added was already defined for its su-
pertype. (Based on note by Bart Cramer)

basic-adposition-lex made the index of the adposition coindexed
with its second argument: providing semantics
for adpositions.

s-coord-phrase added the constraint that the comps list must
be empty on daughters and mother.

basic-bare-np-phrase added the supertype head-valence-phrase: else
underspecified slash values occur in the struc-
ture leading to massive overgeneration and
spurious structures.

zero-arg-nonslash, zero-
arg-nonque, norm-zero-
arg

general supertype lex-item replaced by the type
basic-zero-arg, so that they have indeed zero ar-
guments

infl-bottom-coord-rule,
infl-left-coord-rule

replaced four of their supertypes by the common
subtype of these supertypes. (Based on note by
Emily M. Bender)

Table 6.16: Overview of corrections made to the Matrix core

280

extracted from the individual elements, this also holds for the coordinated
structure as a whole. Ross (1967) first described this phenomenon for Eng-
lish calling the related phenomena the Coordinate Structure Constraint (it
is not possible to extract elements from coordinate structures) and ‘Across-
the-Board’ exceptions (unless the same element is extracted from both con-
juncts). The corresponding hpsg analysis is based on Gazdar (1987). It is
likely that these constraints apply to most languages (or even all languages),
but this is still an open question. The related constraints were probably
not added to the Matrix core, because long distance dependencies were not
taken into consideration as coordination structures were being added to the
Grammar Matrix.

The second category involves changes that remove constraints from the Mat-
rix core because they are not crosslinguistically applicable or add new phrases
because some crosslinguistic variations are not covered. Most changes falling
in this category are related to word order. First, one of the analyses used for
capturing verb second word order uses the mc feature to ensure the verb is
in second place. The mc stands for “main clause” and takes luk, a three-fold
variant of boolean, as its value. The analysis is based on Bender’s (2008a)
Wambaya grammar. Even though it is not the standard hpsg analysis for
German word order, the mc feature is a natural choice for capturing this phe-
nomenon, because German word order is clause final in subordinate clauses.
The basic-head-comp-phrase and head-mod-phrase-simple no longer share the
value of mc between head daughter and mother to support this analysis.

Second, I added a number of phrases for analysing wh-questions to the Matrix
core. Wh-questions are questions formed by using a question word. It is
named after the first two letters of most question words in English (who, what,
when, whether, which). Question words are often involved in long distance
dependencies. English question words, for instance, tend to stand at the
beginning of the sentence, even if the word is embedded in the structure.
Compare the following example with question word what and its counterpart
where the object of saw is him instead of who.

(46) What did Kim say Sandy thought John saw yesterday?

281

(47) Kim said Sandy thought John saw him yesterday.

The Matrix core offered the non-local feature que (Ginzburg and Sag,
2000). This feature is similar to the feature slash used for extraction as
explained in Section 4.3.1. Apart from the feature itself, the Grammar Matrix
did not contain phrases for wh-questions. The type hierarchy for phrases in
the Matrix core was revised in gclimb. For all phrases combining a head with
a specific element (head-subj, head-comp, head-spr, head-mod), a generalised
type was introduced. These general types have two subtypes: one type that
corresponds to the original phrase and one that allows the head to combine
with a question word. With this addition, the Matrix core provides basic
support for wh-questions. Furthermore, the hierarchy was extended so that
different combinations of non-local features could be shared. Previously,
the head-valence-phrase, which shares the slash value between a phrase
and its head daughter inherited from a type sharing the other two non-

local features (que and rel). The supertype was replaced by the more
general type headed-phrase and a new subtype head-valence-head-nexus was
introduced that shares all three features.38

The Grammar Matrix developers have not looked into long distance depend-
encies prior to gclimb. It is thus not surprising that several revisions were
required to make sure long distance dependencies work properly for German.
The adaptations mentioned in Table 6.16 already included corrections of
some minor errors in the original analyses. With these corrections, instances
inheriting from extraction phrases and head-filler-phrases can analyse long
distance dependencies resulting in well-formed semantics. More revisions
were needed to make sure the analyses can be used in grammars for Ger-
manic languages. This particularly holds for grammars using the filler-gap
analysis for verb second word order, which treats every element in sentence
initial position as a long distance dependency. The main changes made in
the Matrix core to improve its provisions for long distance dependencies are
the following:

38The name of this phrase is based on the names of its immediate supertypes head-
valence-phrase and head-nexus-phrase.

282

1. The type defining the gap cannot have its index restricted to event-or-
ref-index. The filler-gap analysis uses extraction to place expletives in
sentence initial position and expletives’ index is not compatible with
this type. This constraint is probably based on English.

2. The restriction forbidding adjuncts to be extracted from subjects was
removed.

3. Several phrases and lexical items left their values of slash underspe-
cified. Constraints where added to make sure that the value of slash

for each lexical item is the concatenation of slash values of its argu-
ments, that all phrases pass up the slash values of their head-daughter
and that the value of a head-modifier phrase’s slash is the concaten-
ation of the slash of its daughters.

4. The restrictions placed on val in the basic-filler-phrase were removed.
These constraints (requiring saturated valencies) leads to problems for
the filler-gap analysis when dealing with extraposed elements.

5. The restriction [mc na] was removed from the subject extraction phrase.
This does not interact well with the analyses for word order that use
mc, nor with mc as it registers whether we are dealing with a main
clause or subordinate.

6. The restriction on adjunct extraction phrases limiting extraction to
intersective modifiers was removed. This restriction does not work well
with the filler-gap analysis, since adjunctive clauses with scopal reading
may be found in initial position in German.39

The Matrix core did not provide ready-to-use analyses for relative clauses.
The analyses for relatives in gclimb make use of marker-phrases. A marker-
phrase in the Matrix core is a phrase that behaves in the exact same manner
as a headed-phrase except that it does not share the head values of mother

39In the examples I encountered, these clauses had scope over the entire main clause
regardless of their position. No elaborate investigation was carried out to examine the full
range of this phenomenon.

283

and daughter. The basic-marker-comp-phrase was introduced in the Matrix
core to support an analysis for disharmonic word order between auxiliary
and verbal complement and verb and object. The phrase was included in the
Matrix core, because it defines a generic type with properties that may be
useful for other languages.40 It has not been examined how many languages
exhibit phenomena that would make use of this type. An explanation of the
motivation and working of this analysis can be found in Fokkens (2010) and
Fokkens et al. (2012b).

A phrase where the head value of the mother is not identical with the main
daughter is useful for relative clauses, because as soon as a verb combines with
a relative pronoun, the clause becomes a modifier. The verb remains the head
of the clause, but its mod value must now be non-empty. The feature mod is
part of the verb’s head and a regular headed phrase shares its value between
mother and head-daughter. If we use marker-phrases as basic structures for
analysing relative clauses, we can have relative pronouns combine with their
head and adapt its mod feature. For this reason, the types basic-marker-
subj-phrase and basic-marker-mod-phrase were introduced in the Matrix core.
Their inclusion in the core was based on the previous inclusion of the basic-
marker-comp-phrase. In fact, the description of relative clauses provided
above is not Germanic specific. This observation thus provides evidence that
these phrases may be crosslinguistically applicable. Further research would
be needed however to determine whether they are indeed suitable to serve as
basic types for relative clauses.

Correct coverage of relative clauses required a few more minor changes to
the Matrix core. Similarly to the other non-local phenomena (using slash

and wh), constraints were added to several types making sure the values of
rel were passed on appropriately to the mother phrases.

Two further additions were made to the Matrix core. First, the Matrix core
defines several relation types. It distinguishes event-relations (with index

event for verbs, adjectives and adverbs) and noun-relations (with index ref-
ind for nouns). The type named-relation is a subtype of noun-relation which

40This decision was made during a discussion with Bender.

284

is meant to capture the semantics of names. The predicate of this relation
is “named-rel” and it has an additional feature carg taking a string as its
value. The lemma of the name can be indicated as the value of carg. Similar
semantic structures are used for numbers. I added a new supertype for
named-relation to the Matrix core. This type called carg-relation introduces
the feature carg. Furthermore, I included a new type for expressing the
semantics of numbers that inherits from this type. The second addition
concerns a lexical type that takes four arguments. This type is introduced
in order to create types for ditransitive verbs with particles compatible with
the TiGer lexicon described in Section 5.3.2.

The final revision of the Matrix core was made based on an observation
on Northern Frisian. As explained in Section 6.2.5, the phrase removing
optional subjects from the subj list assumes that the verb has picked up
all its other complements. This assumption is incompatible with languages
that exhibit VSO or OSV order. If the subject stands in between verb and
objects, it has to be combined with the verb before elements on the comps

list are combined. Under the previous analysis in the Matrix core, the verb
could not combine with its complements, because it has to combine with its
subject first and it could not drop its subject, because it had to combine with
its complements first. As a result, structures with dropped subjects could
not be analysed (or created) for language with VSO or OSV order. This
problem was first observed while creating a grammar for Northern Frisian,
which exhibits VSO order for yes-no questions and allows for second person
singular subjects to be dropped.

Summary

This section described several revisions of the Matrix core that were carried
out during the development of gclimb. Some revisions were plain error cor-
rections and others were made to improve the Matrix core’s crosslinguistic
applicability. The revisions described in this summary form the most elab-
orate revisions of the Matrix core since its first release. This can partially
be explained by the fact that the Matrix developers mostly work with the

285

Grammar Matrix in relation to the customisation system. Phenomena that
are supported by this system tend to be examined carefully by Matrix de-
velopers. Other phenomena such as modification, long distance dependencies,
relative clauses and wh-questions often consist of analyses adapted from the
ERG taking some variations known from Jacy and a small Spanish grammar
into account. The types related to phenomena such as modification, long dis-
tance dependencies, relative clauses and wh-questions have not been tested
in a wide range of languages by the Matrix developers. It is therefore not
surprising that most of the revisions described in this section are related to
these phenomena. However, even though they have not been tested by Mat-
rix developers, several of these phenomena are included in grammars that use
the Matrix core. The next section addresses the question of how the Matrix
core is used in different grammars.

6.6.2 The Matrix core in different grammars

The previous section described a number of changes that were made to the
Matrix core in order to make it work for grammars created with gclimb.
These changes consisted partially of simple corrections of errors, partially
extensions to the Matrix core and partially of removing constraints or as-
sumptions that do not apply to German. This section examines how other
grammars interact with the Matrix core. We hereby distinguish two aspects.
First, I examine to what extent types from the Matrix core are actually used.
This analysis is based on the output of the spring cleaning algorithm presen-
ted in Section 6.5. Second, I investigate changes made to the original Matrix
core.

Used types

There may be several reasons why a type defined in the Matrix core is not
used by a specific grammar. In order to get a better idea of how redundant
types in the core should be interpreted, a manual study was carried out.
Tables 6.17 and 6.18 present the outcome of this study. For all removed types,

286

I investigated whether it was related to a phenomenon that a) is not included
in the grammar (63), b) does not occur in the language (n.a.) or c) is analysed
differently in the grammar (6=). Furthermore, the Matrix core contains one
example type for appending elements to difference lists (ex), a set of generic
types that are not related to a specific analysis (gen) or types that are used
for defining labels or increasing efficiency (other). Naturally, most types in
the Matrix core can be called “generic”. The types that are called generic
types in this classification are types that are not linked to a phenomenon,
a specific hpsg phrase, rule or lexical items or building up semantics. For
instance, the hierarchy of lexical rules where all but a specific part of sign
is shared are considered generic types. These rules can be of practical use
for various definitions and it is often unclear whether they may be useful for
some future phenomenon (63) or will not be useful in this grammar at any
time (n.a.).

It should be noted that the distinction between types related to phenomena
that are not included yet and those that are not applicable cannot always
be made with certainty without profound knowledge of the language. For
instance, head-initial types are not used in the KRG or Jacy. Korean and
Japanese are both head-final languages, but head-initial rules may still be
needed for certain structures (Siegel and Bender, 2004).41 A joint study with
the grammar engineers would lead to a more accurate classification of unused
Matrix types. This lies out of the scope of the present work. The only ex-
ception is the analysis of the Wambaya grammars which was verified against
a manual classification carried out by Bender as part of the spring clean
evaluation presented in Fokkens et al. (2011). However, it is still difficult to
classify types for this language correctly. The full description of Wambaya
provided in Nordlinger (1998) was used to create the grammars for Wambaya
and even though the language is not officially considered to be extinct,42 it is
difficult to obtain information about further syntactic phenomena that occur

41Jacy actually includes some head-initial rules. It is unclear why they do not inherit
from the head-initial types in the Matrix core.

42According to the Ethnologue, there were 89 speakers in 2006 (https://www.
ethnologue.com/language/wmb/, accessed 12 April 2014).

287

https://www.ethnologue.com/language/wmb/
https://www.ethnologue.com/language/wmb/

Removed from 63 n.a. ex 6= gen. other various Total
all 14 - 1 6 1 3 - 25
all but one 8 18 - 3 5 1 8 43
all but two 17 5 - 3 22 1 4 52
three grammars 10 7 - 1 15 - 9 42
two grammars 2 3 - 5 13 - 10 33
Wambaya (only) 2 12 - 3 - - - 17
burger (only) - - - 1 1 - - 2
ManGO (only) 1 - - - - - - 1
MCG (only) 3 6 - 5 22 - - 36
Jacy (only) - - - 9 24 - - 33
KRG (only) - - - 6 2 - - 8
Total 57 52 1 41 105 5 31 292

Table 6.17: Classification of redundant types from Matrix core in groups of
grammars

in the language.

Table 6.17 provides a classification of removed types across grammars. It
shows how many types in the core are not used in an individual grammar for
a specific reason and in how many cases this applies to more grammars. This
information can help to generalise over removed types and hence provide
better insight into the suitability of the types in the Grammar Matrix. For
instance, the Matrix core includes six types that are not used in any of the
grammars, because they use an alternative implementation. There are eight-
een types that are not applicable to five out of six grammars. It is worthwhile
to investigate whether these types lack crosslinguistic applicability or they
are excluded from the grammars for another reason. One grammar engineer
choosing an other analysis gives less reason for such an investigation than five
or six. The class various in this table indicates types that are not included
or not applicable for some grammars and analysed differently in others.

A full classification of removed types in a particular grammar is given in
Table 6.18. The number of removed types in Jacy is significantly lower than
that in other grammars. This can be largely explained by the fact that
Jacy uses a relatively early version of the Matrix core. This version of the

288

Removed from 63 n.a. ex 6= gen other Total
wmb (arg-comp) 54 43 1 25 33 6 162
wmb (aux+verb) 54 44 1 24 34 6 163
burger 34 27 1 23 50 5 140
ManGO 47 34 1 17 44 6 149
MCG 60 35 1 24 48 6 174
Jacy 21 3 1 27 33 5 90
KRG 51 30 1 28 31 6 147

Table 6.18: Classification of redundant types from Matrix core per grammar

core has been adapted to stay close to later versions of the Matrix core at
several stages. Basic definitions for lexical types, many of the aforementioned
generic types and rules for coordination were not added to the Matrix core
in Jacy during these upgrades. The basic types for coordination represent
a variety of coordination strategies. Types that are not used in individual
grammars generally support forms of coordination that do not occur in the
grammar. The absence of these rules in Jacy’s Matrix core explains the
relatively low number of not applicable types in the Matrix core. Jacy also
has a relatively low number of cases where the phenomenon is not included
in the grammar. This may partially be the case because Jacy has been
developed longer and covers more phenomena than the other grammars and
partially because several of the types classified as “not included” represent
complex lexical types, which are not defined in Jacy’s Matrix core.

The following section will elaborate on some notable cases where grammar
engineers decided to follow other analyses than those provided by the Matrix
core. This section will also address observations based on grammars other
than Jacy.

Changes to the Matrix core

There are three methods grammar engineers use to include analyses that dif-
fer from those provided by the Matrix core. As presented above, definitions
provided by the Matrix core may be ignored and another analysis included in

289

the language specific files. Grammar engineers also use two other techniques
to change analyses provided by Matrix core. They either directly change,
remove or add definitions in the file matrix.tdl or they redefine a type that
is already defined in the Matrix core in a language specific file. In the lat-
ter case, the definition in the language specific file overwrites the definition
in matrix.tdl. Some notable changes made by grammar engineers will be
outlined below.

Several of the phenomena that led to changes in the Matrix core used in
gclimb also required changes in other grammars. ManGO and burger re-
moved the constraints on the feature que on head-subj-phrase and head-comp
phrases so that they can be used for question words in canonical positions.
The basic phrase combining head and modifier was changed in the Matrix
core of the Wambaya grammars for the same reason. The constraints identi-
fying index of adjectives and adverbs with the element they modify had
been removed in several grammars. Finally, the head-adjunct-phrase was
adapted in burger and the Wambaya grammar to remove English specific
constraints.

Other changes were also made for more than one grammar. ManGO and
burger have several adaptations in common. They both use a different
definition for determiners. The Matrix core’s standard definition introduces
one relation scoping over the element the determiner specifies. Possessive
pronouns introduce a possessive relation scoping the element they specify.
ManGO and burger generalised the definition for determiners so that it
provides a common supertype for regular determiners and possessives. The
gclimb libraries introduce a new type in the language specific files for pos-
sessive, which could have inherited from this more general type for determ-
iners. ManGO and burger furthermore contain an adapted definition for
optional complements, so that it can also be used to cancel elements of the
complement list of nouns. The Matrix core restricts this rule to heads which
have an event index, a constraint that needs to be removed to allow it to
apply to nouns.

The KRG flipped constraints on the left daughter and right daughter of

290

coordination structures to change them to left-branching structures rather
than right branching structures. The same change was made for Turkish as
described in Fokkens et al. (2009). Drellishak and Bender (2005) created
types for coordination based on the assumption that coordinated phrases
are generally symmetric and that therefore either left-branching or right-
branching rules could work for any language. This hypothesis is falsified by
head-final languages where coordination rules do reveal asymmetry such as
Turkish.

The changes described above all reveal cases where the solution offered by
the Matrix core does not apply crosslinguistically. Incorporating them in the
Matrix core in such a way that both the old solution and the newly required
solution are covered would improve the Grammar Matrix. A number of other
changes were made in individual grammars for which it is less straightforward
to see how the Matrix core can be adapted to offer these functions for future
grammars. I will illustrate this through the example of the new definitions
for head-types introduced in the KRG and the MCG.

In the KRG, several new features are defined for the syntactic head, including
a part-of-speech feature which takes values such as verb and noun. The hier-
archy for head in the MCG still uses part of the original hierarchy provided
by the Matrix core, but introduced new definitions for all basic head types
except comp. The Grammar Matrix provides an elaborate hierarchy for head
types including definitions for any possible combination of syntactic heads.
Because the MCG still uses the original definition for comp, a little more
than half of this hierarchy is maintained (254 types out of a total of 501).
However, this complex hierarchy of supertypes for comp cannot fulfil their
intended role, because all other head-types (except for two new subtypes of
comp) are defined completely separately of the original hierarchy. The type
+vc intended to unify with head value verb and comp, for instance, no longer
unifies with the newly defined type verb. It would therefore have been better
if all head types had been redefined. I will elaborate on MCG’s hierarchy for
head values below.

It is not straightforward to incorporate the analyses used in the MCG and

291

KRG in the Matrix core, because there is no consensus about a universal
set of part-of-speech. Furthermore, classifications of which part-of-speech
may need to be combined (because certain features or structures apply to
several syntactic heads) may differ significantly from one language to an-
other. The Matrix core currently includes a set of types that are likely to
be useful for many languages together with a hierarchy that can capture
any possible combination of these types. The revision included in the MCG
forms a more elegant solution using theoretically founded distinctions such
as content heads and functional heads, adapting the name of certain heads
to better reflect their behaviour in Chinese (e.g. dem rather than det) and
adding a handful of Chinese specific types. For instance, the grammar in-
cludes a phrase for which the head-daughter must be a content word. The
distinction between content heads and functional heads provides an natural
way to restrict the phrase in question.

In the examples outlined above, only the additions at the bottom of the hier-
archy are strictly necessary to make the analyses in the grammar work as
intended. Instead of content and functional head values, the corresponding
disjunctive types provided by the Matrix core could have been used. El-
egance, more mnemonic type names and better representation of syntactic
theory provide a strong motivation for modifying an analysis and the changes
made in the MCG and KRG are thus sensible changes. However, they cannot
be ported to the Matrix core. They would change a general analysis which
can likely be used for many language to an analysis that is based on theor-
etical assumptions made for Mandarin Chinese in the MCG and Korean in
the KRG.

Developing the Matrix core

The goal of the Grammar Matrix is to share knowledge between grammar
engineers so that they are not reinventing the wheel. It achieves this goal
by providing basic types providing partial or general analyses for phenomena
that occur in many languages. However, the changes described above were
mostly applied to the Matrix core of more than one grammar. This means

292

that the wheel is still being reinvented if it comes to identifying errors or
language specific constraints in the Matrix core. For some of the changes de-
scribed above, it is clear that they form a general improvement to the Matrix
core. A part from a handful of changes made for the development of Wam-
baya and those that were also made in gclimb, they are not taken up in the
current version of the Grammar Matrix. Both the Wambaya grammars and
gclimb are developed by people that are directly involved with developing
the Grammar Matrix. We currently do not have a good mechanism to ob-
tain feedback from other grammar engineers leading to valuable information
remaining limited to individual grammars.

As pointed out above, some changes that improve the core for a specific lan-
guage cannot be ported to the Matrix core because they are likely to reduce
the crosslinguistic applicability of the Matrix core. On the other hand, large
hierarchies consisting of many generic types that each introduce few proper-
ties do not necessarily improve the transparency and maintainability of the
resource. Some of the types removed by the spring cleaning algorithm defined
properties that were introduced elsewhere in the grammar indicating that the
grammar engineer may not have noticed that the Matrix core already offered
a relevant type. There can thus be a trade off between modularity and cov-
ering more variation and transparency. The closer the Matrix core comes to
providing variation where it is needed and compact, simple hierarchies where
possible, the more useful it is as a resource. Changing the Grammar Matrix
towards this ideal is only possible by looking at a variety of languages and
gaining good understanding of the analyses that are used and the motivation
behind changes to the present core. This is challenging when looking at the
grammars alone, because not all adaptations are well documented. Feedback
from individual grammar writers is essential for improving the Matrix core.

The Matrix core currently provides a set of basic types that help grammar
engineers develop their grammars and at the same time gives them space
to introduce changes where they see fit. A drawback of the way the core
is currently used is that feedback from such changes does not come back to
developers of the Grammar Matrix in many, or even most, cases. Chapter 7

293

will describe two approaches for sharing information across grammars that
address this problem. In the ParGram project, grammar developers meet
every six months to compare their grammars and agree on the features they
use. In the CoreGram project, which also uses hspg as its theoretical frame-
work, the common core is shared by all grammars at all times. Changes
made for one grammar can thus not go unnoticed for other grammars. Both
of these projects have the advantage that they help to avoid grammar en-
gineers having to solve the exact same problem. Moreover, grammars stay
as comparable as they can be, whereas changes in the Matrix core made
in individual grammars may make it hard to share otherwise similar ana-
lyses directly. On the other hand, both approaches leave less flexibility to
individual engineers compared to the Grammar Matrix as it is used now. Fur-
thermore, neither meeting every six months nor always sharing a common
core is feasible for developers of Matrix grammars. The delph-in grammar
development efforts are too diverse and (partially) not funded well enough
to allow for regular meetings. The number of researchers and opinions on
individual analyses are too many for the grammars to share the exact same
core. I will therefore describe some alternative steps that may be taken to
improve the Grammar Matrix core.

This section has provided a basic analysis of changes made to the Matrix.
In order to gain deeper insight into the role the Matrix core plays and how
it can be improved, more elaborate analyses are needed where developers of
the core discuss changes with the authors of the grammars. Even if it is not
feasible to have meetings every six months or even to include a session dur-
ing the annual delph-in summit, it may be worthwhile to try and carry out
such an analysis every couple of years. In this case, we could communicate
directly with grammar engineers about changes they have made and altern-
ative analyses they propose via e-mail using the Grammar Matrix mailing
list. Once the major changes in early development stages are discussed, fur-
ther changes are likely to be less frequent. It may thus be possible to keep
the discussion going once the main changes in the Matrix core the grammar
have been examined. Furthermore, it may be useful to reinvestigate which

294

definitions should be included in the static core and which definitions would
better be moved to Grammar Matrix customisation libraries. Most languages
will not use all attested techniques to create coordinated structures leading
to types that will not be used in the Matrix core. At the same time, ad-
denda such as case marking on specific head-types are quite common across
languages. Investigating addenda and other analyses across grammars may
provide interesting comparison material for research on crosslinguistic ap-
plicability. Including such a study has the additional advantage that it may
become more interesting for individual grammar engineers to participate in
such a meeting. In addition to the interest in their own grammar shown
by other grammar writers, they may gain new insights or ideas about how
additional phenomena may be addressed by looking at other grammars.

6.7 Summary

In this chapter, I have addressed several multilingual aspects of climb and
the Grammar Matrix. Section 6.1 described how the climb method may
be used for parallel grammar engineering. This approach is similar to that
already offered by the Grammar Matrix customisation system. The main dif-
ference is that in such an approach, analyses need not be limited to the basic
properties of linguistic phenomena. The resource can include detailed ana-
lyses for individual languages, because only a closed group of languages is con-
sidered in this approach. If the languages in question are well-documented,
the full range of variation for a phenomenon is known and due to their re-
latedness, it will in most cases be less than the full typological variation found
in all languages.

Section 6.2 investigated the possibilities of creating grammars for Germanic
languages other than German. Grammars for Dutch, Danish and Northern
Frisian were created and evaluated. The earliest versions of gclimb con-
tained variations for Dutch and Danish, but these were not maintained as
the metagrammar was further developed to cover the Cheetah test suite.
Dutch was evaluated on a test suite based on the original suite created for

295

German. For Danish, the test suite accompanying DanGram Müller and
Ørsnes (to appear) was used.

Neither of the experiments led to perfect coverage of the test data, but the
Dutch results clearly outperformed those for Danish, with Dutch leading to
coverage of 97.1%-100% and overgeneration of 0.2%-1.0% and Danish result-
ing in 57.6% coverage and 20.7% overgeneration. The difference in results
can be explained by the fact that the Dutch test suite largely includes the
same phenomena as the test suite used to develop gclimb and that German
syntax is closer to Dutch syntax than to Danish. It is furthermore possible
that properties of Dutch have influenced the implementations in gclimb,
because it is my native language.

Despite the similarities between Dutch and German, however, a few funda-
mental revisions would be required to correct the errors in the Dutch gram-
mars currently created with gclimb. The fact that Dutch word order was
handled correctly in earlier versions of gclimb shows how important it can be
to make use of climb’s possibility of maintaining old analyses. If I had kept
the original analysis in parallel with the revised one, I could have “time trav-
elled” back to grammars that could handle word order in Dutch and possibly
avoided fundamental revisions in a complex grammar. This observation has
led to the conclusion that a multilingual resource can only support multiple
languages correctly if the variations found in these languages are taken into
consideration at all stages of development. On the other hand, the Dutch
grammars handle a large part of the phenomena correctly and even the Dan-
ish grammars revealed correct behaviour for several phenomena. It is unlikely
that a similar result could have been obtained by using only the Grammar
Matrix customisation system and extending the grammars manually. The
customisation system covers significantly less phenomena and it implement-
ing all phenomena covered by gclimb from scratch would probably take
several weeks. Adapting a traditionally developed delph-in grammar that
contains these analysis such as GG for Dutch and Danish is a highly complex
task and would most likely not lead to a similar result in such a short time.

The results on Northern Frisian, which was not considered at any time dur-

296

ing the development of gclimb, confirm this outcome. The final result using
gclimb revealed coverage of 94% and no overgeneration and was obtained
in one day of work. The grammar created with help of the Grammar Mat-
rix customisation system during the Knowledge Engineering course covers
70.6% and has 1.8% overgeneration. This result and the outcome of the
Dutch and Danish evaluations show that gclimb indeed offers an increased
level of modularity that makes it easier to share its implementations across
languages.

PaGES forms an interesting project to further explore the possibilities for
parallel grammar development with climb. Section 6.3 described research
questions that can be addressed by developing Slaviclimb, a dynamic com-
ponent supporting the development of a static SlaviCore. The section de-
scribes how a dynamic component may help to empirically verify Avgustinova’s
(2007) theoretical model for cross-Slavic grammar development. Slaviclimb

can currently generate the SlaviCore and RRG described in Avgustinova and
Zhang (2009) and Avgustinova and Zhang (2010). The section furthermore
explained how Slaviclimb can serve as a platform for Slavicists and grammar
engineers to collaborate on creating resources for Slavic grammars in future
work.

The final section addressing how the climb method may be used to create
alternative grammars explained how climb may be used to create grammars
for second language learners.

In addition to applications of climb related to multilinguality, this chapter
has addressed how different delph-in grammars relate to the Matrix core.
Because this question can only be answered if we do not only look at how
the Matrix core is changed, but also at what portion of the Grammar Matrix
is used, an explanation of the spring cleaning algorithm and its results were
provided in Section 6.5. Section 6.6 presented the outcome of a first study
of the kind of types that are removed from the Grammar Matrix and what
changes are made. This led to the conclusion that several changes are made
independently for different grammars and that some changes clearly lead
to an improvement of the Matrix core that goes beyond the benefit of the

297

individual grammar that introduced it. A proposal was made to carry out a
follow up study leading to revisions of the Matrix core based on individual
analyses.

The next chapter presents related work using metagrammars, sharing know-
ledge across grammars or improving modularity. This chapter also addresses
how other initiatives deal with the challenge of sharing information from dif-
ferent grammars through more extensive communication or constant sharing
of a common core.

298

Chapter 7

Related Work

The challenges in grammar development are well-known and many proposals
have been made over the years to improve methodologies, the structure of
grammars, modularity, generalisations and the possibility of sharing inform-
ation across grammars. This chapter discusses some of the most prominent
efforts across frameworks in this direction.

The methodology used for code-sharing or making grammars more systematic
is generally related to the formalism or linguistic theory used as a foundation
of the grammar. I will therefore give a basic introduction to the formalisms
and theories of three projects before presenting their methodologies. In par-
ticular, I will describe Tree Adjoining Grammar (Joshi and Schabes, 1997,
tag) and its related MetaGrammar project (Candito, 1998) and the eXtens-
ible MetaGrammar (Duchier et al., 2005). This is followed by a description of
Ranta’s (2004) Grammatical Framework (gf) and his gf Resource Grammar
Library (Ranta, 2009). The description of the ParGram (Parallel Grammar)
project Butt et al. (2002); King et al. (2005) is preceded by a brief introduc-
tion to Lexical Functional Grammars (Kaplan and Bresnan, 1982; Dalrymple,
2001, lfg).

A complete introduction to any of these formalisms or theories would require
at least a chapter of its own. I therefore provide basic, simplified descrip-
tions. They serve the purpose of giving the reader sufficient background to

299

follow the motivation behind the related projects, rather than introducing
the frameworks themselves.

Three more projects are presented without an introduction to their formal-
ism. paws (Black, 2004; Black and Black, 2009) generates pc-patr (Mc-
Connel, 1995) grammars for field linguists. Their approach does not focus
on improving grammar engineering and little attention is given to the imple-
mentation and interactions with the formalism in the literature on paws. The
final two projects described in this chapter are both related to hpsg gram-
mars. Sygal and Wintner (2011) propose a modular approach to developing
unification based grammars with typed feature structures. In Section 7.5,
I will show that, from a technical point of view, their approach is by far
the most similar to climb of the work presented in this chapter, despite the
difference in focus. The final section will present CoreGram (Müller, 2013)
which is similar to both the static core in the Grammar Matrix as well as
declarative climb.

Each of the sections below introduces a different project. The description of
the project is followed by a comparison between the project and climb. In
some cases, differences from the Grammar Matrix are also discussed. The fi-
nal section focuses on climb. This section provides a brief global comparison
between climb and the other approaches.

7.1 MetaGrammar and XMG for TAG

The MetaGrammar (Candito, 1998, mg) and the follow-on eXistensible Me-
taGrammar (Duchier et al., 2005, xmg) projects are efforts to improve the
development of Lexicalised Tree Adjoining Grammars (Joshi and Schabes,
1991, ltag). An initial foundation for these projects was made by Vijay-
Shanker and Schabes (1992). Because the motivation for the mg project is
tightly linked to the formalism of tag, I will provide a formal definition of
tags and a (somewhat simplified) description. This is followed by a brief ex-
planation of the challenges the work by Vijay-Shanker and Schabes (1992),

300

Candito (1998) and Duchier et al. (2005) addresses. I then briefly explain
the basic ideas and setup of Candito’s mg and the main extensions found in
xmg.

7.1.1 TAG

As defined in Joshi and Schabes (1997), a tag is a quintuple (Σ,NT ,I,A,S),
where

• Σ is a finite set of terminal symbols

• NT is a finite set of non-terminal symbols: Σ ∩NT =

• S is a distinguished non-terminal symbol: S ∈ NT

• I is a finite set of finite trees called initial trees or elementary trees,
where

– interior nodes have non-terminal symbols as labels

– nodes at the frontier can be labeled by a terminal or non-terminal
symbol. Non-terminal symbols at the frontier are marked for sub-
stitution, indicated by the symbol ↓

• A is a finite set of finite trees called auxiliary trees, where

– interior nodes have non-terminal symbols as labels

– nodes at the frontier can be labeled by a terminal or non-terminal
symbol. Non-terminal symbols at the frontier are marked for sub-
stitution, indicated by the symbol ↓, except for one note the foot
node, marked *.

– The labels of the foot node and the root node of an auxiliary tree
must be identical

The main operations within tag are substitution and adjunction. Figure 7.1
provides a schematic illustration of both operations. In the case of substitu-
tion, depicted on the left, an initial tree is inserted in another initial tree at

301

S

A ↓

A S

A

S

Z Z*

Z S

Z

Z

Figure 7.1: Substitution (left) and adjunction (right) in tag

a frontier node marked for substitution. The root node of the inserted tree
must have the same category as the node marked for substitution. Auxiliary
trees can be inserted into initial, auxiliary or derived trees using adjunction.
Auxiliary trees can only be inserted at nodes that are not marked for sub-
stitution and whose category is identical to the root and foot node of the
auxiliary tree in question. The original node (together with its subtree) is
inserted at the foot node of the auxiliary tree as can be seen in the right
hand image of Figure 7.1.

7.1.2 Inheritance in TAG

The mg project and xmg support lexicalised tree-adjoining grammars (ltags).
An ltag is a tag in which each initial or auxiliary tree has at least one ter-
minal symbol, its anchor.

Figure 7.2 provides an example of substitution in ltag. This figure demon-
strates the rich information that lexicalised trees in tag contain. A lexic-
alised tree specifies the subcategorisation requirements of a lexical item as
well of as the location where arguments should be inserted in the tree. In
the standardly used Feature Structure based tag (ftag), where nodes are
labeled with feature structures rather than atomic labels,1 initial and auxili-
aries trees also contain morphosyntactic information about the arguments of

1Candito (1999) refers to lexicalised tags augmented with features as “tag standards”
(standard tags).

302

S

NP0 ↓ VP

V NP1 ↓

likes(α1)

+
NP

(α2)John
→

S

NP

John

VP

V NP1 ↓

likes(α3)

Figure 7.2: Example of substitution in ltag

the anchor.

Originally, implemented tags were organised using two levels. The grammar
engineer would define initial and auxiliary trees with uninstantiated anchors.
Following Candito (1998), I will refer to such structures by the term tree
sketches. Related tree sketches are grouped into families in this approach.
The lexicon consists of lemmas which can be combined with anchors of tree
sketches to form initial and auxiliary trees. The definition of each lemma
contains a selection of families of tree sketches the lemma may combine with
to form an initial or auxiliary tree.

Engineers working in this original setting faced a major challenge in the lack
of generalisations over tree sketches, resulting in large lexica that were dif-
ficult to maintain (Becker, 1990; Vijay-Shanker and Schabes, 1992). When
part of the grammar was modified, each individual tree sketch interacting
with this phenomenon had to be adapted manually. Vijay-Shanker and
Schabes (1992) introduce ‘structure-sharing’ for ltags inspired by Flickinger
(1987).2 The basic structure they introduce involves inheritance in a similar
way as found in hpsg type hierarchies. Their work can be seen as the basis
of Candito’s mg.

2Vijay-Shanker and Schabes (1992) use the term ‘structure-sharing’ for combining in-
formation from lexical items and elementary trees. What they call ‘structure-sharing’ is
similar to inheritance in hpsg.

303

7.1.3 The MetaGrammar Project

Candito (1999) addresses the same basic problem of sharing information
between tree sketches. The main goal of her mg is to provide a setup that
can capture linguistically motivated generalisations in a grammar. Properties
of tree sketches are encoded in three distinguished dimensions (each using
hierarchies and inheritance) which are combined to form tree structures using
code generation. The dimensions contain the following information (Candito,
1996):

dimension 1 the canonical subcategorisation frame defines the argu-
ments of predicates and the argument’s index, possible category and
canonical syntactic function.

dimension 2 the redistribution of syntactic functions defines possible
diatheses of a lexical item, e.g. argument alternation, passivisation,
causatives.

dimension 3 the syntactic realisation of functions defines the realisa-
tion of syntactic functions on the surface, their constraints on word
order and morphology

The generation of a well-formed tree in tag takes place in two steps. First, a
generator creates a cross-classification by combining terminal classes (corres-
ponding to types in hpsg) from each of the three dimensions in a controlled
manner. The cross-classification is restricted by language independent prin-
ciples of well-formedness and language specific compatibility constraints. The
systematically generated classes contain information from all three dimen-
sions.

The second step converts the thus obtained classes into well-formed tag

tree sketches. Classes can contain flat tree structures where dominance or
precedence are underspecified. Tree structures with underspecified domin-
ance can be compared to head-final or head-initial phrases in hpsg, which
state the relative order between the head of the phrase and other daugh-
ters, but provides no indication of the exact relations between the respective

304

phrases. If precedance is underspecified, the exact location of arguments is
not defined. This underspecification makes it possible to disassociate dom-
inance from precedance, a property that can capture flexibility in the final
order of constituents on the surface. A class can be converted in one or more
tree sketches representing an initial or auxiliary tree. As before, the lexical
definitions of lemmas specify with which anchors they may combine.

7.1.4 Extensions to MG

Several extensions have been proposed to Candito’s mg. Gaiffe et al. (2002)
propose an alternative compiler that leaves the number of dimensions used
open. Their experimental proposal is worked out and scaled up by Duchier
et al. (2005) and Crabbé and Duchier (2004), referring to the updated version
of mg as eXtensible MetaGrammar (xmg). The original motivation for this
extension was that the three dimensions proposed by Candito (1999) focused
on verbs in French and Italian, but could be suboptimal for other languages
or words belonging to other categories than verbs. Gerdes (2002) investigates
the possibility of using an adapted metagrammar for tag to capture German
word order, known to go beyond the generative power of basic tag (Becker
et al., 1991). He concludes that a compromise must be made between a
“minimal violation of the tag principles [...], a maximal coverage of the
grammar, a maximal usefulness for simple language generation systems, and
a maximal simplicity in the metagrammar description” (Gerdes, 2002, p.5-6).

Clément and Kinyon (2003) propose a methodology to develop grammars
using the frameworks of tag and lfg in parallel from a metagrammar. This
approach is possible thanks to Candito’s original classification, where the
first dimension encodes information relevant for lexical items in lfg, the
second dimension can be used to derive lexical rules, and the structure of
tree sketches can serve as a basis for generating lfg’s context free rules.3

The main purpose of using mg in Clément and Kinyon (2003) is to find
a ‘middle-way’ between hand-crafting grammars and extracting grammars

3For a basic introduction to lfg, see Section 7.3.

305

from a treebank. The basic part of the grammar is hand-crafted and the
bulk of the grammar is automatically generated off-line. The engineer need
only write a small grammar and verify the derived rules.

Kinyon et al. (2006) explore the use of xmg in a multilingual context. In
principle, the hierarchies in the metagrammar can contain crosslinguistically
invariable properties. Their study uses xmg to perform a crosslinguistic
comparison of verb-second structures, investigating the applicability of their
analysis to German and Yiddish.

7.1.5 Comparing MG and XMG for TAG to CLIMB

Metagrammars for tag were developed to provide a level of linguistically mo-
tivated generalisation and thereby improve the maintainability of the gram-
mar. They also contribute to the overall structure of the grammar and have
a multilingual ambition (Candito, 1999).

The (x)mg approach clearly has a lot in common with the approach pro-
posed in this thesis. First, they both use libraries (or dimensions) of basic
implementations in combination with code generation to develop grammars.
Second, they share the goal of improving maintainability, modularity and
the systematic structure of the grammar. Finally, both approaches support
multilingual grammar development, even though mgs and xmgs for tag are
generally monolingual (Kallmeyer, p.c.).

On the other hand, the differences between the approaches are also signific-
ant. The main purpose of mg and xmg is to allow the grammar engineer to
organise the grammar in a manner that is generally done by the type hier-
archy and multiple inheritance in hpsg grammars. Code generation thus
plays different roles in (x)mg and climb. Whereas (x)mg uses code gen-
eration to capture generalisations, climb uses code generation to include
alternative analyses for the same phenomenon (within a language or cross-
linguistically).

Furthermore, there is little overlap between xmg’s organisation in dimen-

306

sions and the organisation in linguistic libraries in the Grammar Matrix or
climb. On the one hand, climb represents basic subcategorisation and sur-
face constraints together at several places in the metagrammar. On the other
hand, xmg does not, to my knowledge, use the more fine grained architec-
ture found in climb libraries to distinguish between different morphosyn-
tactic properties, such as case assignment or person-number-gender agree-
ment. With climb, linguists can define observations they make on the sur-
face (e.g. ambiguous morphological markings) and automatically generate a
grammar containing a corresponding type hierarchy. Section 6.3.2 explained
how this property of climb can be used to verify linguistic hypotheses. To
my knowledge, (x)mg does not provide such support to grammar writers.

Finally, I am not aware of any work in mg or xmg that investigates main-
taining different versions of a grammar. This includes both versions meant
for different applications as well as systematic investigations on the impact of
specific analyses. The original goal of climb is therefore not explored in this
approach. The overall setup would, however, allow engineers to use mg for
comparison. This is exactly where the research that is closest related to my
research within xmg differs from the work in this thesis. Kinyon et al. (2006)
investigate verb-second analyses through a metagrammar. They explore the
possibility of using one analysis across two verb-second languages. Alternat-
ive analyses are not explored in their approach. This work is therefore more
closely related to the Grammar Matrix than to climb.

7.2 The GF Resource Library

The gf Resource Grammar Library (Ranta, 2009, 2011) is a multilingual
linguistic resource that contains a set of syntactic analyses implemented in
Grammatical Framework (Ranta, 2004, gf). The purpose of the library is
to allow engineers working on NLP applications to write simple grammar
rules that can call more complex syntactic implementations from the gram-
mar library. The grammar library is written by researchers with linguistic
expertise. It makes extensive use of code sharing across languages. Ranta

307

(2011) reports comprehensive fragments for twenty languages, the gf web-
site4 indicates implementations for thirty six languages.

The gf Resource Library shares the multilingual ambition of the Grammar
Matrix, as well as the desire to use code sharing between languages found
in both the Grammar Matrix and climb. However, the architecture of the
gf Library and its use differ. I will provide a brief description of the gf

formalism and its Resource Library. Descriptions will be limited to what is
needed to get a basic picture of how the system works and how it differs from
the Grammar Matrix and climb.

7.2.1 Grammar Framework (Ranta, 2004)

The origin of gf lies in Type Theoretical Grammar (Ranta, 1994) using se-
mantics from Intuistionistic Type Theory (Martin-Löf, 1984). gf can be seen
as the practical successor of Type Theoretical Grammar. It is designed to
provide both a simple tool for engineers who want to build natural language
applications as well as a reliable grammar formalism for linguists.

Ranta (2004) situates gf as closest to Montague grammar (Montague, 1974).
More distantly, it is also related to unification based formalisms such as dcg

(Pereira and Warren, 1980), patr (Shieber, 1986), hpsg and lfg. There
are, however, several differences between gf and unification grammars. I
will elaborate on gf’s distinction between abstract and concrete syntax and
the distinction between parameters and inherent features. The descriptions
provided below are mostly based on Ranta (2009) and, to a lesser extent, on
Ranta (2004) and Ranta (2011).

Abstract versus Concrete Syntax

The distinction between abstract syntax and concrete syntax is fundamental
in gf (Ranta, 2009). Abstract syntax is used to define sets of tree structures.
Concrete syntax deals with mapping trees to surface strings and records,

4http://www.grammaticalframework.org/lib/doc/status.html, accessed 25 June 2012.

308

which are similar to feature structures. The following examples taken from
(Ranta, 2009, 5-6) illustrate both levels.

The judgments5 below define properties of abstract syntax:

cat CN

fun House : CN

fun Mod : AP → CN → CN

The first judgment introduces the category CN for common nouns. Categor-
ies are basic types in abstract syntax and represent a set of trees. The second
and third judgment define functions that build trees. fun House : CN is a
zero argument function stating that House is a tree belonging to the category
CN. The function Mod recursively builds CN trees by adding adjectives.

Assuming the category AP is defined by a judgment and Big is assigned to
this category, the following trees can be built:

Mod Big House

Mod Big (Mod Big House)

Mod Big (Mod Big (Mod Big House))

...

Concrete syntax defines linearisation of both types and functions, as demon-
strated below:

lincat CN = Str

lin House = “house”

lin Mod ap cn = ap ++ cn

5The word judgment in gf refers to what in other frameworks might be called “defini-
tions” or “statements”.

309

The judgments above assign linearisation to the three abstract judgments
provided above. The first judgment assigns the linearisation type string
to the category of common nouns. This type must be respected by judg-
ments that define the linearisation functions linked to abstract functions.
The second judgment links the type House to its corresponding string. The
linearisation of Mod is defined as the concatenation of a tree belonging to AP
and a CN tree, with the AP tree preceding the tree of category CN.

Parameters and inherent features

Another distinguishing property of gf is the emphasis it lays on distinguish-
ing between parameters and inherent features. Parameters can be used to
represent different forms observed for entities of given category. Typical ex-
amples are number marking for nouns, or agreement in number, case and
gender for adjectives.

Through a judgment stating that the linearisation of CN assigns strings to
number, it is now possible to define House as a lexeme, with a singular and
plural form rather than a simple word.

On the other hand, a category may have features that are inherent to specific
instances of the category. Gender in German or French is a typical example
of such an inherent property. Apart from a small set of exceptions, a given
noun always carries the same gender. The judgment for CN below illustrates
the difference between a parameter and inherent feature:

lincat CN = {s : Number ⇒ Str ; g : Gender}

Separating inherent features from variable properties forms one of the prin-
ciple tasks in designing a grammar in gf (Ranta, 2009). Ranta (2009) notes
that features that are inherent for a category in a given language are often
also inherent in other languages that use the same feature. This property
forms one of the bases for sharing implementations across grammars in gf.

310

Auxiliary operations

Being a functional programming language, gf uses functions identified by the
keyword oper to incorporate generalisations within concrete syntax. The
operation below defines a boolean parameter to indicate surface order for
strings. The linearisation judgment captures the fact that some French ad-
jectives follow and others precede the noun they modify.

oper prefixIf : Bool → Str → Str → Str =

\p,x,y → case p of {

True ⇒ x ++ y;

False ⇒ y ++ x };

lin Mod ap cn = { s = table {n ⇒
prefixIf ap.isPre (ap ! cn.g ! n) (cn.s ! n)};

g = cn.g }

Operation prefixIf can be used for all kinds of variation in word order
within categories, such as clitics in Romance languages or distinguishing
postpositions and prepositions in Finnish (Ranta, 2009).

7.2.2 The Resource Library

gf has been oriented towards application and multilingualism from its early
days. The observation that complex linguistic phenomena occur in any ap-
plication dealing with natural language motivated the development of soft-
ware libraries to support engineers.

The gf resource library consists of a user API and a core grammar. Both
layers contain language independent as well as language specific modules.
The following modules are provided by the API for developers of application
grammars.

• SyntaxX for access to the syntax in the core

311

• ParadigmsX providing inflection paradigms to build a lexicon

• ExtraX allowing engineers to extend the core grammar

The categories and functions provided in the Syntax module are the same
for all languages. Paradigms are language dependent, though an effort is
made to share name conventions across languages. Extensions can be either
crosslinguistically applicable or language specific.

The core grammar is structured as follows:

• GrammarX containing syntactic combination rules

• LexiconX a lexicon to test the core independently from applications

• LangX combines GrammarX with LexiconX

• AllX combines LangX with additions from ExtraX and a language spe-
cific lexicon

The language independent library provides a core syntax and lexicon. The
core syntax has approximately 60 categories and 200 functions. The core
lexicon consists of around 100 structural words, 50 words to create numbers
and 350 basic words resulting in a total of around 500 lexemes. The crosslin-
guistic component of the lexicon defines the general meaning and semantic
function of words. Language specific definitions are provided capturing the
form, inflection and basic word order patterns of the basic words in indi-
vidual languages. Additionally, there are modules that capture extensions of
syntactic properties for individual languages. The core lexicon includes, for
instance, an extension for Romance tense and extensions for irregular verbs
for several languages.

The examples below illustrate how the sentence we walk can be generated in
English and Finnish (me kävelemme) using the Library Resource.

mkCl we_NP (mkV “walk”)

312

mkCl we_NP (mkV “kävellä”)

Pronouns are included in the core lexicon. The core syntax takes care of
properties such as agreement, resulting in well-formed sentences by combining
the basic type for the pronoun with a function taking the infinitive form of
the verb as an argument. The next subsection describes the multilingual
character of the gf Resource Library in more detail.

7.2.3 Multilingualism in GF

gf shares implementations crosslinguistically as much as possible. At the
same time, it provides several methods to incorporate linguistic differences
where necessary, both at the level of abstract as well as the level of concrete
syntax.

Abstract syntax is generally language independent. It represents semantic-
ally relevant tree structures abstracting away from the surface up to a point
comparable to MRS: functional words, morphology and surface order are not
found in the abstract representation. There are, of course, exceptions where
utterances equivalent on a higher level use different semantic structures in
individual languages. Abstract syntax can, despite its abstraction and (par-
tial) similarity to MRS,6 not be seen as a purely semantic representation,
since it also includes syntactic categories and basic rules for combining syn-
tactic elements. These syntactic components are comparable to some of the
types included in the Grammar Matrix core.7 They provide generic state-
ments about how words are combined with arguments or modifiers with their
heads, but no information on how this is expressed exactly on the surface.
As explained in Section 2.3, the Grammar Matrix provides generic types that
combine a phrase with a subject or a complement as well as types that define
the arity of lexical items.

As mentioned above, the core includes basic lexical items that are found
across languages (the surface form naturally being defined specifically for each

6See section 2.1.5 for an explanation of MRS.
7See Section 2.3 for a description of the Grammar Matrix.

313

language). These basic lexical items can be compared to instances of basic
lexical types in hpsg where only the predicate and not the form is defined. In
the example of we walk and its Finnish equivalentme kävelemme for instance,
the pronoun and verb will have common properties in both languages. These
common properties are included in the language independent core lexicon.
Where possible, the same syntactic structure is used to describe as many
languages as possible.

gf provides three basic strategies in case either abstract or concrete syntax
of a given language differs from other languages. First, the developer can
decide to define the given function in language specific parts of the grammar
rather than the common core. The second possibility is to define a general
functor suitable for most languages, but apply restricted inheritance for those
languages that reveal different behaviour. The general behaviour can then
be overwritten by language specific properties. The final, and according to
Ranta (2009) preferable, method is to use parameters to define the different
options found in individual languages. This method can also be applied to
incorporate variations within a language. For instance, the level of politeness
in imperatives can be defined in a flexible way using parameters.

7.2.4 Comparing GF and CLIMB

Even though the gf resource grammar and climb both use libraries con-
taining syntactic analyses, the approaches differ in many ways. gf Libraries
primarily address engineers who are interested in building NLP applications.
They can define a domain specific grammar (e.g. by defining a domain spe-
cific vocabulary) without dealing with complex syntactic properties of the
language. Syntactic properties are implemented by linguistic experts. Lin-
guistic insights are thus taken seriously during the development of gf, but it
does not come with a linguistic theory. The approach can provide insight into
the potential to share grammatical definitions across languages, but Ranta
(2009) carefully claims that the approach ‘may’ be of typological interest.

The focus of climb mainly differs in two aspects. The libraries serve in first

314

place to facilitate the development process of linguistic analyses. The libraries
make it possible to adapt grammars according to domains or applications,
but these adaptation still require linguistic expertise. climb does provide an
interface to work on the grammar without grammar engineering expertise,
but the intended users of this interface (editors of choices) are linguists and
not application oriented engineers.

The most significant difference concerns the original goal of climb, which
can be seen as opposite to that of the gf libraries. Where climb aspires to
stimulate developers to explore different implementations to achieve a par-
ticular goal, gf aims to use the same implementation for as many structures
as possible.

This difference in interest can partially be explained by the application ori-
ented setup of gf and the fact that gf does not focus on developing a lin-
guistic theory: comparison and creating optimal models is not the purpose of
gf. On the other hand, optimal solutions are also relevant for purely engin-
eering goals. In particular, the starting point of sharing between languages
may lead to suboptimal solutions for individual languages.

gf parameters or restricted inheritance can in principle be used to incor-
porate alternative analyses. This would, however, render the core grammar
more complex. If there were an interest in grammar comparison within gf, it
would probably be a more suitable solution to have parallel core grammars.
The benefit would be that the API can remain unchanged, but parallel de-
velopment of the core would increase the work load significantly. In the end,
code generation seems to be a key ingredient for a successful approach to
grammar comparison. Given the main purpose of gf, this is unlikely to be
developed.

7.3 The ParGram Project

The ParGram (Parallel Grammar) project is a multilingual grammar de-
velopment approach developing lfg grammars using the xle parser and

315

grammar platform (Maxwell III and Kaplan, 1993; Crouch et al., 2011). The
main idea behind the project is to share knowledge and increase consistency
across grammars.

7.3.1 Lexical Functional Grammars

Lexical Functional Grammar8 takes a modular approach to grammatical de-
scription using (minimally) two levels of representation: f-structures (func-
tional structures) and c-structures (constituent structures). C-structures rep-
resent the phrase structure through dominance and precedence of surface
strings. They are licensed by a context free grammar (CFG).

F-structures encode syntactic dependencies of a structure by representing
predicate arguments in attribute-value matrices (avms). The values of at-
tributes can be f-structures, atomic values or sets. Feature structures in lfg

are not typed: the operation or (∨) can be used to indicate underspecifica-
tion. Figure 7.3 represents an example of a basic f-structure and c-structure in
lfg. F-structures are linked to c-structures through a functional projection
function φ that maps constraints from c-structure nodes to attribute-value
pairs in the f-structure. The constraints on c-structure nodes are defined
on context-free rules and lexical items. The following rules and (simplified)
lexical items that can derive the structures in Figure 7.3:

S → NP VP
(↑ subj) = ↓ ↑ = ↓

VP → V (AP)
↑ = ↓ ↓ ∈ (↑ adj)

Mary NP (↑ pred) = ‘Mary ’

smiles VP (↑ pred) = ‘smile< subj >’

pleasantly AP (↑ pred) = ‘pleasant ’
8This basic description of lfg is based on Dalrymple (2001) and Butt et al. (1999).

316

S

NP VP

VP APMary

smiles pleasantly

pred ‘smile
〈
subj

〉
’

subj
[
pred ‘mary’

]

adj
{[

pred ‘pleasantly’
]}

Figure 7.3: Basic c-structure and f-structure of Mary smiles pleasantly

The arrows in the annotation indicate how information associated with in-
dividual nodes is linked to the f-structure. Phrases inherit their functional
properties from their head according to the head convention. This is indic-
ated by the annotation ↑=↓, where ↑ refers to the f-structure related to the
mother node and ↓ to the f-structure of the current node.

The annotation (↑ subj) = ↓ associated with the NP in the first rule above
indicates that the functional properties of the current node are identical to
those of the subject of the mother node. Similarly, ↓ ∈ (↑ adj) includes the
functional properties of the current node in the set of adjuncts of the mother
node. Figure 7.4 represents the c- and f-structure together with function φ
for Mary laughs pleasantly.

There are several criteria that determine whether an expression is accepted
by an lfg grammar. First, its c-structure has to be licensed by the CFG.
Second, function φ must derive a well-formed f-structure. An f-structure
must fulfil three conditions to be well-formed (Butt et al., 1999, 6):

1. The f-structure must fulfil the condition of uniqueness: each attribute
in an f-structure may have at most one value

2. The f-structure must be complete: An f-structure is locally complete
iff it contains all grammatical functions that its predicate governs. An
f-structure is complete iff it and all its subsidiary f-structures are com-
plete.

317

S

NP
(↑ subj) = ↓

VP
↑ = ↓

VP
↑ = ↓

AP
↓∈ (↑ adj)

Mary

smiles pleasantly φ

subj
[
pred ‘mary’

]

pred ‘smile
〈
subj

〉
’

adj
{[

pred ‘pleasantly’
]}

Figure 7.4: Indicating φ for analysis Mary smiles pleasantly

3. The f-structure must be coherent: An f-structure is locally coherent iff
all the governable grammatical functions it contains are governed by
the predicate. An f-structure is coherent iff it and all its subsidiary
f-structure are coherent.

The first condition makes sure that an attribute does not receive conflicting
values. This can be used to capture grammatical properties such as agree-
ment. Completeness and coherence together make sure that subcategorisa-
tion requirements are fulfilled. Completeness dictates that all arguments
a predicate subcategorises for be present in the structure, i.e. it excludes
expressions like *the lion devoured. Coherence implies that the f-structure
does not contain governable grammatical functions that are not selected by
a predicate, excluding ill-formed expressions such as *Mary smiled a table.

The idea behind different levels of representation in lfg is to represent indi-
vidual aspects of language in suitable forms. In addition to the c-structure
and f-structure, it is for instance possible to add semantic structures using lo-
gical forms. The distinction between c-structure and f-structure in syntactic
representations is, however, not merely introduced to describe different as-
pects of language in a convenient manner. It also captures the idea that

318

languages vary on the level of morphology and constituency, but often the
same generalisations can be made on a functional level.

Many phenomena across languages can be described with notions such as
subject, object, modification, complements or anaphoric binding (Butt et al.,
1999, 7). In other words, f-structures provide descriptions that are (largely)
language independent. C-structures represent the highly varying surface
properties of individual languages. This distinction is reflected in the general
setup of ParGram described in the following subsection.

As mentioned above, feature structures in lfg are not typed. xle (Crouch
et al., 2011) allows users to create templates that can be used for general-
isations. Templates can group equations associated to lexical items or rules.
The basic format of templates and the way they are called is presented below:

template name(parameters) = equations.

@(template name parameters)

The following example (King et al., 2005, 20) demonstrates how templates
may be used to provide a parameter for tense and assign indicative mood.
The equation in (1) declares the template. (2) shows how the template is
called to assign past tense. The equations in (3) are equivalent to the equation
in (2) calling (1).

1. tense-ind (tns) =

(↑ tns-asp tense) = _tns

(↑ tns-asp mood) = indicative.

2. @(tense-ind past)

3. (↑ tns-asp tense) = past

(↑ tns-asp mood) = indicative

Templates can call templates themselves. They can therefore be used to build
hierarchies that are used in a similar manner as type hierarchies in hpsg.

319

The hierarchies built by templates in xle grammars generally use less layers
than hpsg type hierarchies. Hierarchies using more than three layers are
rare (Butt, p.c.).

7.3.2 ParGram

The ParGram project (Butt et al., 2002; King et al., 2005) is a collaborat-
ive effort to develop lfg grammars for a variety of languages. The related
ParSem initiative focuses on deriving semantic representations from syntactic
structures in ParGram grammars. I will focus on ParGram in this discus-
sion. The main goals are maintaining consistency among grammars, sharing
knowledge between grammars and crosslinguistic research on syntax. Indi-
vidual grammars are in principle developed independently. ParGram uses
two main mechanisms to achieve its goals: tools for shared implementation
and discussion during meetings held twice a year.

Grammar engineers writing ParGram grammars try to use the same features
and atomic values that are used in other ParGram grammars as much as
possible. Both shared implementations and the ParGram meetings are used
for this purpose. King et al. (2005) describe a feature checking mechanism
that is used as a filter to verify consistency among grammars. The process
uses two tools: feature declarations and a feature table.

Feature declarations determine what features may be used in the grammar.
Crosslinguistic research is used to decide which features are declared. Feature
declarations take the following form:

1. feat:→∈ {value1 value2 ...valuen}.

2. featA:→<< [featB1 . . . featBn].

The first definition is used to declare atomic features and their permitted
values, the second can declare complex features as value. The example below
forms the feature declarations for tense and aspect.

320

1. tns-asp: →<< [mood perf prog tense].

2. mood: →∈ { imperative indicative subjunctive }.

3. perf: →∈ {+_ -_}.

4. prog: →∈ {+_ -_}.

5. tense: →∈ {fut null past pres }.

Defining a valid set of features for all languages is not a trivial task (Poulson,
2011). Tense and aspect, for instance, vary across languages. The features
above are the result of a practical approach to capturing basic variations in
tense and aspect that languages may express, leaving the final interpretation
of tense and aspect to a semantic component (King et al., 2005).

When the grammar is loaded, xle verifies whether all features used in the
grammar rules are declared. If the grammar rules contain undeclared fea-
tures, xle prints a warning pointing to the feature in question. New features
must be added to the declarations in order for the grammar to load.

It is possible to define multiple feature declarations that are called according
to a priority order. This allows grammar writers to declare common, language
independent features and provide declarations for the specifics of the language
in question. More specific declarations are given higher priority, i.e. they
can overwrite those from the common core. There are three operations to
manipulate more general feature spaces: +, & and !. The operator + adds
a value, operator & can restrict the number of values a feature can take and
the ! operator can replace the entire set of values.

It is general practice to add all features to the common feature space that are
introduced in one of the ParGram grammars for sound linguistic or imple-
mentation reasons. This means that the + operation should be used seldomly
and, in principle, temporarily. Feature comparison between grammars is one
of the main tasks of the ParGram meetings. A feature table is produced
based on the declarations of individual grammars. For each new feature, the
feature committee consisting of developers of individual grammars carefully

321

checks whether it is required. The committee will always prefer alternat-
ive solutions that use the existing common feature space to introducing new
features. Only if they are convinced of its absolute necessity, will the new
feature be added to the common feature declarations. The comparison of
feature spaces in grammars also provides an insight into the set of phenom-
ena covered by individual grammars and the analyses they use (Butt et al.,
2002).

Analyses provided for specific sentences are compared during the meeting. A
shared set of sentences (a fable or a set of sentences representing a specific
phenomenon) is translated and parsed by the participating grammars. For
each sentence, differences between grammars are examined and it is discussed
whether the difference is justified, or whether analyses could be adapted to
increase parallelism. On this level of providing descriptive analyses, tem-
plates can be used to share implementations. King et al. (2005) report on
270 templates that are shared among ParGram grammars.

Finally, the meetings serve as a platform to discuss phenomena that do not
have a fixed analysis yet. If a general solution is found and accepted by the
participants, it is integrated into all grammars. In other cases, a tentative
analysis is implemented in one grammar or a couple of grammars and the
results are reported in the next meeting. The process of comparing analyses
and discussing them also serves the purpose of helping smaller grammars to
increase their coverage based on grammars that are more advanced.

7.3.3 Comparing ParGram and CLIMB

King et al. (2005) provide an elaborate discussion about the similarities and
differences between feature declarations in ParGram grammars and type hier-
archies in hpsg. The main difference they point out is that feature declar-
ations and the checking mechanism are more lenient than the conditions on
well-typedness in hpsg.

F-structures are minimalistic in the sense that only those features which are
explicitly defined in the lexicon or grammar rules appear in the f-structure. In

322

other words, an f-structure does not necessarily contain all features that are
declared appropriate. hpsg features are always present on the types for which
they are declared.9 Furthermore, the authors claim that feature declaration is
less theory driven than hpsg type hierarchies. This would have the advantage
that the grammar engineer is not limited by theoretical constraints which
may be revised, or have not been proven to be crosslinguistically applicable.

This second difference seems only partially valid when looking at current
practice in delph-in grammars. The challenge hpsg faces due to lack of
modularity in its feature structures is well-known (Moshier, 1997a,b) and has
been addressed in Section 3.4.2. However, it is not the case that grammar
developers are prevented from integrating new features in their grammar that
are not reflected in hpsg theory. Nor does the Grammar Matrix dictate a
basic type hierarchy that must under all circumstances be respected. It is
common practice to adapt definitions in the Matrix core or overwrite them
with new language specific definitions. In fact, grammar writers are more at
liberty to do so than members of ParGram: the Grammar Matrix and hpsg

theory form a starting point and guideline in their development practice, but
new features are not ‘skeptically reviewed’ by a committee as in ParGram.
As the evaluation of the Grammar Matrix has revealed, delph-in grammars
could benefit from a similar approach as found in ParGram. Contrary to what
has been claimed in King et al. (2005), this approximation to the ParGram
method would lead to a stricter approach for writing delph-in grammars.

ParGram shares the goal of achieving consistency in grammars with climb.
It differs in its focus on multilinguality and vision of multiple possible ana-
lyses. Butt et al. (2002) directly refer to the known problem of multiple
ways to analyse a phenomenon. Comparison between grammars at ParGram
meetings serve the purpose of making decisions in such cases. The purpose
of sharing code is to reduce the possibilities in analysing phenomena rather
than exploring alternatives extensively. This does not mean that there is no
interest in examining various approaches or the possibility of using a method

9Flickinger (1987) proposes a method which avoids superfluous features, where super-
types with less features are introduced that can be used as values in cases where not all
features are needed (cf. Section 2.2.1, p.46).

323

similar to climb. King (p.c.) mentioned the example of adjectives in the
English grammar. It was revised and changed back and forth based on a
theoretical discussion. The experiment ended in King deciding she would
not make the elaborate change again, rather than an agreement on how ad-
jectives should be analysed. King’s comment suggests that there is a need
for a climb-like approach within ParGram, but, to my knowledge, it has not
been attempted so far.

Code sharing within ParGram is static: it consists of a set of feature de-
clarations and predefined templates. Adapting metagrammar engineering
would therefore require the effort of designing a suitable metagrammar. In
principle, a similar approach as used in the Grammar Matrix customisation
system and climb can be adapted for lfg and could be beneficial for Par-
Gram grammars.

7.4 PAWS

The basic setup of paws (Black, 2004; Black and Black, 2009, Parser And
Writer for Syntax) is relatively close to the Grammar Matrix. The system
consists of a questionnaire where linguistic properties can be defined. Con-
sequently, the paws Starter Kit automatically creates a draft of grammatical
description as well as a basic implementation that can be used by McConnel’s
pc-patr syntactic parsing program (McConnel, 1995).

The focus of paws differs from the Grammar Matrix in several ways going
in quite an opposite direction from climb. I will focus on the differences in
purpose and method. For a more detailed description of differences between
the Grammar Matrix and paws, see Bender et al. (2010).

7.4.1 PAWS setup

paws is developed by SIL (Summer Institute of Linguistics) as support for
field linguists. The questionnaire provides basic descriptions of known lin-

324

guistic behaviour that can be observed in different languages. The user
answers questions on specific phenomena and is encouraged to provide ex-
amples. This input is used as a basis to generate (prose) descriptive gram-
mars. As such, paws can be seen as a guide to grammar description.

The descriptions are also linked to implementation in pc-patr. The ques-
tionnaire provides feedback on how to define lexical items for the implemen-
ted grammar. Alternatively, ample (Weber et al., 1988) can be used to
create the lexicon. The information required for the pc-patr implementa-
tion is clearly distinguished from that intended for grammatical description.
This setup allows users who are not interested in an implemented grammar
to focus on grammatical description alone. The motivation behind the dis-
tinction clearly shows that grammatical description is the primary goal of
paws.

7.4.2 Comparing PAWS and CLIMB

Black and Black (2009) do not elaborate on the motivation behind imple-
menting a system that can generate pc-patr grammars. The interest seems
to lie mainly in providing a tool for visualising syntactic analyses for descript-
ive linguists. The grammars are, to my knowledge, not meant to be used in
applications nor to provide a theoretical model of language. The latter is not
surprising, given that patr is a formalism for linguistic description and not a
framework for developing a linguistic or syntactic theory. Grammatical com-
parison as carried out in climb has therefore not been carried out within
paws. Nevertheless, they may still be interested in comparative research.
The multilingual nature of their project and their goal of supporting field
linguists can lead to regular revisions of analyses. A setup that facilitates
comparison can be helpful in such cases.

7.5 Modular typed unification grammars

Sygal and Wintner (2011) present foundations of a modular construction for

325

unification grammars using typed feature structures. This research is part
of a project on mathematical and computational infrastructure for grammar
engineering.10 Engineers can implement modules defining a part of a type
hierarchy. These modules can be combined to form a complete grammar by
specially defined functions. This basic setup is similar to declarative climb.
One of the main differences between the two approaches is the fact that
improving modularity is the purpose of Sygal and Wintner’s (2011) work,
where improvement in modularity in climb can be seen as an advantageous
by-product of practical adaptations in grammar engineering serving other
purposes. A more detailed comparison will be provided in Section 7.5.2

This section will explain the modular design for unification grammars pro-
posed by Sygal and Wintner (2011). Because the formal background of typed
feature structures was presented in detail in Section 2.1.1, the description in
this section will mostly remain informal. Related definitions and detailed
examples explaining how individual operations work can be found in Sygal
and Wintner (2011) and Sygal (2011).

7.5.1 Modularity for typed feature structures

Requirements and applications

The following goals are set for the modularised approach to grammar engin-
eering with typed feature structures (Sygal and Wintner, 2011, p. 3-4):

• Signature focus, where signature refers to the type hierarchy (includ-
ing appropriateness specification and constraints). This goal expresses
that a modular signature is essential for a modular grammar and there-
fore the modularisation of the grammar should focus on the signature.
This can be achieved by distributing definitions making up the type
hierarchy over individual modules.

• Partiality: Modules can provide partial information about the com-
10http://cl.haifa.ac.il/projects/grameng/index.shtml

326

http://cl.haifa.ac.il/projects/grameng/index.shtml

ponents of a grammar.

• Extensibility: One module must be deterministically extensible into
a full grammar (through combinations with other modules).

• Consistency: Inconsistencies between modules must be identified when
they are combined.

• Flexibility: Unnecessary restrictions on modules should be avoided.

• (Remote) Reference: A module must be able to refer to entities
defined in another.

• Parsimony: A combination of modules should contain all information
from individual modules. Additional information may be added, but
only if needed to render the resulting combined module well-defined.

• Associativity: In case of simple union of data, the operation of com-
bining modules should be associative and commutative.

• Privacy: It must be possible to encapsulate information in modules,
i.e. make it unavailable to other modules.

The advantages of a more modular approach can be seen in applications
such as the development of a single (large) grammar by a team, multilingual
grammar development as done in the Grammar Matrix, ParGram or Core-
Gram and sequences of grammars modelling diachronic change in languages
(Wintner et al., 2009).

Signature modules

Sygal andWintner (2011) introduce signature modules, which may be used
for modular development of type hierarchies. These modules define partial
properties of a type hierarchy. Information can both be partial on the level
of the hierarchy itself (partial subsumption relations) and on the properties
of specific types (partial appropriateness conditions). The information in

327

modules is defined on nodes in a graph. Modules can define which nodes are
exposed to other modules and how other modules may interact with a node.
Nodes can be seen as parameters that may allow information to be imported
from or exported to other modules.

The partial descriptions of a type hierarchy in a module are defined as a par-
tially specified signature (PSS). This is a finite directed graph, where nodes
correspond to types and edges can either indicate subsumption relations or
appropriateness conditions. Nodes may optionally be marked which means
that the are associated with specific types, but they can also remain an-
onymous. Anonymous nodes are used to refer to types that are defined in
another module. Within a module, there may be only one node referring to
a specific type, i.e. the relation T used to mark some nodes with types must
be one to one. A PSS must be partially ordered, but need not be a BCPO
(see Section 2.2.1 for an explanation on BCPOs).

A signature module consists of a PSS, a set of internal types, a set of impor-
ted parameters and a set of exported parameters. The members of each set
correspond to nodes in the PSS. Nodes which are not a member of any set are
external nodes. Internal types11 can be compared to local variables in pro-
gramming: they cannot communicate with other modules. All other nodes
(imported, exported and external) do communicate with other modules. Im-
ported nodes receive information, exported nodes provide information and
external nodes function similarly to global variables in programming.

Combining signature modules

Signature modules can be combined by two operations: merge and attach-
ment. Both operations may only apply when the signature modules that
are to be combined are consistent, i.e. they may not include types that are
internal to the other module and they may not have common nodes.12

11Internal nodes are always marked (i.e. associated with a specific type): anonymous
nodes should (at least) receive information from other modules.

12It may happen that the modules do have common nodes or internal nodes that have
the same name. In this case, they “can be renamed without affecting the operation” (Sygal

328

When two modules are merged, their information is combined into a new
module. An essential step in this process is the coalescence of nodes marked
by the same type. Anonymous nodes may also be coalesced if they are indis-
tinguishable. Merging starts with the simple union of the graphs defined by
the respective modules. Then coalescence for identically marked nodes and
indistinguishable anonymous nodes takes place by applying a compactness
algorithm. This algorithm also removes redundant arcs from the graph (i.e.
arcs that denote information that can also be deducted from other defini-
tions). The next step inserts appropriate conditions to ensure the relaxed
upward closure condition. This condition ensures that appropriate condi-
tions defined on a supertype also apply to its subtypes (i.e. inheritance of
appropriate conditions). This operation may result in new indistinguishable
anonymous nodes and new redundant arcs. Therefore the compactness al-
gorithm is applied again. Merge can only apply if the output constitutes a
subsumption hierarchy that is a partial order.

The attachment operation is an asymmetric operation where a signature
module S1 receives another module S2 as input. Similar to the merge op-
eration, information from S2 and S1 is combined (that of S2 is added to
S1). However, an additional asymmetric operation applies where the expor-
ted parameters from S2 are linked to the imported parameters from S1. The
respective associated nodes from both modules are coalesced. Unlike the
merge operation, this coalescence does not require nodes to be indistinguish-
able. This operation can only apply if the number of importing parameters
in S1 is equal to the number of exporting parameters in S2. Furthermore,
parameters that are linked to each other may not be associated with distinct
types. Finally, the modules must be mergeable and the attachment must
lead to a partial order without subsumption cycles.

and Wintner, 2011, p. 42).

329

Creating a well-defined grammar

The partial signature modules need not conform to all requirements of a type
hierarchy defining a grammar. After all relevant modules are combined, a
set of operations must be carried out to ensure a well-defined type hierarchy
is formed. First, the combined modules may still contain anonymous nodes.
These nodes are compared to nodes13 that are marked (i.e. associated with
a type) and if two nodes are found to be indistinguishable except for the
markedness of one node and anonymity of the other, the nodes are coalesced.
Anonymous nodes for which no indistinguishable marked node can be found
receive an arbitrary type name. Then the signature is turned into a BCPO
using Penn’s (2000) BCPO completion algorithm. Next, appropriate con-
ditions are passed down to newly created subtypes. This is followed by an
algorithm that consolidates appropriateness conditions restricting the value
of the same feature on the same type (assigning the most specific type as
appropriate to the feature). Penn’s (2000) feature introduction algorithm
is applied to ensure the feature introduction condition. According to this
condition, a feature may be introduced to only one type in the hierarchy,
which subsumes all types that make reference to this feature. This algorithm
can only be applied to a BCPO with correct appropriateness inheritance
conditions, but at the same time, it may disrupt the bounded completeness.
The BCPO algorithm and two algorithms passing on appropriateness condi-
tions and collapsing conditions for identical features on the same type must
therefore be applied again.

Grammar Modules

A grammar consists of instances (including both grammar rules and lexical
items) and a start symbol which are associated with typed feature structures
in a type hierarchy. A grammar moduleM = < S,G > is defined in a similar
manner: rules and words of the grammar G may be associated to nodes in

13When compactness applies for merge or attachment, both nodes must be anonymous
to be indistinguishable.

330

the signature module S. When the merge and attachment operations are
applied to grammar modules rather than signature modules, the signatures
of the grammar modules are combined as before. Additionally, the grammar
components are combined using set union.

Testing and Conclusion

The basic type hierarchy provided as an appendix in Pollard and Sag (1994)
was implemented in signature modules. This hierarchy was chosen because
it is big enough to contain the kind of knowledge found in linguistically
motivated grammars and small enough to make the reorganisation in modules
practical. Grammars that can analyse phenomena in natural language are,
however, much larger and exhibit much more complex interactions.14 Sygal
and Wintner (2011) claim the extension of their approach to such grammars
to be “feasible, but [...] beyond the scope of this preliminary work” (Sygal
and Wintner, 2011, p. 36).

They conclude that all desirable properties of a modular approach to typed
unification grammars are obtained by their proposal: It focuses on sig-
natures allowing for a partial definition in modules. These modules can
be extended deterministically in a well-defined type hierarchy. Modules
must be consistent in order to be combined and are only restricted in that
subcycles are not allowed (i.e. they are flexible). Parameters provide the
possibility of (remotely) referring to nodes. All information from both
modules is included when two modules are combined and only information
to ensure well-definedness is added ensuring the desideratum of parsimony.
Attachment is not, but the merge operation is associative. Finally, internal
nodes are comparable to private variables.

14The basic type hierarchy only provides types from the top of a hpsg hierarchy. It
does not provide complete analyses of phenomena in a specific language.

331

7.5.2 Modular typed unification grammars and CLIMB

When comparing modular typed unification grammars to climb, similarities
in setup and overall ideas are immediately apparent, especially for declarative
climb. As a matter of fact, Sygal and Wintner (2011) address the LinGO
Grammar Matrix and, in particular the customisation system, in their re-
lated work as a similar approach that improves modularity. They point out
that the approach is different from theirs, because only prewritten code is di-
vided over different modules and the grammar writer has no control over the
customisation system. This is exactly the point in which climb differs from
the Grammar Matrix. As explained in Section 3.1.1, the grammar engineers
using climb directly manipulate the libraries in the customisation system,
and are thus fully in control of the language specific customisation system
they are creating.

Both approaches allow the engineer to provide partial definitions of a type
hierarchy in separate modules which can be combined to form a full gram-
mar. climb can, in principle, fulfil all nine desiderata set by Sygal and
Wintner (2011) and fulfils five of them for the same reasons their own ap-
proach does, namely: signature focus, partiality, extensibility, parsi-
mony and associativity. Flexibility is even stronger in climb than in
Sygal and Wintner’s (2011) modular typed unification grammars, because
partial descriptions in climb need not constitute well-defined signatures.
The feature geometry extraction and path abbreviation algorithm that run
when a grammar is created for gclimb perform several consistency checks,
as explained in Section 3.3.2, page 110. The Python part of climb supports
remote reference and privacy, but these properties are not supported
within libraries of declarative climb, where reference is achieved through
identical naming only.

As mentioned above, one of the main differences between the two approaches
is that improving modularity is the main goal of Sygal and Wintner’s (2011)
approach. climb, on the other hand, is the result of a practical solution
to a theoretical problem. Modularity improves through climb because it

332

is necessary for sharing grammar components and maintaining alternative
analyses at the same time (regardless of whether alternatives are meant to
support syntactic research or to capture crosslinguistic differences). For Sygal
and Wintner (2011), modularity is a goal in itself, with a predefined set of
desiderata. This makes their approach more principled (there are no formal
restrictions on climb modules), but it remains to be seen whether this will
be advantageous in practice.

The first clear difference lies in the requirement that modules are partially
ordered, which is absent from climb. climb may be considered less mod-
ular from this point of view, because definitions in a library must always
be linked to the rest of the type hierarchy. There are no formal restrictions
on consistency when combining information from two libraries with climb.
Well-formedness therefore only applies to the grammar as a whole.

In general, it is difficult to provide a critical comparison between the two
approaches, because advantages and shortcomings will mostly become ap-
parent in practice. This holds for the difference in requirements on modules
expressed above, as well as for the two desiderata supported by Sygal and
Wintner (2011) and not by climb. It is not clear to me how internal nodes
in modules facilitate grammar engineering. Anonymous nodes can be used
to underspecify a part of the type hierarchy within a module. This feature
clearly improves modularity in a manner that climb does not, but I have
not experienced challenges because of this lack of modularity throughout the
development of gclimb. Of course, this does not mean that gclimb may
not have been better had remote reference been supported.

A true comparison could only be provided after experience with both ap-
proaches on a large scale grammar. At present, climb has the advantage
that it has been used to develop such a grammar. This experiment must, to
my knowledge, still be undertaken for Sygal and Wintner’s (2011) approach.
Even though I agree with the authors that the approach should scale to large
projects in principle, I believe this may not be straightforward. Especially
the scenario of multiple engineers working on a similar grammar is likely to
become a challenge. Furthermore, Sygal and Wintner (2011) do not address

333

what grammar engineers need to learn to adopt the approach. It may suffer
from the same challenge as the original version of climb: defining grammars
in a new manner may form a hurdle for even experienced grammar engineers.
Collaboration between the two approaches may lead to further improvements
on both sides. The fact that a purely practical approach and a mainly the-
oretically motivated approach turn out this similar, despite being developed
completely independently, is a good sign for both projects.

7.6 CoreGram

7.6.1 Basic description of CoreGram

CoreGram is the common core of a set of hpsg grammars developed at the
Freie Universität Berlin (Müller, 2013). The CoreGram website15 lists gram-
mars for eight languages, namely German (Müller, 2007), Danish (Ørsnes,
2009b; Müller, 2009a; Müller and Ørsnes, 2011), Yiddish (Müller and Ørsnes,
2011), Persian (Müller, 2010; Müller and Ghayoomi, 2010), Maltese (Müller,
2009b), Mandarin Chinese (Lipenkova, 2008; Müller and Lipenkova, 2009),
Spanish and French. All grammars are implemented using TRALE (Meurers
et al., 2002; Penn, 2004).

The primary focus in these grammars lies on implementing accurate hpsg

analyses. They are generally closer to standard hpsg theory than delph-in

grammars, which often prefer practical or more efficient approaches. In fact,
Müller (1999) is one of the first works that puts Bierwisch’s (1963) proposal
into practice and uses implementations to verify correct interactions of lin-
guistic analyses. This is in line with the references for the grammar, which all
refer to papers on syntactic phenomena. This does not mean that engineer-
ing aspects are not considered in the development of CoreGram grammars.
Müller takes the point of view that the choice between linguistic motivation
and efficiency is comparable to the choice between Java and C programming.
Whereas Java used to be avoided for lack of efficiency, it became more and

15http://hpsg.fu-berlin.de/Projects/core.html, accessed 30 June 2012.

334

more dominant later because it is cleaner (Müller, p.c.).

CoreGram is intended to support sharing implementations across grammars.
It consists of a core containing definitions that hold for all languages as
well as subcores containing definitions for a subgroup of languages. The
developers take a bottom-up approach, where languages are analysed inde-
pendently. The implementations of individual languages are compared and,
where possible, generalisations are added to the core grammar. It is de-
termined empirically whether an analysis or parts of it can be included in
the core or a file shared by a subgroup of languages. In principle, analyses
that are already used in other grammars are preferred, but only if there is
no contradictory evidence. Crosslinguistic applicability is thus stimulated,
but language specific evidence always comes first. Müller calls the approach
a “bottom-up approach with cheating” (Müller, 2013, p. 96), where the ap-
proach is “cheating” in the sense that a top-down approach is used to choose
among alternative analyses. Even though such research may provide insight
into universals in language, no strong claims are made on this account.

Technically, the CoreGram setup uses the possibility provided by TRALE
of defining properties of types at different locations of the grammar. This
functionality corresponds to the use of addenda (definitions using :+ to add
properties to a type defined elsewhere in the grammar, see Section 2.2.1)
used in delph-in grammars. Implementations belonging to the core, sub-
cores and language specific parts of the grammar are placed in different files.
Grammars for individual languages are created by loading a selection of files.
Grammars thus share identical files at all time. CoreGram differs in this as-
pect from the Grammar Matrix, where grammar engineers take the common
core and use this as a basis to create their individual grammars. There is
no impact on other grammars when a change to the core is made.16 The ad-
vantage of the CoreGram approach is that common components of grammars
are constantly updated when new information from individual grammars is

16As mentioned above, the original idea behind the Grammar Matrix was that such
changes would be reported and the core adapted accordingly. Grammar engineers could
then decide to upgrade the core in their grammar so that revisions are used in individual
grammars.

335

found. The Grammar Matrix, on the other hand, avoids situations where
individual grammars have to be revised in order to work with the changes in
the core.

Another consequence of this difference is that grammar writers using Core-
Gram should try to agree on fundamental, language independent properties
of their grammars, whereas grammar writers using the Grammar Matrix can
make fundamental changes to the core if they have other theoretical ideas.
The advantage of sharing the same principles is that all grammar writers
contribute to the same theoretical foundation increasing its validity. Leav-
ing grammar writers free to make fundamental changes has the advantage
that they do not need to compromise their point of view on linguistic theory,
which may become more difficult when the resource is used by more linguists.

7.6.2 A Metagrammar approach for CoreGram?

Despite its hpsg background, interest in linguistic precision and facilitation
of sharing implementations, CoreGram is a rather different approach from
climb. The approach does not use code generation. The organisation of
parts of the grammars across files that may be included or excluded from the
grammar is similar to declarative climb, but the absence of code generation
leaves out the option of both working on the level of phenomena (partial
definitions of several types) and types (mostly complete type definitions with
constraints related to several phenomena) at the same time. CoreGram does
not (to my knowledge) contain an equivalent of the dynamic component
of climb that can speed up grammar development and capture similarities
across languages where individual feature values differ by generating lexical
items or rules.

Systematic comparison of analyses through implementation has not been
carried out on a large scale within CoreGram. In the literature discuss-
ing analyses of the grammars mentioned above, explanatory adequacy and
generalisation are used as primary criteria to choose between analyses. Im-
plementations serve the purpose of verifying the correct behaviour of analyses

336

and their interaction with the rest of the grammar, but are not use to explore
alternatives. The basic setup of CoreGram would allow for such research by
including alternatives in separate files. In principle, a large number of vari-
ations could be captured this way, though it may turn out to be a suboptimal
form of organisation17 (imagine several levels of subcores to cover variations
in Slavic languages, variations in analyses and variations for different applic-
ations).

Given the goal of providing correct syntactic models of language, metagram-
mar engineering is expected to be of interest to researchers working on these
grammars. After all, a systematic test of a model against possible alternat-
ives augments its validity. The climb approach can thus be recommended to
the developers of CoreGram. There are no technical reasons why the Core-
Gram grammars could not be generated from a metagrammar like climb. As
a matter of fact, it should be straightforward to adapt the tools provided by
the Grammar Matrix for these grammars, because they use the same formal-
ism. CoreGram and its related projects could provide an excellent platform
to test the linguistic contributions of metagrammar engineering.

7.7 An overview of related work and CLIMB

The previous sections have described several approaches to grammar devel-
opment that use metagrammars, code generation, code sharing or aim at
consistency across grammars. In this section, I will briefly repeat the main
similarities and differences between these approaches and climb.

The main purpose of climb is to improve the possibility of empirically ex-
ploring alternative analyses in linguistic precision grammars. As we have
seen, none of the projects described above have aspired to this goal. Nor
has, to my knowledge, any research in this direction been carried out in
other projects. However, several other advantages of climb can be found in

17Lars Hellan expressed concerns about the proposal to increase the number of files to
capture variations or distinguish phenomena from each other, because it would reduce the
maintainability of the grammar. delph-in Summit, Sofia, 5 July 2012.

337

the other projects.

7.7.1 Maintainability and Consistency

Both (x)mg (Section 7.1) and the gf Resource Libraries (Section 7.2) aim to
improve maintainability of the grammar through the organisation of the me-
tagrammar or libraries, respectively. This aspect is directly related to the im-
provement in consistency within the grammar and across related grammars,
an aspect that is also found in ParGram (Section 7.3) and, presumably,18 in
CoreGram (Section 7.6).

7.7.2 Multilinguality

Multilinguality is found in most of the approaches above. All except Sygal
and Wintner (2011) (Section 7.5) explicitly mention multilinguality as part
of their approach, even though it is not the main focus of (x)mg and re-
search on multilingual applicability has only taken place on a limited ground
in that project. In addition to the degree to which multilinguality is pursued,
individual projects differ in the approach taken towards multilinguality. Pro-
jects differ in technical choices as well as the question of whether they prefer
a top-down or bottom-up approach establishing which implementations are
shared crosslinguistically.

CoreGram can be placed on one extreme, where analyses for individual gram-
mars are developed independently. At a later stage, it is investigated whether
common factors between analyses exist that may be placed in the common
core. paws, on the other hand, is a typical example of a top-down approach.
Implementations are provided based on properties known to exist in lan-
guages, but (as far as one can tell from the literature) no profound study
of individual languages is performed to develop the analyses. The other
approaches are somewhere in between these two extremes.

18The structure and methodology of CoreGram are very suitable to improve consistency,
but I am not aware of the developers addressing this aspect of their project.

338

ParGram carefully looks at the grammars under current development to de-
cide on crosslinguistic analyses. Sometimes elaborate test cases are imple-
mented to learn more about an analysis. From this point of view, it is
bottom-up. On the other hand, the aim to fit new analyses into the existing
system is more in line with a top-down approach. Analyses in gf are based
on linguistic observations of individual languages (bottom-up), but each new
language uses existing analyses which are only adapted if they are found not
work (top-down).

Both elements can also be observed in the Grammar Matrix. Like paws

(Section 7.4), it provides basic analyses covering a large typological range
for new languages. On the other hand, both the creation of the original
core grammar as the design of libraries in the customisation system involve
studying the behaviour of individual languages. The same can be said about
climb in multilingual setting. In principle, it can be used both in a bottom-
up and a top-down manner. In the original Germanic project, the focus lies
more on bottom-up grammar development. Slaviclimb has a bottom-up
aspect, because it involves development of precision grammars for individual
languages, but the main idea of providing a Slavic core grammar based on
theoretical assumption can be seen as top-down.

7.7.3 Modularity

Sygal and Wintner’s (2011) modular typed unification grammars are the
most relevant related work at this point. Based on the detailed comparison
above, this work shows that climb manages to cover many desiderata of a
modular approach to defining typed feature structures. The main technical
difference is that climb is more flexible (or less principled) in its requirements
on modules. This leads to more freedom for the developers as to how to
organise the grammar, but a greater risk of introducing errors in individual
modules. Because Sygal and Wintner’s (2011) approach has not been applied
to a large scale grammar at this point, it is not clear how the two approaches
compare in their influence on the grammar development process on the long

339

run.

mg explicitly mentions improving modularity as one of its motivations (Can-
dito, 1999). It is achieved by the division into dimensions. This aspect of
mg is highly similar to climb, where modularity is increased by organising
the grammar into libraries. The focus in the two approaches differs in that
mg separates different levels of information in its dimensions, whereas climb

separates parts of the grammar according to the phenomenon they analyse.

Modularity has also been addressed in relation to ParGram. It is an aspect
that has been addressed extensively in the framework of lfg. It is therefore
not as much a purpose of ParGram, but more a feature of the linguistic
theory ParGram uses from which the ParGram project benefits.

7.7.4 The CLIMB idea for other projects

The proposal made in this thesis can in principle be adopted for each of the
projects above. However, the amount of effort that would be involved as well
as the potential interest in adopting metagrammar engineering differs from
one project to another. Feasibility is directly related to the method used
for sharing implementations. It is not possible to make strong claims about
potential interest from researchers involved in the other projects, but this is
likely to be related to whether or not the project is based on linguistic theory.

As far as implementation methods and feasibility are concerned, two manners
of sharing code can be distinguished: static code sharing and dynamic code
sharing. ParGram, gf and CoreGram develop sets of definitions that can
be used by individual grammars. They share code statically. (x)mg and
paws use code generation in their systems, just like climb. Their method
is more dynamic. Even though it is in principle possible to systematically
compare implementations using different versions of static code, it is code
generation that provides a basic methodology that facilitates and stimulates
this. (x)mg would not require many changes to its architecture to be able
to carry out systematic comparative research.

340

The second question is whether systematic comparison may be of interest to
the projects. As far as they address the question of alternative possibilities,
they tend to go for restricting possibilities based on crosslinguistic research.
This is specifically mentioned in Butt et al. (2002). Ranta (2009) also aims
to share as much as possible between grammars. In many ways, this attitude
towards alternatives makes sense. If data cannot provide clear evidence for
a particular analysis, any other indications to help and choose are welcome.
But in the end, it seems clear that testing more analyses integrated into a
large grammar gives a more reliable indication than merely discussing al-
ternatives or only trying things out at the moment they first come up. In
principle, all approaches that are interested in optimising their grammars
could therefore benefit from a methodology that can help to compare ana-
lyses systematically.

paws does not seem to focus much on its pc-patr implementations. It
neither makes claims about linguistic theory, nor are there explicit references
to intentions of building grammars for applications. Even here, it could
make sense to maintain multiple alternatives in parallel for some time while
extending the system, but most observations that may come out of such a
practice would not be of primary interest to paws users.

There may be more of an interest in using a metagrammar development ap-
proach in the gf Resource Library. Systematic exploration can lead to more
efficient grammars, which is generally interesting for application-oriented
grammar engineering. Moreover, it might be possible to get more out of
sharing analyses between different application grammars if code generation
were introduced. For now, it seems that most of the sharing is done through
the core grammar.

The other three projects may have a clearer interest in systematic explora-
tion of alternatives. All three are grounded in linguistic theories. Despite the
occasional influence of practical aspects, both (x)mg and ParGram aim for
representing theoretical assumptions from tag and, respectively, lfg cor-
rectly. Systematic exploration would make the grammars more flexible to
changes in the theory and increase the support the respective theories can

341

get from implemented grammars. As mentioned above, ParGram already
ran into a situation where code generation to adapt the grammar would have
been extremely useful.

Of all projects other than delph-in,19 the proposal made in this thesis is in
my opinion most relevant for CoreGram. The grammars in this project are all
intended to provide correct hpsg models of language. To my knowledge, they
are not application driven and will therefore not make practical decisions to
improve grammar performance if this is not in line with hpsg theory. Even
though the CoreGram developers are probably not interested in experiments
comparing computational efficiency, they seem to care more than the other
approaches about finding a correct model of language. Theoretical syntax
suffers as much from multiple alternative analyses and potential interactions
as grammar engineering does, if not more. Adapting an approach similar to
that of climb for the CoreGram grammars would therefore, in my opinion,
mean a significant improvement in their methodology.

19Recall that climb can be used to develop any grammar in tdl. delph-in thus refers
to all grammars developed within delph-in regardless of whether they use the Grammar
Matrix or not.

342

Chapter 8

Conclusion and Future Work

In this final chapter, I will recapitulate the main contributions and obser-
vations made in this thesis. The goal of this investigation was to enhance
empirical research on linguistic precision grammars. I will explain how this
is achieved with climb in Section 8.1. In Section 8.2, I will summarise addi-
tional contributions of climb and discuss related contributions such as the
spring cleaning algorithm. Section 8.3 discusses open issues and outlines
future work. Final concluding remarks are provided in Section 8.4.

8.1 CLIMB: Enhancing empirical research

This thesis started with the statement that grammars of natural language
are complex objects. This complexity forms a challenge in any effort to
represent such grammars, both as part of syntactic theory and as part of
computational grammars. Chapter 7 has presented several approaches across
theories that aim at providing support in such efforts by sharing knowledge,
increasing modularity and improving maintainability and consistency. This
thesis introduced climb, a methodology that addresses these aspects for
delph-in grammars. The main idea behind the approach is that analyses
are added to a metagrammar that can automatically generate computational
grammars. The climb methodology and software are, however, more than a

343

hpsg and delph-in specific version of grammar engineering support found in
other frameworks. It is to my knowledge the first approach that is developed
to facilitate maintenance of multiple alternative analyses in parallel.

This property of climb addresses an important challenge faced in both theor-
etical syntax and grammar engineering, which is the result of two well-known
challenges combined: phenomena and thus their analyses interact and often
more than one analysis can be found that can account for the data. Because
of the interaction, the choice of analysis for a given phenomenon can influence
the possibilities for linguists to be able to analyse other phenomena. Gram-
mars are too complex to foresee how a choice at a given time may influence
possibilities of future analyses or even to maintain a clear overview of how
analyses restrict each other exactly. Grammar engineering allows syntacti-
cians to check whether analyses interact correctly, but traditional grammar
engineering does not provide a straightforward method to see whether an-
other choice in the past may have led to different options at present.

Because climb allows grammar engineers to maintain alternative analysis in
parallel, they can systematically test how these alternative analyses interact
with analyses of other phenomena. When no conclusive evidence is found,
the grammar engineer can postpone the decision and continue testing the al-
ternative as the grammar covers more phenomena. The climb methodology
thus enhances the possibility of empirically testing analyses.

The challenge that follows from the combination of inconclusive evidence and
interaction between phenomena is, to my knowledge, first formulated in work
carried out as part of this thesis. It follows that the climb methodology is
the first proposal to address this problem, as far as I am aware. Because this
observation has, in my opinion, important theoretical and practical implica-
tions, they form the main contribution of this work.

The most important step in evaluating the approach involved investigating
whether it is possible to maintain multiple analyses while developing a large
scale grammar with climb. This was confirmed by developing gclimb, a me-
tagrammar that can generate grammars for German with alternative analyses
for word order and auxiliaries that cover (a little more than) all phenomena

344

in the development set of Cramer’s (2011) Cheetah that Cheetah covers as
well. The development of gclimb took less than half the time that had been
needed to create Cheetah’s core, but as explained in Chapter 5, there are
many factors that influence development speed. This result does therefore
not allow us to conclude that climb speeds up grammar development. The
fact that gclimb also focused on other languages in early stages, includes
alternative analyses, aimed for more complex semantic representations than
Cheetah and slightly outperforms it when comparing coverage on linguistic
phenomena does strongly indicate that using climb in principle does not
have a significant negative impact on grammar development speed and may
even have a positive effect. It should be noted that Cramer, on the other
hand, spent additional time on improving efficiency of his grammar and out-
performs gclimb on the TiGer corpus. It should furthermore be noted that
the current result only applies to the question of whether using a metagram-
mar in the form of climb slows you down when using a handful of alternative
analyses. As the number of alternative analyses increases, grammar devel-
opment and testing will naturally require more time.

Experiments carried out with gclimb investigated the efficiency of altern-
ative analyses as the grammars covered more analyses. They confirmed the
prediction made by Fokkens (2011a) that the difference in efficiency between
the aux+verb analysis compared to the standard hpsg argument composition
analysis increases as the grammar covers more phenomena. However, this
difference can be reduced by introducing additional constraints on grammar
rules that go against hpsg’s lexicalist character, but do capture properties of
the German language. Additionally, language generation experiments were
carried out that investigate the interaction of word order constraints and al-
ternative analyses for Dutch. These experiments show that it is easy to carry
out experiments with climb in a controlled environment that would be time
consuming and difficult when traditional grammar engineering is used. The
evaluation thus showed that climb indeed provides a method that facilitates
and stimulates experimenting with grammars.

345

8.2 Other aspects of CLIMB and related tools

Throughout this thesis, several related topics to the climb solution for sys-
tematic testing were addressed. This section provides an overview of results
found in this thesis other than the main result addressed in Section 8.1. They
involve additional software that was developed to support climb, properties
of climb other than its support of systematic testing and studies on the
Grammar Matrix core. I will briefly elaborate on each of these aspects be-
low.

Chapter 3 introduced additional software related to climb. This software
mostly supports practical functions. The spring cleaning algorithm identifies
types in delph-in grammars that do not have an impact on the grammar’s
competence. It was originally developed to help and compare two similar
versions of a grammar in order to find which differences should be included
in the metagrammar. In this case, only properties that have an impact on the
grammar’s behaviour should be taken into account. The algorithm creates a
version of the grammar that no longer contains the types that have no impact
on the grammar’s competence, but otherwise maintains the original structure
of the grammar. The algorithm also indicates which types were removed
and thus provides insight into properties of the grammar. Furthermore, a
feature extraction, path abbreviation and path completion algorithm were
introduced. These algorithms mainly make the grammar engineer’s life easier
by supporting the use of abbreviations in the grammar, but they also provide
a way to introduce minor changes in feature geometry in a straightforward
manner.

The climb method and its (related) software have several advantages over
traditional grammar engineering other than providing a setup for system-
atic testing. They include increasing modularity, flexibly sharing analysis
across languages, supporting alternative analyses for different applications
or different dialects, a phenomenon-based organisation of phenomena and
the possibility of including or excluding rare phenomena. As we have seen
in Chapter 7, several of these advantages are also found in other methodo-

346

logies and approaches to grammar engineering. Even though these proper-
ties are not unique to climb, they still form an important contribution for
grammars developed within delph-in and, more generally, computational
grammars developed within the framework of hpsg. The Grammar Matrix
Bender et al. (2010) and CoreGram Müller (2013) both support code shar-
ing across languages. However, as explained in Chapter 6, the Grammar
Matrix cannot offer as much analytical depth, because it aspires to provide
useful implementations for any language. CoreGram shares implementations
statically and does not make use of dynamic code sharing that allows for
parametrisation. Sygal and Wintner (2011) focus on improving modularity
and provide a more mathematically sound approach for this than climb, but
their approach has, to my knowledge, not been tested yet in project of a scale
comparable to gclimb.

Chapter 6 investigated multilingual aspects of the approach. The metagram-
mar mainly developed for German was used to create grammars for Dutch,
Danish and Northern Frisian. The outcome of these studies shows that in
order to create a metagrammar that truly captures crosslinguistic variation
in a group of languages, it is important to take these variations into ac-
count throughout grammar development. If you focus completely on one
language (as was done in gclimb), it is likely that at least some fundamental
changes are needed in grammars for other languages. On the other hand,
several phenomena were covered correctly with no or only minor changes to
the metagrammar. This indicates that climb indeed increases modularity.
Analyses mainly developed for German could easily be adapted to cover vari-
ations found in other languages. It is unlikely that a similar result could have
been obtained with a grammar implemented in the traditional way, which
leads me to conclude that the approach is suitable for crosslinguistic grammar
development.

It was clear even before these studies were conducted that climb can be
used for multilingual grammar development, since it makes use of the same
technology as the Grammar Matrix customisation system. We have shown
the capacities of the Grammar Matrix customisation system in Bender et al.

347

(2010). However, climb takes these possibilities in a whole new direction
by continuously using this technology for a small group of languages. It is
unlikely the results obtained for Dutch, Danish and Northern Frisian with
climb would also have been obtained while only using the Grammar Mat-
rix. This is confirmed by the results for Northern Frisian. The grammar
developed by gclimb managed to reach 94.5% coverage and no overgener-
ation in one day, whereas Kilmer and Packard’s grammar reached 70.6% of
coverage and 1.8% overgeneration by the end of the Knowledge Engineering
for NLP course. As has been pointed out at several occasions in this thesis,
no firm conclusions can be drawn from comparing two grammar engineering
efforts and it should be taken into consideration that Kilmer and Packard also
had to develop the test suite. Nevertheless, the significant difference in time
and coverage and the fact that Packard, who has developed the ACE parser
and generator for delph-in grammars and knows the formalism very well
indicate that gclimb provided a major boost while developing the grammar
for Northern Frisian.

Another context for exploring advantages of applying climb technology to
a closed set of related languages is provided by Slaviclimb, where climb

is used to support the development of a core grammar for Slavic analyses.
Slaviclimb is currently in its initial stages and its potential will be discussed
in more detail in Section 8.3.

The development of gclimb led to the most extensive revisions of the Gram-
mar Matrix core since its release. Several revisions were bug fixes and some
removed English specific properties. Because it seemed unlikely that none of
the other grammars using the Matrix core ran into similar issues, Chapter 6
also investigated how individual languages use the Matrix core. The Gram-
mar Matrix core provides general (mostly) language independent implement-
ations for delph-in grammars. The spring cleaning algorithm described in
Section 3.3 was used to support this investigation. As mentioned above, this
algorithm identifies types that do not have an impact on the competence
of the grammar and removes them. This leads to a cleaned up version of
the grammar, where types that do not have an impact on the grammar are

348

removed, but the structure of the grammar is preserved. The impact of the
Grammar Matrix was investigated by looking at changes that were made to
the Grammar Matrix core and the types that were removed by the spring
cleaning grammar.

The most important observation out of this investigation is that several gram-
mar engineers made changes to the Grammar Matrix core that form a general
improvement to the Grammar Matrix. The current setup of the Grammar
Matrix, where grammar writers typically go their own way after using the
Grammar Matrix for a jump start, provides complete flexibility to grammar
writers. They can make any change that suits them without needing to ex-
plain their motivation to fellow grammar writers. The disadvantage is that
there is no need for grammar writers to discuss the changes they make with
fellow grammar writers and often changes remain unnoticed by developers
of other grammars and of the Grammar Matrix. Valuable information on
how the Grammar Matrix core works is thus lost and grammar engineers
need to reinvent the wheel when it comes to dealing with shortcomings of
the resource. The study carried out in Chapter 6 is, to my knowledge, the
first overview of the Matrix core types that are used and changes made to
the core in different Matrix-based grammars. The spring cleaning algorithm
played an important role in this investigation revealing that this algorithm
can also be used to support empirical investigation for linguistic precision
grammars.

Finally, this thesis provided an overview of efforts to share knowledge, im-
prove modularity and facilitate multilingual grammar engineering in different
frameworks. It was explained how the linguistic theory or formalism that
forms the foundation of the grammar development effort and overall goals of
the project influence the approach that is taken.

349

8.3 Discussion and Future work

Sections 8.1 and 8.2 have provided an overview of the most important con-
tributions of this thesis. In this section, I will reflect on a few critical aspects
of climb and the studies that have been carried out with this resource so far
and explain how they can be addressed in future work.

8.3.1 Accessibility

As explained in Section 3.2, using climb involves a learning curve that may
prevent grammar engineers from adopting the method. It requires writing
procedural code while writers of hpsg grammars are used to declarative pro-
gramming. Even programmers that have experience in procedural program-
ming may feel uncomfortable flipping back and forth between declarative
programming in tdl and procedural programming in Python. Declarative
climb addresses this issue by allowing grammar engineers to write their me-
tagrammar in tdl, but it does not offer the full flexibility of procedural
climb. In particular, the research questions set out to be addressed by
Slaviclimb involve automated adaptations of type hierarchies that declarat-
ive climb cannot handle. Future work around climb should therefore first
and foremost focus on making climb more accessible to grammar engineers.
I will briefly outline my vision of climb below.

Ideally, grammar writers would be able to make use of the full function-
ality of (procedural) climb without the burden of learning a new way of
programming and constantly flipping back between declarative and proced-
ural programming. They should be able to write their code declaratively in
tdl as much as possible and increase flexibility through simple statements.
Procedural code responsible for the flexibility remains hidden to the users
as is currently the case for declarative climb. I would like to achieve this
by implementing functions that generate the necessary Python code for the
metagrammar based on the grammar writer’s input through a user interface.

Figure 8.1 provides a schematic overview of the idea behind this future form

350

CLIMB
interface

grammar

automatic
updates

metagrammar
generator

CLIMB
metagrammar

choices

Figure 8.1: Schematic overview of future form of climb

of climb. Grammar developers can work on their grammars using a spe-
cially designed interface. Most changes (additional constraints on existing
types and new types) will be added to the grammar they are working on
immediately for testing. This functionality can be provided by the existing
declarative climb code with only minor adaptations. The interface offers the
additional possibility of associating these properties with a particular ana-
lysis and or phenomenon. Implementations together with their associations
are used as input to generate an updated version of the metagrammar.

It is relatively straightforward to generate functions supporting the function-
alities offered by declarative climb. Basic general functions needed to define
flexible type hierarchies (as required for developing Slaviclimb) are already
present in the Grammar Matrix customisation system and gclimb. This
code can be generalised easily so that users can define new lexical items, loc-
ations in feature geometry and basic hierarchies that should be considered
for automatic revision. The main challenge of this further development of
climb lies in designing a good user interface that is intuitive and allows users
to make maximal use of climb’s advantages. An initial idea of how a gram-

351

mar writer may provide the basis for a new morphotactic rule is provided in
Figure 8.2.

acc-masc-sg-adj-lrule := adj-inflection-lex-rule-super & infl-lex-rule &
[SYNSEM.LOCAL.CAT.HEAD [CASE acc,
MOD.FIRST.LOCAL.CONT.HOOK.INDEX.PNG [GEND masculine,

NUM singular],
PRD -]].

sample definition

rule suffix: adj-lrule

rule supertypes: adj-inflection-lex-rule-super

feature values:

path SYNSEM.LOCAL.CAT.HEAD.CASE value case head

path SYNSEM.LOCAL.CAT.HEAD.PRD value bool head

path
SYNSEM.LOCAL.CAT.HEAD.MOD.FIRST.LOCAL.

CONT.HOOK.INDEX.PNG.GEND
value gend head mod

path
SYNSEM.LOCAL.CAT.HEAD.MOD.FIRST.LOCAL.

CONT.HOOK.INDEX.PNG.NUM
value num head mod

Figure 8.2: Sketch of fields for defining new lexical types in future climb

The grammar engineer can define a prototype rule or lexical item, e.g. the
acc-masc-sg-adj-lrule in the example. The interface will then generate a list
of questions with default answers concerning the properties of the rule. The
first question allows the grammar engineer to define the ending of the rule
identifiers (the default being the last two dash separated parts, if applicable).
The second question provides the opportunity to define one or more standard
supertypes. If the definition includes supertypes, infl-lex-rule or const-lex-
rule will be ignored, because climb already contains the necessary code to
assign either of these types as supertypes. Finally, all the properties assigned
to the type are analysed and the path to the feature value and basic value
are assigned.

352

All these properties can be adapted manually by the grammar writer in case
there are errors. The metagrammar generator will then add the necessary
rules to assign values to the right feature in the feature geometry and to
assign the correct supertypes. The metagrammar then contains the necessary
machinery to generate types similar to the sample type.

The definitions in choices to create the sample type from a metagrammar
are the following:

adj-pc1_lrt3_name=acc-masc-sg

adj-pc1_lrt3_feat1_name=case

adj-pc1_lrt3_feat1_value=acc

adj-pc1_lrt3_feat2_name=gender

adj-pc1_lrt3_feat2_value=masculine

adj-pc1_lrt3_feat2_head=mod

adj-pc1_lrt3_feat3_name=number

adj-pc1_lrt3_feat3_value=singular

adj-pc1_lrt3_feat3_head=mod

adj-pc1_lrt3_feat4_name=prd

adj-pc1_lrt3_feat4_value=-

adj-pc1_lrt3_lri1_inflecting=yes

adj-pc1_lrt3_lri1_orth=en

Other inflection rules for adjectives can then be defined in a similar manner in
choices. It should be noted that all these properties can optionally be defined
for a type. The user thus needs to give only one sample of a complete type
definition and can then define a hierarchy using supertypes for which not
all values are specified. Moreover, when more than one value is assigned to
a certain feature, the code to adapt the type hierarchy is already present.
For instance, when the value masculine, feminine is assigned to gender, the
gender hierarchy will be adapted to contain a valuemasculine+feminine. The
metagrammar generator will be able to provide the full flexibility offered
by procedural climb to the grammar engineer based on the definition of
a sample type. Naturally, the grammar engineer can also directly define

353

basic properties by providing answers to the questions proposed in Figure 8.2
without defining a sample type first.

The implementations needed to generate the metagrammar involve general-
isations and some restructuring of the current libraries used in climb. It
is, however, still an open question whether grammar engineers will feel com-
fortable writing grammars through a climb interface and whether the pro-
posed approach truly enables them to take full advantage of the possibilities
offered by climb. In the end, the method can only be made more accessible
to grammar writers while collaborating with them. Slaviclimb provides an
excellent setting for developing and testing a climb interface, if work is con-
tinued on this project. Furthermore, initial steps are currently being made
to start a collaborative project on developing grammars for Chinese using
climb (Bond p.c.). This project will focus on Mandarin Chinese and aim to
share Mandarin analyses for Cantonese. Finally, Sanghoun Song has plans
for writing a grammar for Korean using climb (Song, p.c.) providing an
additional opportunity for collaboration.

8.3.2 Further explorations with CLIMB

The evaluation in Chapter 5 has shown that climb can be used to develop
a large scale grammar and test alternative analyses for phenomena that are
central to the grammar. If we do not take the infinite possibilities provided
by dynamic parts of climb for defining morphotactic rules and hierarchies
for lexical items into account, gclimb supports three fundamentally differ-
ent analyses of linguistic phenomena. These analyses cover German word
order and auxiliaries. Comparative analyses addressed the efficiency of the
grammars and, to some extent, their capability of accounting for the data
(though this was highly similar for the individual accounts). The purpose of
the evaluation was not to end up with the best possible German grammar
in hpsg, but rather to examine whether it is feasible to write grammars of
a certain complexity with climb. This naturally involved including correct
analyses and make the grammars as good as possible, but it did not lead to

354

a result that provided new insights into German syntax.

In order to come to such a result, many more alternative analyses need
to be considered. More importantly, grammar development must then be
combined with linguistic investigation of the data. Such an investigation
provides enough research questions for several PhD theses in itself and it
was naturally out of scope for this work. However, a broader application of
climb involving more alternative possibilities would lead to better insight
into the potential of climb. Particularly, it could address the question of
whether it can provide a platform for testing alternatives as part of syntactic
research.

A complete answer to this question can probably only be given if climb were
to be adopted by a syntactician working on a particular language for many
years, but gclimb does provide an interesting starting point for research
in this direction. Two other delph-in grammars for German exist, namely
GG (Müller and Kasper, 2000; Crysmann, 2005) and Cheetah. A third Ger-
man grammar based on hpsg, BerliGram (Müller, 2007), exists that runs on
TRALE (Meurers et al., 2002; Penn, 2004). Each of these grammars include
different analyses for word order and other phenomena. A lot of insight into
the impact of individual analyses and their interaction with other parts of
the grammar could be obtained if analyses from these grammars are included
in gclimb. Adapting gclimb so that it also outputs grammars that run on
TRALE should be relatively straightforward, since TRALE and delph-in

grammars both use typed feature structures to define their grammars. Ex-
isting validation mechanisms that climb has adopted from the Grammar
Matrix can be used to ensure that no properties that are only supported
by TRALE end up in grammars intended to run on delph-in tools. The
biggest challenge in comparing analyses of these grammars is that they make
some fundamentally different assumptions on the feature geometry of signs
in German. These assumptions interfere with almost all definitions in the
grammar. Flexible feature geometry is currently limited in climb to defin-
itions for lexical rules and specific lexical items. A significant revision is
required to allow climb to output a different feature geometry depending

355

on the chosen analysis for any type in the grammar. The implementations
of the path abbreviation algorithm and path completion algorithm provide a
basis for such a revision. An additional advantage for supporting alternative
feature geometries would be that it allows for Haugereid’s (2011) alternat-
ive subcategorisation approach to be integrated in gclimb as suggested in
Section 5.3.

Further possibilities for testing climb on a larger scale than has been done so
far are provided by Slaviclimb (cf. Section 6.3). This project has the advant-
age that it is based on an elaborate theoretical study by Avgustinova (2007).
Slaviclimb is intended to provide a platform for grammar engineers and
Slavicists to work together on linguistic precision grammars. These gram-
mars can partially be written through the definition of linguistic observations
by Slavicists. These observations will be used as input for Slaviclimb which
generates a grammar based on these observations. The generated grammars
can be compared to Avgustinova’s proposal. Hence Slaviclimb provides a
platform for empirically testing theoretical work.

In addition to the research mentioned above, two more research directions
for climb were explored in this thesis. The first direction concerned an
initial study where the lexicon that Cramer (2011) derived from the TiGer
Treebank (Brants et al., 2002) for Cheetah was included in gclimb. Initial
observations show that integrating such a lexicon is not trivial. Coverage
on 1,000 test sentences from the TiGer corpus was only 21.3% for the best
performing gclimb grammar despite the fact that the grammars had full
lexical coverage for these sentences. One of the problems was that the lexicon
did not take generalisations captured in the grammar into account. For
instance, gclimb defines lexical types for adverbs that capture the flexible
behaviour they exhibit in German (in the sense that they can modify verbs,
adpositional phrases, adjectives, other adverbs, etc.), whereas the lexicon
derived from TiGer contains a separate entry for each different category the
adverb may modify resulting in multiple entries for a single adverb. This
mismatch between the lexical type hierarchy and the lexicon read off the
treebank leads to inefficiencies in the grammar. Future work will need to

356

address both how we can introduce generalisations in the lexicon that is read
off a treebank and how the lexical hierarchy can be defined in a way that is
compatible to the information the treebank provides.

The second direction that was explored involved using climb for alternative
applications. The current version of gclimb can create grammars for Ger-
man that allow users to practice adjective endings. Grammars for language
learning typically involve so-called mal-rules that can parse ungrammatical
structures and identify the error that was made. For delph-in grammars,
this means creating alternative versions of existing grammars that include
the necessary mal-rules. Because climb makes it easier to create alternative
versions of a grammar, its potential for this application is clear.

8.4 Concluding remarks

Section 8.3 has addressed some critical aspects of the approach proposed in
this thesis. The main issues left open in this thesis are the hurdle gram-
mar engineers may experience when learning how to work with climb and
the fact that the scope of the evaluation with gclimb is too small to lead
to new insights into German syntax. Nevertheless, this thesis has presented
several results that show the potential of climb. It is easier to adapt a gram-
mar written in climb to cover phenomena that behave slightly differently
in a related language. Three alternative analyses for German auxiliaries and
word order were compared in grammars covering a wide range of phenomena.
Their efficiency was compared and a study involving the interaction between
linguistic properties, alternative analyses and efficiency in natural language
generation was conducted using climb. These results show that climb can
be used to conduct empirical research that would be significantly less feasible
(if not virtually impossible) in traditional grammar engineering. The spring
cleaning algorithm developed to support climb also led to new insights into
linguistic precision grammars. It identifies types that are not used by the
grammar. The algorithm was applied to a number of grammars using the
Grammar Matrix core resulting in a unique study on the way the Matrix

357

core is used in individual grammars.

Overall, the methodology proposed in this thesis and the software developed
to support it provide a platform for research on linguistic precision grammars
that could not be carried out before, or only with great difficulty. This thesis
thus succeeded in its objective to enhance empirical research for linguistic-
ally motivated precision grammars. This work presented several indicative
results which suggest topics to investigate in future work, which is exactly
the outcome one would want when introducing a new methodology. I believe
that a new method for carrying out research should first and foremost offer
new directions of investigation. It is my hope that this work will inspire fel-
low research to take the tools offered by this thesis, explore and learn more
about grammars of natural language.

358

Appendix A

Cheetah test set (with coverage
indication)

Overview of sentences in the Cheetah development set. The most important
phenomena of this set are presented in Chapter 5, Section 5.1.3 with trans-
lation. The sentences as well as the indications of coverage by Cheetah are
taken from Cramer (2011), Appendix A, p. 156.

Sentence Cheetah gclimb

Es gibt Käse x x
Der Käse stinkt x x
Antje isst den Käse x x
Antje schenkt mir den Käse x x
Der Käse ist Käse x x
Der Käse ist herrlich x x
Antje freut sich auf den Käse x x
Antje freut sich auf darauf x x
Antje schlägt Käse vor x x
Antje denkt dass Käse herrlich ist x x
Antje sagt der Käse stinkt x x
Antje weiß wo der Käse liegt x x
Antje weiß wer stinkt x x
Antje weiß was Peter isst x x
Antje weiß auf welchen Käse Peter sich freut x x
Antje weiß mit welcher Butter Peter das Brot isst x x

359

Bestimmt stinkt der Käse x x
Seit gestern stinkt der Käse x x
Weil es Käse gibt isst Antje den Käse x x
Antje schenkt mir den Käse ohne ihn zu essen x x
Den Käse schenkt Antje mir x x
Mir schenkt Antje den Käse x x
Antje versucht den Käse zu essen x x
Den Käse versucht Antje zu essen x
Bestimmt versucht Antje den Käse zu essen x x
Antje will den Käse essen x x
Den Käse will Antje essen x x
Antje sieht mich den Käse essen x x
Mich sieht Antje den Käse essen x x
Den Käse sieht Antje mich essen x x
Den Käse essen sieht Antje mich x x
Antje hat den Käse gegessen x x
Der Käse wird von Antje gegessen x x
Der Käse soll von Antje gegessen werden x x
Der Käse ist von Antje gegessen worden x x
Antje hat den Käse zu essen versucht x x
Antje hat den Käse versucht zu essen x
Antje hat versucht den Käse zu essen x x
Antje hat den Käse essen wollen x x
Peter denkt dass Antje den Käse wird essen können x
Peter denkt dass Antje den Käse essen können wird x x
Der Käse ist herrlicher Käse gewesen x x
Isst Antje den Käse x x
Wird Antje den Käse essen x x
Wo isst Antje den Käse x x
Welchen Käse isst Antje x x
Wer isst den Käse x x
Und der Käse stinkt x x
Käse ist Antje nur mit Brot x x
Dem Mann zufolge isst Antje den Käse x x
Selbst der herrliche Käse von Antje stinkt x x
Der gegessene Käse stinkt x
Der von Antje gegessene Käse stinkt
Antje der Käse stinkt x x
Der Käse des Mannes stinkt x x

360

Frau Antje stinkt x x
Dieses Mal isst Antje den Käse x x
Antje isst dieses Mal den Käse x x
Antje hat keine Ahnung wo der Käse liegt x x
Antje hat keine Neigung den Käse zu essen x x
Der Kampf um den herrlichen Käse x x
Antje hat Sorgen dass der Käse stinkt x x
Die 3 liegen x
Der Käse den Antje isst stinkt x x
Der Käse auf den Antje sich gefreut hat stinkt x x
Antje isst den Käse der stinkt x x
Das Brot mit dem Antje den Käse isst stinkt x x
Der Mann dessen Brot Antje gegessen hat stinkt x x
Die Frau deren Brot Antje gegessen hat stinkt x x
Die Männer deren Brot Antje gegessen hat stinken x x
Der Mann auf dessen Brot Antje sich freut stinkt x x
Der Käse ist eine Woche alt
Das ist sich entwickelender Käse
Das ist der mir zustehende Käse
Der Käse ist bestimmt fast unglaublich herrlich
Der Käse stinkt und das Brot stinkt x x
Der Käse stinkt und Antje will den Käse essen x x
Stinkt der Käse und will Antje den Käse essen x
Antje stinkt und will den Käse essen x
Antje will mir den Käse schenken und das Brot essen x x
Bestimmt will Antje mir den Käse schenken und das Brot essen x x
Antje und Peter essen den Käse x x
Antje isst den Käse und das Brot x x
Der Käse und Käse stinkt x x
Der Käse liegt bei dem Brot und neben der Butter x x
Der Käse ist herrlich und kostbar x x
Der herrliche und kostbare Käse stinkt x x
Früher oder später wird Antje den Käse essen x x
Vier- bis fünfhundert Männer x x
Im Kindes- und Jugendalter x x
Was denkt Antje dass sie gegessen hat x
Wer denkt Antje dass den Käse gegessen hat1

Wie denkt Antje dass Peter den Käse gegessen hat x

1According to native speakers, this utterance is not grammatical

361

Wer sagt Peter hat den Käse gegessen x x
Was sagt Peter hat Antje gegessen x x
Wie sagt Peter hat Antje den Käse gegessen x x
Wir sagt Peter haben den Käse gegessen x x
Den Käse sagt Peter haben wir gegessen x x
Bestimmt sagt Peter haben wir den Käse gegessen x x
Peter hat den Käse gegessen auf den Antje sich gefreut hat x x
Peter hat sich auf den Käse gefreut den Antje gegessen hat x x
Peter hat die Neigung den Käse zu essen auf den Antje sich freut x x
Antje denkt dass dein Käse herrlicher ist als mein Käse x x
Antje denkt dass Peter herrlicheren Käse isst als ich x x
Antje hat herrlicheren Käse als du gegessen x x
Antje hat herrlicheren Käse gegessen als du x x

362

Appendix B

Sentences for Natural Language
Generation

Overview of the Dutch sentences used as input for the experiment in Natural Language
Generation. All sentences are presented in their canonical word order in standard Dutch.
They were created using words that happened to be included in the vocabulary that had
the desired syntactic properties.

(48) Ik
pro.1.sg

zal
will.1.sg

willen
want.inf

slapen.
sleep.inf

‘I’ll want to sleep.’ [nld]

(49) Ik
pro.1.sg

zal
will.1.sg

willen
want.inf

kunnen
can.inf

slapen.
sleep.inf

‘I’ll want to be able to sleep.’ [nld]

(50) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

willen
want.inf

kussen.
kiss.inf

‘I’ll want to kiss the woman.’ [nld]

(51) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

willen
want.inf

kunnen
can.inf

kussen.
kiss.inf

‘I’ll want to be able to kiss the woman.’ [nld]

(52) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

de
the

brief
letter

willen
want.inf

sturen.
send.inf

‘I’ll want to send the woman the letter.’ [nld]

(53) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

de
the

brief
letter

willen
want.inf

kunnen
can.inf

sturen.
send.inf

‘I’ll want to be able to send the woman the letter.’ [nld]

363

(54) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

de
the

brief
letter

zeker
definitely

willen
want.inf

kunnen
can.inf

sturen.
send.inf

‘I’ll definitely want to be able to send the woman the letter.’ [nld]

(55) Ik
pro.1.sg

zal
will.1.sg

de
the

vrouw
woman

de
the

brief
letter

zeker
definitely

met
with

het
the

bier
beer

willen
want.inf

kunnen
can.inf

sturen.
send.inf

‘I’ll want to be able to send the woman the letter definitely with the beer.’ [nld]

364

Appendix C

Babel phenomena not handled by
either grammar

Overview of phenomena which neither Cheetah or gclimb covers or where they both
overgenerate.

Phenomena that neither grammar covers
Lexically selected objects
Extraction from NPs (fronted)
“Wer X (der) Y” (who is doing X, does Y)
Dative passives
Argument agreement (two arguments must bear the same case)
Partially complement including adpositions
Adverbial use of adjectives
Semi-particles
“Weder...noch” (neither...nor)
Phenomena where both grammars overgenerate
Too flexible in fronting (e.g. expletives from embedded clauses)
Extraposition across multiple clauses
Restriction on prepositional form and its case
Word order flexibility in the Mittelfelt
Extraposed relative clauses modifying a subject person name
Lexical selection for fixed expressions

365

Bibliography
Adger, David. 2003. Core syntax: A minimalist approach, volume 33. Oxford University

Press Oxford.

Avgustinova, Tania. 2007. Language Family Oriented Perspective in Multilingual Grammar
Design. Linguistik International: Band 17, Frankfurt am Main, Germany: Peter Lang
- Eurpopäischer Verlag der Wissenschaft.

Avgustinova, Tania and Zhang, Yi. 2009. Parallel Grammar Engineering for Slavic Lan-
guages. In Proceedings of GEAF , Singapore.

Avgustinova, Tania and Zhang, Yi. 2010. Conversion of a Russian dependency treebank
into HPSG derivations. In Proceedings of TLT’9 .

Baldwin, Timothy. 2005. Bootstrapping deep lexical resources: Resources for courses. In
Proceedings of the ACL-SIGLEX Workshop on Deep Lexical Acquisition, pages 67–76,
Ann Arbor, USA: Association for Computational Linguistics.

Becker, Tilman. 1990. Meta-rules on Tree Adjoining Grammars. In Proceedings of the 1st
International Workshop on Tree Adjoining Grammars, Dagstuhl Castle, Germany.

Becker, Tilman, Joshi, Aravind and Rambow, Owen. 1991. Long distance scrambling and
tree adjoining grammars. In Proceedings of the 5th Conference of the European Chapter
of the ACL (EACL 1991), pages 21–26, Berlin, Germany.

Bender, Emily M. 2007. Combining Research and Pedagogy in the Development of a Cross-
linguistic Grammar Resource. In Tracy Holloway King and Emily M. Bender (eds.),
Proceedings of the GEAF07 Workshop, pages 26–45, Stanford, CA: CSLI.

Bender, Emily M. 2008a. Evaluating a Crosslinguistic Grammar Resource: A Case Study
of Wambaya. In Proceedings of ACL-08: HLT , pages 977–985, Columbus, Ohio: Asso-
ciation for Computational Linguistics.

Bender, Emily M. 2008b. Grammar Engineering for Linguistic Hypothesis Testing. In
Proceedings of the Texas Linguistics Society X Conference: Computational Linguistics
for Less-Studied Languages, pages 16–36, Stanford: CSLI Publications.

Bender, Emily M. 2010. Reweaving a Grammar for Wambaya: A Case Study in Grammar
Engineering for Linguistic Hypothesis Testing. Linguistic Issues in Language Technology
3(3), 1–34.

Bender, Emily M. 2014. Language CoLLAGE: Grammatical Description with the LinGO
Grammar Matrix. In Proceedings of LREC 2014 , Reykjavik, Iceland.

366

Bender, Emily M., Drellishak, Scott, Fokkens, Antske, Poulson, Laurie and Saleem,
Safiyyah. 2010. Grammar Customization. Research on Language & Computation 8(1),
23–72.

Bender, Emily M. and Flickinger, Dan. 2005. Rapid Prototyping of Scalable Grammars:
Towards Modularity in Extensions to a Language-Independent Core. In Proceedings of
the 2nd International Joint Conference on Natural Language Processing IJCNLP-05
(Posters/Demos), Jeju Island, Korea.

Bender, Emily M., Flickinger, Dan and Oepen, Stephan. 2002. The Grammar Matrix: An
Open-Source Starter-Kit for the Rapid Development of Cross-Linguistically Consistent
Broad-Coverage Precision Grammars. In John Carroll, Nelleke Oostdijk and Richard
Sutcliffe (eds.), Proceedings of the Workshop on Grammar Engineering and Evaluation
at the 19th International Conference on Computational Linguistics, pages 8–14, Taipei,
Taiwan.

Bender, Emily M., Flickinger, Dan and Oepen, Stephan. 2011. Grammar Engineering and
Linguistic Hypothesis Testing: Computational Support for Complexity in Syntactic
Analysis. In Language from a Cognitive Perspective: Grammar, Usage and Processing ,
pages 5–29, Stanford, USA: CSLI Publications.

Bender, Emily M., Flickinger, Dan, Oepen, Stephan, Walsh, Annemarie and Baldwin,
Tim. 2004. Arboretum: Using a precision grammar for grammar checking in CALL. In
Proceedings of the InSTIL/ICALL Symposium 2004 , Venice, Italy.

Bender, Emily M., Ghodke, Sumukh, Baldwin, Timothy and Dridan, Rebecca. 2012. From
Database to Treebank: On Enhancing Hypertext Grammars with Grammar Engineer-
ing and Treebank Search. In Sebastian Nordhoff and Karl-Ludwig G. Poggeman (eds.),
Electronic Grammaticography , pages 179–206, Honolulu, USA: University of Hawaii
Press.

Bender, Emily M. and Good, Jeff. 2005. Implementation for Discovery: A Bipartite Lex-
icon to Support Morphological and Syntactic Analysis. In Edwards, Midtlyng, Sprague
and Stensrud , The Panels, No. 41, Chicago Linguistic Society.

Bender, Emily M., Poulson, Laurie, Drellishak, Scott and Evans, Chris. 2007. Valida-
tion and Regression Testing for a Cross-linguistic Grammar Resource. In ACL 2007
Workshop on Deep Linguistic Processing , pages 136–143, Prague, Czech Republic: As-
sociation for Computational Linguistics.

Bergmair, Richard. 2008. Monte Carlo semantics: McPIET at RTE4. In Text Analysis
Conference (TAC 2008) Workshop-RTE-4 Track , National Institute of Standards and
Technology.

367

Bierwisch, Manfred. 1963. Grammatik des deutschen Verbs, volume II of Studia Gram-
matica. Akademie Verlag.

Black, Cheryl A. 2004. Parser And Writer for Syntax, paper presented at the International
Conference on Translation with Computer-Assisted Technology: Changes in Research,
Teaching, Evaluation, and Practice, University of Rome “La Sapienza”, April 2004.

Black, Cheryl A. and Black, H. Andrew. 2009. PAWS: Parser And Writer for Syntax:
Drafting Syntactic Grammars in the ThirdWave. In SIL Forum for Language Fieldwork ,
volume 2.

Blunsom, Phil and Baldwin, Timothy. 2006. Multilingual Deep Lexical Acquisition for
HPSGs via Supertagging. In Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 164–171, Stroudsburg, PA, USA:
Association for Computational Linguistics.

Bond, Francis, Oepen, Stephan, Nichols, Eric, Flickinger, Dan, Velldal, Erik and
Haugereid, Petter. 2011. Deep Open-Source Machine Translation. Machine Translation
25(2), 87–105.

Borisova, Irina. 2010. Implementing Georgian Polypersonal Agreement through the LinGO
Grammar Matrix . Masters Thesis, Saarland University.

Botha, Rudolph P. 1970. The methodological status of grammatical argumentation. The
Hague, the Netherlands: Mouton.

Bouma, Gosse, Malouf, Robert and Sag, Ivan A. 2001. Satisfying constraints on extraction
and adjunction. Natural Language and Linguistic Theory 19, 1–65.

Branco, AntÃşnio and Costa, Francisco. 2010. A Deep Linguistic Processing Grammar
for Portuguese. In Computational Processing of the Portuguese Language, volume
LNAI6001 of Lecture Notes in Artificial Intelligence, pages 86 – 89, Berlin, Germany:
Springer.

Brants, Sabine, Dipper, Stefanie, Hansen, Silvia, Lezius, Wolfgang and Smith, George.
2002. The TIGER Treebank. In Proceedings of the Workshop on Treebanks and Lin-
guistic Theories, Sozopol.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer, Chris-
tian. 2002. The Parallel Grammar Project. In John Carroll, Nelleke Oostdijk and
Richard Sutcliffe (eds.), Proceedings of the Workshop on Grammar Engineering and
Evaluation at the 19th International Conference on Computational Linguistics, pages
1–7.

368

Butt, Miriam, King, Tracy Holloway, Niño, Maria-Eugenia and Segond, Frédérique. 1999.
A Grammar Writer’s Cookbook . Stanford, USA: CSLI Publications.

Callmeier, Ulrich. 2000. PET - a platform for experimentation with efficient hpsg pro-
cessing techniques. Natural Language Engineering 6 (1), 99 – 107.

Candito, Marie-Hélène. 1996. A principle-based hierarchical representation of LTAGs. In
Proceedings of the 16th conference on Computational linguistics, pages 194–199, Ko-
penhagen, Denmark: Association for Computational Linguistics.

Candito, Marie-Hélène. 1998. Building Parallel LTAG for French and Italian. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1 , pages 211–217,
Montreal, Canada: Association for Computational Linguistics.

Candito, Marie-Hélène. 1999. Organisation modulaire et paramétrable de grammaires élec-
troniques lexicalisées. Application au franćais et á l’italien. Ph.D.thesis, l’université
Paris 7.

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Cambridge Tracts in The-
orertical Computer Science, No. 32, New York, USA: Cambridge University Press.

Carroll, John, Copestake, Ann, Flickinger, Dan and Poznański, Victor. 1999. An effi-
cient chart generator for (semi-)lexicalist grammars. In Proceedings of the 7th European
Workshop on Natural Language Generation, pages 86–95, Toulouse, France.

Carroll, John and Oepen, Stephan. 2005. High efficiency realization for a wide-coverage
unification grammar. In IJCNLP , Jeju Island, South Korea: Springer-Verlag LNCS.

Cholakov, Kostadin. 2012. Lexical Acquisition for Computational Grammars. Ph.D.thesis,
Rijksuniversiteit Groningen.

Chomsky, Noam. 1957. Syntactic Structures. The Hague, The Netherlands: Mouton.

Chomsky, Noam. 1965. Aspects of the theory of syntax . Cambridge, USA: MIT Press.

Chomsky, Noam. 1982. The Generative Enterprise. Dordrecht, the Netherlands: Floris
Publications.

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, USA: the MIT Press.

Clément, Lionel and Kinyon, Alexandra. 2003. Generating parallel multilingual LFG-TAG
grammars with a MetaGrammar. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL 2003), Sapporo, Japan: Association
of Computational Linguistics.

369

Coleman, Douglas W. 1999. Assumptions, Hypotheses, and Theories in ‘applied’ vs. ‘the-
oretical’ linguistics. The LACUS Forum 25, 461–472.

Coleman, Douglas W. 2001. Data and Science in introductory linguistics textbooks. the
LACUS Forum 27, 75–85.

Coleman, Douglas W. 2002. A corpus study on the (non-)physicality of linguistic observa-
tions. The LACUS Forum 28, 43–50.

Coleman, Douglas W. 2009. There are three kinds of abstractions: abstractions, damned
abstractions, and damned lying abstractions. The LACUS Forum 35, 109–121.

Copestake, Ann. 2000. Appendix: Definitions of Typed Feature Structures. Natural Lan-
guage Engineering 6, 109–112.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. Stanford, CA:
CSLI Publications.

Copestake, Ann, Flickinger, Dan, Sag, Ivan and Pollard, Carl. 2005. Minimal Recursion
Semantics. An Introduction. Journal of Research on Language and Computation 3(2–3),
281 – 332.

Copestake, Ann, Lascarides, Alex and Flickinger, Dan. 2001. An Algebra for Semantic
Construction in Constraint-based Grammars. In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, pages 140–147.

Cowart, Wayne. 1997. Experimental Syntax: Applying Objective Methods to Sentence Judg-
ments. SAGE Publications.

Crabbé, Benoît and Duchier, Denys. 2004. Metagrammar Redux. In Proceedings of the In-
ternational Workshop on Constraint Solving and Language Processing , Roskilde, Den-
mark.

Cramer, Bart. 2011. Improving the feasibility of precision-oriented HPSG parsing .
Ph.D.thesis, Saarland University.

Cramer, Bart and Zhang, Yi. 2009. Constructon of a German HPSG grammar from a de-
tailed treebank. In Proceedings of the ACL 2009 Grammar Engineering across Frame-
works workshop, pages 37–45, Singapore, Singapore.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ronald M., King, Tracy Holloway, Maxwell III,
John T. and Newman, Paula. 2011. XLE Documentation.

370

Crowgey, Joshua. 2012. An a priori Typology of Sentential Negation from an HPSG
Perspective. In Stefan Müller (ed.), Proceedings of the 19th International Conference
on Head-Driven Phrase Structure Grammar, Chungnam National University Daejeon,
pages 107–122.

Crysmann, Berthold. 2005. Relative Clause Extraposition in German: An Efficient and
Portable Implementation. Research on Language and Computation 3(1), 61–82.

Crysmann, Berthold. 2012. HaG – a computational grammar of Hausa. In Tristan Pur-
vis and Michael Marlo (eds.), Selected Proceedings of the 42nd Annual Conference on
African Linguistics.

Crysmann, Berthold, Bertomeu, Nuria, Adolphs, Peter, Flickinger, Dan and Klüwer, Tina.
2008. Hybrid processing for grammar and style checking. In Proceedings of the 22nd
International Conference on Computational Linguistics (COLING 2008), Manchester,
UK.

Dalrymple, Mary. 2001. Lexical Functional Grammar , volume 34 of Syntax and Semantics.
New York, USA: Academic Press.

Den Besten, Hans and Edmondson, Jerold A. 1983. The Verbal Complex in Continental
West Germanic. In Werner Abraham (ed.), On the Formal Syntax of the Westgermania:
Papers from the III Groninger Grammar Talks, Amsterdam, The Netherlands: Ben-
jamins.

DeWitt, Bryce Seligman. 1972. The Many-Universes Interpretation of Quantum Mechan-
ics. In Proceedings of the International School of Physics "Enrico Fermi" Course IL:
Foundations of Quantum Mechanics.

Diderichsen, Paul. 1962. Elementar Dansk Grammatik . Copenhagen, Denmark:
Gyldendal.

Drach, Erich. 1937. Grundgedanken der Deutschen Satzlehre. Frankfurt am Main, Ger-
many: Diesterweg.

Drellishak, Scott. 2004. A Survey of Coordination Strategies in the WorldâĂŹs Languages.
Masters Thesis, University of Washington.

Drellishak, Scott. 2009.Widespread but Not Universal: Improving the Typological Coverage
of the Grammar Matrix . Ph.D.thesis, University of Washington.

Drellishak, Scott and Bender, Emily M. 2005. A Coordination Module for a Crosslinguistic
Grammar Resource. In Stefan Müller (ed.), The Proceedings of the 12th International

371

Conference on Head-Driven Phrase Structure Grammar, Department of Informatics,
University of Lisbon, pages 108–128, Stanford: CSLI Publications.

Dridan, Rebecca. 2009. Using Lexical Statistics to Improve HPSG Parsing . Ph.D.thesis,
Saarland University.

Duchier, Denys, Le Roux, Joseph and Parmentier, Yannick. 2005. The Metagrammar
Compiler: An NLP Application with a Multi-paradigm Architecture. In Peter Van Roy
(ed.), Multiparadigm Programming in Mozart/OZ , volume 3389 of Lecture Notes in
Computer Science, pages 175–187, Heidelberg/Berlin, Germany: Springer.

Eddington, David. 2008. Linguistics and the Scientific Method. Southwest Journal of Lin-
guistics 27, 1–16.

Erdmann, Oskar. 1886. Grundzüge der deutschen Syntax nach ihrer geschichtlichen En-
twicklung dargestellt. Erste Abteilung . Stuttgart, Germany: Verlag der Cotta’schen
Buchhandlung.

Everett, H. 1957. ”Relative State” Formulation of Quantum Mechanics. Reviews of Modern
Physics 29, 454–462.

Flickinger, Dan. 1987. Lexical Rules in the Hierarchical Lexicon. Ph.D.thesis, Stanford
University.

Flickinger, Dan. 2000. On Building a More Efficient Grammar by Exploiting Types. Nat-
ural Language Engineering 6 (1), 15 – 28.

Fokkens, Antske. 2011a. Metagrammar engineering: Towards systematic exploration of
implemented grammars. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 1066–1076, Port-
land, Oregon, USA: Association for Computational Linguistics.

Fokkens, Antske. 2011b. Thesis Proposal. Unpublished manuscript.

Fokkens, Antske. 2012. SHORT-CLIMB Documentation.

Fokkens, Antske and Avgustinova, Tania. 2013. SlaviCLIMB: Combining exp ertise for
Slavic grammar development using a metagrammar. In Denys Duchier and Yannick
Parmentier (eds.), Proceedings of the Workshop on High-Level Methodologies for Gram-
mar Engineering at ESSLLI 2013 , Düsseldorf, Germany.

Fokkens, Antske, Avgustinova, Tania and Zhang, Yi. 2012a. CLIMB grammars: three
projects using metagrammar engineering. In Nicoletta Calzolari, Khalid Choukri, Thi-
erry Declerck, Mehmet Uǧur Doǧan, Bente Maegaard, Joseph Mariani, Jan Odijk and

372

Stelios Piperidis (eds.), Proceedings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC 2012), Instanbul, Turkey: European Language
Resources Association (ELRA).

Fokkens, Antske and Bender, Emily M. 2013. Time Travel in Grammar Engineering. Using
a Metagrammar to Broaden the Search Space. In Denys Duchier and Yannick Parmen-
tier (eds.), Proceedings of the Workshop on High-Level Methodologies for Grammar
Engineering at ESSLLI 2013 , Düsseldorf, Germany.

Fokkens, Antske, Bender, Emily M. and Gracheva, Varya. 2012b. LinGO Grammar Matrix
Customization System Documentation.

Fokkens, Antske, Poulson, Laurie and Bender, Emily M. 2009. Inflectional morphology in
Turkish VP-coordination. In Stefan Müller (ed.), Proceedings of the 16th International
Conference on Head-Driven Phrase Structure Grammar , pages 110–130, Stanford, CA:
CSLI Publications ONLINE.

Fokkens, Antske, Zhang, Yi and Bender, Emily. 2011. Spring Cleaning and Grammar
Compression: Two Techniques for Detection of Redundancy in HPSG grammars. In
Proceedings of the 25th PACLIC , Singapore, Singapore.

Fokkens, Antske S. 2010. Documentation for the Grammar Matrix word order library.
Technical Report, Saarland University.

Frank, Annette, Krieger, Hans-Ulrich, Xu, Feiyu, Uszkoreit, Hans, Crysmann, Berthold,
Jörg, Brigitte and Schäfer, Ulrich. 2007. Question answering from structured knowledge
sources. Journal of Applied Logic 5, 20–48, special Issue on Questions and Answers:
Theoretical and Applied Perspectives.

Frege, Gottlob. 1892. Über Sinn und Bedeutung. Zeitschrift für Philosophie und philo-
sophische Kritik 100, 25–50.

Gaiffe, Bertrand, Crabbé, Benoît and Roussanaly, Azim. 2002. A new metagrammar com-
piler. In Proceedings of TAG+6 , Venice, Italy.

Gazdar, Gerald. 1987. Unbounded dependencies and coordinate structure. In The Formal
complexity of natural language, pages 183–226, Springer.

Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey K. and Sag, Ivan A. 1985. Generalized
Phrase Structure Grammar . Cambridge, USA: Harvard University Press.

Gerdes, Kim. 2002. DTAG. attempt to generate a useful TAG for German using a meta-
grammar. In Proceedings of TAG+6 , Venice, Italy.

373

Ginzburg, Jonathan and Sag, Ivan. 2000. Interrogative Investigations: The form, meaning,
and use of English interrogatives. Stanford, USA: CSLI.

Goodman, Michael Wayne. 2012. Generation of Machine-Readable Morphological Rules
from Human-Readable Input.

Haeseryn, Walter. 1997. De gebruikswaarde van de ANS voor tekstschrijvers, taaltrainers
en taaladviseurs. Tekst[blad] 3.

Hansson, Sven Ove. 2012. Science and Pseudo-Science. In Edward N. Zalta (ed.) (ed.),
The Stanford Encyclopedia of Philosophy .

Haugereid, Petter. 2011. A grammar design accommodating packed argument frame in-
formation on verbs. In Proceedings of the 25th PACLIC , pages 31–40.

Heinz, Wolfgang and Matiasek, Johannes. 1994. Argument structure and case assignment
in German. In John Nerbonne, Klaus Netter and Carl Pollard (eds.), German in HPSG ,
pages 199–236, Stanford, USA: CSLI.

Hellan, Lars, Bruland, Tore, Sandøy, Mads, Aamot, Elias, Beermann, Dorothee and
Flickinger, Dan. 2011. A Grammar Sparrer for Norwegian. Technical Report, NTNU
Trondheim, Trondheim, Norway.

Hellan, Lars and Haugereid, Petter. 2003. NorSource: An exercise in Matrix grammar-
building design. In Emily M. Bender, Dan Flickinger, Frederik Fouvry and Melanie
Siegel (eds.), Proceedings of the Workshop on Ideas and Strategies for Multilingual
Grammar Development , ESSLLI 2003, pages 41–48, Vienna, Austria.

Hinrichs, Erhard and Nakazawa, Tsuneko. 1989. Flipped out: AUX in German, volume 25.
Chicago, USA: Chicago Linguistic Society.

Hinrichs, Erhard and Nakazawa, Tsuneko. 1994. Linearizing AUXs in German Verbal
Complexes. In John Nerbonne, Klaus Netter and Carl Pollard (eds.), German in HPSG ,
Chapter 1, Stanford, USA: CSLI.

Hock, Hans Henrich and Joseph, Brian D. 1996. Language history, language change, and
language relationship: An introduction to historical and comparative linguistics. Berlin,
Germany: Mouton de Gruyter.

Itkonen, Esa. 1978. Grammatical theory and metascience: A critical investigation into the
methodological and philosophical foundations of ‘autonomous’ linguistics. Amsterdam,
the Netherlands: John Benjamins.

374

Itkonen, Esa. 1981. The concept of linguistic intuition. In Florian Coulmas (ed.), A Fest-
schrift for Native Speaker , pages 127–140, The Hague, the Netherlands: Mouton.

Jacobs, Joachim. 1986. The Syntax of Focus and Adverbials in German. In W. Abraham
and S. de Meij (eds.), Topic, Focus, and Configurationality. Papers from the 6th Gronin-
gen Grammar Talks, Groningen, 1984 , pages 103–127, Amsterdam, the Netherlands:
John Benjamins Publishing.

Joshi, Aravind and Schabes, Yves. 1991. Tree-Adjoining Grammars and lexicalized gram-
mars. In Maurice Nivat and Andreas Podelski (eds.), Definability and Recognizability of
Sets of Trees, Elsevier.

Joshi, Aravind and Schabes, Yves. 1997. Tree-Adjoining Grammars. In Grzegorz Rozen-
berg and Arto Salomaa (eds.), Handbook of Formal Languages, volume 3, pages 69–124,
Berlin, Germany: Springer.

Kaplan, Ronald and Bresnan, Joan. 1982. Lexical Functional Grammar: A formal system
for grammatical representation. In Joan Bresnan (ed.), The Mental Representation of
Grammatical Relations, pages 173–âĂŞ281, Cambridge, USA: the MIT Press.

Kathol, Andreas. 2000. Linear Syntax . New York, USA: Oxford University Press.

Kay, Martin. 1979. Functional Grammar. In Christine Chiarello (ed.), Proceedings of the
5th Annual Meeting of the Berkeley Linguistic Society , Berkeley, USA.

Kay, Martin. 1984. Functional unification grammar: a formalism to machine translation. In
Proceedings of the 10th International Conference on Computational Lingusitics, pages
75–78, Stanford, USA.

Keller, Frank. 2000. Gradience in Grammar: Experimental and Computational Aspects of
Degrees of Grammaticality . Ph.D.thesis, University of Edinburgh.

Kim, Jong Bok and Yang, Jaehyung. 2003. Korean Phrase Structure Grammar and Its
Implementations into the LKB System. In Don Hong Ji and Kim Teng Lua (eds.),
Proceedings of the 17th Asia Pacific Conference, pages 88–97, COLIPS Publications.

King, Tracy Holloway, Forst, Martin, Kuhn, Jonas and Butt, Miriam. 2005. The Feature
Space in Parallel Grammar Writing. Research on Language and Computation, Special
Issue on Shared Representations in Multilingual Grammar Engineering 3(2), 139–163.

Kinyon, Alexandra, Rambow, Owen, Scheffler, Tatjana, Yoon, SinWon and Joshi, Ara-
vind K. 2006. The Metagrammar Goes Multilingual: A Cross-Linguistic Look at the
V2-Phenomenon. In Proceedings of the 8th International Workshop on Tree Adjoining

375

Grammar and Related Formalisms, pages 17–24, Sydney, Australia: Association for
Computational Linguistics.

Kiss, Tibor and Wesche, Birgit. 1991. Verb Order and Head Movement. In O. Herzog and
C.-R Rollinger (eds.), Text Understanding in LILOG , pages 216–242, Berlin, Germany:
Springer-Verlag.

Kordoni, Valia and Neu, Julia. 2005. Deep analysis of Modern Greek. In Keh-Yih Su,
Jun’ichi Tsujii and Jong-Hyeok Lee (eds.), Lecture Notes in Computer Science, volume
3248, pages 674–683, Berlin, Germany: Springer.

Koster, Jan. 2005. Is linguistics a natural science. In Hans Broekhuis, Norbert Corver, Riny
Huybregts, Ursula Kleinhenz and Jan Koster (eds.), Organizing Grammar: Linguistic
Studies in Honor of Henk van Riemsdijk , pages 350–358, Mouton de Gruyter.

Krieger, Hans-Ulrich and Schäfer, Ulrich. 1994. TDL - A Type Description Language for
constraint-based grammarsanguage for constraint-based grammars. In Proceedings of
the 15th International Conference on Computational Linguistics, pages 893–899, Kyoto,
Japan.

Kuhn, Thomas S. 1974. Logic of Discovery or Psychology of Research? In Paul A. Schilpp
(ed.), The Philosophy of Karl Popper , volume xiv of The Library of Living Philosophers,
pages 798–819, La Salle: Open Court.

Lakatos, Imre. 1970. Falsification and the Methodology of Research program. In Imre
Lakatos and Alan Musgrave (eds.), Criticism and the Growth of Knowledge, pages 91–
197, Cambridge, UK: Cambridge University Press.

Lakatos, Imre. 1974a. Popper on Demarcation and Induction. In Paul A. Schilpp (ed.), The
Philosophy of Karl Popper , volume xiv of The Library of Living Philosophers, pages
241–273, La Salle: Open Court.

Lakatos, Imre. 1974b. Science and pseudoscience. Conceptus 8, 5–9.

Lakatos, Imre. 1981. Science and pseudoscience. In Stuart C. Brown, John Fauvel and
Ruth H. Finnegan (eds.), Conceptions of Inquiry: A Reader , pages 114–121, London,
UK: Methuen.

Larson, Richard K. 2010. Grammar as Science. London, UK: the MIT Press.

Lasswell, Steven Theophilos. 1998. An Ecological Reference Grammar of Solring North
Frisian (Germany). Ph.D.thesis, University of California, Santa Barbara.

376

Lehmann, Sabine. 2000. Towards a Theory of Syntactic Phenomena. SaarbrÃĳcken
Dissertations in Computational Linguistics and Language Technology, Volume 11 .
Ph.D.thesis, Universität des Saarlandes, Fachbereich Computerlinguistik, Saarbrücken.

Lipenkova, Janna. 2008. Serienverben im Chinesischen und ihre Analyse im Formalismus
der HPSG . Masters Thesis, Freie Universität Berlin.

Malouf, Robert. 2000. Efficient feature structure operations without compilation. Natural
Language Engineering 6 (1), 29 – 46.

Marimon, Montserrat. 2010. The Spanish Resource Grammar. In Nicoletta Calzolari (Con-
ference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios
Piperidis, Mike Rosner and Daniel Tapias (eds.), Proceedings of the Seventh Interna-
tional Conference on Language Resources and Evaluation (LREC 2010), Valetta, Malta:
European Language Resources Association (ELRA).

Marimon, Montserrat, Bel, Núria, Espeja, Sergio and Seghezzi, Natalia. 2007. The spanish
resource grammar: pre-processing strategy and lexical acquisition. In Proceedings of the
Workshop on Deep Linguistic Processing , pages 105–111, Association for Computational
Linguistics.

Martin-Löf, Per. 1984. Intuitionistic Type Theory . Napoli, Italy: Bibliopolis.

Maxwell III, John T. and Kaplan, Ron. 1993. The interface between phrasal and functional
constraints. Computational Lingusitics 19, 571–589.

McConnel, Stephen. 1995. PC-PATR Reference Manual . Summer Institute for Linguistics.

MelÊźčuk, IgorÊź Aleksandrovič. 1988. Dependency syntax: theory and practice. State
University of New York Press.

Meurers, Detmar, Penn, Gerald and Richter, Frank. 2002. A Web-Based Instructional
Platform for Constraint- Based Grammar Formalisms and Parsing. In D. Radev and
C. Brew (eds.), Effective Tools and Methodologies for Teaching NLP and CL, pages
18–25.

Montague, Richard. 1974. Formal Philosophy. Collected Papers edited by Richmond
Thomason. New Haven, USA: Yale University Press.

Moshier, Drew. 1988. Extensions to Unification Grammars for the Description of Pro-
gramming Languages. Ph.D.thesis, University of Michigan, Ann Arbor, USA.

Moshier, M. Andrew. 1997a. Featureless HPSG. In Peter Blackburn and Maarten de Rijke
(eds.), Specifying Syntactic Structures, pages 115–155, Stanford, USA: CSLI Publica-
tions.

377

Moshier, M. Andrew. 1997b. Is HPSG Featureless or Unprincipled? Linguistics and Philo-
sophy 20, 669–695.

Müller, Stefan. 1996. The Babel-System—An HPSG Fragment for German, a Parser, and
a Dialogue Component. In Proceedings of the Fourth International Conference on the
Practical Application of Prolog , pages 263–277, London.

Müller, Stefan. 1997. Yet Another Paper about Partial Verb Phrase Fronting in Ger-
man. Technical Report, DFKI, Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH.

Müller, Stefan. 1999. Deutsche Syntax deklarativ. Head-Driven Phrase Structure Grammar
für das Deutsche. Tübingen: Max Niemeyer Verlag.

Müller, Stefan. 2002. Complex Predicates: Verbal Complexes, Resultative Constructions,
and Particle Verbs in German, volume 13 of Studies in Constraint-Based Lexicalism.
Stanford, USA: CSLI Publications.

Müller, Stefan. 2004. An Analysis of Depictive Secondary Predicates in German without
Discontinuous Constituents. In Stefan Müller (ed.), Proceedings of the HPSG-2004 Con-
ference, Center for Computational Linguistics, Katholieke Universiteit Leuven, pages
202–222, Stanford: CSLI Publications.

Müller, Stefan. 2007. Head-Driven Phrase Structure Grammar: Eine Einführung . Stauffen-
burg Einführungen, No. 17, Tübingen: Stauffenburg Verlag.

Müller, Stefan. 2009a. On Predication. In Proceedings of the 16th International Conference
on Head-Driven Phrase Structure Grammar, University of Göttingen, Germany , pages
213–233, Stanford, USA: CSLI Publications.

Müller, Stefan. 2009b. Towards an HPSG Analysis of Maltese. In Bernard Comrie, Ray
Fabri, Beth Hume, Manwel Mifsud, Thomas Stolz and Martine Vanhove (eds.), Intro-
ducing Maltese linguistics. Papers from the 1st International Conference on Maltese
Linguistics (Bremen/Germany, 18–20 October, 2007), volume 113 of Studies in Lan-
guage Companion Series, pages 83–112, Amsterdam, Philadelphia: John Benjamins
Publishing Co.

Müller, Stefan. 2010. Persian Complex Predicates and the Limits of Inheritance-Based
Analyses. Journal of Linguistics 46(3), 601–655.

Müller, Stefan. 2013. The CoreGram Project: A Brief Overview and Motivation. In Denys
Duchier and Yannick Parmentier (Eds) (eds.), Proceedings of the Workshop on High-
level Methodologies for Grammar Engineering (HMGE 2013), Düsseldorf, Germany.

378

Müller, Stefan, Bildhauer, Felix and Cook, Philippa. 2012. Beschränkungen für die schein-
bar mehrfache Vorfeldbesetzung im Deutschen. In Colette Cortès (ed.), Satzeröffnung.
Formen, Funtionen, Strategien, Eurogermanistik, No. 31, pages 113–128, Tübingen:
Stauffenburg Verlag.

Müller, Stefan and Ghayoomi, Masood. 2010. PerGram: A TRALE Implementation of
an HPSG Fragment of Persian. In Proceedings of 2010 IEEE International Multicon-
ference on Computer Science and Information Technology , pages 461âĂŞ–467, Polish
Information Processing Society.

Müller, Stefan and Kasper, Walter. 2000. HPSG analysis for German. In Wolfgang Wahl-
ster (ed.), Verbmobil: Foundations of Speech-to-Speech translation, pages 238 – 253,
Berlin, Germany: Springer.

Müller, Stefan and Lipenkova, Janna. 2009. Serial Verb Constructions in Chinese: An
HPSG Account. In Stefan Müller (ed.), Proceedings of the 16th International Conference
on Head-Driven Phrase Structure Grammar, University of Göttingen, Germany , pages
234–254, Stanford, USA: CSLI Publications.

Müller, Stefan and Ørsnes, Bjarne. 2011. Positional Expletives in Danish, German, and
Yiddish. In Stefan Müller (ed.), The Proceedings of the 18th International Conference
on Head-Driven Phrase Structure Grammar , pages 167–187, Stanford, USA: CSLI Pub-
lications.

Müller, Stefan and Ørsnes, Bjarne. to appear. Danish in Head-Driven Phrase Structure
Grammar. Ms, Freie Universität Berlin.

Netter, Klaus. 1992. On Non-Head Non-Movement. An HPSG Treatment of Finite Verb
Position in German. In G. Görz (ed.), Konvens 92. 1. Konferenz „Verarbeitung natür-
licher Sprache”, pages 218–227, Nürnberg, Germany: Springer-Verlag.

Nichols, Eric, Bond, Francis, Appling, Darren Scott and Matsumoto, Yuji. 2010. Para-
phrasing Training Data for Statistical Machine Translation. Journal of Natural Lan-
guage Processing 17(3), 101–122.

Nichols, Eric, Bond, Francis, Tanaka, Takaaki, Fujita, Sanae and Flickinger, Dan. 2006.
Multilingual ontology acquisition from multiple MRDs. In Proceedings of the 2nd Work-
shop on Ontology Learning and Population: Bridging the Gap between Text and Know-
ledge, pages 10–âĂŞ17, Sydney, Australia: Association for Computational Linguistics.

Nordlinger, Rachel. 1998. A Grammar of Wambaya, Northern Territory (Australia). Can-
berra, Australia: Pacific Linguistics.

379

Oepen, Stephan. 2001. [incr tsdb()] — Competence and Performance Laboratory. User
Manual. Technical report, Saarland University, Saarbrücken, Germany.

Oepen, Stephan and Carroll, John. 2000. Parser engineering and performance profiling.
Natural Language Engineering 6 (1), 81 – 97.

Oepen, Stephan, Velldal, Erik, Lønning, Jan Tore, Meurer, Paul, Rosén, Victoria and
Flickinger, Dan. 2007. Towards hybrid quality-oriented machine translation – on lin-
guistics and probabilities in MT. In Proceedings of the 11th Conference on Theoretical
and Methodological Issues in Machine Translation (TMI-07), Skövde, Sweden.

O’Hara, Kelly. 2008. A Morphotactic Infrastructure for a Grammar Customization System.
Masters Thesis, University of Washington.

Oliva, Karel. 1992. Word Order Constraints in Binary Branching Syntactic Structures.
Technical Report, Universität des Saarlandes, Saarbrücken, Germany, cLAUS-Report
20.

Ørsnes, Bjarne. 2009a. Das Verbalfeldmodell âĂŞ ein Stellungsfeldermodell für den kon-
trastiven DaF-Unterricht. Deutsch als Fremdsprache 46(3), 143âĂŞ–149.

Ørsnes, Bjarne. 2009b. Preposed Sentential Negation in Danish - an HPSG Approach. In
Stefan Müller (ed.), Proceedings of the international HPSG Conference 2009, University
of Göttingen, Germany , pages 255–275, Stanford, USA: CSLI Publications.

Osenova, Petya. 2010. BUlgarian Resource Grammar âĂŞ EfïňĄcient and Realistic (BUR-
GER).

Packard, Woodley. 2011. ACE, the Answer Constraint Engine. http://sweaglesw.org/
linguistics/ace/, accessed, 9 August 2012.

Penn, Gerald. 2000. The algebraic structure of attributed type signatures. Ph.D.thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.

Penn, Gerald. 2004. Balancing Clarity and Efficiency in Typed Feature Logic Through
Delaying. In D. Scott (ed.), Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACLÕ04), pages 239–246, Barcelona, Spain.

Pereira, Fernando and Warren, David. 1980. Definite clause grammars for language
analysis−a survey of the formalism and a comparison with augmented transition net-
works. Artificial Intelligence 13, 231–278.

Pollard, Carl. 1994. Toward a Unified Account of Passives in German. In John Nerbonne,
Klaus Netter and Carl Pollard (eds.), German in HPSG , Chapter 8, Stanford, USA:
CSLI.

380

http://sweaglesw.org/linguistics/ace/
http://sweaglesw.org/linguistics/ace/

Pollard, Carl and Moshier, Drew. 1990. Unifiying partial descriptions of sets, volume 1 of
Vancouver Studies in Cognitive Science. University of British Colombia Press, inform-
ation, language and cognition edition.

Pollard, Carl and Sag, Ivan. 1987. Information-Based Syntax and Semantics, Volume 1:
Fundamentals, volume 13 of CSLI Lecture Notes. Stanford, USA: CSLI/Chicago Press.

Pollard, Carl and Sag, Ivan. 1994. Head-Driven Phrase Structure Grammar . Chicago,
USA: University of Chicago Press.

Popper, Karl. 1962. Conjectures and refutations. The growth of scientific knowledge. New
York, USA: Basic Books.

Poulson, Laurie. 2011. Meta-modeling of Tense and Aspect and in a Cross-linguistic Gram-
mar Engineering Platform. University of Washington working papers in linguistics 28,
1–67.

Przepiórkowski, Adam. 1996. Case assignment in Polish: towards an HPSG analysis. In
Claire Grover and Enric Vallduví (eds.), Studies in HPSG , Edinburgh Working Papers
in Cognitive Science, No. 12, pages 191–228, Edinburgh, Centre for Cognitive Science.

Ranta, Aarne. 1994. Type Theoretical Grammar . Oxford, UK: Oxford University Press.

Ranta, Aarne. 2004. Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(2), 145–189.

Ranta, Aarne. 2009. The GF Resource Grammar Library. Linguistic Issues in Language
Technology 2(2).

Ranta, Aarne. 2011. Grammatical Framework: Programming with Multilingual Grammars.
Stanford, USA: CSLI Publications.

Reape, Mike. 1993. A Formal Theory of Word Order: A Case Study in West Germanic.
Ph.D.thesis, University of Edinburgh.

Reape, Mike. 1994. Domain union and word order in variation in German. In John Ner-
bonne, Klaus Netter and Carl J. Pollard (eds.), German in Head-Driven Phrase Struc-
ture Grammar , pages 151–198, Stanford, USA: CSLI Publications.

Riezler, Stefan, King, Tracy Holloway, Kaplan, Ronald M., Crouch, Richard, III, John
T. Maxwell and Johnson, Mark. 2002. Parsing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estimation techniques. In Proceedings of ACL.

Ross, John R. 1967. Constraints on Variables in Syntax . Ph.D.thesis, MIT.

381

Rupp, CJ, Copestake, Ann, Corbett, Peter and Waldron, Benjamin. 2007. Integrating
general-purpose and domain-specific components in the analysis of scientific text. In
Proceedings of the UK e-Science Programme All Hands Meeting (AHM2007), pages
446–453, Nottingham, UK.

Sag, Ivan. 1997. English Relative Clause Constructions. Journal of Linguistics 33(2), 431–
484.

Sag, Ivan A. and Wasow, Thomas. 1999. Syntactic Theory: A formal introduction. Stan-
ford, USA: CSLI Publications.

Sag, Ivan A., Wasow, Thomas and Bender, Emily M. 2003. Synactic Theory: A Formal
Introduction. Stanford, CA: CSLI Publications, second edition.

Saleem, Safiyyah. 2010. Argument Optionality: A New Library for the Grammar Matrix
Customization System. Masters Thesis, University of Washington.

Saussure, Ferdinand de. 1916. Cours de linguistique générale. Paris, France: Payot.

Schneider, David and McCoy, Kathleen. 1998. Recognizing syntactic errors in the writing of
second language learners. In Proceedings of Coling-ACL’98 , pages 1198–1204, Montreal,
Canada.

Scholz, Barbara C. and Pullum, Geoffrey K. 2006. Irrational nativist exuberance. In Robert
Stainton (ed.), Contemporary Debates in Cognitive Science, pages 59–80, Oxford, UK:
Basil Blackwell.

Schütze, Carson. 1996. The empirical base of linguistics: Grammaticality judgments and
linguistic methodology . University of Chicago Press.

Schütze, Carson. 2005. Thinking about what we are asking speakers to do. In Stephan
Kepser and Marga Reis (eds.), Linguistic evidence: Empirical, theoretical, and compu-
tational perspectives, pages 457–485, Berlin, Germany: Mouton de Gruyter.

Shieber, Stuart M. 1984. The design of computer language for linguistic information. In
Proceedings of the 10th International Conference on Computational Linguistics, pages
362–366, Stanford, USA.

Shieber, Stuart M. 1986. An Introduction to Unification-Based Approaches to Grammar ,
volume 4 of CSLI Lecture Notes Series. Stanford, USA: CSLI publications.

Shieber, Stuart M., Uszkoreit, Hans, Pereira, Fernando, Robinson, Jane and Tyson, Mabry.
1983. The formalism and implementation of part-ii. In Research on Interactive Acquis-
ition and Use of Knowledge, volume 1894 of SRI Final Report , Menlo Park, USA: SRI
International.

382

Siegel, Melanie and Bender, Emily M. 2002. Efficient Deep Processing of Japanese. In Pro-
ceedings of the 3rd Workshop on Asian Language Resources and International Stand-
ardization at the 19th International Conference on Computational Linguistics, Taipei,
Taiwan.

Siegel, Melanie and Bender, Emily M. 2004. Head-Initial Constructions in Japanese. In
Stefan Müller (ed.), Proceedings of the 11th International Conference on Head-Driven
Phrase Structure Grammar , pages 244–260, Stanford, USA: CSLI Publications.

Slayden, Glenn. 2012. Array TFS Storage for Unification Grammars. Masters Thesis,
University of Washington.

Song, Sanghoun. 2014. A Grammar Library for Information Structure. Ph.D.thesis, Uni-
versity of Washington.

Song, Sanghoun and Bender, Emily M. 2012. Individual Constraints for Information Struc-
ture. In Stefan Müller (ed.), The 19th International Conference on Head-Driven Phrase
Structure Grammar , Daejeon, Korea.

Song, Sanghoun, Kim, Jong-Bok, Bond, Francis and Yang, Jaehyung. 2010. Develop-
ment of the Korean Resource Grammar: Towards Grammar Customization. In The 8th
Workshop on Asian Language Resources (in conjunction with COLING2010), Beijing,
China.

Suppes, P., Flickinger, D., Macken, B., Cook, J. and Liang, T. 2012. Description of the
EPGY Stanford University Online Courses for Mathematics and Language Arts. In
International Society for Technology in Education Annual (ISTE) 2012 Conference,
San Diego CA.

Sygal, Yael. 2011. Modular Development of Typed Unification Grammars. Ph.D.thesis,
University of Haifa PhD thesis.

Sygal, Yael andWintner, Shuly. 2011. Towards Modular Development of Typed Unification
Grammars. Computational Linguistics 37(1), 29–74.

Tseng, Jesse. 2003. LKB Grammar Implementation: French and beyond. In Proceedings of
the Workshop on Ideas and Strategies for Multilingual Grammar Development , ESSLLI
2003, pages 91–97, Vienna, Austria.

Uszkoreit, Hans. 1987. Word Order and Constituent Structure in German. Stanford, USA:
CSLI Publications.

383

Vijay-Shanker, K. and Schabes, Yves. 1992. Structure sharing in Lexicalized Tree-
Adjoining Grammars. In Proceedings of the 14th conference on Computational linguist-
ics, COLING ’92, pages 205–211, Stroudsburg, USA: Association for Computational
Linguistics.

Wang, Rui, Osenova, Petya and Simov, Kiril. 2012. Linguistically-Augmented Bulgarian-
to-English Statistical Machine Translation Model. In Proceedings of the EACL 2012
Joint Workshop on Exploiting Synergies between Information Retrieval and Machine
Translation (ESIRMT) and Hybrid Approaches to Machine Translation (HyTra),
Avignon, France.

Wasow, Thomas. 1985. The Wizards of Ling. Natural Language & Linguistic Theory 3(4).

Weber, David J., Black, H. Andrew and McConnel, Stephen R. 1988. AMPLE: A Tool for
Exploring Morphology. In Occasional Publications in Academic Computing , volume 12,
Dallas, USA: Summer Institute of Linguistics.

Welin, Carl Wilhelm. 1979. Studies in Computational Text Comprehension, volume 5 of
Milus Monograph. Stockholm: Sweden: Institute for Linguistics.

Wilske, Sabrina and Wolska, Magdalena. 2011. Meaning versus Form in Computer-assisted
Task-based Language Learning: A Case Study on the German Dative. Journal Language
Technology and Computational Linguistics (JLCL) 26(1), 23–37.

Wintner, Shuly, Lavie, Alon and MacWhinney, Brian. 2009. Formal Grammars of Early
Language. Languages: from Formal to Natural 5533, 204–227.

Wolska, Magdalena and Wilske, Sabrina. 2010. German subordinate clause word order
in dialogue-based CALL. In Proceedings of the Computational Linguistics - Applica-
tions (CLA-10) Section of the International Multiconference on Computer Science and
Information Technology , pages 553–559, Wisła, Poland.

Yngve, Victor H. 1986. Linguistics as a science. Bloomington, USA: Indiana University
Press.

Yngve, Victor H. 1996. From grammar to science: New foundations for general linguistics.
Philadelphia, USA: John Benjamins.

Zhang, Yi. 2007. Robust Deep Linguistic Processing . Ph.D.thesis, Saarland University,
Saarbrücken, Germany.

Zhang, Yi, Oepen, Stephan and Carroll, John. 2007. Efficiency in unification-based n-best
parsing. In Proceedings of the 10th international conference on parsing technologies
(IWPT 2007), pages 48–59, Prague, Czech Republic.

384

Zhang, Yi, Wang, Rui and Chen, Yu. 2011. Engineering a Deep HPSG for Mandarin
Chinese. In Proceedings of ALR, Chiang Mai, Thailand.

385

	Introduction
	Syntax, Science and Philosophy
	Metagrammar Engineering
	Thesis Overview

	Background
	Head-Driven Phrase Structure Grammar
	delph-in
	The LinGO Grammar Matrix
	Summary

	The CLIMB Methodology
	An introduction to climb
	Declarative climb
	tdl processing tools
	climb applications
	Summary

	CLIMB for Germanic languages
	Motivation of gCLIMB for German
	German word order and auxiliaries
	Standard hpsg analyses for German
	Alternative analyses in gclimb

	Evaluation
	climb development
	Comparative efficiency evaluation
	Outlook
	Summary

	Multilingual aspects of CLIMB
	Sharing between related languages
	climbfor Germanic languages
	PaGES, SlaviCore and Slaviclimb
	climb for second language learners
	Spring cleaning revisited
	The Matrix core
	Summary

	Related Work
	MetaGrammar and xmg for tag
	The gf Resource Library
	The ParGram Project
	paws
	Modular typed unification grammars
	CoreGram
	An overview of related work and climb

	Conclusion and Future Work
	climb: Enhancing empirical research
	Other aspects of climb and related tools
	Discussion and Future work
	Concluding remarks

	Cheetah test set (with coverage indication)
	Sentences for Natural Language Generation
	Babel phenomena not handled by either grammar

