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ABSTRACT

Melody estimation algorithms are typically evaluated by
separately assessing the task of voice activity detection
and fundamental frequency estimation. For both subtasks,
computed results are typically compared to a single human
reference annotation. This is problematic since different
human experts may differ in how they specify a predom-
inant melody, thus leading to a pool of equally valid ref-
erence annotations. In this paper, we address the problem
of evaluating melody extraction algorithms within a jazz
music scenario. Using four human and two automatically
computed annotations, we discuss the limitations of stan-
dard evaluation measures and introduce an adaptation of
Fleiss’ kappa that can better account for multiple reference
annotations. Our experiments not only highlight the be-
havior of the different evaluation measures, but also give
deeper insights into the melody extraction task.

1. INTRODUCTION

Predominant melody extraction is the task of estimating an
audio recording’s fundamental frequency trajectory values
(F0) over time which correspond to the melody. For exam-
ple in classical jazz recordings, the predominant melody
is typically played by a soloist who is accompanied by a
rhythm section (e. g., consisting of piano, drums, and bass).
When estimating the soloist’s F0-trajectory by means of
an automated method, one needs to deal with two issues:
First, to determine the time instances when the soloist is
active. Second, to estimate the course of the soloist’s F0
values at active time instances.

A common way to evaluate such an automated
approach—as also used in the Music Information Retrieval
Evaluation eXchange (MIREX) [5]—is to split the evalua-
tion into the two subtasks of activity detection and F0 es-
timation. These subtasks are then evaluated by comparing
the computed results to a single manually created reference
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Figure 1. Illustration of different annotations and possible
disagreements. A1 and A2 are based on a fine frequency
resolution. Annotation A3 is based on a coarser grid of
musical pitches.

annotation. Such an evaluation, however, is problematic
since it assumes the existence of a single ground-truth. In
practice, different humans may annotate the same record-
ing in different ways thus leading to a low inter-annotator
agreement. Possible reasons are the lack of an exact task
specification, the differences in the annotators’ experi-
ences, or the usage of different annotation tools [21, 22].
Figure 1 exemplarily illustrates such variations on the basis
of three annotations A1, ..., A3 of the same audio record-
ing, where a soloist plays three consecutive notes. A first
observation is thatA1 andA2 have a fine frequency resolu-
tion which can capture fluctuations over time (e. g., vibrato
effects). In contrast, A3 is specified on the basis of semi-
tones which is common when considering tasks such as
music transcription. Furthermore, one can see that note on-
sets, note transitions, and durations are annotated inconsis-
tently. Reasons for this might be differences in annotators’
familiarity with a given instrument, genre, or a particular
playing style. In particular, annotation deviations are likely
to occur when notes are connected by slurs or glissandi.

Inter-annotator disagreement is a generally known
problem and has previously been discussed in the contexts
of audio music similarity [8, 10], music structure analy-
sis [16, 17, 23], and melody extraction [3]. In general, a
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SoloID Performer Title Instr. Dur.

Bech-ST Sidney Bechet Summertime Sopr. Sax 197
Brow-JO Clifford Brown Jordu Trumpet 118
Brow-JS Clifford Brown Joy Spring Trumpet 100
Brow-SD Clifford Brown Sandu Trumpet 048
Colt-BT John Coltrane Blue Train Ten. Sax 168
Full-BT Curtis Fuller Blue Train Trombone 112
Getz-IP Stan Getz The Girl from Ipan. Ten. Sax 081
Shor-FP Wayne Shorter Footprints Ten. Sax 139

Table 1. List of solo excerpts taken from the WJD. The
table indicates the performing artist, the title, the solo in-
strument, and the duration of the solo (given in seconds).

single reference annotation can only reflect a subset of the
musically or perceptually valid interpretations for a given
music recording, thus rendering the common practice of
evaluating against a single annotation questionable.

The contributions of this paper are as follows. First,
we report on experiments, where several humans anno-
tate the predominant F0-trajectory for eight jazz record-
ings. These human annotations are then compared with
computed annotations obtained by automated procedures
(MELODIA [20] and pYIN [13]) (Section 2). In particu-
lar, we consider the scenario of soloist activity detection
for jazz recordings (Section 3.1). Afterwards, we adapt
and apply an existing measure (Fleiss’ Kappa [7]) to our
scenario which can account for jointly evaluating multi-
ple annotations (Section 3.2). Note that this paper has an
accompanying website at [1] where one can find the anno-
tations which we use in the experiments.

2. EXPERIMENTAL SETUP

In this work, we use a selection of eight jazz recordings
from the Weimar Jazz Database (WJD) [9, 18]. For each
of these eight recordings (see Table 1), we have a pool of
seven annotations A = {A1, . . . , A7} which all represent
different estimates of the predominant solo instruments’
F0-trajectories. In the following, we model an annotation
as a discrete-time function A : [1 : N ] → R ∪ {∗} which
assigns to each time index n ∈ [1 : N ] either the solo’s F0
at that time instance (given in Hertz), or the symbol ‘∗’.
The meaning of A(n) = ∗ is that the soloist is inactive at
that time instance.

In Table 2, we list the seven annotations. For this work,
we manually created three annotations A1, . . . , A3 by us-
ing a custom graphical user interface as shown in Fig-
ure 2 (see also [6]). In addition to standard audio player
functionalities, the interface’s central element is a salience
spectrogram [20]—an enhanced time-frequency represen-
tation with a logarithmically-spaced frequency axis. An
annotator can indicate the approximate location of F0-
trajectories in the salience spectrogram by drawing con-
straint regions (blue rectangles). The tool then automati-
cally uses techniques based on dynamic programming [15]
to find a plausible trajectory through the specified region.
The annotator can then check the annotation by listening to
the solo recording, along with a synchronized sonification
of the F0-trajectory.

Figure 2. Screenshot of the tool used for the manual anno-
tation of the F0 trajectories.

Annotation Description

A1 Human 1, F0-Annotation-Tool
A2 Human 2, F0-Annotation-Tool
A3 Human 3, F0-Annotation-Tool
A4 Human 4, WJD, Sonic Visualiser
A5 Computed, MELODIA [2, 20]
A6 Computed, pYIN [13]
A7 Baseline, all time instances active at 1 kHz

Table 2. Set A of all annotations with information about
their origins.

In addition to the audio recordings, the WJD also in-
cludes manually annotated solo transcriptions on the semi-
tone level. These were created and cross-checked by
trained jazz musicians using the Sonic Visualiser [4]. We
use these solo transcriptions to derive A4 by interpreting
the given musical pitches as F0 values by using the pitches’
center frequencies.
A5 and A6 are created by means of automated meth-

ods. A5 is extracted by using the MELODIA [20] algo-
rithm as implemented in Essentia [2] using the default set-
tings (sample rate = 22050 Hz, hop size = 3 ms, window
size = 46 ms). For obtaining A6, we use the tool Tony [12]
(which is based on the pYIN algorithm [13]) with default
settings and without any corrections of the F0-trajectory.

As a final annotation, we also consider a baseline
A7(n) = 1 kHz for all n ∈ [1 : N ]. Intuitively, this
baseline assumes the soloist to be always active. All of
these annotations are available on this paper’s accompany-
ing website [1].

3. SOLOIST ACTIVITY DETECTION

In this section, we focus on the evaluation of the soloist
activity detection task. This activity is derived from the
annotations of the F0-trajectories A1, . . . , A7 by only con-
sidering active time instances, i. e., A(n) 6= ∗. Figure 3
shows a typical excerpt from the soloist activity annota-
tions for the recording Brow-JO. Each row of this ma-
trix shows the annotated activity for one of our annotations
from Table 2. Black denotes regions where the soloist is
annotated as active and white where the soloist is annotated
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Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.93 0.98 0.92 0.74 0.79 1.00 0.89
A2 0.92 − 0.97 0.92 0.74 0.79 1.00 0.89
A3 0.84 0.84 − 0.88 0.69 0.74 1.00 0.83
A4 0.85 0.86 0.94 − 0.70 0.75 1.00 0.85
A5 0.84 0.84 0.90 0.85 − 0.77 1.00 0.87
A6 0.75 0.76 0.81 0.77 0.65 − 1.00 0.79
A7 0.62 0.62 0.71 0.67 0.55 0.65 − 0.64
∅ 0.80 0.81 0.89 0.83 0.68 0.75 1.00 0.82

Table 3. Pairwise evaluation: Voicing Detection (VD). The
values are obtained by calculating the VD for all possible
annotation pairs (Table 2) and all solo recordings (Table 1).
These values are then aggregated by using the arithmetic
mean.

as inactive. Especially note onsets and durations strongly
vary among the annotation, see e. g., the different durations
of the note event at second 7.8. Furthermore, a missing
note event is noticeable in the annotations A1 and A6 at
second 7.6. At second 8.2, A6 found an additional note
event which is not visible in the other annotations. This
example indicates that the inter-annotator agreement may
be low. To further understand the inter-annotator agree-
ment in our dataset, we first use standard evaluation mea-
sures (e. g., as used by MIREX for the task of audio melody
extraction [14]) and discuss the results. Afterwards, we in-
troduce Fleiss’ Kappa, an evaluation measure known from
psychology, which can account for multiple annotations.

3.1 Standard Evaluation Measures

As discussed in the previous section, an estimated annota-
tion Ae is typically evaluated by comparing it to a refer-
ence annotation Ar. For the pair (Ar, Ae), one can count
the number of time instances that are true positives #TP
(Ar andAe both label the soloist as being active), the num-
ber of false positives #FP (only Ae labels the soloist as
being active), the number of true negatives #TN (Ar and
Ae both label the soloist as being inactive), and the number
false negatives #FN (only Ae labels the soloist as being
inactive).

In previous MIREX campaigns, these numbers are used
to derive two evaluation measures for the task of activity
detection. Voicing Detection (VD) is identical to Recall
and describes the ratio that a time instance which is anno-
tated as being active is truly active according to the refer-
ence annotation:

VD =
#TP

#TP+#FN
. (1)

The second measure is the Voicing False Alarm (VFA) and
relates the ratio of time instances which are inactive ac-
cording to the reference annotation but are estimated as
being active:

VFA =
#FP

#TN+#FP
. (2)

In the following experiments, we assume that all an-
notations A1, . . . , A7 ∈ A have the same status, i. e., each
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Figure 3. Excerpt from Brow-JO. A1, . . . , A4 show the
human annotations. A5 and A6 are results from automated
approaches. A7 is the baseline annotation which considers
all frames as being active.

Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.13 0.30 0.27 0.22 0.44 1.00 0.39
A2 0.12 − 0.29 0.26 0.22 0.43 1.00 0.39
A3 0.05 0.07 − 0.14 0.18 0.43 1.00 0.31
A4 0.16 0.16 0.27 − 0.24 0.46 1.00 0.38
A5 0.34 0.35 0.48 0.44 − 0.49 1.00 0.52
A6 0.38 0.38 0.54 0.49 0.35 − 1.00 0.52
A7 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00
∅ 0.17 0.18 0.31 0.27 0.20 0.38 1.00 0.36

Table 4. Pairwise evaluation: Voicing False Alarm (VFA).
The values are obtained by calculating the VFA for all pos-
sible annotation pairs (Table 2) and all solo recordings (Ta-
ble 1). These values are then aggregated by using the arith-
metic mean.

annotation may be regarded as either reference or estimate.
Then, we apply the standard measures in a pairwise fash-
ion. For all pairs (Ar, Ae) ∈ A × A with Ar 6= Ae, we
extract VD and VFA (using the MIR EVAL [19] toolbox)
for each of the solo recordings listed in Table 1. The mean
values over the eight recordings are presented in Table 3
for the VD-measure and in Table 4 for the VFA-measure.

As for the Voicing Detection (Table 3), the values within
the human annotators A1, . . . , A4 range from 0.84 for the
pair (A3, A2) to 0.98 for the pair (A1, A3). This high
variation in VD already shows that the inter-annotator dis-
agreement even within the human annotators is substantial.
By taking the human annotators as reference to evaluate
the automatic approach A5, the VD lies in the range of
0.69 for (A3, A5) to 0.74 for (A2, A5). Analogously, for
A6, we observe values from 0.74 for (A3, A6) to 0.79 for
(A1, A6).

As for the Voicing False Alarm (see Table 4), the val-
ues among the human annotations range from 0.05 for
(A3, A1) to 0.30 for (A1, A3). Especially annotation A3

deviates from the other human annotations, resulting in a
very high VFA (having many time instances being set as
active).

In conclusion, depending on which human annotation
we take as the reference, the evaluated performances of
the automated methods vary substantially. Having multi-
ple potential reference annotations, the standard measures
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n = 1 2 3 4 5
A1

A2

A3

k = 1 1 3 0 1 2 7/15
k = 2 2 0 3 2 1 8/15

1/3 1 1 1/3 1/3

an,k Ae
k

Ao

n

(a)

(b)

Figure 4. Example of evaluating Fleiss’ κ for K = 2
categories, N = 5 frames, and three different annotations.
(a) Annotations. (b) Number of annotations per category
and time instance. Combining Ao = 0.6 and Ae = 0.5
leads to κ = 0.2.

< 0 0− 0.2 0.21− 0.4 0.41− 0.6 0.61− 0.8 0.81− 1

poor slight fair moderate substantial almost perfect

Table 5. Scale for interpreting κ as given by [11].

are not generalizable to take these into account (only by
considering a mean over all pairs). Furthermore, although
the presented evaluation measures are by design limited to
yield values in [0, 1], they can usually not be interpreted
without some kind of baseline. For example, considering
VD, the pair (A2, A3) yields a VD-value of 0.97, sug-
gesting that A3 can be considered as an “excellent” esti-
mate. However, considering that our uninformed baseline
A7 yields a VD of 1.0, shows that it is meaningless to look
at the VD alone. Similarly, an agreement with the trivial
annotation A7 only reflects the statistics on the active and
inactive frames, thus being rather uninformative. Next, we
introduce an evaluation measure that can overcome some
of these problems.

3.2 Fleiss’ Kappa

Having to deal with multiple human annotations is com-
mon in fields such as medicine or psychology. In these
disciplines, measures that can account for multiple anno-
tations have been developed. Furthermore, to compensate
for chance-based agreement, a general concept referred to
as Kappa Statistic [7] is used. In general, a kappa value
lies in the range of [−1, 1], where the value 1 means com-
plete agreement among the raters, the value 0 means that
the agreement is purely based on chance, and a value below
0 means that agreement is even below chance.

We now adapt Fleiss’ Kappa to calculate the chance-
corrected inter-annotator agreement for the soloist activity
detection task. Following [7, 11], Fleiss’ Kappa is defined
as:

κ :=
Ao −Ae

1−Ae
. (3)

In general, κ compares the mean observed agreementAo ∈
[0, 1] to the mean expected agreement Ae ∈ [0, 1] which
is solely based on chance. Table 5 shows a scale for the

SoloID
Comb.

κH κH,5 κH,6 ρ5 ρ6

Bech-ST 0.74 0.60 0.55 0.82 0.75
Brow-JO 0.68 0.56 0.59 0.82 0.87
Brow-JS 0.61 0.47 0.43 0.78 0.71
Brow-SD 0.70 0.61 0.51 0.87 0.73
Colt-BT 0.66 0.55 0.49 0.84 0.74
Full-BT 0.74 0.66 0.61 0.89 0.83
Getz-IP 0.72 0.69 0.64 0.96 0.90
Shor-FP 0.82 0.65 0.58 0.80 0.70
∅ 0.71 0.60 0.55 0.85 0.78

Table 6. κ for all songs and different pools of annotations.
κH denotes the pool of human annotations A1, . . . , A4.
These values are then aggregated by using the arithmetic
mean.

agreement of annotations with the corresponding range of
κ.

To give a better feeling for how κ works, we exemplar-
ily calculate κ for the example given in Figure 4(a). In this
example, we have R = 3 different annotations A1, . . . , A3

for N = 5 time instances. For each time instance, the an-
notations belong to either of K = 2 categories (active or
inactive). As a first step, for each time instance, we add
up the annotations for each category. This yields the num-
ber of annotations per category an,k ∈ N, n ∈ [1 : N ],
k ∈ [1 : K] which is shown in Figure 4(b). Based on these
distributions, we calculate the observed agreement Ao

n for
a single time instance n ∈ [1 : N ] as:

Ao
n :=

1

R(R− 1)

K∑

k=1

an,k(an,k − 1) , (4)

which is the fraction of agreeing annotations normalized
by the number of possible annotator pairs R(R − 1), e. g.,
for the time instance n = 2 in the example, all annotators
agree for the frame to be active, thus Ao

2 = 1. Taking the
arithmetic mean of all observed agreements leads to the
mean observed agreement

Ao :=
1

N

N∑

n=1

Ao
n , (5)

in our example Ao = 0.6. The remaining part for cal-
culating κ is the expected agreement Ae. First, we cal-
culate the distribution of agreements within each category
k ∈ [1 : K], normalized by the number of possible ratings
NR:

Ae
k :=

1

NR

N∑

n=1

an,k , (6)

e. g., in our example for k = 1 (active) results inAe
1 = 7/15.

The expected agreement Ae is defined as [7]

Ae :=

K∑

k=1

(Ae
k)

2 (7)

which leads to κ = 0.2 for our example. According to the
scale given in Table 5, this is a “slight” agreement.

In Table 6, we show the results for κ calculated for dif-
ferent pools of annotations. First, we calculate κ for the
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Figure 5. Raw Pitch Accuracy (RPA) for different pairs of
annotations based on the annotations of the solo recording
Brow-JO, evaluated on all active frames according to the
reference annotation.

pool of human annotations H := {1, 2, 3, 4}, denoted as
κH . κH yields values ranging from 0.61 to 0.82 which is
considered as “substantial” to “almost perfect” agreement
according to Table 5.

Now, reverting to our initial task of evaluating an auto-
matically obtained annotation, the idea is to see how the
κ-value changes when adding this annotation to the pool
of all human annotations. A given automated procedure
could then be considered to work correctly if it produces
results that are just about as variable as the human anno-
tations. Only if an automated procedure behaves funda-
mentally different than the human annotations, it will be
considered to work incorrectly. In our case, calculating
κ for the annotation pool H ∪ {5} yields values ranging
from 0.47 to 0.69, as shown in column κH,5 of Table 6.
Considering the annotation pool H ∪ {6}, κH,6 results in
κ-values ranging from 0.43 to 0.64. Considering the aver-
age over all individual recordings, we get mean κ-values
of 0.60 and 0.55 for κH,5 and κH,6, respectively. Compar-
ing these mean κ-values for the automated approaches to
the respective κH , we can consider the method producing
the annotation A5 to be more consistent with the human
annotations than A6.

In order to quantify the agreement of an automatically
generated annotation and the human annotations in a single
value, we define the proportion ρ ∈ R as

ρ5 :=
κH,5

κH
, ρ6 :=

κH,6

κH
. (8)

One can interpret ρ as some kind of “normalization” ac-
cording to the inter-annotator agreement of the humans.
For example, solo recording Brow-JS obtains the lowest
agreement of κH = 0.61 in our test set. The algorithms
perform “moderate” with κH,5 = 0.47 and κH,6 = 0.43.
This moderate performance is partly alleviated when nor-
malizing with the relatively low human agreement, lead-
ing to ρ5 = 0.78 and ρ6 = 0.71. On the other hand, for
the solo recording Shor-FP, the human annotators had
an “almost perfect” agreement of κH,6 = 0.82. While the
automated method’s approaches were “substantial” with
κH,5 = 0.65 and “moderate” with κH,6 = 0.58. However,
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Figure 6. Modified Raw Pitch Accuracy for different pairs
of annotations based on the annotations of the solo record-
ing Brow-JO, evaluated on all active frames according to
the union of reference and estimate annotation.

although the automated method’s κ-values are higher than
for Brow-JS, investigating the proportions ρ5 and ρ6 re-
veal that the automated method’s relative agreement with
the human annotations is actually the same (ρ5 = 0.78
and ρ5 = 0.71 for Brow-JS compared to ρ5 = 0.80 and
ρ5 = 0.70 for Shor-FP). This indicates the ρ-value’s po-
tential as an evaluation measure that can account for mul-
tiple human reference annotations in a meaningful way.

4. F0 ESTIMATION

One of the used standard measures for the evaluation of the
F0 estimation in MIREX is the Raw Pitch Accuracy (RPA)
which is computed for a pair of annotations (Ar, Ae) con-
sisting of a reference Ar and an estimate annotation Ae.
The core concept of this measure is to label an F0 estimate
Ae(n) to be correct, if its F0-value deviates from Ar(n)
by at most a fixed tolerance τ ∈ R (usually τ = 50 cent).
Figure 5 shows the RPA for different annotation pairs and
different tolerances τ ∈ {1, 10, 20, 30, 40, 50} (given in
cent) for the solo recording Brow-JO, as computed by
MIR EVAL. For example, looking at the pair (A1, A4), we
see that the RPA ascends with increasing value of τ . The
reason for this becomes obvious when looking at Figure 7.
While A1 was created with the goal of having fine grained
F0-trajectories, annotations A4 was created with a tran-
scription scenario in mind. Therefore, the RPA is low for
very small τ but becomes almost perfect when considering
a tolerance of half a semitone (τ = 50 cent).

Another interesting observation in Figure 5 is that the
annotation pairs (A1, A2) and (A1, A3) yield almost con-
stant high RPA-values. This is the case since both an-
notations were created using the same annotation tool—
yielding very similar F0-trajectories. However, it is note-
worthy that there seems to be a “glass ceiling” that can-
not be exceeded even for high τ -values. The reason for
this lies in the exact definition of the RPA as used for
MIREX. Let µ(A) := {n ∈ [1 : N ] : A(n) 6= ∗} be
the set of all active time instances of some annotation in
A. By definition, the RPA is only evaluated on the refer-
ence annotation’s active time instances µ(Ar), where each

250 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



15.0 16.0
Time (s)

440.0
F

re
qu

en
cy

(H
z)

A1

A4

Figure 7. Excerpt from the annotations of the solo
Brow-JO of A1 and A4.

n ∈ µ(Ar) \ µ(Ae) is regarded as an incorrect time in-
stance (for any τ ). In other words, although the term “Raw
Pitch Accuracy” suggests that this measure purely reflects
correct F0-estimates, it is implicitly biased by the activity
detection of the reference annotation. Figure 8 shows an
excerpt of the human annotations A1 and A2 for the solo
recording Brow-JO. While the F0-trajectories are quite
similar, they differ in the annotated activity. In A1, we see
that transitions between consecutive notes are often anno-
tated continuously—reflecting glissandi or slurs. This is
not the case in A2, where the annotation rather reflects in-
dividual note events. A musically motivated explanation
could be that A1’s annotator had a performance analysis
scenario in mind where note transitions are an interesting
aspect, whereas A2’s annotator could have been more fo-
cused on a transcription task. Although both annotations
are musically meaningful, when calculating the RPA for
(A1, A2), all time instances whereA1 is active andA2 not,
are counted as incorrect (independent of τ )—causing the
glass ceiling.

As an alternative approach that decouples the activity
detection from the F0 estimation, one could evaluate the
RPA only on those time instances, where reference and es-
timate annotation are active, i. e., µ(Ar) ∪ µ(Ae). This
leads to the modified RPA-values as shown in Figure 6.
Compared to Figure 5, all curves are shifted towards higher
RPA-values. In particular, the pair (A1, A2) yields modi-
fied RPA-values close to one, irrespective of the tolerance
τ—now indicating that A1 and A2 coincide perfectly in
terms of F0 estimation.

However, it is important to note that the modified RPA
evaluation measure may not be an expressive measure on
its own. For example, in the case that two annotations
are almost disjoint in terms of activity, the modified RPA
would only be computed on the basis of a very small num-
ber of time instances, thus being statistically meaning-
less. Therefore, to rate a computational approach’s per-
formance, it is necessary to consider both, the evaluation
of the activity detection as well as the F0 estimation, si-
multaneously but independent of each other. Both evalua-
tions give valuable perspectives on the computational ap-
proach’s performance for the task of predominant melody
estimation and therefore help to get a better understanding
of the underlying problems.
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Figure 8. Excerpt from the annotations of the solo
Brow-JO of A1 and A2.

5. CONCLUSION

In this paper, we investigated the evaluation of auto-
matic approaches for the task of predominant melody
estimation—a task that can be subdivided into the sub-
task of soloist activity detection and F0 estimation. The
evaluation of this task is not straightforward since the ex-
istence of a single “ground-truth” reference annotation is
questionable. After having reviewed standard evaluation
measures used in the field, one of our main contributions
was to adapt Fleiss’ Kappa—a measure which accounts for
multiple reference annotations. We then explicitly defined
and discussed Fleiss’ Kappa for the task of the soloist ac-
tivity detection.

The core motivation for using Fleiss’ Kappa as an eval-
uation measure was to consider an automatic approach to
work correctly, if its results were just about as variable
as the human annotations. We therefore extended this the
kappa measure by normalizing it by the variability of the
human annotations. The resulting ρ-values allow for quan-
tifying the agreement of an automatically generated anno-
tation and the human annotations in a single value.

For the task of F0 estimation, we showed that the stan-
dard evaluation measures are biased by the activity de-
tection task. This is problematic, since mixing both sub-
tasks can obfuscate insights into advantages and draw-
backs of a tested predominant melody estimation proce-
dure. We therefore proposed an alternative formulation for
RPA which decoupled the two tasks.
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