EXTRACTING GROUND TRUTH INFORMATION FROM MIDI FILES:
A MIDIFESTO

Colin Raffel and Daniel P. W. Ellis
LabROSA
Department of Electrical Engineering
Columbia University
New York, NY

ABSTRACT

MIDI files abound and provide a bounty of information
for music informatics. We enumerate the types of infor-
mation available in MIDI files and describe the steps nec-
essary for utilizing them. We also quantify the reliability
of this data by comparing it to human-annotated ground
truth. The results suggest that developing better methods
to leverage information present in MIDI files will facili-
tate the creation of MIDI-derived ground truth for audio
content-based MIR.

1. MIDI FILES

MIDI (Music Instrument Digital Interface) is a hardware
and software standard for communicating musical events.
First proposed in 1983 [1], MIDI remains a highly per-
vasive standard both for storing musical scores and com-
municating information between digital music devices. Its
use is perhaps in spite of its crudeness, which has been
lamented since MIDI’s early days [21]; most control values
are quantized as 7-bit integers and information is transmit-
ted at the relatively slow (by today’s standards) 31,250 bits
per second. Nevertheless, its efficiency and well-designed
specification make it a convenient way of formatting digi-
tal music information.

In the present work, we will focus on MIDI files, which
in a simplistic view can be considered a compact way of
storing a musical score. MIDI files are specified by an ex-
tension to the MIDI standard [2] and consist of a sequence
of MIDI messages organized in a specific format. A typical
MIDI file contains timing and meter information in addi-
tion to a collection of one or more “tracks”, each of which
contains a sequence of notes and control messages. The
General MIDI standard [3] further specifies a collection of
128 instruments on which the notes can be played, which
standardizes the playback of MIDI files and has therefore
been widely adopted.

When paired with a General MIDI synthesizer, MIDI
files have been used as a sort of semantic audio codec,

(© Colin Raffel and Daniel P. W. Ellis. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Colin Raffel and Daniel P. W. Ellis. “Extracting Ground
Truth Information from MIDI Files: A MIDIfesto”, 17th International
Society for Music Information Retrieval Conference, 2016.

796

with entire songs only requiring a few kilobytes of stor-
age. The early availability of this “coding method”, com-
bined with the expense of digital storage in the 90s, made
MIDI files a highly pervasive method of storing and play-
ing back songs before the advent of the MP3. Even af-
ter high-quality perceptual audio codecs were developed
and storage prices plummeted, MIDI files remained in use
in resource-scarce settings such as karaoke machines and
cell phone ringtones. As a result, there is an abundance of
MIDI file transcriptions of music available today; through
a large-scale web scrape, we obtained 178,561 MIDI files
with unique MD5 checksums. Given their wide availabil-
ity, we believe that MIDI files are underutilized in the Mu-
sic Information Retrieval community.

In this paper, we start by outlining the various sources
of information present in MIDI files and reference rele-
vant works which utilize them in Section 2. In Section
3, we discuss the steps needed to leverage MIDI-derived
information as ground truth for content-based MIR. We
then establish a baseline for the reliability of MIDI-derived
ground truth by comparing it to handmade annotations in
Section 4. Finally, in Section 5, we argue that improving
the process of extracting information from MIDI files is a
viable path for creating large amounts of ground truth data
for MIR.

2. INFORMATION AVAILABLE IN MIDI FILES

While various aspects of MIDI files have been used in
MIR research, to our knowledge there has been no uni-
fied overview of the information they provide, nor a dis-
cussion of the availability and reliability of this informa-
tion in MIDI transcriptions found “in the wild”. We there-
fore present an enumeration of the different information
sources in a typical MIDI file and discuss their applicabil-
ity to different MIR tasks. Because not all MIDI files are
created equal, we also computed statistics about the pres-
ence and quantity of each information source across our
collection of 178,561 MIDI files; the results can be seen in
Figure 1 and will be discussed in the following sections.

2.1 Transcription

MIDI files are specified as a collection of “tracks”, where
each track consists of a sequence of MIDI events on one
of 16 channels. Commonly used MIDI events are note-
on and note-off messages, which together specify the start



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

30 (a) Number of instruments (b) Number of tempo changes

25

(c) Number of time signature changes (d) Number of key changes

84.5 ‘

20
8
15
6
10 N
: ‘ !—‘ H7 :
0 el 0
0 5 10 15 20+ 5 Y

(e) Program Numbers

(rff Tfj L (Frﬁfﬁi

7 8 9 10+

(g) Time signatures (h) Keys

|H|FH e
G A Bc d ef g a b

Minor

8|
30
6|
20) 4l
10 I—z
| e r—
D

PP P @R PR AP AL AP P & c EF

Major

&

Figure 1: Statistics about sources of information in 178,561 unique MIDI files scraped from the internet. Histograms in
the top row show the number of MIDI files which had a given number of events for different event types; in the bottom row,
we show distributions of the different values set by these events across all MIDI files. All counts are reported in thousands.
For example, about 125,000 MIDI files had a single time signature change event, and about 210,000 4/4 time signature

changes were found in all of our MIDI files.

and end time of notes played at a given pitch on a given
channel. Various control events also exist, such as pitch
bends, which allow for finer control of the playback of
the MIDI file. Program change events determine which in-
strument these events are sent to. The General MIDI stan-
dard defines a correspondence between program numbers
and a predefined list of 128 instruments. General MIDI
also specifies that all notes occurring on MIDI channel 10
play on a separate percussion instrument, which allows for
drum tracks to be transcribed. The distribution of the to-
tal number of program change events (corresponding to
the number of instruments) across the MIDI files in our
collection and the distribution of these program numbers
are shown in Figures 1(a) and 1(e) respectively. The four
most common program numbers (shown as the four tallest
bars in Figure 1(e)) were 0 (“Acoustic Grand Piano”), 48
(“String Ensemble 17), 33 (“Electric Bass (finger)”), and
25 (“Acoustic Guitar (steel)”).

This specification makes MIDI files naturally suited to
be used as transcriptions of pieces of music, due to the
fact that they can be considered a sequence of notes played
at different “velocities” (intensities) on a collection of in-
struments. As a result, many MIDI files are transcriptions
and are thus commonly used as training data for automatic
transcription systems (see [32] for an early example). This
type of data also benefits score-informed source separa-
tion methods, which utilize the score as a prior to improve
source separation quality [15]. An additional natural use
of this information is for “instrument activity detection”,
i.e. determining when certain instruments are being played
over the course of a piece of music. Finally, the enumera-
tion of note start times lends itself naturally to onset detec-
tion, and so MIDI data has been used for this task [4].

2.2 Music-Theoretic Features

Because many MIDI files are transcriptions of music, they
can also be used to compute high-level musicological char-
acteristics of a given piece. Towards this end, the soft-

ware library jSymbolic [20] includes functionality to
extract a wide variety of features, including instrumenta-
tion, rhythm, and pitch statistics. Similarly, music21 [9]
provides a general-purpose framework for analyzing col-
lections of digital scores (including MIDI files). Comput-
ing these features on a collection of MIDI transcriptions
is valuable for computational musicology and can enable
data-driven corpus studies. For example, [10] discusses
the use of music21 and jSymbolic to extract features
from scores and uses them to distinguish music from dif-
ferent composers and musical traditions.

2.3 Meter

Timing in MIDI files is determined by two factors:
The MIDI file’s specified “resolution” and tempo change
events. Each event within the MIDI file specifies the num-
ber of “ticks” between it and the preceding event. The res-
olution, which is stored in the MIDI file’s header, sets the
number of ticks which correspond to a single beat. The
amount of time spanned by each tick is then determined
according to the current tempo, as set by tempo change
events. For example, if a MIDI file has a resolution of
220 ticks per beat and the current tempo is 120 beats per
minute, ! each tick would correspond to 60/(120 * 220) =
0.00227 seconds. If a MIDI event in this file is specified
to occur 330 ticks after the previous event, then it would
occur 330 * 0.00227 = .75 seconds later.

The timing in a MIDI file can vary over time by includ-
ing many tempo change events. In practice, as shown in
Figure 1(b), most MIDI files only contain a single tempo
change and are therefore transcribed at a fixed tempo.
However, there are many MIDI files in our collection
which have a large number of tempo change events (as
indicated by the rightmost bars in Figure 1(b)). We have
found that this is a common practice for making the tim-
ing of a MIDI transcription closely match that of an audio

I Actually, tempo change events specify the number of microseconds
per quarter beat, but this can be readily converted to beats per minute.

797



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

recording of the same song. Despite the fact that the de-
fault tempo for a MIDI file is 120 beats per minute, Figure
1(f) demonstrates that a wide range of tempos are used.
In practice, we find that this is due to the fact that even
when a single tempo event is used, it is often set so that the
MIDI transcription’s tempo approximates that of an audio
recording of the same song.

Time signature change events further augment MIDI
files with the ability to specify time signatures, and are
also used to indicate the start of a measure. By convention,
MIDI files have a time signature change at the first tick,
although this is not a requirement. Because time signature
changes are relatively rare in western popular music, the
vast majority of the MIDI files in our collection contain a
single time signature change, as seen in Figure 1(c). De-
spite the fact that 4/4 is the default time signature for MIDI
files and is pervasive in western popular music, a substan-
tial portion (about half) of the time signature changes were
not 4/4, as shown in Figure 1(g).

Because MIDI files are required to include tempo infor-
mation in order to specify their timing, it is straightforward
to extract beat locations from a MIDI file. By convention,
the first (down)beat in a MIDI transcription occurs at the
first tick. Determining the beat locations in a MIDI file
therefore involves computing beat locations starting from
the first tick and adjusting the tempo and time signature
according to any tempo change or time signature change
events found. Despite this capability, to our knowledge
MIDI files have not been used as ground truth for beat
tracking algorithms. However, [19] utilized a large dataset
of MIDI files to study drum patterns using natural language
processing techniques.

2.4 Key

An additional useful event in MIDI files is the key change
event. Any of the 24 major or minor keys may be specified.
Key changes simply give a suggestion as to the tonal con-
tent and do not affect playback, and so are a completely
optional meta-event. As seen in Figure 1(d), this results
in many MIDI files omitting key change events altogether.
A further complication is that a disproportionate number
(about half) of the key changes in the MIDI files in our
collection were C major, as shown in Figure 1(h). This
disagrees with corpus studies of popular music, e.g. [8]
which found that only about 26% of songs from the Bill-
board 100 were in C major. We believe this is because
many MIDI transcription software packages automatically
insert a C major key change at the beginning of the file.

2.5 Lyrics

Lyrics can be added to MIDI transcriptions by the use of
lyrics meta-events, which allow for timestamped text to
be included over the course of the song. This capabil-
ity enables the common use of MIDI files for karaoke; in
fact, a separate file extension “kar” is often used for MIDI
files which include lyrics meta-events. Occasionally, the
generic text meta-event is also used for lyrics, but this is
not its intended use. In our collection, we found 23,801
MIDI files (about 13.3%) which had at least one lyrics
meta-event.

2.6 What’s Missing

Despite the wide variety of information sources available
in MIDI files outlined in the previous sections, there are
various types of information which are not possible (or not
common) to store in MIDI files. While the General MIDI
specification includes the vocal instruments “Choir Aahs”,
“Voice Oohs”, “Synth Choir”, “Lead 6 (voice)” and “Pad
4 (choir)”, in practice there is no specific program number
(or numbers) which is consistently used to transcribe vo-
cals. As a result, in a given MIDI file there is no reliable
way of determining which instrument is a transcription of
the vocals in a song. Furthermore, because a substantial
portion of MIDI files were designed for karaoke, the vo-
cals may not be transcribed at all.

While the MIDI specification does include “track
name”, “program name”, and “instrument name” meta-
events, they are not standardized and so are not used con-
sistently. It follows that there is no simple way to retrieve
the “melody” from a MIDI transcription, although the fact
that all instruments are transcribed separately can make its
estimation more straightforward than for audio files. For
example, [31] explores the use of simple features such as
the average velocity and note range within a track to pre-
dict whether it is a melody, and also finds that in a small
dataset the track name reliably indicates a melody track
44.3% of the time. Similarly, [23] uses heuristic features
and a random forest classifier to predict with high accuracy
whether a track is a melody.

There is also no explicit way for MIDI files to include
chord labels or structural segmentation boundaries (e.g.
“verse”, “chorus”, “solo”). While this would in princi-
ple be possible thanks to the generic MIDI “text” meta-
event, we have yet to find any MIDI files which store this
information. Nevertheless, estimating chords in particu-
lar is greatly facilitated by the presence of a ground truth
transcription. Both music21 [9] and melisma [30] in-
clude functionality for estimating chord sequences from
symbolic data. Rhodes et al. [29] also proposed a symbolic
chord estimation method using Bayesian Model Selection,
which was shown to outperform me11isma on a dataset of
Beatles MIDI files in [14].

While text meta-events could also be used to store song-
level metadata (song title, artist name, etc.) in a MIDI file,
we seldom encountered this. There is no standardized way
to store this metadata in a MIDI file, although we found
that a minority of the filenames in our collection indicated
the song title and occasionally the artist name. The lack
of a metadata specification also inhibits the attribution of
MIDI transcriptions to the person who transcribed them.

3. UTILIZING MIDI FILES AS GROUND TRUTH

Utilizing MIDI files as ground truth information for au-
dio content-based MIR tasks requires the following: First,
the compact low-level binary format used by MIDI files
must be parsed so that the information can be readily ex-
tracted. Second, the artist and song of a MIDI file must be
determined so it can be paired with a corresponding audio
recording. Finally, for many uses, the MIDI file must be
aligned in time with its matching audio.



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

3.1 Extracting Information

The information sources enumerated in Section 2 are not
readily available from MIDI files due to fact that they
follow a low-level binary protocol. For example, in or-
der to extract the time (in seconds) of all onsets from a
given instrument in a MIDI file, note events which oc-
cur on the same track and channel as program change
events for the instrument must be collected and their tim-
ing must be computed from their relative ticks using the
global tempo change events. Fortunately, various soft-
ware libraries have been created to facilitate this process.
pretty_midi [24] simplifies the extraction of useful in-
formation from MIDI transcriptions by taking care of most
of the low-level parsing needed to convert the information
to a more human-friendly format. It contains functions for
retrieving beats, onsets, and note lists from specific instru-
ments, and the times and values of key, tempo, and time
signature changes. It also can be used to modify MIDI
files, as well as to convert them to synthesized audio or a
spectrogram-like piano roll representation. The aforemen-
tioned jSymbolic contains an extensive collection of
routines for computing musicological features from MIDI
files. Finally, both music21 and melisma are capable
of inferring high-level music information from symbolic
data of various types, including MIDI.

3.2 Matching

Apart from metadata-agnostic corpus studies such as [19],
determining the song a given MIDI file represents is usu-
ally required. Matching a given MIDI file to, for example,
a corresponding entry in the Million Song Dataset [5] can
be beneficial even in experiments solely involving sym-
bolic data analysis because it can provide additional meta-
data for the track including its year, genre, and user-applied
tags. Utilizing information in a MIDI file for ground truth
in audio content-based MIR tasks further requires that it be
matched to an audio recording of the song, but this is made
difficult by the lack of a standardized method for storing
song-level metadata in MIDI files (as discussed in Sec-
tion 2.6). Content-based matching offers a solution; for
example, early work by Hu et al. [17] assigned matches
by finding the smallest dynamic time warp (DTW) dis-
tance between spectrograms of MIDI syntheses and au-
dio files across a corpus. This approach is prohibitively
slow for very large collections of MIDI and/or audio files,
so [25] explored learning a mapping from spectrograms to
downsampled sequences of binary vectors, which greatly
accelerates DTW. [27] provided further speed-up by map-
ping entire spectrograms to fixed-length vectors in a Eu-
clidean space where similar songs are mapped close to-
gether. These methods make it feasible to match a MIDI
file against an extremely large corpus of music audio.

3.3 Aligning

There is no guarantee that a MIDI transcription for a given
song was transcribed so that its timing matches an audio
recording of a performance of the song. For the many types
of ground truth data that depend on timing (e.g. beats, note
transcription, or lyrics), the MIDI file must therefore have

its timing adjusted so that it matches that of the perfor-
mance. Fortunately, score-to-audio alignment, of which
MIDI-to-audio alignment is a special “offline” case, has
received substantial research attention. A common method
is to use DTW or another edit-distance measure to find the
best alignment between spectrograms of the synthesized
MIDI and the audio recording; see [26] or [14] for surveys.
In practice, audio-to-MIDI alignment systems can fail
when there are overwhelming differences in timing or de-
ficiencies in the transcription, e.g. missing or incorrect
notes or instruments. Ideally, the alignment and match-
ing processes would automatically report the success of the
alignment and the quality of the MIDI transcription. [26]
explores the ability of DTW-based alignment systems to
report a “confidence” score indicating the success of the
alignment. We do not know of any research into automati-
cally determining the quality of a MIDI transcription.

4. MEASURING A BASELINE OF RELIABILITY
FOR MIDI-DERIVED INFORMATION

Given the potential availability of ground truth information
in MIDI transcriptions, we wish to measure the reliability
of MIDI transcriptions found “in the wild”. A straightfor-
ward way to evaluate the quality of MIDI-derived annota-
tions is to compare them with hand-made annotations for
the same songs. Given a MIDI transcription and human-
generated ground truth data, we can extract correspond-
ing information from the MIDI file and compare using
the evaluation metrics employed in the Music Information
Retrieval Evaluation eXchange (MIREX) [12]. We there-
fore leveraged the Isophonics Beatles annotations [18] as
a source of ground truth to compare against MIDI-derived
information. MIDI transcriptions of these songs are readily
available due to The Beatles’ popularity.

Our choice in tasks depends on the overlap in sources of
information in the Isophonics annotations and MIDI files.
Isophonics includes beat times, song-level key informa-
tion, chord changes, and structural segmentation. As noted
in Section 2, beat times and key changes may be included
in MIDI files but there is no standard way to include chord
change or structural segmentation information. We there-
fore performed experiments to evaluate the quality of key
labels and beat times available in MIDI files. Fortuitously,
these two experiments give us an insight into both song-
level timing-agnostic information (key) and alignment-
dependent timing-critical information (beats). To carry out
these experiments, we first manually identified 545 MIDI
files from our collection which had filenames indicating
that they were transcriptions of one of the 179 songs in the
Isophonics Beatles collection; we found MIDI transcrip-
tions for all but 11. The median number of MIDI tran-
scriptions per song was 2; the song “Eleanor Rigby” had
the most, with 14 unique transcriptions.

4.1 Key Experiment

In our first experiment, we evaluated the reliability of key
change events in MIDI files. We followed the MIREX
methodology for comparing keys [13], which proceeds as
follows: Each song may only have a single key. All keys

799



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

Source Score  Comparisons
MIDI, all keys 0.400 223
MIDI, C major only 0.167 146
MIDI, non-C major 0.842 77
QM Key Detector 0.687 151
whatkeyisitin.com 0.857 145

Table 1: Mean scores achieved, and the number of com-
parisons made, by different datasets compared to Isophon-
ics Beatles key annotations.

must be either major or minor, e.g. “C# Major” and “E
minor” are allowed but “D Mixolydian” is not. An esti-
mated key is given a score of 1.0 when it exactly matches
a ground truth key, 0.5 when it is a perfect fifth above the
ground truth key, 0.3 when it is a relative major or minor,
0.2 when it is a parallel major or minor, and 0.0 otherwise.
We utilized the evaluation library mir_eval [28] to com-
pute this score.

The Isophonics annotations mostly follow this format,
except that 21 songs contained multiple key annotations
and 7 others contained non-major/minor keys. To simplify
evaluation, we discarded these songs, leaving 151 ground
truth key annotations. Of our 545 Beatles MIDIs, 221 had
no key change event and 5 had more than one, which we
also omitted from evaluation. This left 223 MIDI files for
which we extracted key annotations and compared them to
valid Isophonics annotations. Because of the preponder-
ance of C major key change events noted in Section 2.4,
we also evaluated MIDI-derived C Major and non-C major
instances separately to see whether they were less reliable.

As a baseline, we also extracted keys using the QM
Vamp Key Detector plugin [7] whose underlying algorithm
is based on [22] which finds the key profile best corre-
lated with the chromagram of a given song. This plu-
gin achieved the highest score in MIREX 2013, and has
been the only key detection algorithm submitted in 2014
and 2015. This gives us a reasonable expectation for a
good audio content-based key estimator. To determine
the extent to which human annotators agree on key labels,
we also collected key annotations for Beatles’ songs from
whatkeyisitin.com. As with the Isophonics key an-
notations, some songs had multiple and/or modal key la-
bels; we discarded these and ended up with 145 labels for
songs in the Isophonics dataset.

The mean scores resulting from comparing each dataset
to the Isophonics annotations can be seen in Table 1. At
first glance, the mean score of 0.4 achieved by MIDI key
change messages is discouraging. However, by omitting
all MIDI files with C major key events (which achieved a
mean score of 0.167), the mean score jumps to 0.842. This
is comparable to the human baseline, and is substantially
higher than the algorithmically estimated score. We there-
fore propose that non-C major MIDI key change events are
as reliable as hand-annotated labels, but that C major key
annotations in MIDI files are effectively useless.

4.2 Beat Experiment

Utilizing many of the sources of information in MIDI files
depends on the precise alignment of a given MIDI file to
an audio recording of a performance of the same song. We
therefore performed an additional experiment to evaluate
the quality of MIDI-derived beat annotations, which are
evaluated on the scale of tens of milliseconds. Producing
valid beat annotations from a MIDI file requires not only
that the file’s meter information is correct, but also that it
has been aligned with high precision.

To align our Beatles MIDI files to corresponding audio
recordings, we used the scheme proposed in [26], which
was found by a large-scale search over common DTW-
based audio-to-MIDI alignment systems. We give an out-
line of this method below; for a full description, see [26].
First, the MIDI file is synthesized using the f1luidsynth
program. Log-magnitude, constant-Q spectrograms of the
synthesized MIDI and audio recording are extracted and
their pairwise cosine distance matrix is computed. The
lowest-cost path through the distance matrix is then found
using DTW, with the constraint that the path must span at
least 96% of the shorter of the two spectrograms. In ad-
dition, all paths are penalized by adding the median value
of the distance matrix each time a frame in one spectro-
gram is mapped to multiple frames in the other. Finally, a
“confidence score” is computed as the mean pairwise dis-
tance along the lowest-cost path, normalized by mean of
the submatrix spanned by the path.

We followed [26] exactly, except for the following
changes: First, instead of computing spectrograms with a
hop size of 46 ms, we used 23 ms. This finer timescale
is more appropriate for the beat evaluation metrics we
will use, which have tolerances measured in tens of mil-
liseconds. Second, the confidence scores computed using
the method of [26] lie in the range [0.5,1.0] where 0.5
corresponds to “highly confident” and 1.0 corresponds to
“likely wrong”; we mapped this linearly to a more easily-
interpretable range of [0.0, 1.0] where higher scores mean
higher confidence.

Weused pretty_midi’s get_beats method to ex-
tract beat times from our 545 Beatles MIDI files, and
adjusted each beat’s timing according to the MIDI file’s
alignment to corresponding audio recordings. For eval-
uation, we used the F-measure, Any Metric Level Total,
and Information Gain metrics described in [11], as im-
plemented in mir_eval. As a baseline, we also com-
puted beat locations using the DBNBeatTracker from
the madmom software library,2 which is based on the
algorithm from [6]. This represents a state-of-the-art
general-purpose beat tracker which, on the Beatles data,
can reliably produce high-quality annotations. If MIDI-
derived beat annotations are to be taken as ground truth,
they must achieve scores similar to or higher than the
DBNBeatTracker.

We visualize the resulting scores in Figure 2. Because
we don’t expect beats to be extracted accurately from MIDI
files that are poor transcriptions or when alignment failed,
we plotted each MIDI file as a single point whose x coor-

nttps://github.com/CPJKU/madmom



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

F-measure Any Metric Level Total Information gain
‘D )w L > ) D, S
IIIIIII@IIIIII:SIIIQ
Q ngo
°8
o Oooao )
S *% Q % S*
[e) S 0° ©
= e © 0 o ®
g (. § %
= 8 o o o
2 0 °@ )
0g% ®
©,%
Qe 0 ~
co ® %¢ o o o o
00 02 04 06 08 1.0 00 02 04 06 08 10

Confidence score

Figure 2: Beat evaluation metric scores (compared to Isophonics beat annotations) and alignment confidence scores
achieved by different audio-to-MIDI alignments of Beatles MIDI files, with each shown as a blue dot. Mean scores for
each metric achieved by the DBNBeat Tracker [6] are shown as dashed lines.

dinate corresponds to the alignment confidence score and
whose y coordinate is the resulting evaluation metric score
achieved. Ideally, all points in these plots would be clus-
tered in the bottom left (corresponding to failed alignments
with low confidence scores) or top right (corresponding
to a successful alignment and beat annotation extraction
with a high confidence score). For reference, we plot
the mean score achieved by the DBNBeatTracker as
dotted lines for each metric. From these plots, we can
see that in many cases, MIDI-derived annotations achieve
near-perfect scores, particularly for the F-Measure and Any
Metric Level Total metrics. However, there is no reliable
correspondence between high confidence scores and high
evaluation metric scores. For example, while it appears
that a prerequisite for an accurate MIDI-derived beat an-
notation is a confidence score above .5, there are many
MIDI files which had high confidence scores but low met-
ric scores (appearing in the bottom-right corner of the plots
in Figure 2).

We found that this undesirable behavior was primar-
ily caused by a few issues: First, it is common that the
alignment system would produce alignments which were
slightly “sloppy”, i.e. were off by one or two frames (cor-
responding to 23 milliseconds each) in places. This had
less of an effect on the F-measure and Any Metric Level
Total metrics, which are invariant to small temporal errors
up to a certain threshold, but deflated the Information Gain
scores because this metric rewards consistency even for
fine-timing errors. Second, many MIDI files had tempos
which were at a different metric level than the annotations
(e.g. double, half, or a third of the tempo). This affected
the Any Metric Level Total scores the least because it is in-
variant to these issues, except for the handful of files which
were transcribed at a third of the tempo. Finally, we found
that the confidence score produced by the alignment sys-
tem is most reliable at producing a low score in the event
of a total failure (indicated by points in the bottom left of
the plots in Figure 2), but was otherwise insensitive to the
more minor issues that can cause beat evaluation metrics
to produce low scores.

5. DISCUSSION

Our results suggest that while MIDI files have the poten-
tial to be valuable sources of ground truth information,
their usage may come with a variety of caveats. However,
due to the enormous number of MIDI transcriptions avail-
able, we believe that developing better methods to lever-
age information present in MIDI files is a tantalizing av-
enue for obtaining more ground truth data for music infor-
mation retrieval. For example, while C major key annota-
tions cannot be trusted, developing a highly reliable C ma-
jor vs. non-C major classification algorithm for symbolic
data (which would ostensibly be much more tractable than
creating a perfect general-purpose audio content-based key
estimation algorithm) would enable the reliable usage of
all key change messages in MIDI files. Further work into
robust audio-to-MIDI alignment is also warranted in or-
der to leverage timing-critical information, as is the ne-
glected problem of alignment confidence score reporting.
Novel questions such as determining whether all instru-
ments have been transcribed in a given MIDI file would
also facilitate their use as ground truth transcriptions. For-
tunately, all of these tasks are made easier by the fact
that MIDI files are specified in a format from which it is
straightforward to extract pitch information. Any tech-
niques developed towards this end could also be applied
to other ubiquitous symbolic digital music formats such as
MusicXML [16].

To facilitate further investigation, all 178,561 of the
MIDI files we obtained in our web scrape (including our
collection of 545 Beatles MIDIs) are available online, >
as well as all of the code used in the experiments in this
paper.* We hope this data and discussion facilitates a
groundswell of MIDI utilization in the MIR community.

6. ACKNOWLEDGMENTS

We thank Eric J. Humphrey and Hunter McCurry for dis-
cussion about key evaluation, Rafael Valle for investiga-
tions into MIDI beat tracking, and our anonymous review-
ers for their suggestions.

3http://colinraffel.com/projects/lmd
4https://github.com/craffel/midi-ground-truth

801



802

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

7. REFERENCES

International MIDI Association. MIDI musical instrument
digital interface specification 1.0. 1983.

International MIDI Association. Standard MIDI files. 1988.

International MIDI Association. General MIDI level 1 speci-
fication. 1991.

Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris
Duxbury, Mike Davies, and Mark B. Sandler. A tutorial
on onset detection in music signals. /EEE Transactions on
Speech and Audio Processing, 13(5):1035-1047, 2005.

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman,
and Paul Lamere. The million song dataset. In Proceedings
of the 12th International Society for Music Information Re-
trieval Conference, pages 591-596, 2011.

Sebastian Bock, Florian Krebs, and Gerhard Widmer. A
multi-model approach to beat tracking considering heteroge-
neous music styles. In Proceedings of the 15th International
Society for Music Information Retrieval Conference, pages
603-608, 2014.

Chris Cannam, Emmanouil Benetos, Matthias Mauch,
Matthew E. P. Davies, Simon Dixon, Christian Landone,
Katy Noland, and Dan Stowell. MIREX 2015 entry: Vamp
plugins from the centre for digital music. In 1/th Music In-
Sformation Retrieval Evaluation eXchange, 2015.

Dave Carlton. I analyzed the chords of 1300 pop-
ular songs for patterns. This is what I found.
http://www.hooktheory.com/blog/, June 2012.

Michael Scott Cuthbert and Christopher Ariza. music21: A
toolkit for computer-aided musicology and symbolic music
data. In Proceedings of the 11th International Society for Mu-
sic Information Retrieval Conference, pages 637-642, 2010.

Michael Scott Cuthbert, Christopher Ariza, and Lisa Fried-
land. Feature extraction and machine learning on symbolic
music using the music21 toolkit. In Proceedings of the 12th
International Society for Music Information Retrieval Con-
ference, pages 387-392, 2011.

Matthew E. P. Davies, Norberto Degara, and Mark D. Plumb-
ley. Evaluation methods for musical audio beat tracking al-
gorithms. Technical Report C4ADM-TR-09-06, Queen Mary
University of London, 2009.

J. Stephen Downie. The music information retrieval evalua-
tion exchange (2005-2007): A window into music informa-
tion retrieval research. Acoustical Science and Technology,
29(4):247-255, 2008.

Andreas Ehmann, Kris West, Mert Bay, Kahyun Choi,
and Yun Hao. MIREX task: Audio key detection.
http://music-ir.org/mirex/wiki/2016:
Audio_Key_Detection, 2016.

Sebastian Ewert, Meinard Miiller, Verena Konz, Daniel
Miillensiefen, and Geraint A. Wiggins. Towards cross-
version harmonic analysis of music. /[EEE Transactions on
Multimedia, 14(3):770-782, 2012.

Sebastian Ewert, Bryan Pardo, Meinard Miiller, and Mark
Plumbley. Score-informed source separation for musical au-
dio recordings: An overview. IEEE Signal Processing Maga-
zine, 31(3):116-124, 2014.

Michael Good. MusicXML for notation and analysis. In Wal-
ter B. Hewelett and Eleanor Selfridge-Field, editors, The vir-
tual score: representation, retrieval, restoration, volume 12,
pages 113—124. MIT Press, 2001.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

Ning Hu, Roger B. Dannenberg, and George Tzanetakis.
Polyphonic audio matching and alignment for music retrieval.
In IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pages 185-188, 2003.

Matthias Mauch, Chris Cannam, Matthew Davies, Simon
Dixon, Christopher Harte, Sefki Kolozali, Dan Tidhar, and
Mark Sandler. OMRAS?2 metadata project 2009. In /0th In-
ternational Society for Music Information Retrieval Confer-
ence Late Breaking and Demo Papers, 2009.

Matthias Mauch and Simon Dixon. A corpus-based study
of rhythm patterns. In Proceedings of the 13th International
Society for Music Information Retrieval Conference, pages
163-168, 2012.

Cory McKay and Ichiro Fujinaga. jSymbolic: A feature
extractor for MIDI files. In Proceedings of the International
Computer Music Conference, pages 302-5, 2006.

F. Richard Moore. The dysfunctions of MIDI. Computer mu-
sic journal, 12(1):19-28, 1988.

Katy Noland and Mark Sandler. Signal processing parameters
for tonality estimation. In Audio Engineering Society Conven-
tion 122, 2007.

Pedro José Ponce de Ledn Amador, José Manuel
Ifiesta Quereda, and David Rizo Valero. Mining digital
music score collections: melody extraction and genre
recognition. In Peng-Yeng Yin, editor, Pattern Recognition
Techniques, Technology and Applications, chapter 25, pages
559-590. InTech, 2008.

Colin Raffel and Daniel P. W. Ellis. Intuitive analysis, cre-
ation and manipulation of MIDI data with pretty_midi.
In 15th International Society for Music Information Retrieval
Conference Late Breaking and Demo Papers, 2014.

Colin Raffel and Daniel P. W. Ellis. Large-scale content-
based matching of MIDI and audio files. In Proceedings
of the 16th International Society for Music Information Re-
trieval Conference, pages 234-240, 2015.

Colin Raffel and Daniel P. W. Ellis. Optimizing DTW-based
audio-to-MIDI alignment and matching. In 41st IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 81-85, 2016.

Colin Raffel and Daniel P. W. Ellis. Pruning subsequence
search with attention-based embedding. In 41st IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 554-558, 2016.

Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Sala-
mon, Oriol Nieto, Dawen Liang, and Daniel P. W. Ellis.
mir_eval: A transparent implementation of common MIR
metrics. In Proeedings of the 15th International Society for
Music Information Retrieval Conference, pages 376-372,
2014.

Christophe Rhodes, David Lewis, and Daniel Miillensiefen.
Bayesian model selection for harmonic labelling. In Mathe-
matics and Computation in Music, pages 107-116. Springer,
2007.

Daniel Sleator and David Temper-
ley. The melisma music analyzer.
http://www.link.cs.cmu.edu/melisma, 2001.

Michael Tang, Yip Chi Lap, and Ben Kao. Selection of
melody lines for music databases. In Proceedings of the 24th
International Computer Software and Applications Confer-
ence, pages 243-248, 2000.

Robert J. Turetsky and Daniel P. W. Ellis. Ground-truth tran-
scriptions of real music from force-aligned MIDI syntheses.
In Proceedings of the 4th International Society for Music In-
formation Retrieval Conference, pages 135-141, 2003.



