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ABSTRACT

Music transcription is a core task in the field of music
information retrieval. Transcribing the drum tracks of mu-
sic pieces is a well-defined sub-task. The symbolic repre-
sentation of a drum track contains much useful information
about the piece, like meter, tempo, as well as various style
and genre cues. This work introduces a novel approach for
drum transcription using recurrent neural networks. We
claim that recurrent neural networks can be trained to iden-
tify the onsets of percussive instruments based on general
properties of their sound. Different architectures of recur-
rent neural networks are compared and evaluated using a
well-known dataset. The outcomes are compared to results
of a state-of-the-art approach on the same dataset. Further-
more, the ability of the networks to generalize is demon-
strated using a second, independent dataset. The exper-
iments yield promising results: while F-measures higher
than state-of-the-art results are achieved, the networks are
capable of generalizing reasonably well.

1. INTRODUCTION AND RELATED WORK

Automatic music transcription (AMT) methods aim at ex-
tracting a symbolic, note-like representation from the au-
dio signal of music tracks. It comprises important tasks in
the field of music information retrieval (MIR), as — with
the knowledge of a symbolic representation — many MIR
tasks can be address more efficiently. Additionally, a vari-
ety for direct applications of AMT systems exists, for ex-
ample: sheet music extraction for music students, MIDI
generation/re-synthesis, score following for performances,
as well as visualizations of different forms.

Drum transcription is a sub-task of AMT which ad-
dresses creating a symbolic representation of all notes
played by percussive instruments (drums, cymbals, bells,
etc.). The source material is usually, as in AMT, a monau-
ral audio source—either from polyphonic audio containing
multiple instruments, or a solo drum track. The symbolic
representation of notes played by the percussive instru-
ments can be used to derive rhythmical meta-information
like tempo, meter, and downbeat. The repetitive rhythmi-
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cal structure of the drum track, as well as changes therein,
can be used as features for high-level MIR tasks. They
provide information about the overall structure of the song
which can be utilized for song segmentation [18]. The
drum rhythm patterns can also be utilized for genre clas-
sification [7]. Other applications for rhythmic patterns in-
clude query-by-tapping and query-by-beat-boxing [11,19].

A common approach to the task of drum transcription
is to apply methods used for source separation like non-
negative matrix factorization (NMF), independent compo-
nent analysis (ICA), or sparse coding. In recent work,
Dittmar and Gärtner [5] use an NMF approach to tran-
scribe solo drum tracks into three drum sound classes
representing bass drum, snare drum, and hi-hat. They
achieve F-measure values of up to 95%. Their approach
focuses on real-time transcription of solo drum tracks for
which training instances of each individual instrument are
present. This is a very specific use case and in many
cases separate training instances for each instrument are
not available. A more general and robust approach which
is able to transcribe different sounding instruments is de-
sirable. Smaragdis [28] introduces a convolutional NMF
method. It uses two-dimensional matrices (instead of one-
dimensional vectors used in NMF) as temporal-spectral
bases which allow to consider temporal structures of the
components. Smaragdis shows that this method can be ap-
plied to transcribe solo drum tracks. Lindsay-Smith and
McDonald [21] extend this method and use convolutive
NMF to build a system for solo drum track transcription.
They report good results on a non-public, synthetic dataset.

Fitzgerald et al. [9] introduce prior subspace analysis,
an ICA method using knowledge of the signals to be sepa-
rated, and demonstrate the application for drum transcrip-
tion. Spich et al. [29] extend this approach by incorporat-
ing a statistical music language model. These works focus
on transcription of three and two instruments, respectively.

Scholler and Purwins [26] use a sparse coding approach
to calculate a similarity measure for drum sound classifica-
tion. They use eight basis vectors to represent the sounds
for bass drum, snare drum, and hi-hat in the time domain.
Yoshii et al. [33] present an automatic drum transcription
system based on template matching and adaptation, similar
to sparse coding approaches. They focus on transcription
of snare and bass drum only, from polyphonic audio sig-
nals.

Algorithms based on source separation usually use the
input signal to produce prototypes (or components) rep-
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Figure 1. Overview of the proposed method. The ex-
tracted spectrogram is fed into the trained RNN which out-
puts activation functions for each instrument. A peak pick-
ing algorithms selects appropriate peaks as instrument on-
set candidates.

resenting individual instruments and so called activation
curves which indicate the activity of them. A peak pick-
ing algorithm is needed to identify the instrument onsets in
the activation curves. Additionally, the identified compo-
nent prototypes have to be assigned to instruments. This is
usually done using machine learning algorithms in combi-
nation with standard audio features [6, 16].

Another approach found in the literature is to first seg-
ment the audio stream using onset detection and classify
the resulting fragments. Gillet and Richard [13] use a
combination of a source separation technique and a sup-
port vector machine (SVM) classifier to transcribe drum
sounds from polyphonic music. Miron et al. use a combi-
nation of frequency filters, onset detection and feature ex-
traction in combination with a k-nearest-neighbor [23] and
a k-means [22] classifier to detect drum sounds in a solo
drum audio signal in real-time. Hidden Markov Models
(HMMs) can be used to perform segmentation and classi-
fication in one step. Paulus and Klapuri [24] use HMMs
to model the development of MFCCs over time. Decoding
the most likely sequence yields activation curves for bass
drum, snare drum, and hi-hat and can be applied for both
solo drum tracks as well as polyphonic music.

Artificial neural networks consist of nodes (neurons)
forming a directed graph, in which every connection has
a certain weight. Since the discovery of gradient descent
training methods which make training of complex archi-
tectures computationally feasible [17], artificial neural net-
works regained popularity in the machine learning commu-
nity. They are being successfully applied in many differ-
ent fields. Recurrent neural networks (RNNs) feature ad-
ditional connections (recurrent connections) in each layer,
providing the outputs of the same layer from the last time
step as additional inputs. These connections can serve as
memory for neural networks which is beneficial for tasks
with sequential input data. RNNs have been shown to per-
form well, e.g., for speech recognition [25] and handwrit-
ing recognition [15]. Böck and Schedl use RNNs to im-
prove beat tracking results [3] as well as for polyphonic
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Figure 2. Spectrogram of a drum track and target functions
for bass drum, snare drum, and hi-hat. The target function
has a value of 1.0 at the frames at which annotations for the
instruments exist and 0.0 otherwise. The frame rate of the
target function is 100Hz, the same as for the spectrogram.
The third graph shows the output of the trained RNN for
the spectrogram in the first image.

piano transcription [4]. Sigtia et al. [27] use RNNs in the
context of automatic music transcription as music language
models to improve the results of a frame-level acoustic
classifier. Although RNNs have been used in the past for
transcription systems [4], we are not aware of any work
using RNNs for transcription of drum tracks.

2. TASK AND MOTIVATION

In this work, we introduce a new method for automatic
transcription of solo drum tracks using RNNs. While it is a
first step towards drum transcription from polyphonic mu-
sic, there also exist multiple applications for the transcrip-
tion of solo drum tracks. In electronic music production, it
can be used to transcribe drum loops if a re-synthesis using
different sounds is desired. The transcription of recorded
solo drum tracks can be used in the context of recording
and production of rock songs. Nowadays it is not unusual
to use sampled drums, e.g., in low-budget productions or
in modern heavy metal genres. One the one hand, this is
due to the complexity and costs of recording drums. On the
other hand, with sampled drums it is easier to achieve the
high precision and even robotic sounding style desired in
some genres. Instead of manually programming the drum
track, automatic transcription of a simple low-quality drum
recording can be used as basis for the production of a song.
As in other works, we focus on the transcription of bass
drum, snare drum, and hi-hat. These instruments usually
define the main rhythmic patterns [24], depending on genre
and play style. They also cover most (>80% in the case of
the ENST-Drums dataset, see Section 4.1) of the played
notes in full drum kit recordings. Since simple RNN ar-
chitectures already provide good transcription results (cf.
Section 5), it is worthwhile exploring their application in
this task further.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 731



0.5 0.6 0.7 0.8 0.9 1.0

precision

0.5

0.6

0.7

0.8

0.9

1.0

re
ca
ll

PR curve

0.0 0.2 0.4 0.6 0.8 1.0

threshold

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
e
a
su
re

F-measure

RNN

bwRNN

bdRNN

tsRNN

baseline

Figure 3. Result visualization for the evaluation on the IDMT-SMT-Drums dataset. The left plot shows the F-measure
curve, the right plot the precision-recall curve for different threshold levels for peak picking.

3. METHOD

To extract the played notes from the audio signal, first
a spectrogram of the audio signal is calculated. This is
frame-wise fed into an RNN with three output neurons.
The outputs of the RNN provide activation signals for the
three drum instruments. A peak picking algorithm then
identifies the onsets for each instrument’s activation func-
tion, which yields the finished transcript (cf. Figure 1).

In this work, we compare four RNN architectures de-
signed for transcribing solo drum tracks. These are: i. a
simple RNN, ii. a backward RNN (bwRNN), iii. a bidi-
rectional RNN (bdRNN), and iv. an RNN with time shift
(tsRNN). The next section will cover the preprocessing of
the audio signal, which is used for all four RNNs. After
that, the individual architectures are presented in detail.

3.1 Signal Preprocessing

All four RNN architectures use the same features extracted
from the audio signal. As input, mono audio files with 16
bit resolution at 44.1 kHz sampling rate are used. The au-
dio is normalized and padded with 0.25 seconds of silence,
to avoid onsets occurring immediately at the beginning of
the audio file. First a logarithmic power spectrogram is
calculated using a 2048 samples window size and a re-
sulting frame rate of 100Hz. The frequency axis is then
transformed to a logarithmic scale using twelve triangular
filters per octave for a frequency range from 20 to 20,000
Hz. This results in a total number of 84 frequency bins.

3.2 Network Architectures

In this work, four different architectures of RNNs are com-
pared. The four architectures comprise a plain RNN and
three variations which are described in detail in the follow-
ing.

3.2.1 Recurrent Neural Network

The plain RNN features a 84-node input layer which is
needed to handle the input data vectors of the same size.
The recurrent layer consists of 200 recurrently connected

rectified linear units (ReLUs [14]). Although RNNs with
ReLU activations can be difficult to train [20], good results
without special initialization or treatment were achieved
in this work. The connections between the input and the
recurrent layer, the recurrent connections, and the connec-
tions between the recurrent layer and the output layer are
all realized densely (every node is connected to all other
nodes). The output layer consists of three nodes with
sigmoid transfer functions, which provide the activation
functions for the three instrument classes defined earlier.
The sigmoid transfer function was chosen because binary
cross-entropy was used as loss function for training, which
turned out to be easier to train in the experiments.

3.2.2 Backward RNN

This RNN is very similar to the basic RNN with the only
difference being that the recurrent connections are back-
ward instead of forward in time. This was done in order
to evaluate if the short sustain phase of percussive instru-
ments provides additional information for the classifica-
tion. The plain RNN has to identify the instruments at
exactly the time frame of the onset annotation, thus the
sustain phase of the notes can not be considered by it. This
architecture is not real-time-capable since the audio to be
transcribed is analyzed in reverse. Moreover, it might be
more hard for this architecture to find the exact position of
the onsets since the steep slope of the onset is only seen in
forward direction.

3.2.3 Bidirectional RNN

The architecture of the bidirectional RNN used in this work
consists of 100 nodes in a forward layer and 100 nodes in a
backward layer. Both the forward and backward layers are
directly connected to the input layer. Bidirectional RNNs
often produce better results than unidirectional RNNs be-
cause they can also use the context of future frames for
classification. In this work, they are meant to combine both
the strengths of the forward and backward RNN. Unfor-
tunately, this system has the same limitations as the back-
ward RNN, making it not usable for real-time applications.
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Figure 4. Result visualization for the evaluation on the ENST-Drums dataset. The left plot shows the F-measure curve, the
right plot the precision-recall curve for different threshold levels for peak picking.

3.2.4 RNN with Time Shift

This approach is architecturally the same as the simple for-
ward RNN, with the addition that this network can see
more frames of the spectrogram to identify the instruments
active at an onset. For training, the annotations are shifted
into the future by 25ms and after transcription the detected
onsets are shifted back by the same time. Doing this, the
RNN can take a small portion of the sustain phase of the
onset’s spectrogram also into account. This is meant to im-
prove the performance of the classification in the same way
the backward connections do, without losing the real-time
capabilities. The system is to a limited degree still real-
time capable—depending on the length of the time shift.
The used delay of 25ms in this work might still be suffi-
ciently small for certain applications like score following
and other visualizations and it can be tuned to meet the
demands of certain applications.

3.3 Peak Picking

The output neurons of the RNNs provide activation func-
tions for every instrument. To identify the instrument on-
sets, a simple and robust peak picking method designed for
onset detection is used [2]. Peaks are selected at a frame n
of the activation function F (n) if the following three con-
ditions are met:

1. F (n) = max(F (n− pre max : n+ post max)),

2. F (n) ≥ mean(F (n−pre avg : n+post avg))+δ,

3. n− nlastpeak > combination width,

where δ is a threshold varied for evaluation. Simply
put, a peak has to be the maximum of a certain win-
dow, and higher than the mean plus some threshold of
another window. Additionally there has to be a distance
of at least combination width to the last peak. Param-
eters for the windows were chosen to achieve good re-
sults on a development data set while considering that 10
ms is the threshold of hearing two distinct events (values
are converted from frames to ms): pre max = 20ms,

post max = 0ms, pre avg = 20ms, post avg = 0ms,
and combination width = 20ms. Setting post max and
post avg to zero allows the application in online scenarios.

3.4 RNN Training

The task which has to be solved by the RNNs in this work
is a three-way binary classification problem. When pro-
vided with the input spectrogram, the RNN has to identify
the onsets of the three instrument classes by predicting the
activation functions at the output neurons. The training al-
gorithm has to adapt the weights and biases of the network
in a way to achieve this functionality. In this work, the
rmsprop method proposed by Hinton and Tieleman [31]
is used as training algorithm. Additionally, dropout [30]
between the recurrent and the output layer of the RNNs
is used for training. When using dropout, randomly cho-
sen connections are disabled for a single training iteration.
The amount of disabled connections is determined by the
dropout rate.

The goal of the training algorithm is to minimize a
loss function. The loss function measures how much er-
ror the networks makes while reproducing the target func-
tions. As loss function for training, the mean of the bi-
nary cross-entropy of the values of the three output neurons
and the target functions is used (see Figure 2). The train-
ing with rmsprop is based on mini batches. In this work,
mini batches with a size of eight instances were used. The
training instances consist of 100-frame-segments of the ex-
tracted spectrogram. These are generated by extracting the
spectrogram as described in Section 3.1 from the training
files and cutting it into 100-frame-segments with 90 frames
overlap (i.e. 10 frames hop-size). The order of the seg-
ments for training is randomized.

During one epoch the training data is used to adapt the
weights and biases of the network. At the end of an epoch,
the validation data is used to estimate the quality of the
trained network. The training of the RNNs is aborted as
soon as the resulting loss for the validation set has not de-
creased for 10 epochs. As learning rate decay strategy, the
following method is applied: after every seven epochs the
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Results for IDMT-SMT-Drums
algorithm best F-measure[%] at threshold
RNN 96.3 0.15
bwRNN 97.1 0.30
bdRNN 98.1 0.15
tsRNN 98.2 0.25
NMF [5] 95.0 -

Table 1. Evaluation results on the IDMT-SMT-Drums
dataset. The NMF approach serves as state-of-the-art base-
line.

learning rate is halved. For the simple RNN, backward
RNN, and time shifted RNN the following parameter set-
tings are used: initial learning rate rl = 0.001 and dropout
rate rd = 0.2. In case of the bidirectional RNN the fol-
lowing parameter settings are used: initial learning rate
rl = 0.0005 and the dropout rate rd = 0.3. The network is
initialized with weights randomly sampled from a uniform
distribution in the range ±0.01, and zero-value biases.

All hyperparameters like network architecture, dropout
rate, and learning rate were chosen according to empiri-
cal experimentation on a development data set, experience,
and best practice examples.

3.5 Implementation

The implementation was done in Python using Lasagne [8]
and Theano for RNN training and evaluation. The mad-
mom [1] framework was used for signal processing and
feature extraction, as well as for peak picking and evalua-
tion metric calculation (precision, recall, and F-measure).

4. EVALUATION

To evaluate the presented system, the audio files of the test
subset are preprocessed as explained in Section 3.1. Sub-
sequently the spectrogram of the audio file is fed into the
input layer of the RNN. The three neurons of the output
layer provide the activation functions for the three instru-
ments for which the peak picking algorithm then identifies
the relevant peaks. These peaks are interpreted as instru-
ment onsets. The true positive and false positive onsets
are then identified by using a 20 ms tolerance window. It
should be noted that in the state-of-the-art methods for the
ENST-Drums dataset [24] as well as for the IDMT-SMT-
Drums dataset [5], less strict tolerance windows of 30 ms
and 50 ms, respectively, are used. Using these values, pre-
cision, recall, and F-measure for the onsets are calculated.

4.1 Datasets

For training and evaluation the IDMT-SMT-Drums [5]
dataset was used. Some missing annotations have been
added and additionally annotations for the #train tracks
have been created. The #train tracks are tracks contain-
ing separated strokes of the individual instruments. These
are only used as additional training examples and not used
in the test set, to maintain a fair comparison with the results

Results for ENST-Drums
algorithm best F-measure[%] at threshold
RNN 69.3 0.05
bwRNN 64.4 0.15
bdRNN 70.3 0.05
tsRNN 73.1 0.10
HMM [24] 81.5 -

Table 2. Evaluation results on the ENST-Drums dataset.
The HMM approach serves as state-of-the-art baseline.

in [5]. The dataset was split into train, validation, and test
subsets using 70%, 15%, and 15% of the files, respectively.

Additionally, the audio portion of the ENST-Drums [12]
dataset was used as a second independent dataset to evalu-
ate the generalization capabilities of the RNNs. From this
dataset, the wet mixes of the drum-only tracks of all three
drummers were used. Since all models were trained on the
IDMT-SMT-Drums dataset, no splitting of this dataset was
necessary.

For both datasets the three instruments’ target functions
are created by calculating the correct active frames (for a
target frame rate of 100 Hz) using the annotations for each
instrument. The target functions are one at the frames in
which an annotation is present and zero otherwise. See
Figure 2 for a visualization of the target functions in the
context of the input spectrogram.

4.2 Experiments

For all four architectures, two different experiments were
performed. First, the model was trained using the training
and validation subsets of the IDMT-SMT-Drums dataset.
Then, using the trained model, the tracks of the test split
of the dataset were transcribed and the resulting preci-
sion, recall, and F-measure were calculated. Second, the
trained model was evaluated by transcribing the ENST-
Drums dataset and calculating the validation metrics. This
was done to evaluate how well the trained models are able
to generalize and if the models are over-fitted to the train-
ing dataset. Since the ENST-Drums dataset contains more
than just the three instruments with which the model was
trained, only the snare, bass, and hi-hat annotations were
used. This makes it on the one hand easier to identify
all annotated notes, on the other hand, there are some
percussive onsets in the audio, which should not be tran-
scribed and which are counted as false positives if the net-
work falsely interprets them as snare, bass, or hi-hat hits.
The percentage of snare, bass, and hi-hat annotations is
81.2% (i.e., 18.8% are other instruments which are ignored
and potential false positives). The ENST-Drums dataset
contains more expressive and faster drumming styles than
the IDMT-SMT-Drums dataset, making it a more difficult
dataset to transcribe. This fact is reflected in the transcrip-
tion performances of both the state-of-the-art algorithms as
well as the proposed methods. This behavior can also be
observed in the work of Wu and Lerch [32] who apply their
method to both datasets.
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5. RESULTS AND DISCUSSION

Table 1 summarizes the results of all methods on the
IDMT-SMT-Drums dataset. It can be seen that the F-
measure values for all RNNs are higher than the state-of-
the-art. It should be noted at this point, that the approach
presented in [5] was introduced for real-time transcription.
Nevertheless, the used NMF approach uses audio samples
of the exact same instruments which should be transcribed
as prototypes, which is the best-case scenario for NMF
transcription. In contrast, our approach is trained on a split
of the full dataset which contains many different instru-
ment sounds, and thus is a more general model than the one
used in the state-of-the-art approach used as baseline. It
can be observed that the backward RNN performs slightly
better than the plain RNN, which indicates that indeed the
short sustain phases of the drum instruments contain in-
formation which is useful for classification. The bidirec-
tional RNN again performs slightly better than the back-
ward RNN, which comes as no surprise since it combines
the properties of the plain forward and backward RNNs.
The results of the forward RNN with time shift are not
significantly different from the results of the bidirectional
RNN. This indicates that the short additional time frame
provided by the time shift provides sufficient additional in-
formation to achieve similar classification results as with
a bidirectional RNN. Figure 3 shows a F-measure curve
as well as a precision-recall curve for different threshold
levels for peak picking.

The results of the evaluation of the models trained
on the IDMT-SMT-Drums dataset used to transcribe the
ENST-Drums dataset are shown in Table 2. The achieved
F-measure values are not as high as the state-of-the-art in
this case but this was expected. In contrast to [24], the
model used in this work is not trained on splits of the
ENST-Drums dataset and thus not optimized for it. Nev-
ertheless, reasonable high F-measure values are achieved
with respect to the fact that the model was trained on com-
pletely different and more simple data. This can be in-
terpreted as an indication that the model in fact learns, to
some degree, general properties of the three different drum
instruments. Figure 4 shows an F-measure curve as well
as a precision-recall curve for different threshold levels for
peak picking.

In Figures 3 and 4, it can be seen that the highest F-
measure values are found for low values for the threshold
of the peak picking algorithm. This suggests that the RNNs
are quite selective and the predicted activation functions
do not contain much noise—which can in fact be observed
(see Figure 2). This further implies that choices for peak
picking window sizes are not critical, which was also ob-
served in empiric experiments.

6. FUTURE WORK

Next steps for using RNNs for drum transcription will
involve adapting the method to work on polyphonic au-
dio tracks. It can be imagined to combine the presented
method with a harmonic/percussive separation stage, us-
ing, e.g., the method introduced by Fitzgerald et al. [10],

which would yield a drum track transcript from a full poly-
phonic audio track. As we show in this work, the transcrip-
tion methods using RNNs are quite selective and therefore
expected to be robust regarding artifacts resulting from
source separation. Training directly on full audio tracks
may also be a viable option to work on full audio tracks.

Another option is to use more instrument classes than
the three instruments used in this and many other works.
Theoretically, RNNs are not as vulnerable as source sepa-
ration approaches when it comes to the number of instru-
ments to transcribe. It has been shown that RNNs can per-
form well when using a much greater number of output
neurons, for example 88 neurons in the case of piano tran-
scription [4]. Although, for this, a dataset which has a bal-
anced amount of notes played by different instruments has
to be created first.

7. CONCLUSION

In this work, four architectures for drum transcription
methods of solo drum tracks using RNNs were introduced.
Their transcription performances are better than the re-
sults of the state-of-the-art approach which uses an NMF
method—even with the NMF approach having the advan-
tage of being trained on exactly the same instruments used
in the drum tracks. The RNN approaches seem to be able to
generalize quite well, since reasonable high transcription
results are yielded on another, independent, and more diffi-
cult dataset. The precision-recall curves show that the best
results are obtained when using a low threshold for peak
picking. This implies that the used transcription methods
are quite selective, which is an indication that they are ro-
bust and not bound to be influenced by noise or artifacts
when using additional preprocessing steps.
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