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Abstract
Methods for reusing code are widespread and well re-
searched, but methods for reusing proofs are still emerging.
We consider the use of dependent types for this purpose,
introducing a modular approach for composing mechanized
proofs. We show that common techniques for abstracting
algorithms over data structures naturally translate to ab-
stractions over proofs. We introduce a language composed
of a series of smaller language components, each defined as
functors, and tie them together by taking the fixed point
of their sum [Malcom, 1990]. We then give proofs of type
preservation for each language component and show how to
compose these proofs into a proof for the entire language,
again by taking the fixed point of a sum of functors.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Extensible Languages; D.3.2 [Formal Def-
initions and Theory ]: Semantics

General Terms Languages, Theory

Keywords the expression problem, Agda, modularity,
meta-theory, dependent types, type-safety

1. Introduction
The POPLmark challenge is a set of common programming
language problems meant to test the utility of modern proof
assistants and techniques for mechanized metatheory. In an
effort to ease the mechanization of metatheory of program-
ming languages, especially regarding variable binding [2],
we’ve made great strides. However, little progress has been
made in the direction of modularity: it is still difficult to sep-
arately develop the definitions and meta-theory of language
fragments.

Dependent types have formed the foundation of a broad
range of type systems that allow freely mixed types and
values and types. Programmers can express propositions as
types or sets, and proofs as programs that produce inhabi-
tants of those sets; and when searching for general solutions
to theorem construction the style suggests the application
of familiar programming abstractions. Rather than relying
on semi-automated proof search such as Coq’s Ltac we pro-
pose a method of proof composition using simple abstrac-
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tions whereby language components are defined piecewise
and tied together at the end using a wrapper datatype act-
ing as a tagged union.

We use a modular approach to define a programming
language in which components of the language are defined
separately from one another and are composed along with
their proofs.

The language we present is one of simple expressions im-
plemented in the proof assistant Agda. Agda is a depen-
dently typed language with a logical foundation based on
Martin Löf type theory. We begin by defining a series of
language syntaxes for addition, options, and arrays. Arrays
are included because not only can they result in runtime er-
rors, which requires the Option type, but like addition, they
use the natural numbers, forcing consideration of how value
types can be shared across otherwise isolated components.
We continue by defining a (small-step) reduction semantics
and type system. The language is defined piecewise, each
component is built in isolation alongside a proof of type
preservation. We conclude by composing these components
into a proof of type preservation for the combined language.
Our technique is drawn from a solution to the expression
problem where languages are defined as the disjoint sum of
smaller languages defined using parameterized recursion. We
show that this idea can be recast from types and terms, to
proofs.

2. Review of the Expression Problem
Extending both data structures and the functions that op-
erate on them in a modular fashion is challenging, this is
sometimes referred to as the expression problem. In most
functional languages, it is easy to add functions that oper-
ate on existing data structures but it is difficult to extend
a data type with new constructors. On the other hand, in
object-oriented languages, it is easy to extend data struc-
tures by subclassing, but it is difficult to add new functions
to existing classes.

While many solutions to the expression problem have
been proposed over the years, here we make use of the
method described by Malcom [9] which generalizes recur-
sion operators such as fold from lists to polynomial types.
The expression problem in functional languages arises as a
result of algebraic data types being closed : once the type
has been declared, no new constructors for the type may
be added without amending the original declaration. Mal-
com’s solution is to remove immediate recursion and split
a monolithic datatype into parameterized components that
can later be collected under the umbrella of a disjoint sum
(i.e., a tagged union).

Throughout this paper we work with a simple language
over natural numbers and basic arithmetic operators. In



Agda, new algebraic data types are introduced with the
data facility. The basic type of types is Set, whose type is
Set1, which in turn has type Set2, and so on. We might first
consider a simple but familiar looking datatype over sums
of natural numbers

data Expr+ : Set where
atom : N→ Expr+
_+_ : Expr+→ Expr+→ Expr+

The two underscores in the above definition introduce an in-
fix operator, with each underscore representing the location
of a parameter. Agda generalizes this notation by allowing
mixfix operators that take arbitrarily many parameters.

The definition of Expr+ has the advantage of being di-
rect and simple, however a problem lies within the explicit
recursion; to later extend expressions with arrays and op-
tion types, we can make no reuse of Expr+ due to the closed
nature of algebraic data types. Instead, extending Expr+ re-
quires the declaration of a new data type as in the following
definition of MonolithicExpr.

data MonolithicExpr : Set where
atom : N→ MonolithicExpr
esome : MonolithicExpr→ MonolithicExpr
enone : MonolithicExpr
nil [ ] : MonolithicExpr
_!!_ : MonolithicExpr→ MonolithicExpr
→ MonolithicExpr
[ ] :=_ : MonolithicExpr→ MonolithicExpr
→ MonolithicExpr→ MonolithicExpr

_+_ : MonolithicExpr→ MonolithicExpr
→ MonolithicExpr

fromExpr+ : Expr+→ MonolithicExpr
fromExpr+ (atom n) = atom n
fromExpr+ (n + m) = fromExpr+ n + fromExpr+ m

Suppose instead we begin with a variant of Expr+, let’s
call it Expr+2, that does not recursively refer to itself.
Instead Expr+2 is parameterized by the type variable A and
the recursive references in the constructor parameters are
replaced by A.

data Expr+2 (A : Set) : Set where
_+_ : A→ A→ Expr+2 A
atom : N→ Expr+2 A

Continuing in this way we similarly treat the remaining
language fragments.

data Expr [ ] 2 (A : Set) : Set where
nil [ ] : Expr [ ] 2 A
_!!_ : A→ A→ Expr [ ] 2 A
[ ] :=_ : A→ A→ A→ Expr [ ] 2 A

data ExprOption (A : Set) : Set where
esome : A→ ExprOption A
enone : ExprOption A

Recursion is reintroduced by combining components as a
disjoint sum, written − ]− in Agda.

data RecExpr : Set where
expr : Expr+2 RecExpr
] Expr [ ] 2 RecExpr
] ExprOption RecExpr
→ RecExpr

More generally, this type of data can be captured using a
“categorical approach” where recursion is introduced as the

fixed point of a functor. This uniformity of shape not only
allows us to avoid boilerplate but, in a proof assistant like
Agda, can give nice termination properties for free. There is
a great deal of interesting work on modularity of inductive
types and transformations over “regular” descriptions of
data [4, 6, 10, 11].

In a language like Agda where datatypes are required
to be strictly positive, we must restrict the set of functors
before finding an admissible definition. We proceed by de-
scribing a restricted universe where datatypes are coded as
polynomial functors over which we can safely introduce a
type of least fixed points.

2.1 Functors and Agda
Functors are a special mapping defined over both types and
functions satisfying the so called functor laws; a functor F

1. assigns to each type A, a type F A
2. assigns to each function f : A → B, a function map f :
FA→ FB

such that

1. identity is preserved: map id = id, and
2. when f ◦ g is defined: map (f ◦ g) = map f ◦map g.

One familiar example is the List functor mapping each type
A to List A and each function f : A → B to the function
map f : List A→ List B which applies f to each element of
a list. Here we are concerned with the least fixed point over
a restricted class of functors called the polynomial functors.
Polynomial functors are functors built up from the constant,
identity, sum, and product functors. To review, the action
of these functors on types is defined as follows.

ConstB A = B

Id A = A

(F +G) A = F A+G A

(F ×G) A = F A×G A

The analogy to ordinary polynomials can be seen if we write
X for Id and Ai for ConstAi . Then every polynomial functor
has the form ∑

n∈N

AnX
n

In Agda, Ulf Norell [14] expresses polynomial functors
as a datatype Functor along with an interpretation as a set
[−]−

infixl 6 _⊕_
infixr 7 _⊗_
data Functor : Set1 where
Id : Functor
Const : Set→ Functor
_⊕_ : Functor→ Functor→ Functor
_⊗_ : Functor→ Functor→ Functor

[ ] : Functor→ Set→ Set
[Id ] B = B
[Const C ] B = C
[F ⊕ G ] B = [F] B ] [G ] B
[F ⊗ G ] B = [F] B × [G ] B

The least fixed point of a polynomial function can then
be defined in Agda with the following datatype declaration.

data µ_ (F : Functor) : Set where
inn : [F ] (µ F)→ µ F



For example, the familiar List datatype can then be defined
as the least fixed point of the following L functor.

LA = ConstUnit + (ConstA × Id)

List A = µ LA

Users of Coq might wonder why the definition of µ is
accepted by Agda; Coq would reject the above definition
of µ because it does not pass Coq’s conservative check for
positivity. In this case, Agda’s type-checker inspects the
behavior of the second argument to [−]− building a usage
graph and determines that µF will occur positively in [−]−,
− ]−, and −×−.

To re-express RecExpr as a polynomial functor we use sum
− ⊕ − to define cases within a type and product − ⊗ − to
represent arguments of a particular case. In Agda, the unit
type is written > and has only one member: tt. The type
> is used to represent constructors that take no arguments
such as nil, the empty list.

Option : Functor
Option = Id ⊕ Const >
Array : Functor
Array = (Id ⊗ Id ⊗ Id) ⊕ Const > ⊕ (Id ⊗ Id)
Sum : Functor
Sum = Id ⊗ Id
FExpr : Functor
FExpr = Const N ⊕ Option ⊕ Sum ⊕ Array
Expr : Set
Expr = µ FExpr

Unfolding Expr yields the same value calculated above—as
we should hope!

Expr = µ FExpr
= [Const N ⊕ Option ⊕ Sum ⊕ Array ] FExpr
= [Const N ] (µ FExpr)
] [Option] (µ FExpr)
] [Sum ] (µ FExpr)
] [Array ] (µ FExpr)
= N
] (µ FExpr ] >)
] (µ FExpr × µ FExpr)
] ((µ FExpr × µ FExpr × µ FExpr) ]
> ]
(µ FExpr × µ FExpr))

What do values in Expr look like? Written directly they
appear nonsensical. Consider the following encoding of 6+7.

six-plus-seven : Expr
six-plus-seven = inn (inj1 (inj2 (

(inn (inj1 (inj1 (inj1 6))))
, (inn (inj1 (inj1 (inj1 7)))))))

Traditionally we would provide a unique name for each
branch in an algebraic datatype, however here we only have
two names inj1 and inj2 so instead we rely on nesting to cre-
ate unique prefixes. Once we have tagged a value we must
give it a well known type so that parent expressions can ex-
pect a common child type; this is the role of inn. Although
cumbersome we can hide much of the complexity in con-
structing values using the right abstractions, consider the
following functions used to tag values of Expr. Deconstruct-
ing the maybe type gives two constructors: some, which
wraps a single expression; and none taking no arguments.

none1 : Expr
none1 = inn (inj1 (inj1 (inj2 (inj2 tt))))

some1 : Expr→ Expr
some1 = inn ◦ inj1 ◦ inj1 ◦ inj2 ◦ inj1

Giving a convenient constructor for − + − is similarly
straightforward.

enat : N→ Expr
enat = inn ◦ inj1 ◦ inj1 ◦ inj1
_u_ : Expr→ Expr→ Expr
e1 u e2 = inn (inj1 (inj2 (e1, e2)))

For arrays, we have an assignment operator that takes an
array, an index, and a value to assign at that index; nil,
the empty array; and lookup which accepts an array and an
index.

[ ] :=1_ : Expr→ Expr→ Expr→ Expr
a [ i ] :=1 e = inn (inj2 (inj1 (inj1 (a, i, e))))
nil1 : Expr
nil1 = inn (inj2 (inj1 (inj2 tt)))
_!1_ : Expr→ Expr→ Expr
a !1 i = inn (inj2 (inj2 (a, i)))

These functions make the earlier defined sum significantly
easier to read.

six-plus-seven’ : Expr
six-plus-seven’ = enat 6 u enat 7

Unfortunately, Agda provides no way of abstracting pattern
matching, so for analyzing terms we are forced to use the
more obscure syntax.

3. Implicits and Indexed Types
Two important language features used throughout our
framework are implicits and indexed types. One of the ma-
jor features of dependently typed languages is their support
for indexed types which in our case serve as the primary
mechanism for expressing well-typed terms and reduction
relations. Implicits are a convenient way to introduce poly-
morphism and they also prove to be an indispensable tool
for quantifying over indexed types.

3.1 Implicits
To define the polymorphic identity function we might first
write a function of arity two accepting the type of the value
to return and the actual value to return.

over_identity_ : (A : Set)→ A→ A
over A identity x = x

However the extra type parameter is inconvenient so we
can use Agda’s support for implicit parameters, which are
wrapped in {} rather than ().

identity : {A : Set} → A→ A
identity x = x
the-answer : N
the-answer = identity 42

Here the type checker tries and succeeds at inferring A = N.
We make heavy use of implicits but Agda won’t always be
able to determine their values. In these cases we must help
out by explicitly matching on and supplying implicits. The
following shows two definitions of a polymorphic identity
function, the first with an implicit type parameter and
an implicit term parameter, whereas the second has only
an implicit term parameter. The definition of ident calls
implicit-ident, providing explicit arguments.



implicit-ident : {A : Set} {x : A} → A
implicit-ident {A} {x} = x
ident : {A : Set} → A→ A
ident {A} y = implicit-ident {A} {y}

Here Agda has little hope of inferring the value of x, so we’re
forced to explicitly state the value y. Rather than naming
each implicit explicitly we can also select only those we are
interested in and let Agda fill in the rest.

ident2 : {A : Set} → A→ A
ident2 y = implicit-ident {x = y}

3.2 Indexed Datatypes
In Agda it is possible to declare a family of types that can
be viewed as a function returning a type. This allows us to
refine our view of an existing type by mapping its elements
to a new type using a restricted set of constructors. Consider
as an example the non-zero natural numbers.

data _IsNotZero : N→ Set where
suc-d-is-not-zero : {d : N} → (suc d) IsNotZero

safe-div : {d : N} → N→ d IsNotZero→ N
safe-div {suc d} n suc-d-is-not-zero = n / suc d

Here we’ve restricted ourselves to only a single constructor
that accepts any natural number d and asserts that d+ 1 is
non-zero. We will later use this idea to restrict terms of our
expression AST to only those that are well-typed.

As a slightly more sophisticated example, we can extend
the list type by noting its length, we call this family the
vectors of A’s.

data Vector (A : Set) : N→ Set where
[ ] : Vector A 0
_::_ : {n : N} → A→ Vector A n
→ Vector A (suc n)

In the declaration above, the term (A : Set) is called a
parameter while the term N to its right is called an indice.
We refer to Vector A as a family of types indexed by the
naturals. Drawing our attention to its constructors: the first
constructor declares the empty vector [] as a Vector A of size
zero; the second constructor states that the consing of an A
onto a Vector A of size n is a Vector A of size n+ 1.

By using knowledge of a term’s length we can create
functions that do not need to consider empty lists, such as
the following head function.

head : {n : N} {A : Set} → Vector A (suc n)→ A
head (x :: ) = x

Agda is smart enough here to notice that there is no n ∈ N
such that 0 = n + 1 and considers the single case an
exhaustive list of possible inputs.

4. Syntax and Reduction Semantics
In this section we define a simple language and its opera-
tional semantics. The language is small, including just sums,
an option type, and an array with assignment and lookup.

So far the definition of our syntax has used fairly standard
techniques but we have not yet given any sort of meaning to
these expressions. We first define a monolithic static and
dynamic semantics for this language, then show how to
modularize their definitions later in this section. Figure 1
defines a simple set of typing rules using metavariables e to
range over expressions and n to range over values; Figure 1b
defines a reduction semantics.

While Agda is expressive enough to implement these rules
directly, and indeed, they are nearly a direct reflection of
that implementation, recall that our goal is to create several
independent languages each carrying their own semantics.
We begin by defining monolithic semantics for Expr and
proceed to determine points of failure and to dissect the
definition into independent constituents. To simplify things
we define our notion of Type as a closed ADT.

data Type : Set where
TArray : Type
TOption : Type
TNat : Type

The definitions of the monolithic type system and evaluation
relation are as follows.

data Welltyped : Expr→ Type→ Set1 where
ok-value : {n : N} →Welltyped (enat n) TNat
ok-sum : {e1 e2 : Expr}
→Welltyped e1 TNat→Welltyped e2 TNat
→Welltyped (e1 u e2) TNat

ok-nil : Welltyped nil1 TArray
ok-lookup : {a e : Expr}
→Welltyped a TArray
→Welltyped e TNat
→Welltyped (a !1 e) TOption

ok-ins : {a e n : Expr}
→Welltyped a TArray
→Welltyped e TNat
→Welltyped n TNat
→Welltyped (a [n ] :=1 e) TArray

infix 2 _ 7−→E_
data _ 7−→E_ : Expr→ Expr→ Set where
stepl : {e1 e1’ e2 : Expr}
→ (e1 7−→E e1’)
→ (e1 u e2 7−→E e1’ u e2)

stepr : {n1 : N} {e2 e2’ : Expr}
→ (e2 7−→E e2’)
→ (enat n1 u e2 7−→E enat n1 u e2’)

sum : {n1 n2 : N}
→ (enat n1 u enat n2 7−→E enat (n1 +N n2))

stepi : {e e’ a : Expr}
→ (e 7−→E e’)
→ (a !1 e 7−→E a !1 e’)

lookup : {a n : Expr}
→ (a !1 n 7−→E LJ a, n K1)

The function LJ−,−K1 is the lookup function that evaluates
to some an when an has been defined and none otherwise.
We do not restrict the values of n enough in the ok-ins rule;
our typing rules require that n be a value while in Agda we
have only required it be an expression. Some notion of value
is needed and a common solution is to add a tag Value to the
Expr type and pattern match; here Value is called [Const N]
and in a dependently typed context we might then define
a predicate over Value. However because the sum type has
only one type of value, a number, it is simpler to use enat
directly.

This method for defining semantics is direct and con-
cise, but similar to our first implementation of Expr+ and
MonolithicExpr above, there is no simple mechanism for code
reuse. The answer is again to delay recursion.



−u− ∈ Expr → Expr → Expr

n ∈ N ∈ Expr
−[−] := − ∈ Expr → Expr → Expr → Expr

−!− ∈ Expr → Expr → Expr

nil ∈ Expr
(a) Syntax

(stepl+)
e1 7−→ e′1

e1+̇e2 7−→ e′1+̇e2
(stepr+)

e2 7−→ e′2

n1+̇e2 7−→ n1+̇e
′
2

(sum)
n1+̇n2 7−→ n1 + n2

(stepi) e 7−→ e′

a!e 7−→ a!e′
(lookup)

a!n 7−→ LJa, nK

(b) Reduction Semantics

(ok-value)
n : Nat

(ok-sum)
e1 : Nat e2 : Nat

e1+̇e2 : Nat

(ok-nil)
nil : Array

(ok-lookup)
a : Array e : Nat

a!e : Option
(ok-ins)

a : Array n : Nat e : Nat

a[n] := e : Array

(c) Typing Rules

Figure 1: The syntax, semantics, and type-system of expressions.

4.1 Dissecting the Step Relation
To modularize the evaluation rules, we define a separate step
relation for each functor making up our Expr type. First note
that −+̇− does not make use of how the step from e1 to e2
occurs so we can factor this top-level relation as follows.

data _ 7−→+_ {_ 7−→_ : Expr→ Expr→ Set}
: Expr→ Expr→ Set where
stepl : {e1 e1’ e2 : Expr}
→ (e1 7−→ e1’)→ (e1 u e2 7−→+ e1’ u e2)

stepr : {n1 : N} {e2 e2’ : Expr}
→ (e2 7−→ e2’)
→ (enat n1 u e2 7−→+ enat n1 u e2’)

sum : {n1 n2 : N}
→ (enat n1 u enat n2 7−→+ enat (n1 +N n2))

While this is better there is still an undesirable reference
to the datatype Expr. Applying the same factorization here
to the underlying functor requires parameterization by two
extra coercion functions, these are the −+̇− and enat func-
tions defined previously. The new names lift+ and liftN used
here are meant to imply that a subtype is being “lifted” into
its supertype

data _ 7−→+_ {E : Functor}
{_ 7−→_ : µ E→ µ E→ Set}
{ lift+ : [Sum ] (µ E)→ µ E} { liftN : N→ µ E}
: µ E→ µ E→ Set where
stepl : {e1 e1’ e2 : µ E}
→ (e1 7−→ e1’)→ (lift+ (e1, e2) 7−→+ lift+ (e1’, e2))

stepr : {n1 : N} {e2 e2’ : µ E}
→ (e2 7−→ e2’)
→ (lift+ (liftN n1, e2) 7−→+ lift+ (liftN n1, e2’))

sum : {n1 n2 : N}
→ (lift+ (liftN n1, liftN n2) 7−→+ liftN (n1 +N n2))

Unfortunately, continuing with this definition will lead us
into a dead end. When we lift terms into the expression type
µE, as in the resultant types above, Agda will be working
with the evaluation of lift+ or liftN rather than an application
tree such as lift+(e1, e2).

An intelligent human can use their global understanding
to peel away lift+ and see that stepl takes the sum (e1, e2) to
(e′1, e2) because he or she is staring at the inputs. However
Agda needs explicit proof that the function lift+ doesn’t
irreversibly destroy the pair (e1, e2). This seems reasonable
because it will be operating over the evaluated term and not
much ingenuity is required to find a function destructively
mapping sums into Expr. Consider taking E = FExpr so that
µE = Expr.

forgetful-lift+ : [Sum ] Expr→ Expr
forgetful-lift+ (e1, e2) = enat 5

To see why this would later be a problem, consider a state-
ment about a well-typed sum (e1, e2) that steps via stepl .
The terms representing (e1, e2)’s well-typedness and the step
it takes will be distinct. Moreover if lift+ is irreversible
Agda can’t determine from this information that it’s ac-
tually (e1, e2) stepping at all! Instead it seems to be the
case that 5 7−→+ 5 despite what’s apparent from the type
lift+(e1, e2) 7−→+ lift+(e′1, e2).

The problem is that our abstraction is too general. We
need to show that [Sum](µE) and N are subtypes of the top-
level expression datatype µE. In this way, not only will our
lift functions prove to be reversible, but their inverses will be
highly regular. The solution to the problem is drawn from
the notion of a categorical subobject [7].

5. Subobjects and Lazy Coercions
A subobject of a type T is a left invertible function. Being
restricted to polynomial functors, we know that all our



subobjects lift : S → Expr will be some composition of inn,
inj1 and inj2 so a proof that S is a subtype of Expr is merely
a description of which direction to move at each point in a
disjoint sum.

infix 3 _v_
data _v_ (F : Functor) : Functor→ Set1 where
refl : F v F
left : {A B : Functor} → F v A ⊕ B→ F v A
right : {A B : Functor} → F v A ⊕ B→ F v B

Now we can define containment on a functor’s interpretation
as a set.

infix 3 _<:_
data _<:_ : Set→ Set→ Set1 where
inj : {F A : Functor}
→ F v A→ [A] (µ F) <: (µ F)

And we can define conversion functions as follows.

upcast : ∀ {F A} → F v A→ [A] (µ F)→ µ F
upcast refl = inn
upcast (left t) = upcast t ◦ inj1
upcast (right t) = upcast t ◦ inj2
apply : {A B : Set} → (A <: B)→ A→ B
apply (inj t) = upcast t

Recall the two goals we have in mind.
First, we wish to gain access to the lift functions’ ar-

guments, in the case of − + − these were e1 and e2. By
representing containment as a delayed application of a
subobject—because the constructor’s arguments are stored
as a part of the coercion—we can simply use pattern match-
ing to discover that lift is to be applied to e1 and e2.

Second, it will be convenient to treat all the constituents
of our Expr type uniformly. This allows us to quantify over
any value that can be injected into Expr. The type of our step
relation is indexed by two expressions: (e1 : Expr) 7−→E (e2 :
Expr). We should expect the same of the final abstraction
over step relations; however rather than using a number of
explicit existentials as in ∃E1, E2 ⊆ Expr.(e1 : E1) 7−→ (e2 :
E2), we introduce a simpler type LazyCoercion that hides
the details.

To delay function application and introduce a uniform
type for subsets of Expr we define a LazyCoercion datatype
from type A to B representing the intention of coercing
an object a ∈ A while thinking of it as a member of its
containing type B. A lazy coercion is then an injection
A <: B along with an object in A

data LazyCoercion (B : Set) : Set1 where
delay : {A : Set} → (A <: B)
→ A→ LazyCoercion B

coerce : {B : Set} → LazyCoercion B→ B
coerce (delay f e) = apply f e

We seem to be close to a modular step relation − 7−→+ −,
defining at each point another level of abstraction to delay
immediate application. To modularize datatypes, recursion
is delayed and types are viewed as polynomial functors, then
to modularize step relations, reduction is parameterized and
expression upcasts are delayed.

6. Defining a Modular Step Relation
Attempting again to define a step relation for addition we
find very little has changed.

data _ 7−→+_ {E : Functor}
{_ 7−→_ : µ E→ µ E→ Set1}
{ lift+ : [Sum ] (µ E) <: µ E}
{ liftN : N <: µ E}
: LazyCoercion (µ E)→ LazyCoercion (µ E)→ Set1
where
stepl : {e1 e1’ e2 : µ E}
→ (e1 7−→ e1’)
→ (delay lift+ (e1, e2) 7−→+ delay lift+ (e1’, e2))

stepr : {e1 e2 e2’ : µ E}
→ (e2 7−→ e2’)
→ (delay lift+ (e1, e2) 7−→+ delay lift+ (e1, e2’))

stepv : {n m : N}
→ (delay lift+ (apply liftN n, apply liftN m)
7−→+ delay liftN (n +N m))

It appears we’ve littered an otherwise simple definition with
delay but we’ve replaced our arbitrary arrows with objects
having constructors we can match on. Using the above
techniques we can modularize the well-typing relation over
sums for free.

data WtSum {E : Functor}
{Wt : µ E→ Type→ Set1}
{ lift+ : [Sum ] (µ E) <: µ E}
: LazyCoercion (µ E)→ Type→ Set1 where
ok-sum : {e1 e2 : µ E}
→Wt e1 TNat→Wt e2 TNat
→WtSum (delay lift+ (e1, e2)) TNat

The above definitions nearly wrote themselves. The simplic-
ity comes from the fact we are just abstracting as many
terms as possible, keeping in mind we can fill them in nat-
urally later because the abstraction is so general there are
few options available.

6.1 Arrays
We proceed by defining the step and well-typedness rela-
tions on arrays, which can be combined with the relations
on sums. The definitions for evaluation and well-typedness
should look similar to those for sums.

data _ 7−→ [ ] {E : Functor}
{_ 7−→_ : µ E→ µ E→ Set1}
{ liftA : [Array ] (µ E) <: µ E}
{ liftN : N <: µ E}
{ liftO : [Option] (µ E) <: µ E}
: LazyCoercion (µ E)→ LazyCoercion (µ E)→ Set1
where
stepi : {e e’ a : µ E} → e 7−→ e’
→ (delay liftA (a ! e) 7−→ [ ] delay liftA (a ! e’))

lookup : {a : [Array ] (µ E)} {n : N}
→ (delay liftA (apply liftA a ! apply liftN n)
7−→ [ ] delay liftO LJ a, n K)

To define the typing relation we again follow the format of
WtSum above and we are done.

data WtArray {E : Functor}
{Wt : µ E→ Type→ Set1}
{ liftA : [Array ] (µ E) <: (µ E)}
{ liftN : N <: µ E}
: LazyCoercion (µ E)→ Type→ Set1 where
ok-nil : WtArray (delay liftA nil) TArray
ok-ins : {a e n : µ E}
→Wt a TArray→Wt e TNat→Wt n TNat



→WtArray (delay liftA (a [n] := e)) TArray
ok-lookup : {e a : µ E}
→Wt a TArray→Wt e TNat
→WtArray (delay liftA (a ! e)) TOption

7. Proving Type Preservation
The type preservation lemma states that if a term is well-
typed and can step, then the type of the term is preserved
after the step.

e 7−→ e′ ∧ e : T ⇒ e′ : T (type-preservation)

Prior to considering how type preservation might look for
each of the previously defined components, we should review
what type preservation looks like for the MonolithicExpr
language. The following proof is standard, proceeding by
structural induction on the shape of the well-typing tree.

pres-MonolithicExpr : ∀ {e e’} {τ }
→ (e 7−→C e’)
→WtMonolithicExpr e τ
→WtMonolithicExpr e’ τ

pres-MonolithicExpr (stepl ste1) (ok-sum wte1 wte2)
= ok-sum (pres-MonolithicExpr ste1 wte1) wte2

pres-MonolithicExpr (stepr ste2) (ok-sum wte1 wte2)
= ok-sum wte1 (pres-MonolithicExpr ste2 wte2)

pres-MonolithicExpr
(stepv {n} {m}) (ok-sum wtn wtm)
= ok-nat (n +N m)

pres-MonolithicExpr (stepi ste) (ok-lookup wta wte)
= ok-lookup wta (pres-MonolithicExpr ste wte)

pres-MonolithicExpr
(lookup {a} {n}) (ok-lookup wta wtn)
= proj2 LCJ a, n K

There are three items worth noting here: the first is the
use of the function LCJ−,−K : MonolithicExpr → N →
∃e.WtMonolithicExpr e TOption which we have assumed
produces a pair whose first component is an expression and
second component is a proof that the expression is a well-
typed option; the second item worth noting is that recursion
acts as our induction hypothesis; and finally note that Agda
is smart enough to prove there is only a single possible well-
typing constructor for each step constructor—which is good
because Agda requires all functions to be total.

We should expect the modular type preservation lemmas
to look similar because there is little global knowledge in-
volved. The induction hypothesis and values aside, each case
is “contained within its own world” in the sense that each
evaluation rule relies only on the fact that subterms are well-
typed but ignores the reason they are well-typed. To show
type preservation for sums we might start with

pres-Sum1 : {τ : Type} {E : Functor}
{e e’ : LazyCoercion (µ E)}
→ (e 7−→+ e’)
→WtSum e τ
→WtSum e’ τ

pres-Sum1

(stepl {e1} {e1’} {e2} ste1) (ok-sum wte1 wte2)
= *

however recall that − 7−→+ − requires the top-level step
relation and proof that E contains both sums and naturals.
There is a second mistake in writing preservation this way—
we would like to show that e′ is well-typed in the expression

language, not just necessarily in the modular sum language,
this reflects our desire to expose as little about each compo-
nent as possible. A second formulation might then begin as
follows but we again fail.

pres-Sum2 : {τ : Type}
{E : Functor}
{_ 7−→_ : µ E→ µ E→ Set1}
{ lift+ : [Sum ] (µ E) <: µ E}
{ liftN : N <: µ E}
{Wt : µ E→ Type→ Set1}
{e e’ : LazyCoercion (µ E)}
→ _7−→+_ {E} {_ 7−→_} { lift+} { liftN} e e’
→WtSum {E} {Wt} { lift+} e τ
→Wt (coerce e’) τ

pres-Sum2 (stepl ste1) (ok-sum wte1 wte2)
= * (ok-sum * wte2)

pres-Sum2 (stepr ste1) (ok-sum wte1 wte2)
= * (ok-sum wte1 *)

pres-Sum2 stepv (ok-sum wte1 wte2)
= * (n +N m)

It seems we’re only missing two pieces: we need to be able to
lift well-typed sums and naturals into Wt; and we need some
way of expressing the induction hypothesis which states
that because e1 is well-typed and stepped, e′1 is well-typed
too. The induction hypothesis is slightly stranger than was
the case in our MonolithicExpr’s because we know e1 and
e′1 are well-typed despite the fact that they are arbitrary
expressions, not necessarily just sums. This motivates our
solution which takes the induction hypothesis as an explicit
assumption.

pres-Sum : {τ : Type}
{E : Functor}
{_ 7−→_ : µ E→ µ E→ Set1}
{ lift+ : [Sum ] (µ E) <: µ E}
{ liftN : N <: µ E}
{Wt : µ E→ Type→ Set1}
{a b : LazyCoercion (µ E)}
→ ((n : N)→Wt (apply liftN n) TNat)
→ (∀ {δ} {e}
→WtSum {E} {Wt} { lift+} (delay lift+ e) δ
→Wt (apply lift+ e) δ)
→ (∀ {δ} {e e’} → (e 7−→ e’)→Wt e δ →Wt e’ δ)
→ _ 7−→+_ {E} {_ 7−→_} { lift+} { liftN} a b
→WtSum {E} {Wt} { lift+} a τ
→Wt (coerce b) τ

pres-Sum wtnat wt IH
(stepl ste1) (ok-sum wte1 wte2)
= wt (ok-sum (IH ste1 wte1) wte2)

pres-Sum wtnat wt IH
(stepr ste2) (ok-sum wte1 wte2)
= wt (ok-sum wte1 (IH ste2 wte2))

pres-Sum wtnat wt IH
(stepv {n} {m}) (ok-sum wte1 wte2)
= wtnat (n +N m)

We are pleased with how similar this is to the original,
monolithic formulation. Notice again that the solution was
to factor out assumptions about the outside world, similar
to the previous abstractions. Proving type preservation for
arrays is natural:



pres-Array : {τ : Type}
{E : Functor}
{_ 7−→_ : µ E→ µ E→ Set1}
{ liftA : [Array ] (µ E) <: (µ E)}
{ liftN : N <: µ E}
{ liftO : [Option] (µ E) <: (µ E)}
{Wt : µ E→ Type→ Set1}
{a b : LazyCoercion (µ E)}
→ ((m : [Option] (µ E))
→Wt (apply liftO m) TOption)
→ (∀ {δ} {e}
→WtArray {E} {Wt} { liftA} { liftN}

(delay liftA e) δ
→Wt (apply liftA e) δ)
→ (∀ {δ} {e e’} → (e 7−→ e’)→Wt e δ →Wt e’ δ)
→ _ 7−→ [ ] {E} {_ 7−→_} { liftA} { liftN} { liftO}
a b
→WtArray {E} {Wt} { liftA} { liftN} a τ
→Wt (coerce b) τ

pres-Array wtopt wt IH
(stepi ste) (ok-lookup wta wte)
= wt (ok-lookup wta (IH ste wte))

pres-Array wtopt wt IH
(lookup {a} {n}) (ok-lookup wta wte)
= wtopt LJ a, n K

It would seem we are nearly done and the final pieces should
be entirely guided by the selected abstractions. The lift
functions each have a unique solution:

lift+ : [Sum ] Expr <: Expr
lift+ = inj (right (left (refl)))
liftN : N <: Expr
liftN = inj (left (left (left refl)))
liftO : [Option] Expr <: Expr
liftO = inj (right (left (left refl)))
liftA : [Array ] Expr <: Expr
liftA = inj (right refl)

But how should we define well-typedness for Expr? Again the
notion of what it means to be well-typed has already been
defined and we simply need to “tie the knot” as RecExpr did
above

data WtExpr : Expr→ Type→ Set1 where
lift-wt-nat : (n : N)
→WtExpr (apply liftN n) TNat

lift-wt-option : (m : [Option] Expr)
→WtExpr (apply liftO m) TOption

lift-wt-sum : {τ : Type} {e : [Sum ] Expr}
→WtSum {FExpr} {WtExpr} { lift+}

(delay lift+ e) τ
→WtExpr (apply lift+ e) τ

lift-wt-array : {τ : Type} {e : [Array ] Expr}
→WtArray {FExpr} {WtExpr} { liftA} { liftN}

(delay liftA e) τ
→WtExpr (apply liftA e) τ

To define a step relation on Expr, − 7−→ − we provide a
similar wrapping for each language component

data _ 7−→_ : Expr→ Expr→ Set1 where
step+ : {e : [Sum ] Expr}
{e’ : LazyCoercion Expr}
→ _ 7−→+_ {FExpr} {_ 7−→_} { lift+} { liftN}

(delay lift+ e) e’
→ (apply lift+ e 7−→ coerce e’)

step [ ] : {e : [Array ] Expr}
{e’ : LazyCoercion Expr}
→ _ 7−→ [ ]
{FExpr} {_ 7−→_} { liftA} { liftN} { liftO}
(delay liftA e) e’
→ (apply liftA e 7−→ coerce e’)

The only piece remaining is to prove type preservation. We
begin in the same way we have for each of the previous proofs
using the step relation’s constructors as a guide. The type
signature should not have changed

preservation : {e e’ : Expr} {τ : Type}
→ (e 7−→ e’)→WtExpr e τ →WtExpr e’ τ

and there are two cases step+ and step[]; moreover we should
expect to merely apply pres-* to each case, supplying the
necessary lift functions and the induction hypothesis. This
is indeed the case:

preservation (step+ ste) (lift-wt-sum wts)
= pres-Sum lift-wt-nat lift-wt-sum
preservation ste wts

preservation (step [ ] ste) (lift-wt-array wta)
= pres-Array lift-wt-option lift-wt-array
preservation ste wta

There is one caveat: Agda is unable to prove termination of
this definition, but we hope to solve this problem soon.

Having shown type preservation, it is interesting to see
the similarity between how terms are shown to be well-typed
and to reduce and how the terms are expressed in µFExpr.
Recall that each term in Expr is wrapped by a tag—given
by inj1 and inj2—and the constructor inn plays the role of
recursion. To reiterate consider the convenience functions,

nilE : Expr
nilE = inn (inj2 (inj1 (inj2 tt)))
nat : N→ Expr
nat n = inn (inj1 (inj1 (inj1 n)))
[ ] =_ : Expr→ Expr→ Expr→ Expr

a [n ] = e = apply liftA (a [n ] := e)
_!E_ : Expr→ Expr→ Expr
a !E n = apply liftA (a ! n)
_+E_ : Expr→ Expr→ Expr
e1 +E e2 = apply lift+ (e1, e2)

we may then ask: why is following term well-typed?

exp : Expr
exp = (nilE [nat 0 ] = nat 1) !E (nat 0 +E nat 1)

The answer given by WtExpr is

wt-exp : WtExpr exp TOption
wt-exp = lift-wt-array (ok-lookup wta wt+)
where
wta : WtExpr (nilE [nat 0 ] = nat 1) TArray
wta = lift-wt-array

(ok-ins (lift-wt-array ok-nil)
(lift-wt-nat 1) (lift-wt-nat 0))

wt+ : WtExpr (nat 0 +E nat 1) TNat
wt+ = lift-wt-sum (ok-sum

(lift-wt-nat 0) (lift-wt-nat 1))

The lift−wt−∗ functions play the same role in WtExpr as
inn does in Expr; however rather than using the generalized



approach of a series of disjoint sums we bundle the tag
and recursion into a single constructor for each language
component. Evaluation displays a similar symmetry.

eval-expr : (nilE [nat 0 ] = nat 1) !E (nat 0 +E nat 1)
7−→ (nilE [nat 0 ] = nat 1) !E nat 1

eval-expr = step [ ] (stepi (step+ stepv))

What does the proof that (nilE [nat 0] = nat 1) !E nat 1 is
well-typed look like? We can compute it by invoking

preservation eval-expr wt-exp

which evaluates to

lift-wt-array
(ok-lookup

(lift-wt-array
(ok-ins (lift-wt-array ok-nil) (lift-wt-nat 1)

(lift-wt-nat 0)))
(lift-wt-nat 1))

8. Related Work
One of the more recent and important contributions to the
area of modular interpreters is Data types à la carte [15] by
Swierstra. It details solutions to a variety of similar prob-
lems including the boilerplate issue we have experienced.
Unfortunately, the solutions are not easily translatable into
Agda due to their reliance on language level support for type
classes. For instance when using injection and projection
functions within Agda, the subtyping class must be passed
into the call explicitly. The approach also makes use of folds
for performing evaluation. Akin to induction principles in
Coq, these types of structured recursion schemes present
possible solutions to the termination problems we’ve run
into at the final stages of our proof.

Data types à la carte is among a number of papers
that use the idea of structuring modular interpreters as a
sum of algebras, including Monad transformers and mod-
ular interpreters [8] by Liang et al. and the earlier work
by Duponcheel [5]. While this technique has been used in
defining functional interpreters, we haven’t seen the idea
extended to modular proof construction in the presence of
dependent types.

Mulhern’s [13] work on proof-weaving is also related to
ours, where small proofs are automatically merged into
larger proofs. The idea is similar in spirit, relying on a
uniform structure across language terms; however it relies
on an external tool to perform the weaving and having its
own logic for term inference and the extraction of subproofs
for inclusion in a larger proof.

Concurrently with our work, Delaware, et al. [3] devel-
oped a solution to modular meta-theory in Coq. Both their
approach and ours relies on the principle of representing
data types as functors; however to avoid problems around
recursion they have chosen to express inductive types using
Church encodings and perform evaluation using Mendler al-
gebras, which requires some extra sophistication. Here we
avoid general recursion by restricting our universe, express-
ing types as data members of the family of polynomial func-
tors and by expressing the dynamic semantics using small-
step reduction. Our approach makes sense in Agda because
of its strong pattern matching, however it could potentially
present problems when moved directly into Coq. Another
implementation detail that doesn’t translate directly into
Coq, due to its strict notion of positivity, is the definition of

least fixed point over polynomial functors. Instead it might
be possible to use Church encodings and Mendler algebras.
Similarly, much of the Meta-Theory à la Carte infrastruc-
ture may be problematic when implemented naïvely in Agda
due to its heavy reliance on Coq’s type classes. Their work is
further along than ours and has shown the important level of
robustness required by most languages while there are more
unanswered questions regarding the method presented here.

A similar vein of work by Axelsson [1] describes a mod-
ular functional interpreter in Haskell using the native type-
system and ghc’s type family extension to enforce the well-
typing of terms. This is a powerful technique for embedding
preservation in the type of the eval function though the
question of how it would scale to other theorems such as
progress is unclear.

9. Conclusion and Future Work
We should ask if we have accomplished the goal that we
set out with. The language Expr was given componentwise
and the boilerplate necessary to wrap each well-typing and
step relation is minimal. The proof of type preservation was
almost immediate, requiring only an invocation of previously
defined proofs for each component. Moreover there is no
copy and paste necessary and the repetitive components
should be automatically producible given a sophisticated
macro system where terms can be inspected by name—set
equality is non-deterministic—rather than by value.

Using Agda as a proof language, although convenient,
leaves the question of consistency open. We regard this as
a minor problem and hope that our implementation would
port to Coq. A more pertinent problem is the definition of
preservation for Expr—Agda is unable to prove termination
and we plan to address this soon. Though issues of termi-
nation can often be difficult, the broad range of work in
manipulating descriptions of and generating induction prin-
ciples for indexed datatypes [4, 6, 10, 11] gives us a great
deal of hope.

The language presented is quite simple, unable to express
even Euclid’s algorithm, and the method of polynomial
functor’s used to express Expr precludes the possibility of
first class function types which are critical for functional
programming. Various solutions to this problem have been
proposed [12] and the area of recursion schemes is rich [16].
A real world language calls for much heavier sophistication,
but the ideas presented here are new and their reach is open
to question and requires further exploration.
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