
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/77699

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/77692

Towards Efficient Error Detection in Large-Scale

HPC Systems

by

Nentawe Yusuf Gurumdimma

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

February 2016

Abstract

The need for computer systems to be reliable has increasingly become important

as the dependence on their accurate functioning by users increases. The failure

of these systems could very costly in terms of time and money. In as much as

system’s designers try to design fault-free systems, it is practically impossible

to have such systems as different factors could affect them. In order to achieve

system’s reliability, fault tolerance methods are usually deployed; these methods

help the system to produce acceptable results even in the presence of faults.

Root cause analysis, a dependability method for which the causes of failures are

diagnosed for the purpose of correction or prevention of future occurrence is less

efficient. It is reactive and would not prevent the first failure from occurring. For

this reason, methods with predictive capabilities are preferred; failure prediction

methods are employed to predict the potential failures to enable preventive

measures to be applied.

Most of the predictive methods have been supervised, requiring accurate

knowledge of the system’s failures, errors and faults. However, with changing

system components and system updates, supervised methods are ineffective.

Error detection methods allows error patterns to be detected early to enable

preventive methods to be applied. Performing this detection in an unsupervised

way could be more effective as changes to systems or updates would less affect

such a solution. In this thesis, we introduced an unsupervised approach to

detecting error patterns in a system using its data. More specifically, the thesis

investigates the use of both event logs and resource utilization data to detect

error patterns. It addresses both the spatial and temporal aspects of achieving

system dependability. The proposed unsupervised error detection method has

been applied on real data from two different production systems. The results

are positive; showing average detection F-measure of about 75%.

ii

This thesis is dedicated to the memory of my dear brother, friend and a

mentor.

Filibus Istifanus G.

(1970 - 2014)

Acknowledgements

I am indebted to many people who have helped me in one way or the other

during my studies at University of Warwick. I am honoured to acknowledge

them in this thesis.

First and foremost, I am grateful to Dr. Arshad Jhumka, whose meticulous

and relentless guide is second to none. Thank you for believing in me and for

your supervisory role. I would like to thank Dr. Maria Liakata for providing

useful comments and supervisory guide.

I would like to thank some friends and colleagues - Dr. Phillip Taylor,

Dr. Bolanle Ola, Wilson Tan, Fatimah Adamu-Fika, Emmanuel Ige, Daniel

Onah, Chinedu Nwaigwe, Huanzhou Zhu, Hasliza Sofian and Zhuoer Gu- for

your tremendous help and friendship during my studies. I would also like to

thank Pastor & Mrs. Ajutalayo and members of RCCG House of Love, Canley,

Coventry - you were more than Church members, you were a family; may God

enlarge you for His glory. I am grate to Mr. & Mrs. Leo Bawa, Rev. & Mrs.

Kefas Tang’an - you made me a part of your families.

I also wish to thank the Texas Advanced Computing Center (TACC) for

providing the Ranger logs. My appreciation also goes to PTDF-Nigeria for

funding my PhD, the University of Jos-Nigeria for the support you have given

me.

Lastly, but certainly not the least, I am grateful to my family- Mum, Dad,

Dogara, Zumunchi, Josiah, Sirpowe, Titus and others. Your support, love,

prayers and help has been immeasurable. I can not thank God enough for such

a great family He has given me.

iv

Declarations

Parts of this thesis have been previously published by the author in the following:

[53] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne. To-

wards detecting patterns in failure logs of large-scale distributed systems.

In Parallel & Distributed Processing Symposium Workshops (IPDPSW),

2015 IEEE International. IEEE, 2015 [Chapter 4].

[54] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne. To-

wards increasing the error handling time window in large-scale distributed

systems using console and resource usage logs. In Proceedings of The

13th IEEE International Symposium on Parallel and Distributed Process-

ing with Applications (IEEE ISPA 2015), Aug 2015 [Chapter 6].

[55] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne. On

the impact of redundancy handling in event logs on classification in clus-

ter systems. In Proceedings of International Conference on Dependability

(DEPEND), Aug 2015 [Chapter 4].

In addition, the following works are under review:

IEEE-ToC An Anomaly Detection Based Methodology to Increase the Er-

ror Handling Time Window in Large-Scale Distributed Systems. IEEE

Transactions on Computers [Chapter 6].

FGCS An Unsupervised Approach To Detecting Patterns in Failure Logs of

Large-Scale Distributed Systems. Future Generation Computer Systems

(Elsevier) [Chapter 4].

EuroSys 2016 CRUDE: Combining Resource Usage Data and Error Logs for

Accurate Error Detection in Large-Scale Distributed Systems. ACM Eu-

ropean Conference on Computer Systems [Chapter 5].

v

DSN Detection of Recovery Patterns in Cluster System Using Resource Usage

Data. IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN) [Chapter 5].

Sponsorship and Grants

The research presented in this thesis was made possible by the support of

Petroleum Technology Development Fund (PTDF) Nigeria.

vii

Abbreviations

APE Average Percentage Error

BGL Blue Gene/L

CPD Change Point Detection

CuSUM Cumulative Sum

DE Differential Evolution

ECG Events Correlation Graph

FLOPS Floating point Operations Per Second

FN False Negative

FP False Positive

HAC Hierarchical Agglomerative Clustering

HPC High Performance Computing

HMM Hidden Markov Model

ICA Independent Component Analysis

JSD Jenson - Shannon Divergence

KLD Kullback-Leibler Divergence

LD Levenshtein Distance

MDS Meta-Data Server

MIC Maximal Information Coefficient

NN Neural Network

OSS Object Storage Server

PCA Principal Component Analysis

RAS Reliability, Availability, Serviceability

RI Random Indexing

SVM Support Vector Machine

TACC Texas Advanced Computing Center

TN True Negative

viii

Contents

Abstract ii

Dedication iii

Acknowledgements iv

Declarations v

Sponsorship and Grants vii

Abbreviations viii

List of Figures xvii

List of Tables xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Faults, Errors and Failure 3

1.2.2 Dependability . 4

1.2.3 Fault Tolerance . 4

1.3 The Problem . 7

1.4 The Approach . 7

1.5 Thesis Contributions . 8

1.6 Thesis Outline . 9

2 Literature Review 11

2.1 Introduction . 11

2.2 Error Detection . 12

ix

2.2.1 Unsupervised Methods . 13

2.2.2 Supervised Methods . 25

2.2.3 Other Methods . 29

2.3 System Recovery . 30

2.3.1 Checkpointing . 30

2.3.2 Task Migration . 34

2.4 Summary . 35

3 System Description, Log Events And Fault Models 37

3.1 System Model . 37

3.2 Fault Model . 38

3.2.1 Categories of Fault Model 38

3.2.2 Ranger and BlueGene/L Fault Models 40

3.3 Production Systems . 41

3.3.1 Ranger Supercomputer . 42

3.3.2 The BlueGene/L (BGL) Supercomputer 42

3.4 System Data . 43

3.4.1 Ranger Event Logs . 43

3.4.2 Ranger Resource Usage Data 45

3.4.3 BlueGene/L Events logs 47

3.4.4 Definition of Terms . 49

3.5 Summary . 50

4 Error Detection Using Clustering 51

4.1 Introduction . 51

4.1.1 Log Size and Structure . 52

4.1.2 Errors and Failures . 52

4.1.3 Event Logs Redundancy 53

4.1.4 Objectives of the Chapter 53

4.2 Problem Statement and Methodology Overview 54

4.3 Preprocessing . 56

4.3.1 Log Events Preprocessing 56

4.3.2 Log Compression: Removing Redundant Events 58

4.4 Data Transformation . 63

4.5 Sequence Clustering and Detection 66

4.5.1 Clustering . 66

4.5.2 Detection of Failure Patterns 69

4.6 Experiment . 72

4.6.1 Experimental Setup . 73

4.6.2 Evaluation Metrics . 74

4.6.3 Parameter Setting . 75

4.7 Results . 79

4.7.1 Runtime Analysis . 90

4.8 Summary . 91

5 Improving Error Detection Using Resource Usage Data and

Event Logs 92

5.1 Introduction . 92

5.2 Detection Methodology . 94

5.2.1 Data Transformation . 95

5.2.2 Event Clustering and Feature Extraction 98

5.2.3 Jobs Anomaly Extraction from Resource Usage Data . . . 102

5.2.4 Detection of Failure Patterns 105

5.2.5 Experiment and Results 105

5.3 Detection of Recovery Patterns 112

5.3.1 Introduction . 112

5.3.2 Recovery Pattern Detection 113

5.3.3 Results . 118

5.4 Improving Failure Pattern Detection 121

5.4.1 PCA and CPD Failure Detection Algorithm 122

5.4.2 Results . 123

5.5 Summary . 124

6 Early Error Detection for Increasing the Error Handling Time

Window 126

6.1 Introduction . 126

6.1.1 Motivation . 128

6.1.2 Problem Statement . 128

6.1.3 Objectives of the Chapter 129

6.2 Methodology . 130

6.2.1 Root Cause Analysis . 130

6.2.2 Anomaly Detection . 132

6.2.3 Change Point Detection 139

6.2.4 Lead Times . 141

6.3 Case Study: Ranger Supercomputer 143

6.3.1 Datasets and Performance Measurement 143

6.3.2 Base Case for Comparison - Error Detection Latency us-

ing Clustering . 144

6.3.3 Identifying Anomalies Using our Methodology 146

6.3.4 Propagation Time . 148

6.3.5 Other Issues . 148

6.4 Summary . 149

7 Summary, Conclusion and Future Work 152

7.1 Summary . 152

7.1.1 Introductory chapters . 152

7.1.2 Error Logs Preprocessing and Pattern Detection 153

7.1.3 Failure Sequence Detection Using Resource Usage Data

and Event Logs . 154

7.1.4 Increasing the Error Handling Time Window in Large-

Scale Distributed Systems 155

7.2 Conclusions . 155

7.3 Future Work . 156

7.3.1 Improving the Error Detection 156

7.3.2 Improving the Recovery Run Detection 157

7.3.3 The Error Handling Time 157

Bibliography 158

List of Figures

1.1 An illustration of the relationship between faults, errors and failures 3

1.2 Dependability tree diagram . 5

1.3 Fault Tolerance techniques . 6

1.4 An overview of the unsupervised detection approach 8

2.1 A taxonomy of error detection and system recovery methods . . 12

3.1 Permanent, Transient and Intermittent fault model 39

3.2 Sample Log events for Ranger Supercomputer (syslog) 44

4.1 Methodology Work flow showing the steps taken to achieve the

objectives . 56

4.2 Sample pre-processed logs of Figure 3.2 61

4.3 Sample preprocessed event logs (syslog) with redundant event

removed . 64

4.4 Event logs sequence . 64

4.5 Data matrix K of N sequences, where Fjti is the number of counts

of message term ti in sequence Fj 65

4.6 Evaluation metrics . 74

4.7 Cluster goodness based on intra-cluster and inter-cluster similar-

ity (on Syslog, JSD metric) . 77

4.8 APE (percentage miss-detection) vs Detection Threshold 77

4.9 Compression rates given varying LD on syslog 79

4.10 Showing the F-measure detection of both our method and normal

filtering on syslog . 80

4.11 Showing the F-measure detection of both our method and normal

filtering on ratlog . 80

xiv

4.12 Showing the F-measure detection of both our method and normal

filtering on BGL . 81

4.13 Showing the F-measure detection on both filtered and redundant

logs (syslog) . 82

4.14 Showing the F-measure detection on both filtered and redundant

logs (ratlog) . 82

4.15 Showing the F-measure detection on both filtered and redundant

logs (BGL) . 83

4.16 The Precision of our failure pattern detection and Xu’s method

on syslog . 85

4.17 The Recall of our failure pattern detection and Xu’s method on

syslog . 85

4.18 The F-measure of our failure pattern detection and Xu’s method

on syslog data . 86

4.19 The Precision of our failure pattern detection and Xu’s method

on ratlog . 87

4.20 The Recall of our failure pattern detection and Xu’s method on

ratlog . 87

4.21 The F-measure of our failure pattern detection and Xu’s method

on ratlog . 88

4.22 The Precision of our failure pattern detection and Xu’s method

on BGL . 89

4.23 The Recall of our failure pattern detection and Xu’s method on

BGL . 89

4.24 The F-measure of our failure pattern detection and Xu’s method

on BGL . 90

4.25 The runtime graph of Detection approach 90

5.1 Bursty faulty event sequence showing the behaviour of fault events

logged within an hour . 93

5.2 Silent faulty event sequence showing the behaviour of fault events

logged within an hour . 94

5.3 Methodology work flow showing steps taken to achieve detection 96

5.4 Data matrix Ftw of a sequence with N nodes and E event types,

where eli denotes the number of occurrences of event el by node ni. 97

5.5 Jobs outlierness of a sequence using PCA 104

5.6 Evaluation metrics . 107

5.7 Results showing accuracy of our detection approach under vary-

ing values of entropy threshold (ϕ) and γ = 0.6. 109

5.8 Results showing accuracy of our detection approach under vary-

ing values of varying anomaly threshold, with ϕ = 0.4. 110

5.9 Graph showing detection performance (S-measure) of our method

and nodeinfo . 111

5.10 Graph showing runtime performance of our method 112

5.11 Sequence of resource usage data 114

5.12 Data matrix M with n subsequences of S, where xn,k is the value

of counter k in subsequence n. 115

5.13 Graph showing the change point behaviours of both recovery and

failure sequences . 117

5.14 Result showing accuracy of detecting recovery sequences among

failure sequences using Cumulative Sum change point detection

and varying values of detection threshold, th 120

5.15 Results showing accuracy of detecting recovery sequences among

failure sequences using KLD change point detection, and varying

values of detection threshold, th. 121

5.16 Graph showing detection performance (S-measure) of both CPD

methods used . 122

5.17 Graph showing detection performance of combining detection

based on PCA-anomaly and CPD-Recovery. 124

6.1 Methodology work flow . 131

6.2 Data matrix J with i features, where jn,k is the value of counter

k by job n. 133

6.3 Distribution of jobs outlierness of a sequence using PCA 137

6.4 Distribution of jobs outlierness of a sequence using ICA 137

6.5 Distribution of outlierness/anomaly using MIC 139

6.6 Example showing result of CuSUM CPD on a sequence 141

6.7 Lead Time of Anomalies, Errors and Failures 142

6.8 Processing and analysis of Ranger event logs. 145

6.9 Results of clustering algorithms with two different distance metrics.145

6.10 Distribution of outlierness/anomaly of different fault sequence for

week 1 . 150

6.11 Distribution of propagation time for different fault sequences . . 150

List of Tables

3.1 Summary of Logs used from Production Systems 45

3.2 List of 96 Elements of Resource Usage Data 47

3.3 An example of event from Blue Gene/L RAS log 48

4.1 Summary of sequences/patterns obtained from the three produc-

tion system’s logs . 73

4.2 Experiment Parameter Values . 76

4.3 Sample Clustering Result (syslog, HAC) for a cluster with se-

quences (seq.1 and seq.2) . 78

6.1 Sample Results of Counter correlations (MIC) 143

6.2 Anomaly Detection performance of PCA and ICA. 146

6.3 Detection performance for Change Point Detection. 147

6.4 Detection performance for Change Point Detection with PCA or

ICA. 147

6.5 Distribution of Anomalous Jobs and Error Propagation Time for

all the methods . 148

xviii

CHAPTER 1
Introduction

Since the inception of modern computers, the performance growth has been

steady and tremendous. With ever-increasing society’s challenges, applications

needing higher computational capabilities increase. This computational need

led to the emergence of supercomputers in the 20th century. Since then, the

performance of these systems have been improved to meet the growing need,

leading to the era of petascale computing whereby, as at 2015, the fastest su-

percomputer can achieve a performance of 33×1015 for floating point operation

per second (FLOPS)1.

With the future exascale systems projected to have a performance of up to

1 × 1018 FLOPS, the need for these systems to remain fault tolerant becomes

increasingly important [43, 76]. This is because people, key sectors or organisa-

tions are becoming more dependent on these systems. This is further buttressed

by the increasing reliance on these systems by most computationally demanding

applications such as used in financial systems, weather forecasting, control sys-

tems etc. The increased demand for these systems has led to continued growth

in their capabilities to meet up; this has also led to their increased size and

complexities.

1.1 Motivation

Attaining and maintaining a system’s dependability becomes a challenge as

these computing systems are not immune to failure, more so, the increasing

complexity makes them difficult to manage. The failure of these systems can

be costly both in terms of the time and money. This is because it takes a long

1http://www.top500.org/lists/2015/06/; (accessed September, 2015)

1

1. Introduction

time for system administrators to identify and fix the problems. For example,

the failure of applications involved in high speed financial trading can be huge.

Large-scale systems generate huge volume of “log events“ or system state

data. These log events which are sometimes referred to as the health information

of the system, are basically the first point of contact whenever there is a failure

of the system. However, there is basically no way to know that these systems

have encountered faults and could eventually fail by merely observing these

system state data or event logs. This is because they are massive and doing so

can be overwhelming. Additionally, only few of the events are symptomatic of

faults and/or failure [103], that is, a large percentage is redundant. Fortunately,

the events could form patterns that characterises failure. In other words, these

event patterns preceding a particular failure are the symptoms of such failure.

Root cause analysis methods [118], [23] have been used to find causes of failures

from the event logs, however, these methods can only help find the root causes

of failure, but cannot prevent it.

In order to make these systems dependable, failure runs must be detected as

early as possible to enable taking other proactive failure handling methods or

approaches and avoid its consequences. If symptoms of failures can be detected

early, failure preventive, avoidance or mitigation measures can be applied. This

thesis focuses on detection of error patterns using unsupervised learning ap-

proach in large-scale HPC systems.The logs generated by the systems at run

time are often indicative of errors; these errors could eventually result in failure

if not properly handled by system administrators.

1.2 Background

The concept of dependability and fault tolerance is explained in this section.

We explain some basic terminologies relating to the concept of dependability in

order to explain the challenge and draw home our approach.

2

1. Introduction

1.2.1 Faults, Errors and Failure

A system generally is made up of interacting components. These components

and/or systems are expected to display high level of dependability by delivering

the expected service. However, they are usually not immune to faults and these

faults are evident by the errors the system produced which could eventually

lead to failure. These are termed as threats to dependability [6].

A failure, according to Avizienis et al. [6] “is an event that occurs when the

delivered service deviates from correct service”. That is, a failure occurs when

a system transits from correct behaviour to an incorrect implementation of

system’s function. The anomalous system’s service may assume different levels

of seriousness. An error on the other hand, is a deviation from the correct

state given that failure involves one or more system states deviating from the

correct state [6]. It is important to note that not all errors would eventually

lead to failure. An error is detected by the presence of a logged error messages

by the system. A fault is the cause of an error. In other words, an error is a

manifestation of a system’s fault. When a fault causes an error, it is said to

be in an active state otherwise, it is dormant or undetected. Hence, faults are

the root causes of failures. Since systems are composed of components, a failure

at the subcomponent level becomes a fault for the component. The concept of

faults, errors, failures and their relationships is illustrated in Figure 1.1.

Fault

Physical
defect

Incorrect
Design

Unstable
Hardware

Operator
Mistake

Error Failure

Error Detection

Fault
Tolerance

Error Detection Recovery

Concurrent Detection Pre-emptive Detection Error Handling Fault Handling

Rollback Rollforward

Availability

Dependability

Attributes

Threats

Means

Reliability

Confidentiality

Safety

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 1.1: An illustration of the relationship between faults, errors and failures

3

1. Introduction

1.2.2 Dependability

It is expected for systems to be dependable, that is, possessing the ability to

avoid service failures that typically occur more frequently with an unacceptable

severity level, according to Avizienis et al. [6]. In general, dependability is “a

property of a computing system which allows reliance to be justifiably placed

on the service it delivers”. A system’s dependability ensures that it is ready

to deliver correct service (availability). Such a system must be reliable, that is,

the service offered must be correct. Other attributes of a dependable systems

include integrity, whereby a system is devoid of unacceptable alterations, main-

tainability, whereby the system can be modified or updated or repaired; and

safety to ensure no fatal outcomes on users or the system itself.

The dependability schema showing the attributes, threats and means for

which dependability of a system can be achieved is seen in Figure 1.2.

The means for which dependability is achieved is as depicted in the schema.

These means include:

• Fault prevention which involves preventing fault from occurring, especially

development faults.

• Fault Tolerance involves avoiding failures in the presence of faults. This

is achieve by error detection and system recovery. The work of this thesis

is focused on this part.

• Fault Removal involves diagnosis and applying preventive and corrective

maintenance.

• Fault Forecasting estimates current and future incidences and their con-

sequences.

1.2.3 Fault Tolerance

Fault Tolerant computing dates back to the early days of computing [140], where

designs are made to withstand hardware faults. As this field emerges, both

4

1. Introduction

Fault

Physical
defect

Incorrect
Design

Unstable
Hardware

Operator
Mistake

Error Failure

Error Detection

Fault
Tolerance

Error Detection Recovery

Concurrent Detection Pre-emptive Detection Error Handling Fault Handling

Rollback Rollforward

Availability

Dependability

Attributes

Threats

Means

Reliability

Confidentiality

Safety

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 1.2: Dependability tree diagram

software and hardware fault tolerance became a focus. In distributed systems,

it is expected that part of the system may be failing while the remaining part

continues to function and outwardly normal. Fault tolerance in distributed

systems is aimed at having systems that can automatically recover when part of

the system is affected by a failure. The overall performance of the system is also

not expected to be affected. In other words, the system is expected to continue

its normal operation at an acceptable level even in the presence of failure.

Fault tolerance approaches are aimed at failure avoidance [4, 5]. The pro-

cesses involved in achieving this are error detection and system recovery. For

clarity, we show the techniques involves in a schema diagram shown in Figure 1.3.

Error handling techniques are aimed at eliminating errors from the system’s

state. Such methods include rollback recovery techniques (e.g. checkpointing)

and rollforward techniques (where system’s state without errors is used as new

state). Fault handling techniques are targeted at preventing future occurrence

of failure. Root cause analysis techniques belong to this category.

Error detection methods identify the presence of an error in a system. These

methods are implemented to detect errors either during the system’s normal

5

1. Introduction

	Fault	
Tolerance	

Error Detection	 Recovery	

Concurrent Detection	 Pre-emptive Detection	 Error Handling	 Fault Handling	

Rollback	 Rollforward	

Damage	Assessment	
&	confinement

Fault	Diagnosis

Figure 1.3: Fault Tolerance techniques

operation or when it is suspended. Usually, error detection is performed first

before rollback recovery or rollforward techniques are invoked for any recovery

process.

As explained earlier, faults are manifested through errors and these errors

are logged by systems as error logs. The errors are pointers to eventual failures,

hence, these error events are patterns or signatures of such failures. In this

work, error detection is sometimes called failure pattern detection. When an

error always lead to a failure, then error detection in this case, is similar to

failure prediction. This is because when an error is detected, the likely future

occurrence of failure can be predicted easily, in particular, error detection is

first performed to enable prediction. Hence, we use the two terms to mean

the same. Similarly, in this thesis, the term fault detection implies detecting

the manifestations of faults, which are errors. Hence, we sometimes use fault

detection to mean error detection.

6

1. Introduction

1.3 The Problem

Large-scale HPC systems produce a significant amount of data (error events and

resource utilization data), and these logs contain information about the system’s

activities. Whenever a fault occur, errors may become visible and these errors

can take a particular pattern depending on the fault [43]. The systems can

undergo updates which can change the nature and behaviour of faults and the

patterns of error events produced. Similarly, abnormal activities in the system

can be experienced due to these faults. The abnormality can be seen in the way

the system resources are being used, which is captured in the resource utilization

data. If the system administrator does not act upon the errors, an error or some

can lead to system failure.

The research questions this thesis seek to answer include: first, can the huge

event logs be reduced by filtering redundant ones and still contain useful ones

for failure analysis? Secondly, how effective is using event logs and resource

utilization/usage data for error detection? And can errors be detected early

even when it is not visible yet to enable early prevention of failure?

1.4 The Approach

In this thesis, we develop an approach to error detection based on the analysis

of event logs. Owing to the properties of the systems and the nature of the

data available (huge, unlabelled and semi-structured), we chose an unsupervised

approach to error detection. In this method, the characteristics of the system

based on the normal and the rare abnormal behaviours, error detection is made

without having a prior knowledge of the patterns. A supervised learning ap-

proach [115] requires an adequate knowledge of the system, its faults and failure

patterns and properly labelled for training to take place. This can be difficult

given that system updates usually change these patterns and manual labelling

of the data can be overwhelming even for experts. Unlike supervised learning

method, the unsupervised approach can still capture these patterns even in the

7

1. Introduction

presence of updates and without the need for complete expert knowledge and

labelling of the event data. The fact that failures are rare events makes an

unsupervised approach relatively more viable as the problem can be seen as an

anomaly detection. The general overview of the unsupervised approach is de-

picted in Figure 1.4. It involves extracting features from sequences of event logs

and usage data in order to determine if a sequence is failure inducing or not. In

some cases, a preprocessing of the data is required.

 Resource Usage

Data
Event Logs

Preprocessing

Feature Extraction

 Detection

Figure 1.4: An overview of the unsupervised detection approach

1.5 Thesis Contributions

This thesis is focused on achieving fault tolerant systems with particular con-

tributions to development of a novel approach for error detection and recovery

in computer systems. We performed experiments on three different data sets

8

1. Introduction

from two production systems and the results demonstrated excellent perfor-

mance; outperforming established error detection methods in the field of fault

tolerance. We make the following specific contributions in this thesis:

• We proposed a novel and generic approach to log filtering that not only

filters redundant events, but also preserves events that are not similar

but causality-related. This preserves event patterns that can serve as

precursors to failures.

• We proposed a novel clustering-based failure pattern detection approach

that utilizes the inherent characteristics of faults to detect the presence of

errors in computer systems.

• A novel method for error detection based on the combination of event logs

and resource utilization data is proposed. This method uses the anomaly

in the use of computer resources and the informativeness of event patterns

to detect errors in the system.

• We propose an approach for detecting recovery patterns in system data.

These are patterns which characterise errors which do not eventually lead

to failure. The approach, which is based on change point detection, identi-

fies such patterns based on the consistencies in which resources are utilised.

• A novel method for increasing the error handling time window is proposed.

This is the time window for which error handling techniques can be applied

and it must be large enough for such techniques to complete. Our method

increases this time by detecting errors early from minimal error symptoms.

• In this thesis, we provide a taxonomy and a comprehensive survey of fault

tolerance techniques.

1.6 Thesis Outline

The remainder of the thesis is structured as follows:

9

1. Introduction

Chapter 2 contains a taxonomy and overview of the current work in the field

of dependability in large-scale systems. Particularly, the chapter describes fault

tolerant methods with error detection approaches categorised under supervised,

unsupervised and other methods. The chapter also reviews system recovery

methods.

Chapter 3 briefly describes the system model for which the approaches can be

applied. This chapter gives an overview on two supercomputing systems (Ranger

and Blue Gene/L) and the data collected from these systems for the experiments

performed. It further explains the fault model assumed in this thesis and some

basic terminologies related to the use of the data and the approaches used.

Chapter 4 presents a filtering method used to reduce the redundant events in

the log data. The chapter further details a clustering approach for detecting

error event patterns from these logs that are symptomatic to failure.

Chapter 5 focuses on utilizing both resource utilization data and event logs to

detect failure-inducing behaviour in systems. The chapter details the approach

which obtains anomalous behaviour in systems from resource utilization data

combined with the nodes’ behaviour captured by the event log entropies to

detect the error patterns. The chapter explores other methods of improving

failure pattern detection for which recovery pattern detection was proposed

based on change point detection.

Chapter 6 details the approach for improving the time for which error handling

can be performed. This stems from the fact that with future systems projected

to have reduced mean times to failure, it is necessary that identification of failure

leading errors should be done early enough to enable error handling techniques

to complete successfully.

Chapter 7 summarises and concludes the thesis. The chapter discusses the

implication of each approach presented as well as their limitations. The chapter

also provides directions for future work and further research.

10

CHAPTER 2
Literature Review

2.1 Introduction

The complexities associated with large-scale systems are often challenging; fail-

ures become an everyday challenge to deal with. Determining the causes and

impact of these failures can be elusive sometimes. With increasing and proven

approaches to preventing faults from resulting in failures, it becomes important

that symptoms of failures (errors) manifesting as a result of the presence of

faults in a system are detected on time. In fault tolerance, successful error de-

tection provides a platform for system recovery to be invoked in order to prevent

failure. In this chapter, we survey different published work that relates error

detection and methods used for performing system recovery. This survey follows

the taxonomy illustrated in Figure 2.1. We discuss methods for error detection

in which they can be categorised as supervised, unsupervised or other methods.

By other methods, we mean those which can not be clearly categorised under

supervised or unsupervised, or are the combination of both. We discuss error

detection methods in Section 2.2. Section 2.3 contains system recovery methods.

We summarise and conclude this chapter in Section 2.4.

11

2. Literature Review

Distance-

based

Statistical

Methods

Hidden Markov Models

Fault

Tolerance

Error

Detection

System

Recovery

Unsupervised

Methods

Supervised

Methods

Other

Methods

Entropy – based Methods

Clustering Methods

Model-based Methods

Anomaly – based Methods

Signal Analysis Methods

Other Methods

System Model – based Methods

Rule –based Methods

Machine

Learning

Other Methods

Neural Network (NN)

Support Vector Machines

(SVM)

Task Migration

Checkpointing

Message Logging Methods

Coordinated Methods

Hybrid Methods

Figure 2.1: A taxonomy of error detection and system recovery methods

2.2 Error Detection

We discuss major approaches and related work on error detection. These meth-

ods are categorised into two: unsupervised or supervised approaches. By su-

pervised, we mean methods for which learning (training) of the error patterns

12

2. Literature Review

is done from known data before testing is performed on unlabelled data. Un-

supervised method on the other hand, are methods for which detection is done

without any knowledge of previous patterns.

2.2.1 Unsupervised Methods

Detecting error patterns for any proactive failure avoidance measure has received

much attention from researchers. Learning such patterns in an unsupervised way

has proven to be effective. Generally, these techniques share a common purpose:

detecting faults and/or failure inducing errors in systems. These techniques may

differ in approaches; we explain the frequently used ones.

Entropy Approach

An entropy-based approach to detecting failure inducing patterns has also been

shown to be successful in the domain. It involves capturing the entropy of

the system from the event logs. Particularly, several approaches have been

developed [106] [94] to detect alerts in logs of large-scale distributed systems.The

concept of entropy has also been demonstrated to be useful in detecting changes

in the behaviour of distributed systems components [26].

Basically, entropy-based detection methods [106], [93] based its motivation

on the premise that in large-scale distributed systems, similar computers cor-

rectly executing similar jobs should produce similar logs. That is, they should

produce similar content or line tokens. The method leverages the information

that each line token carries with respect to the node that produced it. The

approach is as follows: Given W as a set of unique terms (tokens) formed by

concatenating line tokens with its position in line, C is the total number of

nodes, then the matrix M = |W | × C, with xw,c as the total number of counts

of term w appears in messages generated by node c. To capture the uneven

13

2. Literature Review

distribution of the terms among nodes, given G vectors of |M | weights, then,

gw = 1 +
1

log2
C

C∑
c=1

pw,c log2(pw,c) (2.1)

where pw,c is the number of times term w occurs on nodes c divided by the

number of times it occurs on any other node,

pw,c =
xw,c

C∑
c=1

xw,c

(2.2)

The next step is to obtain the informativeness of the nodes, Nodeinfo, within

nodehours (all event lines within an hour by a node) and rank them based on

how many high information terms are contained in each. Hence, let H be the set

of all nodehours, and let Y be the |W | × |H| matrix where yw,c,j is the number

of times term w occurs in nodehour Hc
j , then the Nodeinfo for each nodehour

is given as:

Nodeinfo(Hc
j) =

√√√√ |W |∑
w=1

(gwlog2(yw,c,j))2 (2.3)

where each nodehour is ranked based on decreasing value of Nodeinfo. Those

with high Nodeinfo are considered to have alerts(errors) [106]. This approach

was applied on logs of supercomputers with good result.

Another entropy based approach is proposed in [94]. This approach charac-

terises system behaviour from system logs. Similar to Oliner et al. [106], this

approach leverages the entropy-based information content of the logs within a

spatio-temporal partition. A clustering is applied to the information content of

these partitions to characterise failure and normal behaviour. In particular, the

information content values corresponds to the entropies of the message types

within a spatio-temporal partition. These entropy values serve as attributes to

the clustering algorithm. The clusters formed are assumed to describe differ-

ent internal states of the system for which a failure inducing or normal state is

detected. The authors argued that the message types provided a better perfor-

14

2. Literature Review

mance rather than using every field of an event log. In [53] the authors utilise

entropy of events logs and event characteristics to detect failure patterns in logs.

One of the advantages of entropy - based methods is that they can be im-

plemented easily so long as features can be captured accurately. However, the

approach suffers from the following disadvantages:

• Since it depends on obtaining the informativeness of terms of the log

events, it can be computationally expensive as the increase in the number

of the terms, the higher the size of the features to be considered.

• Its performance is dependent on the nature of logs, that is, it performs

poorly on logs where faults are not characterised by presence of high event

messages.

• It requires system logs to be decomposed into spatio-temporal partitions;

the act of partitioning may not capture the desired events with the required

time window or partition, hence decreasing the detection accuracy.

Anomaly-based Approach

The challenge of error detection can also be seen as anomaly detection problem.

Anomalous pattern detection assumes the existence of a normal pattern for

which an abnormal one can be viewed as a deviation from the former. We discuss

some of the approaches widely and recently used under different categories as

follows:

1. Statistical anomaly detection methods: Statistical approaches take

two steps, the training and the test stages. At the training stage, a sta-

tistical model is built based on the historical data; this is used for both

supervised and unsupervised anomaly detection; here we explain the unsu-

pervised approaches. Similar to work in [67], Das et al. [27] proposed an

approach that scans through categorical data and detects a subset which

is thought to be anomalous. In this method, groups of records rather than

15

2. Literature Review

individual records are assumed to substantially increase detection. It cal-

culates the anomaly score of the subset of the records. The anomalousness

is the maximization of anomaly scores over all subsets where those that

deviates abnormally from others are likely anomalous. This is achieved by

learning a Bayesian network model over the training data where the condi-

tional probabilities of each attribute of a record are calculated forming the

anomaly scores. This approach was applied on categorical data. Similar

approaches can be found in [151]. Most of these techniques assume the

knowledge of the underlying data distribution. Even though this method

was not used for detection of errors, it can be adopted easily. The logs

which are the records can be categorised or other to obtain their anomaly

scores.

The frequency or histogram approach is a non-parametric method that

constructs a histogram of normal and anomaly data. Particularly, the

feature-wise histogram is constructed where by, at the test stage, the prob-

ability of each feature is obtained. The anomaly score is then calculated

by summing the probability values of each feature, which is calculated as

follows:

anomaly score =
∑
k∈X

wk
(1− pk)

|K|
(2.4)

where wi is the weight assigned to the feature k, pk is the probability

distribution of feature k and K is the set of features.

This approach is well-applied in fraud detection [35], intrusion detection

[148], [149].

Another work that statistically models the normal behaviour of systems

in order to detect failures as anomaly is reported in [19]. That is, the nor-

mal system’s behaviour is modelled for the internal measurements of the

systems to be tested against any deviation. This method utilizes subspace

mapping between system inputs and the internal measurements to model

their dependencies. It further leverages on the statistical method, canon-

16

2. Literature Review

ical correlation analysis (CCA) to discover highly correlated subspaces

between the sets of variables. The authors further proposed a method

called principal canonical correlation analysis to capture the variance be-

tween the two features (system inputs and internal measurements). The

authors reported good detection based on the deviation observed of inter-

nal measurements from the system normal models.

In [149], the authors describe an approach that detects outliers in categor-

ical data. The method addresses the problem using a statistical learning

approach which is an online unsupervised learning process of a proba-

bilistic model. The method performs online learning and updating as

follows: Whenever a data point input is given to the system, it learns the

probabilistic model using an online discounting learning algorithm. The

input data point is then scored based on the learnt model; with high score

indicating a high chance of it being an outlier. This approach was im-

plemented and tested on network intrusion detection data for KDD cup

1999 and the rare event detection for pathology dataset of the Australian

Health Insurance Commission. The authors recorded good detection.

2. Distance - based: These methods detects failure patterns based on

the dissimilarity and rarity of certain inputs from others. A dissimilarity

threshold is defined in this case. We discuss some distance-based anomaly

methods as follows.

Xu et al. [147] formalised problem detection in systems as an anomaly

detection problem. Their assumption for this is that an unusual occur-

rence of error log message is often an indication of a problem. However, a

single event would not be sufficient to point to a problem, and even groups

of events may not, but relationships among events can. In the approach,

features are created to capture the relationship among events for possible

identification of abnormal ones using the source codes and logs. It creates

features that succinctly capture the correlation among the log messages

17

2. Literature Review

and perform detection using PCA extracted anomaly vectors from the fea-

tures. The approach used on console logs is summarised as follows: Parse

logs and source codes to extract useful schema, then create features that

capture correlation among events (state ratio vectors and message count

features). This is done by combining source codes and message logs where

the hidden log schema is extracted. This feature vectors are used as in-

puts to the PCA and detection algorithm. In employing PCA for anomaly

detection, the feature vectors are labelled as normal or anomalous. The

intuition is that, highly correlated feature vectors can be identified and

anomalies are assumed to be rare. Therefore, feature vectors that deviate

from the correlated pattern are likely to be anomalous. To identify ab-

normal vectors, a distance from the uncorrelated subspace to the normal

subspace is calculated to determine the abnormality of a vector. That is,

a vector v is projected onto an abnormal space va, the squared distance

is the squared prediction error (SPE) calculated thus:

SPE = ||va||2 (2.5)

and va = (1− AAT)v, where A = [a1, a2, ..., ak] is the k formed principal

components by PCA.

Since it was assumed that the abnormal vectors are distant from the nor-

mal subspace, then detection of abnormal vectors is simple: flag v as

abnormal if SPE is greater than certain defined threshold.

This method was shown to have good detection rate. However, it requires

access to source codes of programs, which are not readily available. PCA

computation can be costly; hence this might not be suitable for an online

detection.

Lan et al. [80] present an anomaly based detection technique that finds

the abnormal nodes in large-scale distributed systems. The approach con-

sists of three steps for detecting the abnormal nodes using system data.

18

2. Literature Review

The first step involves transforming the data from multiple data types

to a single one to enable detection. Specifically, it involves converting

variable-spaced time series to constant-spaced ones, removing noise etc.

The result of this step is a feature matrix formed for each of the nodes.

The second step deals with feature extraction; where principal component

analysis (PCA) and independent component analysis (ICA) are used to

extract useful features to be used for detection. Lastly, the abnormally

behaving nodes (outliers) are identified using a proposed outlier/anomaly

detection algorithm. In order to identify the nodes that are anomalous

or significantly dissimilar from others, the authors utilised Euclidean dis-

tance. Hence, given two data points ya ∈ <s and yb ∈ <s, then, distance

is given by:

d(ya, yb) =

√√√√ s∑
i=1

(ya, i− yb, i)2 (2.6)

Therefore, the nodes further away are anomalous. The authors demon-

strated that the method is able to detect anomalous nodes with high

specificity.

In our method, entropy is extracted as one of the features of event sequence.

We combined with resource usage data for which an anomaly score was obtained.

Detection is achieved based on features extracted and the anomalousness of the

resource usage of the system.

Clustering Methods

In this context, clustering is aimed at grouping similar inputs patterns together.

It is believed that those that are likely to be failures are rare, hence detection

can be performed, sometimes, in conjunction with other methods.

Fu et al. [37] developed a method that exploits spatial and temporal corre-

lations for failure prediction in coalition of systems. In this work, the authors

first identified failure signatures form the running system and then developed a

covariance model that can adjusted in time to measure the temporal correlation

19

2. Literature Review

of events and further show their spatial correlation using stochastic model. Both

temporal and spatial correlations are used to model failure propagation in the

system. They further developed a clustering algorithm that groups signatures

based on the correlations observed. The clusters formed are used to predict

future occurrence of failure.

In [119], a clustering-based approach is proposed for detecting abnormal

events. They achieved this by first, extracting relevant features and then pro-

posed a proximity clustering that groups patterns of events based on the their

semantic relatedness. The sparsely clustered features are believed to be anoma-

lous or abnormal. This approach was used to detect abnormal events from a

surveillance cameras system. It can be adopted and used for detecting failures

in logs of large-scale distributed systems. This can be done by creating useful

features from the logs that describes correlation among events; then applying

clustering to separate normal from abnormal features. Another work that em-

ploys clustering for detecting failures in large-scale distributed systems is found

in [82]. The work used clustering with gossip-base algorithm to perform this.

The clustering groups messages based on location while the gossip-based algo-

rithm is aimed at removing uncertainty from massive logged messages and also

reduce the detection time. The authors did not elaborate on the performance of

the detection approach but demonstrated how it can incorporate existing meth-

ods to reduce detection time. Our clustering approach is different; we obtain

clusters of similar events to enable extraction of features of patterns particu-

larly entropy and mutual information. These features are then used for error

detection.

Signal Analysis Methods

Gainaru et al., [43, 44] proposed a hybrid method that uses signal processing and

data mining techniques to predict faults using logs. This approach is motivated

by the fact that the behaviour of event types of HPC systems and how the

behaviour is affected by errors overtime can be captured. The hybrid approach

20

2. Literature Review

characterises event types and detect faults and normal patterns in event logs.

The approach extracts and represents the event types as signals where these

signals are appropriately characterised and an anomaly detection method is

applied to identify anomalous signals. The authors went further to implement

this this as online outlier detection. The offline event correlation/analysis is

combined with online monitoring and detection of outliers for identification

of any deviation from known normal signal patterns for prediction of possible

failures. The authors reported good results for predicting failures.

In [102, 105, 107] the authors proposed methods that can address several

problems in production systems. Such problems include: abnormal interactions

among components and identifying these bad behaviours of systems. The com-

ponents behaviour is captured as “surprise”; that is, measuring how anomalous

a component is. These anomalies (surprises) are captured as anomaly signals.

The anomaly signals are obtained by finding deviations from known models of

normal component behaviour. In this method, the degree of anomalousness of

each signal is retained rather than discretizing them into either abnormal or

normal. In particular, the method represents behaviour of components as sig-

nals and computes the anomaly score for each to be able to identify abnormal

behaving components. The anomaly score is computed by comparing the his-

togram of a recent window of component behaviour with the entire history of

behaviours of the components. Kullback Leibler divergence [77] is computed

between the probability distributions of the observations. This provides the dis-

tance or how each distribution differs from the other. Those with high deviation

from the normal are considered anomalous signals.

The authors went further to construct a Structured-Influence-Graph (SIG)

from the anomaly signals. This graph shows the correlations between compo-

nents. Even though these methods did not target the detection or prediction

of failures, the steps are easily adopted for this purposes as explained by the

authors. The models of component behaviours can be used to predict any fu-

ture occurrence of failure. The conversion of these behaviours to signals and

21

2. Literature Review

the using anomaly detection to obtain anomalous signals is indeed a good way

to detect faulty components in large-scale systems. The online version of this

method is detailed by the authors in [102].

Rule-based Methods

[38] explored a rule-based method of predicting failure events in logs of large-

scale systems. They mine correlations in events by leveraging on the unique

characteristics of the events. The approach first proposed a new algorithm

called Apriori-LIS that mines rules from events representing correlation among

them. These rules are then represented using a proposed Events Correlation

Graphs (ECGs). The prediction algorithm is built based on the ECGs where

the probabilities of failure events are calculated based on correlation seen in

the vertices of the ECGs. The authors reported good prediction results when

applied on logs of production systems. One major advantage of this approach

is its ability to generate rules based on events correlation for effective detection.

Model-based Methods

Cormode [26] introduced an approach that models continuous distributed mon-

itoring of streams of data in a distributed computer system. A function for these

streams of observation is computed. This method can be used for monitoring

usage of compute nodes for detection of abnormal usage patterns of the nodes.

These abnormal usage patterns are pointers to failure.

In their work [40], Gabel et al., proposed an approach for detecting faults

from large-scale systems. The authors hypothesized that system failures are

not caused by abrupt changes, rather, by the resultant effects of long time sys-

tems performance degradation. This idea is contrary to the norm, where abrupt

changes are seen as pointers to failure, even though this hypothesis may have

some support from work in [120]. The authors argued that machine behaviour

that is indicative of faults presence would eventually result in failure. Hence,

they developed a framework that uses standard numerical counter readings of

22

2. Literature Review

the different machines to compare those performing similar tasks within the

same time frame. Anyone that significantly deviates from the others is tagged

suspicious. This idea is similar to those presented in [74, 106]. A statistical

model is used to capture the behaviours of the machines. The authors imple-

mented the detection framework using three test algorithms: the Sign test [30],

Tukey test algorithm [133] and the Local Outlier Factor algorithm [12]. The

authors reported a good detection of outlier machines.

In [62], models of different hardware component failures is constructed from

a 5 years logs collected from a HPC system. The failure models are based

on each components usage and capture the correlation between components.

The authors demonstrated that these application-centric models are useful in

performing other system reliability methods like checkpointing. These models

can be utilised easily for performing detection of these failing components.

Log Filtering and Error Detection Methods

Filtering or pre-processing logs for failure analysis is an important process that

is done for any proper log analysis [88]. It eliminates redundant events from logs

while keeping the useful ones or those patterns that are important for failure

analysis. The normal log filtering [88] approach removes repeated events within

certain time window. Specifically, similar events that are logged in sequence

within a defined time window are filtered with only one kept. The challenge with

this method is that, it can remove fault events that are relevant for analysing

causal correlations among events. Zheng et al. [154] proposed an approach that

can filter causality-related events or what they termed ‘semantically redundant‘

events. Their idea is that events may be different but may always co-occur

together. This co-occurrence is not normal, hence they believe such events have

similar root-cause and can be filtered. In their approach, redundancy from

both temporal and spatial viewpoint is considered. This method can preserve

useful patterns and was shown to be better than normal filtering. However, the

methodology is log-specific: that is, it is dependent on the severity level of logs.

23

2. Literature Review

Most production systems’ logs do not have that. A general approach is more

suitable.

Unlike theirs, this work assumes that temporal events must occur in sequence

to be removable and we believe that causality-related but semantically unrelated

events are patterns or signatures to failure, therefore, are not filtered.

Gainaru et al. [42] proposed a log filtering approach to enhance failure de-

tection. This method clusters similar events that tend to occur massively in

sequence. In addition to clustering, Makanju et al. [95] went further to index

(IDs) the result of the clustered logs for easier use by any log analysis algorithm.

these clusters represents the different event types of the logs. The authors mainly

focus on extracting the message types that can be used for indexing, visualiza-

tion or model building. One of the caveats of this approach is that it clusters

events/message types that are believed to have been produced by the same print

statement and their occurrences is non-overlapping. Another approach that use

clustering can be found in [70]. By contrast, the method in [55] can cluster

non-overlapping events together. In [3], two algorithms for discovering patterns

in systems event logs we proposed. The first is the text clustering algorithm

which automatically discovers templates generating the messages. The second

algorithm discovers patterns of messages in the system. The clustering algo-

rithm focuses on creating a dictionary of event types from the text messages

with no aim of discovering any faulty pattern, but only different patterns that

can be discovered. In [53] the authors went further by discovering and detect-

ing patterns that are symptomatic to system failure. The authors group similar

patterns through clustering based on the events similarities.

In their work, Gainaru et al. [41] [43] proposed a method for analysing sys-

tems’ generated messages by extracting sequences of events that frequently oc-

cur together. This provides an understanding of the pattern of failures and

non-failure events. Their approach uses dynamic time window. They also use

signal analysis technique to characterise the normal behaviour of system and

how faults affects it; in this case, they will be able to detect deviations from the

24

2. Literature Review

normal.

[114] developed a method that ranks log messages deemed useful to the

users. Their approach assumed that most frequently occurring messages are

ranked higher using an unsupervised algorithm.

Another approach that ranks logs for failure detection is [129]. Similar

to [106], the ranking is based on the location of a text word in a message

and similarity in the workload performed by computer nodes where they are

assumed to have generated similar log messages. They demonstrated that the

method with information entropy of logs produces a very low false positive rate

(0.05%) for failure event detection. One of the challenges of this method is that

it may not detect failures characterised by presence of few events since it will

receive low ranking.

In their approaches,[23] [24] produced a diagnostic tool FDiag, which uses

the combination of message template extraction, statistical event correlation

and episode construction to identify significant events that led to compute node

soft lockup failure in Ranger supercomputer system. Events which are highly

correlated with the failure are extracted as episodes.

2.2.2 Supervised Methods

Supervised detection approaches learn the patterns of errors or failure inducing

and nonfailure inducing through a supervised training algorithm. After learning

from the labelled data, it produces models that can be used to classify, from

test data, the patterns identified as failure and non-failure by the model.

Machine Learning

Machine learning methods performs function approximation where the target

values are represented by the function mimicking the input data. The target

function could be the probability of a failure occurrence. Hence, the output of

the target function is a boolean indicating either it is a failure or not. Another

category is classification where the target is mostly binary values. It involves

25

2. Literature Review

coming to a decision without having to build a target function. We survey

papers that use machine learning in the section.

The authors of [99] combined simulation models and machine learning method

to perform detection of faults. Unlike other normal machine learning approaches

reported in [100], where failure and non-failure patterns are detected, this ap-

proach performs classification of more categories of failure. It first, simulate

models of the system, then using Neural Network method, it learns different

faulty and non- faulty condition from the model signals. This method was

validated on inverter-monitor systems and not distributed computer systems.

However, this approach, similar to [100], can be adopted for failure detection in

the cluster systems. More machine learning methods that were used to detect

hard drive failure are detailed in [132]. They modelled the problem as a sequence

labelling challenge, where, a Hidden Markov Model (HMM) is used to model

these failures as probabilistic models. They extracted 68 features from hard

drive data where HMM is trained for each of the supported feature. The time

series Self-Monitoring and Reporting Technology (SMART) data is labelled as

either fail or good. Yamanishi and Maruyama [148] came up with a different ap-

proach to HMM. In their approach, dynamic systems behaviour is represented

using a mixture of Hidden Markov Models; these models are learned using an

online discounting learning algorithm. Failure pattern detection is done sub-

sequently based on anomaly score given to observed patterns. This approach

basically utilises the HMM for learning the models.

Other HMM-based methods for error detection similar to [148] is detailed

in [153]. In their work, Murray et al. [100] compared several machine learning

techniques for detecting or predicting failures in hard drives. They formulated

the problem as a rare event detection in time series data of noisy and non-

parametrically distributed data. They developed a detection algorithm based

on many other learning frameworks and Näıve Bayesian classifier to perform

detection. Support vector machine (SVM) was also used. Experiments demon-

strated that SVM, a hyperplane separation technique outperforms the Näıve

26

2. Literature Review

Bayesian classifier implementation.

Fulp et al. [39] proposed a new spectrum-kernel SVM approach to predict

failure events from log files of computer systems. The approach extracts mes-

sages in a sub-sequence or sliding window to predict likely failure. The fre-

quency observation of the messages in each sub-sequence is used as an input to

the SVM. The SVM then classifies the messages as either failure or non-failure.

Other methods that combine SVM and other classifiers for detection can be

found in [118, 152]. The work in [152] first extracts sets of features that ac-

curately captures the characteristics of failures. The authors then investigated

four classifiers (rule-based, SVM, Nearest Neighbour and a customised Nearest

Neighbour) to detect failures. They reported good results when applied on an

IBM BlueGene/L log data, achieving better performance with the customised

Nearest Neighbour method.

Fronza et al. [36] presented an approach that predict failure of systems using

log files based on random indexing (RI) and Support Vector Machine (SVM).

They presented a two-step approach where, firstly, given labelled (failure and

non-failure) sequences of logs files representing a change in system state, a fea-

ture vector is constructed. These features are created using RI. It is a word

space model that accumulates vectors based on occurrence of words in context.

This approach does not require the data to undergo further dimensional reduc-

tion since it forms this vectors incrementally. Secondly, SVM is applied on these

data to separate or classify failures and non-failure patterns based on models

formed. This approach was validated on an industrial data and the authors

reported low performance on true positive rate and high true negative rate.

Neural Network (NN) method has long been used in error detection [51].

In his work, Niville [101] explained a standard neural networks method for de-

tection of failure patterns in large-scale engineering plants. A fully connected

cascaded neural network approach was described in [64] for detecting or iden-

tification of sensor failures of aircraft. The authors reported that out of 150

experiments conducted, only one fault went undetected. A similar work has

27

2. Literature Review

been done and presented in [51], except that, this method uses the traditional

NN. Similar work have been proposed for detecting failure in automotive en-

gines [144]. However, the authors were able to verify their technique by simula-

tion. Similarly, Selmic and Lewis in [121] presented a neural network approach

that identifies and detects fault in nonlinear systems. The approach used how-

ever, is a multimodel NN. An NN of the system that emulates the behaviour of

system is trained offline based on known nonlinear models. At the simulation

part, the neural net is compared to the real non-linear plant for detecting pos-

sible failure. The authors did not show detection accuracy but demonstrated

how the estimation error converges asymptotically. An approach that combines

models of support vector machines and back-propagation neural network is de-

tailed in [155]. This method was aimed at improving drive failure detection in

large scale storage systems. The models are tested on a real-world dataset and

was shown to have high detection accuracy. These methods can be used for

detecting failures in computer systems if models of the system failure signatures

can be obtained and trained using NN.

Lee et al. [83] presented an approach that captures the contents of fault

trees and detect faults using decision trees. A decision tree is built and trained

from the sample data containing faulty and non-faulty events. The authors

presented the result of such classification as a diagnostic decision tree. This

tree helps reveal unknown fault paths also.

Rule-based

In the context of supervised approach, rules are generated which reflects normal

and faulty states of the computer systems. These rules are used to detect

failure patterns from system inputs. [139] described a rule-based method that

first characterised the target events by observing those that frequently precedes

it within a given time window. An algorithm is proposed that searches these

targets and preceding events in order to generate rules describing the behaviour

of the patterns. The authors further introduced association rule mining [2]

28

2. Literature Review

and classification with consideration to the time of occurrence of events. This

combination enabled the building of robust rule-based models that can be used

to detect or identify rare events. The authors reported that the time window

affects the performance of this method.

System Model-based

Model-based detection has long received attention [143] [47]. The authors of

these papers surveyed works that utilised models to detect and isolate failures in

dynamical systems and production plants respectively. A mathematical model

of the system and its problems (e.g., memory leaks, sensor biases, equipment

deterioration) are detected when there is deviation from the normal system

model signatures. [7] developed a Markov Bayesian Network model for predict-

ing failures. This method combines causal information and updates the model

estimator with new observations.

Vaidyanathan and Trivedi [137] proposed a semi Markov reward model

(measurement-based) to estimate the rate of exhaustion of operating system

resources. The authors utilised statistical cluster analysis to identify the various

network workload states. This is done through clustering of the measurements

taken. Next, the authors build a state-space model and then define a reward

function based on the rate of resource exhaustion corresponding to each resource.

The state reward defines the rate of change of the modelled resources. In order

to estimate the rates, a linear function is fitted to the data. This approach

estimates the time until resource exhaustion by computing the expected reward

rate at steady state from the semi Markov model.

2.2.3 Other Methods

Methods that combine both supervised and unsupervised are highlighted in this

section.

Yamanishi et al. [148], concerned with the challenge of detecting outliers

from unlabelled data, propose a method that combines both supervised and

29

2. Literature Review

unsupervised approaches to detect outliers. The authors perform detection as

follows: First, a method [149], an unsupervised online detection of outliers is

applied to the data. This method obtain an anomaly score for each data point.

A high anomaly score indicates that the data point is likely an outlier and lower

scores indicating less possibility of an outlier. The data is then labelled based

on the scores with higher scores labelled as “positive” and low scores labelled

as “negative”. From these labelled data, a supervised learning method is used

to generate outlier detection rules. These rules are generated using stochastic

decision list (used as classifier). For the selection of the rules, it utilises the

principle of minimising extended complexity. Failure detection is then done

using the generated rules on any input data. With the use of system logs, a

proper method for extracting patterns that can capture the outlierness of the

input sequences can be used, then an anomaly score is assign to each sequence.

Finally, a classification algorithm can be used to generate rules to be used for

detection.

2.3 System Recovery

The processes involved in achieving fault tolerance include error detection and

system recovery. Rollback, rollforward techniques like checkpointing, job mi-

gration etc., are applied whenever a fault is detected.

2.3.1 Checkpointing

A checkpoint is an identified area in a program at which fault free system

states or status information that would allow restarting of processes at a future

time is saved. The process of saving system state and status information is

called checkpointing [73]. Periodically, checkpointing process is done and this

checkpoint become points of restart whenever a failure noticed [73], [32]. We

explain some few checkpointing methods used in distributed systems.

Checkpointing in current large-scale clusters performed on disk under the

30

2. Literature Review

control of I/O node is limited by bandwidth of that I/O node. According

to [15, 45], coordinated checkpointing would not scale for future exascale sys-

tems because, their design is centred on energy efficiency. Furthermore, El-Sayed

and Schroeder [33] provide an extensive study on the energy/performance trade-

offs associated with checkpointing and pointed out that periodic checkpointing

methods would not scale perfectly in exascale systems [45, 110] and requires

further improvement. The best option possible in this case is to save check-

points on local nodes. However, the disadvantage of this method is that it

can only recover from software faults, since nodes with checkpoints could also

fail. Preventive checkpointing methods are promising as they avoid the earlier

mentioned challenges. In this methods, prediction is done based on successful

detection of non-fatal precursor events. In a sense, early effects of faults must be

detected in order for checkpointing to be triggered. Some approaches [21, 29, 57]

circumvents checkpointing to provide fault tolerance.

Checkpointing in Distributed Systems: Checkpointing is useful, however,

it is also more difficult in distributed systems due to the fact that there is no

global clock to bring synchronization to checkpoint streams. The checkpointing

methods are discussed under the following:

1. Message Logging Techniques

In this technique, processes save their states independently and logging of

inter-process messages [141]. Most of the checkpointing algorithms based

on message passing techniques are a variant of Candy & Lamport algo-

rithm [18]. They proposed an algorithm that takes a global snapshot of

distributed systems. It assumes a distributed system contain a finite num-

ber of processors and channels. The algorithm builds the global state of

the system by harmonizing the processors; the states are logged at check-

pointing time. A marker messages are used to identify those coming from

different checkpoint intervals. According to the authors, a central node

first initiates the checkpoint algorithm and then other nodes follow after

receiving the special marker message. Other variants of the algorithm are

31

2. Literature Review

proposed by [86, 138]

2. Coordinated Checkpointing Techniques

This technique involves the coordination of the processes in order to

save their states. The coordination among processes maintains consistent

global state of the system. Messages are used to maintain the coordination

and this adds to the overhead of the method. Kumar and Hansdah [78]

proposed a coordinated checkpointing technique that assumes nodes to

be autonomous and do not block during checkpointing. The method can

work efficiently with non-FIFO channels for which messages could be lost.

In the method, any process can initiate a checkpoint by requesting per-

mission from former coordinator. In essence, multiple coordinators are

allowed; however, a single checkpoint is permitted at a given time.

A coordinated multi-level diskless checkpointing is proposed in [56]. Stem-

ming from the fact that as extreme scale systems are expected to be fully

deployed and the probability of failure of these systems is high, saving

checkpoints on disk posses I/O bandwidth disadvantages. Diskless check-

pointing on the other hand suffers from redundancy problem. The authors

then proposed an N-level diskless checkpointing approach that reduces the

overhead that comes with tolerating simultaneous failure of less than N

processors. This is achieved by arranging in layers, the diskless check-

pointing strategies for a simultaneous failure of the processors. The algo-

rithm follows four steps: The first is the determination of when and which

level of checkpoint to execute; secondly, a consistent processor state is ob-

tained by proper coordination; thirdly, the local memory checkpoints are

obtained and lastly, these in memory checkpoints are encoded to particu-

lar checkpoint processes. The simulation results suggest that the method

is promising and that the impact of inexact checkpoint schedules on the

expected program execution is negligible especially if the checkpoint in-

tervals are close to exact. Other similar but earlier methods are discussed

32

2. Literature Review

in [124] [136] [22]. Most of the methods highlighted in this section are also

referred to as preventive checkpointing methods. One of the challenges

with this method is that it is difficult to prevent a process from receiving

application messages that could make the checkpoints inconsistent. An-

other problem is that computation is blocked during the checkpointing

thereby causing delay.

3. Hybrid Checkpointing Techniques

These techniques are a combination of two or more other checkpointing

techniques. The approaches are mostly improvements on the other tech-

niques or aimed at providing better checkpointing results.

Bouguerra et al. [11] proposed a method that utilises the relationship be-

tween failure prediction and proactive checkpointing in combination with

periodic checkpointing to reduce the effects of failure in the execution time

of parallel applications. The rationale behind this is that the use of proac-

tive checkpointing only is not sufficient enough to ensure a re-start of an

application from the scratch. However, a combination of these methods

can mitigate the effects and improves systems efficiency. In the approach,

a prototyped state-of-the-art failure prediction, fast proactive checkpoint-

ing and periodic checkpointing methods are developed. Furthermore, the

computing efficiency of the combined methods is captured using a mathe-

matical model to obtain the optimal checkpointing interval. The method is

evaluated by simulating the methods on large-scale supercomputer. Their

result demonstrated that computing efficiency could be improved by as

much as 30% using this method and mean time between failures (MTBF)

is improved by a factor of two.

Jangjaimon and Tzeng [71] developed an approach that aims at reduc-

ing the I/O bandwidth bottleneck to remote storage for checkpointing.

The method is an adaptive incremental checkpointing that lowers this

overhead by reducing the checkpoint files. This is done using delta com-

33

2. Literature Review

pression (where only the difference between current and previous file is

written) combined with Markov model to predict points at which con-

current checkpointing can be done. Their method is reported to reduce

applications turnaround time by about 40% when compare with static

periodic checkpointing.

2.3.2 Task Migration

In this, a task is migrated to another node that is immediately available [11]

when node failure is predicted to occur. Task migration eliminates cost associ-

ated with task restart in the face of node failure.

In a bid to avoid the disadvantages that arise with reactive fault tolerance, a

method that complements the reactive approach to fault tolerance with proac-

tive approach is proposed by Wang et al. [142] . Reactive fault tolerance

often suffers from lack of scalability due to I/O requirements; hence, it relies

on manual task resubmission whenever there is a node failure. The author’s

approach monitors the health information of nodes in order to perform earlier

task migration whenever a node begins to show signs of health deterioration.

They proposed a process-level live migration that supports continuous execu-

tion of the task without having to stop and restart again. The job migration

process is described as follows: The health monitoring mechanism is equipped

with sensors where different node properties are monitored. Such properties in-

clude: temperature data, fan speed and voltage. Upon deterioration of health of

a node, it alerts an MPI-based decentralised scheduler. The scheduler chooses a

replacement or destination node from the spare nodes. In the case of unavailable

spare node, one with less workload is chosen. After a node is selected, migration

of task is initiated; the memory snapshot of the process image is migrated to

the destination node. The migration is done until the MPI tasks or processes

are at globally consistent state. Finally, all communications with the MPI tasks

are reconnected from the migrated processes. With experiments performed on

a Linux cluster comprising of 17 compute nodes, the overheads associated with

34

2. Literature Review

the migration was assessed. The result shows that the overhead of live migra-

tion depends on the application and is higher than the execution time of normal

rollback approach. Other similar approaches are seen in [111], [108].

In order to realise reduced system response time, Gupta et al. [52] proposed

a method that adaptively schedules jobs and manages the resources based on

external input. The jobs can be migrated to more processors and can also be

shrunk based on the runtime conditions. Even though the approach focused on

shrinking or expanding scheduler triggered jobs, it can be adopted to move jobs

to safe nodes in the event of failure.

Munk et al. [98] recently proposed a concept that enable task-level migra-

tion in real time system many-core systems. It checks the viability of migrating

a certain task at runtime. The migration is then performed on resources in-

vestigated to be available only. They performed migration through a 3-step

procedure. The first is the decision phase, where, similar to [142], temperature

monitoring and task runtimes profiling information is performed to decide if

migration is necessary. In the case where it is necessary, a migration request

is generated with set of possible destinations. The second is the investigation

stage where the migration request is assessed. The possible destinations are

evaluated for memory availability to store the task, determine if the task can

be completed and when the migration task can best be performed. The third

stage is the execution. It is triggered at the decision stage where the task on

both the source and destination are activated.

The paper’s idea is good, however, it lacks the empirical demonstration of

the viability of the method.

2.4 Summary

In this chapter, we introduced a taxonomy of error detection and system re-

covery approaches for distributed computer systems. The chapter provided a

comprehensive survey of the various methods in the area. The technique we

35

2. Literature Review

present in this thesis is the first to exploit the use of event logs combine with

resource usage data for the task of error detection using an unsupervised ap-

proach.

Contributions of this chapter: The contributions of this chapter are

the provision of comprehensive survey of error detection and system recovery

techniques. To the best of our knowledge, it proposes the first taxonomy of the

methods in the field of fault tolerance.

Most of the techniques discussed in this survey utilise systems data like error

logs for performing detection. In the next chapter, we introduce the system and

the data we use in this thesis.

Relation to other chapters: This chapter explains the previous studies

upon which our approach is built. Hence it provides the fundamental literature

to other chapters. The next chapter explains the systems and fault models upon

which these techniques can be validated.

36

CHAPTER 3
System Description, Log Events And Fault Models

In this chapter, we detail the system model (Section 3.1) and the fault models

(Section 3.2). We also explain the production systems (Section 3.3.2) we used

and from which data is collected and we detail the structure of the log file data

(Section 3.4). A summary of the chapter is presented in Section 3.5 including

the chapter’s contributions and relationship to other chapters.

3.1 System Model

A cluster system contains a set of interconnected nodes. These nodes run jobs

that are allocated to them by a job scheduler. A node contains a set of produc-

tion times during which scheduled jobs are executed. The cluster system also

contains a set of software components (e.g. parallel file system) to support job

execution. All the components involved writes log entries to a container. This

is a typical model for most cluster systems like Cray, IBM Blue Gene/L, Ranger

etc.

Specifically, we consider a cluster system CS to consist of the following set

of entities: a set of K jobs, J1 . . . JK , a set of L nodes, N1 . . . NL, a set of

M production time-bins T1 . . . TM , a job scheduler JS and a set of software

components C. The job scheduler JS allocates nodes (and communication

paths among the nodes as required) and production times to each job. Each

node in the cluster system maintains (monotonically increases) its own clock,

and synchronization between the clocks of the nodes is assumed. Each job

Ji : 1 ≤ i ≤ K, node Nj : 1 ≤ j ≤ L, job scheduler JS and any other software

component may write messages to containers U1 . . . Un. Each node Nj and

job Ji may transfer data to and from a file system FS. We assume such a

37

3. System Description, Log Events And Fault Models

cluster system to be a black-box, i.e., access to software code is not permitted.

However, we assume that access to the message logs which contain the failure

events (written in containers U1 . . . Un by the jobs, nodes, job scheduler and any

software component) is permitted.

3.2 Fault Model

We detail the fault models proposed as it relates to the systems investigated in

this thesis.

3.2.1 Categories of Fault Model

In order to enhance and maintain system dependability, experts have been able

to identify certain activities that could occur in a computer system and could

potentially lead to failure. These identified activities are categorized to further

assist in enhancing a system’s fault tolerance. We explain some fault model

categories and their relations to error detection.

Design-Runtime Fault Model

This model classifies faults based on their origin. Faults that emanate as a

result of poor system design are regarded as design faults. Runtime faults on

the other hand occur during systems production stage. These faults do not

foster fault tolerance [6]. At the design stage, fault tolerance techniques are

used to minimise or eliminate (if possible) these flaws using some engineering

methods like system testing, formal specification etc. In situation where flaw-

free system could not be achieved, runtime faults are inevitable. Error detection

can detect such error patterns produced leading to the failure.

Permanent-Transient-Intermittent Fault Model

This model classification focuses on the duration of the faults. Permanent faults

characteristically remain active so long as repairs are not made. These are

38

3. System Description, Log Events And Fault Models

mostly damages to computer hardware. Transient faults occur temporarily and

disappear. This fault may not occur again; an example may be a communication

between node A and node B where a response to a request is not yet available at

that time, but upon a resend of the request, it might be available. Intermittent

faults are defects that occur due to system error and then disappear temporarily

and could appear again. For example, when there is a loose connection in a

system. This fault model is depicted in Figure 3.1, this structure is according

to Siewiorek and Swarz [123] and elaborated in [115]. It can represent both

hardware and software faults. For example, a software runtime fault can be a

result of a wrong design. In relation to error detection, all these faults produces

failure symptoms (error events); these event patterns or mis-behaviour can be

detected to further enhance failure prediction or other failure analyses.

 Physical

Defect

Wrong

System

Design

Unstable

Condition

Accident

Error

Permanent

Fault

Service Failure

Intermittent

Fault

Transient

Fault

Loose

Hardware

Connection

Figure 3.1: Permanent, Transient and Intermittent fault model

39

3. System Description, Log Events And Fault Models

Hardware-Software-Human Fault Model

This model classifies faults based on the design and the operation of faults. In

particular, the faults caused by hardware malfunction are called hardware faults,

similarly, application-related faults are classified as software faults. Those that

are the results of human activity are classified as human faults. Generally, all

these faults like others explained before, produces error events or patterns that

can depict such system misbehaviour. Error detection, which is a fault tolerance

technique, can be applied to identify these patterns early enough to enable

further proactive measures. In the case where error events are not produced, a

fault may go undetected until a full failure is experienced since there would be

no error patterns or signature for such failure.

Other Fault Models

Other fault models have been proposed; for example, the one by Gray and

Reuter [48]. It is a model that focuses on software faults only. It classifies bugs

based on how they are observed. Barborak et al. [8] characterises faults based

on their behaviour or impact. He showed that some fault becomes difficult to

detect at certain states, e.g. states where processing elements ceases to work.

3.2.2 Ranger and BlueGene/L Fault Models

As mentioned previously, a fault, when activated, could cause an error to exist

in the system. The resulting state is then said to be erroneous. If the error is not

detected and subsequently corrected, it can lead to a system failure [6]. When

errors exist in the system, the system outputs what we call error messages, and

the message part of the log entry captures the nature of the error in the system.

The errors we focused on in this work are those that can lead to system failure [6],

i.e., failure-inducing errors. A failure-inducing sequence consists of sequences of

log messages that end in failure. A failure is typically characterized differently

in different systems, for example, a failure in IBM BlueGene/L is characterized

40

3. System Description, Log Events And Fault Models

by the FAILURE or FATAL severity level while, in the Ranger Supercomputer,

the failures are mostly characterized by a compute node soft lockups messages.

A study of Ranger logs and the expert’s knowledge has shown that soft

lockups are some of the commonly occurring failures found in the Ranger su-

percomputer. Chuah et al. [23] has established that Machine Check Exceptions

(MCE) and Evict/RPC error events signals likely occurrence of soft lockup fail-

ure in the cluster system. MCE is a way the computer’s hardware reports about

an error that it cannot correct. It will cause the CPU to interrupt the current

program and call a special exception handler. Clusters’ mean time to failure de-

creases with increase in nodes, hence making the need for error correction high.

When the kernel logs an uncorrected hardware error, measures can be taken by

the cluster software to rectify the problem by, for example, re-running the job

on another node and/or reporting the failure to the administrator. Therefore,

detection of MCE faults makes it possible to predict failures early. Soft lockup

failure led by Evict/RPC Events are characterized by evict and recovery events.

Chuah et al [24] have verified these hypotheses using a correlation and regression

technique and obtained a high correlation between the MCE and Evict/RPC

events and the soft lockup failure. Other fault events characterizing soft lockup

failure include: memory access violation e.g. segmentation fault (segfault), net-

work errors, internal interrupt conditions etc [25]. However, the sole occurrence

of these faults may not necessarily lead to a failure, but rather a set of commu-

nicating components, each being affected by a fault can lead to system failure.

All these faults falls within the categories of fault model explained earlier in

Section 3.2.1.

3.3 Production Systems

Two production systems were studied in this research as case studies: the

Ranger supercomputer and the Blue Gene/L systems.

41

3. System Description, Log Events And Fault Models

3.3.1 Ranger Supercomputer

The Ranger supercomputer [60], the 15th ranked in the Top 500 supercomputer1

list, consists of 4,048 nodes of which 3,936 are compute nodes and 78 are Lustre

file system nodes. These nodes are connected via a high-speed Infiniband net-

work. Each node generates its own log messages which are all sent to central

logging system. Each node of a Ranger supercomputer runs a Linux Operating

System kernel. Also, each node maintains its synchronization clock and the Sun

Grid Engine powers its job scheduling process and resource management.

The Ranger supercomputer runs a Lustre file storage system. Lustre file-

system is an object-based high performance network file system that performs

excellently for high throughput I/O tasks. It is a widely utilised file system in

the supercomputing world. The file system is made up of:

• Meta-Data Server (MDS) that stores information like permissions, file

names, directories etc. The MDS equally manages file requests from Lustre

clients.

• Object Storage Server (OSS) which provides file I/O services. It also treats

network requests from lustre clients.

• Lustre clients: The Lustre clients include visualization nodes, computa-

tional nodes, login nodes running the lustre paving way for file system

monitoring.

The Ranger supercomputer runs TACC stats [59], an I/O performance mon-

itoring software. It monitors and records the resource usage/utilization by jobs

on each node. The software runs on each node and the data collected on each

of the nodes are logged centrally and synchronised.

3.3.2 The BlueGene/L (BGL) Supercomputer

The BlueGene/L deployed at Lawrence Livermore National Laboratory (LLNL),

is currently ranked 12th in the Top 500 supercomputers list with a speed of 4.293

1http://www.top500.org/lists/2015/06/

42

3. System Description, Log Events And Fault Models

Pflop/s.

It is made up of 128K PowerPC 440 700MHz processors, that are arranged

into 64 racks. Each rack is composed of 2 midplanes where the jobs are allocated

on each. A midplane, with 1024 processors, contains sixteen node cards where

the compute chips are contained, the input/output (I/O) cards that harbours

the I/O chips and switches (24) where different midplanes connects.

3.4 System Data

Data from Ranger and BlueGene/L supercomputer systems are used in this

research. This section explains the data in detail.

3.4.1 Ranger Event Logs

Most Linux-based cluster systems use the POSIX standard [1] for logging sys-

tem events. This standard allows the freedom of formatting logs, which means

that there are variations in different implementations. For example, different

attributes are used by IBM’s Blue Gene/L and Ranger to represent their com-

ponents. Two different event logs are collected form the Ranger supercomputer

system, they are: the syslog and the rationalized logs (ratlog).

syslog

An example of a Syslogs’ event can be seen below:

Apr 4 15:58:38 mds5 kernel: LustreError: 138-a: work-MDT0000: A client on

nid .*.*.5@o2ib was evicted due to a lock blocking callback to .*.*.5@o2ib timed

out: rc -107

A Ranger syslog event (or log entry) has five attributes, namely: (i) Times-

tamp (Apr 4 15:58:38) containing the month, date, hour, minute and seconds

at which the error event was logged. (ii) Node Identifier or Node Id (mds5)

identifies the nodes from which the event is logged. (iii) Protocol Identifier

(kernel) (iv) Application (LustreError) provides information about the source

of the log entry, and (v) Message (A client on nid *.*.*.5@o2ib was evicted due

43

3. System Description, Log Events And Fault Models

1: Mar 29 10:00:44 i128-401 kernel: [8965057.845375] LustreError: 11-0: an error

occurred while communicating with *.*.*.36@o2ib. The ost_write operation failed with

-122

2: Mar 29 10:00:53 i128-401 kernel: [8965077.319555] LustreError: 11-0: an error

occurred while communicating with *.*.*.28@o2ib. The ost_write operation failed with

-122

3: Mar 29 11:27:16 i182-211 kernel: [8981960.031578] a.out[867]: segfault at

0000000000000000 rip 0000003351c5b2a6 rsp 00007fffdcd318c0 error 4

4: Mar 29 11:27:16 i115-209 kernel: [2073150.255467] a.out[22921]: segfault at

0000000000000000 rip 0000003ad725b2a6 rsp 00007fffbf1a6d40 error 4

5: Mar 30 10:02:24 i107-308 kernel: [8966098.630066] BUG: Spurious soft lockup

detected on CPU#8, pid:4242, uid:0, comm:ldlm_bl_22

6: Mar 30 10:02:24 i107-308 kernel: [8966098.642055] BUG: Spurious soft lockup

detected on CPU#8, pid, uid:0, comm:ldlm_bl_22

7: Mar 30 10:09:25 i107-111 kernel: [8966563.203631] Machine check events logged

8: Mar 30 10:09:51 i124-402 kernel: [8965663.148499] Machine check events logged

9: Mar 30 10:10:22 master kernel: LustreError:

28400:0:(quota_ctl.c:288:client_quota_ctl()) ptlrpc_queue_wait failed, rc: -3

10: Apr 1 05:23:54 i181-409 kernel: [9203054.301173] Machine check events logged

11: Apr 1 05:23:58 visbig kernel: EDAC k8 MC0: general bus error: participating

processor(local node response), time-out(no timeout) memory transaction type(generic

read), mem or i/o(mem access), cache level generic)

Figure 3.2: Sample Log events for Ranger Supercomputer (syslog)

to a lock blocking callback to *.*.*.5@o2ib timed out: rc -107) provides more

information regarding the system event and contains alphanumeric words and

English-only words sequence. The English-only words sequence (A client on nid

was evicted due to a lock blocking callback to timed out) is believed to give an

insight into the error that has occurred. They are referred to as Constant. The

alpha-numeric tokens (*.*.*.5@o2ib ,rc-107) also called Variable, are believed

to signify the interacting components within the cluster system. A detailed

example of the Ranger logs is seen in Figure 3.2.

Rationalized logs

Rationalized logs [60] are similar to syslog, however, they contain an additional

field which differentiates them from syslog. This additional information which

is aimed at improving the effectiveness of log-based analysis and fault manage-

ment, adds structure to the POSIX logs. A job-id field is an additional structure

that contains a numeric number assigned to each running job. Other fields are

similar to that of the syslog.

Message logs are mostly regarded as the only means and sources of infor-

mation regarding the workings of a cluster system. It is used as the system

44

3. System Description, Log Events And Fault Models

administrator’s map to diagnosing faults in cluster systems. As the complexity

of a system grows, so does the number of log entries, making the task of the sys-

tem administrators increasingly complex to nearly impossible when faced with

really large log files. The challenge with log data is that they are generally un-

structured, often incomplete, with poor semantics and, most times, they have

no particular message structure. Thus, we process our data by formatting it

into a structure that is uniform and can give us the necessary information we

need for our analysis. A careful investigation of the log entries showed that

there is a pattern of occurrence of events before a failure.

A summary of the logs used in this research is seen in Table 3.1.

Table 3.1: Summary of Logs used from Production Systems
System Log Size Messages Start Date End Date
Ranger’s syslog 5.6 GB > 2× 107 2010-03-30 2010-08-30

Ranger’s ratlog
4.3 GB > 2× 107 2011-08-01 2012-01-30
1.2 GB > 107 2012-03-01 2012-03-30

Ranger Usage Data 52 GB 2012-03-01 2012-03-30
IBM’s Blue Gene/L 730 MB 4,747,963 2005-06-03 2006-01-04

3.4.2 Ranger Resource Usage Data

Resource usage data are collected by TACC stats [59] at Texas Advanced Com-

puting Center (TACC). Basically, it is a job-oriented and logically structured

version of the conventional Sysstat system performance monitor. TACC stats

records the hardware performance monitoring data, Lustre file-system opera-

tion counts and InfiniBand device usage. The resource usage data collector

is executed on every node and is mostly executed both at the beginning and

end of a job via the batch scheduler or periodically via cron. The collection

of resource use data requires no cooperation from the job owner and requires

minimal overhead.

Each stats file is self-explanatory and it contains a multi-line header, a

schema descriptor and one or more record groups. Each stats file is identi-

fied by a header which contains the version of TACC stats, the name of the

45

3. System Description, Log Events And Fault Models

host and its uptime in seconds. An example of a stats file header is shown, for

clarity:

$tacc_stats 1.0.2

$hostname i101-101.ranger.tacc.utexas.edu

$uname Linux x86_64 2.6.18-194.32.1.el5

_TACC #18 SMP

Mon Mar 14 22:24:19 CDT 2011

$uptime 4753669

A schema descriptor for Lustre network usage parameters is seen below:

!lnet tx_msgs,E rx_msgs,E rx_msgs_dropped,

E tx_bytes,E,U=B rx_bytes E,U=B ...

lnet - 90604803 95213763 1068

808972316287 4589346402748 ...

A schema descriptor has the character ! followed by the type, and followed

by a space separated list of elements or counters. Each counter consists of

a key name such as tx msgs which is followed by a comma-separated list of

options. These options include: (1) E meaning that the counter is an event

counter, (2) C signifying that the value is a control register and not a counter,

(3) W =< BITS > means that the counter is < BITS > wide (32-bits or

64-bits), and (4) U =< STR > signifying that the value is in units specified by

< STR > (e.g.: U=B where B stands for Bytes.). From the schema descriptor

above, lnet - 90604802 gives records of the number of messages transmitted in

the Lustre network.

TACC stats is open sourced and can be downloaded2 and installed on Linux-

based clusters. A list of the counters is shown in Table 3.2.

2https://github.com/TACC/tacc stats

46

3. System Description, Log Events And Fault Models

Table 3.2: List of 96 Elements of Resource Usage Data
Type Element Quantity

Lustre
/work

read bytes, write bytes, direct read,
direct write, dirty pages hits,
dirty pages misses, ioctl, open, close,
mmap, seek, fsync, setattr, truncate,
flock, getattr, statfs,alloc node, setxattr,
getxattr, listxattr, removexattr,
inode permission

23

Lustre
/share

read bytes, write bytes, direct read,
direct write, dirty pages hits,
dirty pages misses, ioctl, open, close,
mmap, seek, fsync, setattr, truncate,
flock, getattr, statfs, alloc node, setxattr,
getxattr, listxattr, removexattr,
inode permission

23

Lustre
/scratch

read bytes, write bytes, direct read,
direct write, dirty pages hits,
dirty pages misses, ioctl, open, close,
mmap, seek, fsync, setattr, truncate,
flock, getattr, statfs, alloc node, setxattr,
getxattr, listxattr, removexattr,
inode permission

23

Lustre
/network

tx msgs, rx msgs, rx msgs dropped,
tx bytes, rx bytes, rx bytes dropped

6

Virtual
memory

pgpgin, pgpgout, pswpin, pswpout,
pgalloc normal, pgfree, pgactivate,
pgdeactivate, pgfault,
pgmajfault pgrefill normal,
pgsteal normal, pgscan kswapd normal,
pgscan direct normal, pginodesteal,
slabs scanned,kswapd steal,
kswapd inodesteal,
pageoutrun, allocstall pgrotated

21

3.4.3 BlueGene/L Events logs

The IBM standard for Reliability, Availability, Serviceability (RAS) logs incor-

porates more attributes for specifying event types, severity of the events, job-id

and the location of the event [88, 89]. The RAS events are logged through the

Machine Monitoring and Control System (CMCS) and saved in a DB2 database

engine. The time granularity for which events are logged is less than 1 millisec-

ond. An example of IBM’s Blue Gene/L (BGL) event is seen in Table 3.3.

47

3. System Description, Log Events And Fault Models

Table 3.3: An example of event from Blue Gene/L RAS log

Rec ID
Event
type

Facility Severity Event Time Location Entry Data

17838 RAS KERNEL INFO
2005-06-03-15
.42.50.363779

R02-M1-N0
-C:J12-U11

instruction
cache parity
error corrected

The RAS events recorded by IBM BlueGene/L CMCS each has the following

attributes:

• REC ID is a sequential number given to each event (incrementally) as

they are reported.

• EVENT TYPE specifies the logging method of the events which are more

of reliability, availability and serviceability (RAS).

• FACILITY indicates the component where the event is flagged. This

may be LINKCARD (problems with midplane switches), APP (flagged

with applications), KERNEL(reported by the operating system), HARD-

WARE (facility related to system’s hardware workings), DISCOVERY (re-

lates initial configuration of the machine and resource discovery), CMCS,

BGLMASTER, SERV NET (all reports events of the CMCS, network and

BGLMASTER), and finally MONITOR facility (which are indicative of

connection, temperature issues of the cards; they are mostly FAILURE

events).

• SEVERITY can be one of these levels: INFO, WARNING, SEVERE,

ERROR, FATAL or FAILURE in increasing order of severity. Regarding

the reliability of the system, INFO events provide more information which

are normal reports. WARNING events are usually related to dysfunctional

cards. SEVERE events provide detailed information about the cards that

are dysfunctional. ERROR events report persistent problems and their

causes. FATAL and FAILURE events indicate more severe conditions

that lead to application or software crashes. Unlike the last two, the first

four severity levels are more of normal information and largely not severe.

48

3. System Description, Log Events And Fault Models

• EVENT TIME is the time stamp for a particular event.

• JOB ID indicates the jobs that detects this event.

• LOCATION denotes where (nodes, cards) an error event occur.

• ENTRY DATA provides a description of the event reported.

3.4.4 Definition of Terms

In this section, basic definition of terms used regarding the event logs used is

provided.

• Event: A single line of text containing various system fields such as

〈timestamp, nodeID, protocol, application〉 together with a log 〈message〉.

The message reports the activity of the cluster system at time captured

by 〈timestamp〉. Such an event is also often called a log entry. Whenever

we refer to the message part of a log entry, we refer to this as the log

message.

• Event logs: A sequence of events containing the activities that occur

within a cluster system.

• Similar events: These are events with similar log messages, based on

some notion of similarity. For example, from Figure 3.2, events 5 and 6

can be considered similar.

• Identical events: These are events believed to be exactly the same

and/or are produced by the same “print” statement, e.g., events 7 and

8 in Figure 3.2.

• Failure event: This is an event that is often associated with and/or

indicative of a system failure.

• Event sequence: A eventsequence consists of one or more events logged

consecutively within a given time period, in order of increasing times-

49

3. System Description, Log Events And Fault Models

tamp. In this paper, we use the terms sequences, patterns and behaviours

interchangeably.

3.5 Summary

In this chapter, we explained the systems studied in this thesis. We provided de-

tails of the data used for error detection in this chapter; event logs and resource

usage data from productions systems were also explained. We also detailed the

fault models of the systems.

Relation to other chapters: The work in other chapters basically hinges

on the fault, failures and the error events explained in this chapter. The method-

ologies proposed in subsequent chapters for error detection make use of the

system and its data explained in this chapter for verification.

50

CHAPTER 4
Error Detection Using Clustering

Event logs are massive files, containing thousands of entries that are reported

within small time intervals. The sheer number of entries makes proper analysis

difficult. The difficulty of the task is compounded by the fact that a large

number of events contained in the log contribute nothing to any meaningful

analysis of the system. The need for preprocessing these logs for any meaningful

and fast analysis cannot be over emphasized.

This chapter detailed our contribution towards preprocessing these logs to

enhance detection and/or eventual prediction of failures. We explain a proposed

failure sequence detection method in this chapter.

4.1 Introduction

Unscheduled downtime of large production computer systems, such as supercom-

puters or computer cluster systems, carries huge costs: (i) applications running

on them have to be executed again, potentially requiring hours of re-execution,

and (ii) a lot of effort is required to find and fix the causes of the downtime.

These systems typically generate a lot of data, in the form of system logs, and

these log files represent the main avenue by which system administrators gain

insight into the behaviour of such computer systems [104]. To enhance the

availability of such large distributed systems, the ability to detect errors1 is

important. However, this is a challenging task, given the size and scale of such

systems. Typically system administrators will resort to accessing log files for

error detection.

1An error is the symptom of a fault in the system [6].

51

4. Error Detection Using Clustering

4.1.1 Log Size and Structure

However, due to the size of such data files and the complexity of such sys-

tems, system administrators usually adopt a divide and conquer approach to

analysing the data. An individual line of the system log may not impart much

information to a system administrator due to the lack of context to sufficiently

characterize a message. At the other end of the spectrum, huge log dumps with

interleaved node outputs make it difficult for system administrators to capture

the communication relations among nodes. Researchers have adopted the no-

tion of node hours, which represents all the messages a given node generates in

a given hour [106], to achieve a tractable structure. In any case, a line in the

log file will either be normal, capturing a normal event occurring in the system

or faulty, capturing erroneous behaviour in the system.

Further, recovery in such systems, e.g., checkpointing, are typically compu-

tationally expensive, requiring that these steps are taken if there is a possible

impending failure of the system.

4.1.2 Errors and Failures

Typically, only a proportion of event logs that are errors will lead to system

failures. As such, system designers wish to focus on such errors, which we

term as failure inducing errors2. The presence of an error in the system can be

inferred when faulty events can be observed: failure prediction allows system

administrators to take remedial steps earlier, e.g. by rebooting a node [103].

Several approaches have addressed the problem of error or alert detection such

as [103, 106] or finding the presence of errors in message logs [129]. These

approaches use labelled node hours in conjunction with supervised learning to

predict whether a given node hour contains an alert or fault. Labelling of the

data is usually done manually by experts, which is a very expensive process,

requiring highly specialist knowledge. Therefore, such analysis techniques are

2Henceforth, whenever we say error detection, we mean failure-inducing error detection.
Since the aim is to detect failure-inducing errors.

52

4. Error Detection Using Clustering

invariably expensive due to the size and nature of the log files being processed.

4.1.3 Event Logs Redundancy

The event logs are unstructured and highly redundant, i.e. several lines can be

related to a single event in the system as earlier explained above.

To address the redundancy problem, the logs are typically filtered, or pre-

processed, to retain only those events that are most relevant to the log analysis.

Since these log files are highly redundant, a high filtering rate will significantly

reduce the size of the file, thereby reducing the computation time of the log

analysis process. The filtering or compression techniques (we use both inter-

changeably), are used to remove events that are not deemed useful for analysis.

A common problem with such compression techniques is that they may remove

important information that is pertinent to the analysis phase, as captured by

the targeted high compression or filtering rate [154].

Overall, typical log analysis techniques currently apply a filtering phase to

remove redundancy in the labelled log files. The compressed annotated log files

are then analyzed according to system requirements.

4.1.4 Objectives of the Chapter

This chapter of the thesis seek to achieve the following objectives:

• Propose a method for preprocessing the large logs to reduce it to a manage-

able size without filtering out important events. Particularly, the chapter

seek to detail a novel and generic approach to log filtering that not only

filters redundant events but also preserve events that are not similar but

causality related. This is to preserve event patterns that serve as precursor

to failures. At this filtering stage, timestamps and node ids of the events

becomes crucial.

• Propose an unsupervised approach that eschew fault labeling (as it is com-

putationally expensive to label the data) to detect failure-inducing or er-

53

4. Error Detection Using Clustering

roneous patterns among the unlabeled log message sequences that lead to

system failures.

This chapter is structured as follows: In Section 4.2 the problem addressed

in the chapter is outlined. Sections 4.3, 4.4 and 4.5 respectively include our

methodology for filtering the event logs, transforming the logs into matrix form

and failure pattern detection. In Sections 4.6 and 4.7, we respectively explain the

experimentation methods and discuss the results obtained when applying our

methodology to log data from production systems. We summarise the chapter’s

work in Section 4.8.

4.2 Problem Statement and Methodology Overview

A cluster log contains an interleaving of normal and error messages. When

there is no error in the system, only sequences of normal messages are output.

However, when one or more jobs are affected by errors, these components output

error messages, that are logged. As previously argued, not all (combination of)

errors lead to system failures. Therefore, it becomes important to identify such

sequences that are likely to result in system failures.

Observation of such sequences may then become a precursor to an impend-

ing failure, upon which recovery mechanisms can be built. However, the size

and complexity of such systems, the nature of the log messages (varying accord-

ing to the operating system, networks, file systems), the timing and frequency

of occurrences of these error messages make it difficult to accurately capture

behaviours which are precursors to system failures. Specifically, error detection

is difficult as there are several interactions among system attributes that one

would need to consider to accurately capture failure-inducing behaviours.

We now specify three requirements for a log analysis methodology for error

detection: the methodology needs to (i) have a low computational overhead and

(ii) have a high accuracy for error detection, while minimising the number of

false positives.

54

4. Error Detection Using Clustering

For the first requirement, our approach reduces the number of unique events

under consideration by grouping similar ones together, assigning these events

a unique id, marking them as the same event and using this information to

prune the log data. For the second requirement, we eschew labelling the data

with error or failure information, due to the high overhead associated with such

techniques3. We thus focus on unsupervised learning methods, which constitute

a novel approach to this problem.

Thus, the problem we tackle in this chapter is the following: Given an error

log file E that consists of a sequence of messages m1 . . .mN , where N is the

total number of lines in the log file, a time window τ over the message sequences

such that there is no more than a single failure during τ , we seek to develop

a methodology that identifies failure-inducing patterns. Some of the challenges

are: (i) similar message sequences may end up with different outcomes as there

is a successful recovery in one of the sequence, (ii) two sequences may be similar

in terms of the set of messages output but follow different temporal patterns.An

overview of the steps taken to solve these challenges is shown in Figure 4.1.

The methodology consists of 3 main steps: (i) the first step is to transform

the log data into a suitable format for data analysis, (ii) the second step purges

redundant log messages to enable efficient analysis and (iii) the final step de-

tects failure-inducing patterns through an unsupervised learning approach. An

example of redundant event logs is seen in the sample event sequence shown in

Figure 3.2. It contain messages (e.g., log events 1 and 2 or log events 7 and

8) that can be classified as redundant. Such redundant messages only distort

failure patterns [117]. Hence, logs need to be preprocessed to remove the redun-

dant events while keeping the relevant ones. Finally, we apply an unsupervised

learning technique can be used to detect errors in the log files. We detail each

step in the next few sections.

3Observe that we do label the data with id information for the first requirement. We label
the data only to keep the runtime low and do not add labels that require expert knowledge.

55

4. Error Detection Using Clustering

Pre-processing

Event ID Time-stamp Node

Identifier

Message

LEO 1269856844 i128-401 LustreError: error occurred while communicating with 129.114.97.36@o2ib. The ost_write

operation failed with

SEGF 1269862036 i182-211 segfault at rip rsp error

SSL 1269943344 i107-308 BUG: Spurious soft lockup detected on CPU, pid:4242, uid:0, comm:ldlm_bl_22

MCE 1269943765 i107-111 Machine check events logged

CQF 1269943822 master client quota ctl ptlrpc queue wait failed,

MCE 1270099434 i181-409 Machine check events logged

GBE 1270099438 visbig general bus error: participating processor local node response, time-out no timeout memory

transaction type generic read, mem or io mem access cache level generic

Tokenize/parsing

Message Extraction

 Event Unique ID Assignment

Removing Redundant Events (Filtering)

 Create Sequence/ Episodes, fi

 20mins 40mins . . . 120mins

f1 . . .

f2 . . .

. . . .

.

fn . . .

 Communication

error

 Communication

 Communication

 Communication

 Communication

 Communication

 Communication

 Communication

 Communication

Data Transformation

Raw Event Logs

Sequence Clustering / Detection

Failure Pattern Detection

Clustering

Term – Frequency Matrix

Figure 4.1: Methodology Work flow showing the steps taken to achieve the
objectives

4.3 Preprocessing

This section detail our approach for filtering redundant logs and the normal

approaches usually done for filtering. It first explains the general preprocessing

steps done in log analysis.

4.3.1 Log Events Preprocessing

We detail the steps that are most important in processing the log files into a

format suitable for analysis.

56

4. Error Detection Using Clustering

Tokenization and Parsing

This phase involves parsing the logs to obtain the event types and event at-

tributes, using simple rules. Tokens that carry no useful information for analy-

sis are removed. For example, numeric-only tokens are removed but attributes

(alpha-numeric tokens) and the message types (English-like only terms) are

kept. Also, fields like protocol identifier and application are removed or omitted

during the parsing and tokenizing phase.

The message part contains English words, numeric and alphanumeric tokens.

The English tokens provide information pertaining to the state of the system

and contribute to meaningful patterns. The alphanumeric tokens capture the

interacting components or software functions involved. These interacting com-

ponents, which do not occur frequently and show less or no pattern, are also

important since we are interested in interacting nodes of the cluster system. On

the other hand, the numeric only tokens are removed as they only add noise.

Time Conversion

An event in a cluster system is logged with the time at which the event occurred.

The timestamps are very useful for any meaningful log analysis or time series

analysis. However, the time format reported is not readily suitable for manip-

ulation purposes, e.g. matrix manipulation. In the Ranger logs, for example,

a reported timestamp 2010 Mar 31 15:56:57 is for an event that occurred at

15th hour, 56th minute and 57th second on March 31, 2010. We then convert

this to the epoch timestamp format which gives a value of 1270051017 for the

above timestamp, which can then be easily manipulated. The Unix epoch (or

Unix time or POSIX time or Unix timestamp) is the number of seconds that

have elapsed since January 1, 1970 (midnight UTC/GMT)

57

4. Error Detection Using Clustering

4.3.2 Log Compression: Removing Redundant Events

This section explains our log compression or filtering approach, where redundant

log events are removed. In the first step, we process the events such that similar

events are assigned the same unique id. Then, we remove those ids that are not

relevant in the sequence.

Obtaining Unique Events

One way of developing a technique with low runtime is to reduce the amount

of data to be analyzed, whilst keeping the relevant ones. Our proposed way of

achieving this is to develop an approach whereby events that are very similar to

each other or deemed identical are assigned the same id and, hence, redundant

events are then purged from the log file.

There are sets of events whose messages may be syntactically different (resp.

similar) but semantically similar (resp. different), making it challenging to

accurately capture the similarity of messages. However, the intuition that is used

here to support the identification of similar messages (with similar meaning) is

as follows: if two sentences (i.e. word sequences) are very closely related in

the order of the words, then it is very likely that they will have very similar

meaning. Thus, to identify similar events, we first extract the log messages of

the events, we then define an appropriate distance metric between two messages

to capture their similarity based on the word sequence. We also require the

notion of distance threshold to bound the distance between two messages that

are considered similar. We use the Levenshtein distance as a metric of sequence

similarity.

Levenshtein Distance (or Edit distance): We make use of Levenshtein

Distance (LD) [85] metric to capture the between two messages, LD is equally

defined on pairs of strings based on edit operations (i.e., insertion, deletion or

substitutions) on the characters of the strings. Hence, the Levenshtein distance

between two strings s1 and s2 is the number of operations required to transform

s2 into s1 or vice versa, as it is symmetric, assuming all operations count the

58

4. Error Detection Using Clustering

same. LD is an effective and widely used string comparison approach. Since

we have messages, we extend LD to words and define it as follows: It is defined

based on edit operations (i.e. insertion, deletion or substitutions) on the words

of the messages. LD is found to be more suitable here than cosine similarity

metric, since the latter is a vector-based similarity measure.

From the sample logs of Figure 3.2, it can be observed that it is necessary for

any similarity metric used to consider the order of the terms in the log messages

to obtain a meaningful result. For example, the log messages ...error occurred

while communicating with... and ...Communication error occurred on... may

appear similar but may be semantically different. A similarity metric that does

not take order of terms into consideration (i.e., a metric considering a sentence

as a set of words) will cluster these events together, i.e., these events will be

seen as similar, because they have similar terms. To address this challenge,

we use the Levenshtein distance on terms, without transposition, taking term

order into consideration. Also, defining this metric based on terms reduces

the computational cost incurred, as opposed to when it is defined on string

characters.

We thus propose an algorithm (see Algorithm 1) that uses LD to first find

the similarity between log messages and then group similar events based on

similarity value. Then, events in the same cluster are indexed with the same id.

Finally, to bound the similarity of events, we define a similarity threshold,

with the lesser the number of edits, the higher the similarity. Hence, we define

the threshold such that, when the edit distance between a pair of messages is

less than or equal to the threshold, λ, (hence highly similar), these events are

regarded as similar and hence clustered together.

Event Similarity Threshold: As argued previously, two different messages

are likely to have a similar meaning if they differ in very few places only. Using

an iterative approach [61], we start with a small value of similarity threshold,

λ, then increase the value in small increments and monitor the output, until

a satisfactory similarity value is obtained using the log data. At this point,

59

4. Error Detection Using Clustering

we observed that similar events are indeed grouped together. For a very small

similarity threshold (i.e., 0 or 1), only messages that are exactly similar are

clustered together. At the other end of the spectrum, a high value of λ will

result in messages with different meanings (and structure) to be grouped as

similar. After using an incremental technique, a threshold of 2 was chosen, i.e,

λ = 2.

We now propose an algorithm (Algorithm 1) that groups together similar

messages, according to the LD distance, and labels them with the same id. The

algorithm proceeds as follows: In the first step, it groups together messages with

the same number of tokens, i.e., messages of the same length. This is because

event messages with same token length are more likely to have been produced

by same printf statement or from same node and reporting similar happening.

Another reason is that we are not looking at the semantic meaning of the event

messages (which will involve natural language processing techniques), but the

events that similar in terms what produces them. Subsequently, the following

step goes through each group and partitions them into smaller groups based on

LD. An example of the output of Algorithm 1 is shown in Figure 4.2.

Algorithm 1 An algorithm for grouping similar events

1: procedure GroupSimilarEvents(log events e1, ..., en, Min Similarity
Threshold, λ)

2: for all log events ei, i = 1 . . . n do
3: group events based on their token length
4: end for
5: for each group g do
6: for each pair of message (mi,mj) in g do
7: if LD(mi,mj) <= λ then
8: group mi and mj together
9: end if

10: end for
11: end for
12: assign a unique id to each group
13: Return() {outputs log events with their cluster ID}
14: end procedure

These logs still contain redundant events, for example, events 5 & 6 (please

observe that events 5 and 6 are clustered together, though being slightly dif-

60

4. Error Detection Using Clustering

 Event ID Time-stamp Node

Identifier

Message

1 LEO 1269856844 i128-401 LustreError: error occurred while communicating with

129.114.97.36@o2ib. The ost_write operation failed with

2 LEO 1269856853 i128-401 LustreError: error occurred while communicating with

129.114.97.36@o2ib. The ost_write operation failed with

3 SEGF 1269862036 i182-211 segfault at rip rsp error

4 SEGF 1269862036 i115-209 segfault at rip rsp error

5 SSL 1269943344 i107-308 BUG: Spurious soft lockup detected on CPU, pid:4242,

uid:0, comm:ldlm_bl_22

6 SSL 1269943344 i107-308 BUG: soft lockup detected on CPU, pid:21851, uid:0,

comm:ldlm_bl_13

7 MCE 1269943765 i107-111 Machine check events logged

8 MCE 1269943791 i124-402 Machine check events logged

9 CQF 1269943822 master client quota ctl ptlrpc queue wait failed,

10 MCE 1270099434 i181-409 Machine check events logged

11 GBE 1270099438 visbig general bus error: participating processor local node

response, time-out no timeout memory transaction type

generic read, mem or io mem access cache level generic

Figure 4.2: Sample pre-processed logs of Figure 3.2

ferent, and are indexed using the same id). This necessitated next section

(removing redundant events).

Removing Redundant Events

According to Iyer and Rosetti [68], the occurrence of similar or identical events

within a small time window is likely caused by the same error, thus, these

messages are potentially related as they could point to the same root-cause.

This means that not all of these events are needed during analysis since they

are redundant. Therefore, removing these redundant messages may prove to be

beneficial to the analysis stage. In filtering of redundant log events, we consider

events in a sequence having the following properties:

• Similar events that are reported in sequence by the same node within a

small time window are redundant. This is because nodes can log several

similar messages that are triggered by the same fault, e.g., events 5 and 6

of Figure 4.2.

• Similar events that are reported by different nodes in a sequence and

within a defined time window are redundant. This could be triggered by

61

4. Error Detection Using Clustering

the same fault resulting in similar mis-behaviour by those affected cluster

nodes.

• Identical events occurring in sequence (consecutively) and within a defined

small time window are redundant.

Normal filtering will keep the first event in a sequence of similar events and

remove the rest [154]. It is pertinent to note that it is also possible for error

messages logged by different nodes within close time intervals to be caused by

different faults, while some events are causally-related (emanate as a result of

the same fault). In this work we do not discard such events. The process of

identifying and grouping the error events exhibiting the above properties is done

using a combination of both tupling and time grouping heuristics [61]. We define

some heuristics that capture the properties outlined above.

Normal Filtering

Filtering or compression is a process used to reduce the complexities associated

with log analysis. It is generally agreed that filtering or pre-processing logs is an

important process [88, 154]. The process eliminates redundant events from logs,

thereby reducing the initial huge size of the logs. This however, must avoid the

purging of useful events or event patterns that are important for failure pattern

detection. In normal log filtering [88], events that repeats within certain time

window are removed, only the first event is kept. This simple log filtering we

refer to here as normal filtering. Normal filtering however, can remove fault

events that are relevant for analyzing causal correlations among events. On the

other hand, Zheng et al. [154] proposed an approach that can filter causally-

related events or what they termed as semantic redundancy. Their approach can

preserve useful patterns and has been shown to be better than normal filtering.

However, their approach is log-specific. It is dependent on the fact that logs must

be labelled with severity information. The approach would not work on logs

without severity information and hence cannot be generalized as most logs are

not pre-labelled with severity information. As a matter of contrast, we propose

62

4. Error Detection Using Clustering

an approach that workS on any log with or without severity information.

Job-id based Filtering

With careful observation of the logs and through experts’ input, we realised

that achieving a high compression rate while preserving patterns is important

and dependent on how informative a given log is. For example, Ranger’s Ratlogs

events are labelled with more information regarding the nodes and jobs involved,

providing a richer description of an event. The Job-id field in logs indicates a

particular job that detects the reported event. The job-ids, when correlated with

failure events, tell us which jobs are the likely source of the failure. This implies

that identical job-ids present in different events within the same sequence would

likely have high correlation with the failure that is eventually experienced [24].

In order to achieve high event compression accuracy (ability to keep unique

events) and completeness (remove redundant events), we propose a filtering

approach that removes redundant events or events that are related based on

sources, similarity and time of occurrence.

Specifically, given two events e1 and e2, with times of occurrence Te1 and

Te2 respectively, these are causally-related or emanate as a result of the same

faults, and are hence redundant, if:

• nodeid(e1) == nodeid(e2) && jobid(e1) == jobid(e2) && |Te1 − Te2|

≤ tw && sim(e1, e2) ≥ λ,

where sim(.) is the similarity given by LD, λ is the similarity threshold, tw

is the time window for which events e1 and e2 are similar and can be filtered.

Table 4.3 depicts a sample filtered logs with redundant events removed.

4.4 Data Transformation

This involves translating the processed (filtered) data into a format that can

capture sequences of events into a matrix that can be readily used by any

analysis algorithm.

63

4. Error Detection Using Clustering

Event ID Time-stamp Node

Identifier

Message

LEO 1269856844 i128-401 LustreError: error occurred while communicating with

129.114.97.36@o2ib. The ost_write operation failed with

SEGF 1269862036 i182-211 segfault at rip rsp error

SSL 1269943344 i107-308 BUG: Spurious soft lockup detected on CPU, pid:4242,

uid:0, comm:ldlm_bl_22

MCE 1269943765 i107-111 Machine check events logged

CQF 1269943822 master client quota ctl ptlrpc queue wait failed,

MCE 1270099434 i181-409 Machine check events logged

GBE 1270099438 visbig general bus error: participating processor local node

response, time-out no timeout memory transaction type

generic read, mem or io mem access cache level generic

Figure 4.3: Sample preprocessed event logs (syslog) with redundant event re-
moved

Event Sequences

Consider the sequence of events e1, e2, . . . , en in Figure 4.4. Assuming that

events ek, ek+j are failure events; we define the time window, tw for failure ek+j

as the period between events at times, say, `−τ and `, where the event at time `

is the failure event (ek+j) under consideration and time `− τ < τ < `, is time of

an event which occurs before the failure event at time `, which is event e3. The

sets of events within this period make the failure episode [24], where an event

sequence or pattern can be a subset of the failure pattern. So failure sequence

Fj includes all events up to that point, at time `.

e1 e2 e3 . . . ek ek+1 . . . ek+j . . . en

Fi

time

Fj

Time window

Figure 4.4: Event logs sequence

Feature Creation

Events within sequences are believed to generate empirical probability distri-

bution implying relative probability of occurrence of each event within a se-

64

4. Error Detection Using Clustering

K =


F1t1 F2t1 . . . FN t1
F1t2
.
.
.

F1tM F2tM . . . FN tM


Figure 4.5: Data matrix K of N sequences, where Fjti is the number of counts
of message term ti in sequence Fj .

quence [26]. In other words, the frequency of message types captures events

distribution or observation and its changes within patterns. This informed our

decision to utilise the message term-frequency transformation. More specifi-

cally, the messages from each sequence are transformed into a term - frequency

matrix (see Figure 4.5). The rows of the matrix represents the different terms

while the columns are the sequences. A failure sequence consists of events that

precede the failure event within a given time window.

Hence, given N sequences extracted within a time window, then the matrix

K, for this will contain M rows of message terms and N columns of sequences,

as shown in the matrix of Figure 4.5.

Matrix Normalization: The term weights or cumulative frequency across

sequences are normalized to a value within 0 and 1. This enables easy handling

and interpretation of the data and reduce sensitivity towards high variance data.

The frequencies are normalised by the formula in Equation 4.1.

nt(i) =
wt(Fi)

N∑
j=1

wt(Fj)

(4.1)

where nt is the normalized message term, wt(Fi) is the count of message term

t of sequence Fi. It is divided by the sum of the count of term t across all

sequences; hence, each column forms a probability distribution. For the sake

of simplicity, we represent these column vectors (or sequences) as F1, ..., FN

subsequently in our clustering algorithm and the columns are the inputs.

65

4. Error Detection Using Clustering

4.5 Sequence Clustering and Detection

4.5.1 Clustering

Given a set K = [Fi . . . FN], ofN input entries (columns), where Fi = {Fit1, Fit2, ..., FitM},

then each input is either a normal event pattern or faulty one. Groups of se-

quences or patterns that exhibit similar characteristics due to the presence of

similar faults generating similar message types within a sequence or pattern can

be identified through clustering. Hence, in order to group such similar sequences

we employ distance based clustering.

For the purpose of faulty sequence detection in event logs, it is important to

define a distance metric that could capture the informativeness of the sequence

and/or correlation patterns between the events. Two metrics are defined as

explained below.

• Jenson-Shannon Divergence (JSD) metric measures the divergence or sim-

ilarity between two or more probability distributions. Events of log data

are sometimes infrequent and spatial in distribution (can occur randomly

in different sequences). JSD has been shown to be effective in capturing

relationships among tokens of such distribution [97], hence we utilised it

in this work. Considering two distributions Fi, Fj (note that we have es-

tablished earlier, that the input vectors are probability distributions), JSD

shows how much information is lost when using one of Fi or Fj to approx-

imate the other.

Hence, given two sequences (in this case, the input column vectors), Fi, Fj ,

then JSD is defined by

JSD(Fi, Fj) =
1

2
KLD(Fi‖E) +

1

2
KLD(Fj‖E) (4.2)

where KLD is the Kullback Divergence [34] given as KLD(Fi‖Fj) =
M∑
k=1

tkFi log(
tkFi

tkFj
) and E =

Fi + Fj

2

66

4. Error Detection Using Clustering

Hence, the similarity between Fi and Fj is given by:

sim(Fi, Fj) = |1− JSD(Fi, Fj)|. (4.3)

The values range between 0 and 1, with values closer to 0 implying more

dissimilar sequences and values close to 1 implying similar type of se-

quences.

• The second metric, Correlation Metric (Corr), is based on the correlation

between sequences. Given any two columns from matrix K, the correlation

distance between them is given below, where cov is the covariance and std

is the standard deviation.

cov(Fi, Fj) =
1

M

M∑
k=1

(Fi,k − Fi)(Fj,k − Fj) (4.4)

std(Fi) =

√√√√ 1

M

M∑
k=1

(Fi,k − Fi)2 (4.5)

where Fi = 1
M

M∑
k=1

Fi,k

sim(Fi, Fj) = 1−
∣∣∣∣ cov(Fi, Fj)

std(Fi) ∗ std(Fj)

∣∣∣∣ (4.6)

where Fi,k = tkFi is the value of the frequency of message term tk in sequence

Fi. We treat sim(.) as similarity or distance measure between two feature

vectors. Two clustering algorithms are proposed as explained below and seen

in Algorithms 2 and 3.

Näıve Clustering Algorithm

Different faults may induce similar error manifestation in the system. There-

fore, in this algorithm, the basic assumption is that similar sequences are likely

to have been generated by the same fault type; therefore, all data points (se-

67

4. Error Detection Using Clustering

quences) which are close enough based on a similarity metric are clustered to-

gether (Algorithm 2). The algorithm first initialised each data point (sequences)

as clusters such that all the sequences form sets of clusters. In that case, a copy

of the the set of clusters C is created. All the clusters with high similarity

values, sm (greater or equal to threshold), are considered to contain similar

pattern and hence group together. However, those patterns different from all

others are keep alone as singleton clusters. The result of this algorithm is a set

of clusters of similar patterns.

Algorithm 2 Näıve clustering of event sequences

1: procedure NäıveClustering(event sequences K = F1, F2, ..., FN , Simi-
larityThreshold, δ)

2: Initialize each Fi as a cluster of its own, all belonging to cluster set C;
Set of clusters C is the output.

3: for each Fi ∈ K do
4: for each cluster ck ∈ C do
5: for all members, Vj ∈ ck do
6: sm = sim(Fi, Vj);
7: if sm >= δ then
8: add Fi to cluster ck
9: else

10: if (last cluster) then
11: create a new cluster, c = Fi

12: add c to C
13: end if
14: end if
15: if Vj = last cluster point of ck then
16: add ck to C
17: end if
18: end for
19: end for
20: end for
21: Repeat step 3 Until all sequences are clustered
22: Return() {outputs C, clusters containing event sequences}
23: end procedure

Hierarchical Agglomerative Clustering Variant

The motivation for this algorithm stems from the fact that time at which a

fault is experience may affect the nature of the events despite the fact that the

sequences may have similar faults and secondly, sequences have a high tendency

68

4. Error Detection Using Clustering

of belonging to more than one cluster, that is, patterns can be similar due

to the fact that similar computers executing similar jobs are likely to produce

similar messages [106]. In order to obtain more cohesive clusters of sequences,

we introduce a variant on hierarchical clustering, which we refer to as HAC. The

HAC algorithm (Algorithm 3) targets those sequences we refer to as borderline

sequences (sequences with the possibility to belong to more than one cluster),

so they are clustered in the right group in order to obtain the different sequence

characteristics for detection. These are sequences with the tendency to belong

to more than a cluster due to the presence of similar error messages. In HAC,

such “borderline” sequences are captured as sub-clusters of cluster with higher

closeness value. A cluster SC is a sub-cluster of cluster C, if |SC| < |C|, and

if the validity index of C, (val ind(C)), is greater than that of SC and the

similarity between their centroids is greater than or equal to the threshold,

δ. The Validity index [58], referred to in our algorithm as (val ind(C)), is

a measure of goodness of cluster C by finding the compactness or how close

elements of the cluster are and how separate it is from other clusters. We

calculated this using the Silhouette coefficient [58], given by equation 4.7.

si =
bi − ai

max(ai, bi)
(4.7)

where si = silhouette coefficient for sequence i, bi = minimum(average distances

of sequence i with sequences of other clusters), ai = average distance of i to

sequences in its own cluster. Hence, the goodness of the cluster is the average of

all the silhouettes, si, of the clusters; and −1 ≤ si ≤ 1, with value of si close to

1 indicating that the sequences clustered together are similar and values closer

to -1 indicating less similar sequences.

4.5.2 Detection of Failure Patterns

The aim of clustering is to group similar sequences or patterns together, which

are either normal or failure-inducing. It is hypothesized that similar sequences

69

4. Error Detection Using Clustering

Algorithm 3 Hierarchical Agglomerative Clustering (HAC) algorithm for event
sequences

1: procedure HAC(ci ∈ C, clusters of event sequences, SimilarityThreshold,
δ)

2: SC= sub-clusters
3: Sort C according to cluster size
4: for i← 0 to |C| − 1 do
5: for j ← i+ 1 to |C| do
6: Find similarity, sim, of centroids of clusters ci and cj ;
7: if sim >= δ then
8: if val ind(cj) > val ind(ci) then
9: add cj to set of potential sub-clusters, si of ci.

10: end if
11: end if
12: end for
13: for all potential sub-cluster si do
14: add si to SC if not previously a sub cluster or if its sim is greater

than its previous sim value.
15: end for
16: end for
17: Return(SC) {}
18: end procedure

leading to failure will be clustered together and that the same holds for good

sequences. Event log sequences can be classified as noisy, periodic or silent

in their behaviour [43]. Noisy sequences occur with high frequency (bursty or

chatty) and the level of interaction of the nodes involved increases within short

period. The high level of interaction may depend on the type of faults that

has occurred. For example, communication errors generally result in spurious

event reporting by the nodes involved. Gainaru et al. [43] have shown that such

events are often symptoms that precede a failure. Normal sequences, on the

other hand, are mostly periodic. In this case, the sequences are characterised

by normal cluster status reports and moderately low interaction of components

over a longer time window.

In our approach, we harness these properties in order to characterise failure

sequences. We consider the measure of information of the sequences in clusters

and also how informative the message terms of the sequences are. These scenar-

ios can be captured by the Mutual Information (I) of sequences and Entropy

70

4. Error Detection Using Clustering

(H) of message types. Both I and H are concepts that captures the informative-

ness of a given random variable. In our context,I captures common behaviour of

the interacting nodes within a sequence while H on the other hand, captures the

uncertainty or unpredictability of the event types within a sequence. To further

support our approach, it has been argued that changes observed in entropy are

good indicators of changes in the behaviour of distributed systems and networks

[79]. Our idea is motivated by Brown’s clustering algorithm [13], Percy Liang’s

work on terms cluster characteristics and quality [88] and log entropy [10]. We

hypothesize that sequences with higher uncertainty (entropy) and reduced I sig-

nifies abnormal system behaviour and failure sequences with the converse true

for normal systems behaviour.

Hence, given a set C of m clusters c1, ..., cm and ck = {F1, ..., FN}, containing

set of similar event sequences, then, Mutual Information I(ck) is given as:

I(ck) =

N−1∑
i=1

N∑
j=i+1

p(Fi, Fj) log
p(Fi, Fj)

p(Fi)p(Fj)
(4.8)

where p(Fi, Fj) is the joint probability distribution of sequences of cluster c,

p(F) is the probability distribution of sequence F . Similarly, the Entropy (H),

is given as:

H(ck) = −
N∑
i=1

M∑
j=1

Fitj logFitj (4.9)

where Fitj is the distribution of the terms tj of sequences Fi in a cluster ck.

We obtain the informativeness of a cluster c as:

ϕ(c) = I(c)−H(c) (4.10)

Hence, from Equations 5.4,5.5 and 4.10, detection is achieved as follows:

f(c) =


1 if ϕ(c) < 0

else


1 if ϕ(c) > τ & H(c) > 0

0 otherwise

(4.11)

71

4. Error Detection Using Clustering

cluster f(c) is detected as containing failure sequences if its value of informative-

ness is high or not(depending on threshold) as shown in equation 4.11. Where

τ is detection threshold, the value of ϕ(c) for which we can decide if c contained

failure sequences or not.

Threshold Determination: Obtaining appropriate detection threshold, τ is

important for good result. We treat this as minimization of average percentage

error (APE) of miss-detection of failure sequences as seen in Equation 4.12.

APE =
md+ fp

ns
(4.12)

where md is the number of failure detected as non-failure (miss-detection), fp is

the number non-failure detected as failure(false positive), ns is the total number

of sequences. Our decision space is constrained by setting the threshold values

within [0.1 0.9] (this is because we earlier have normalise our data to values

within 0 and 1). The value with the minimum APE is chosen as our τ . Defer-

ential Evolution (DE) is an approach that is well-studied in other fields [28] and

can be used to obtain good detection threshold. However, our decision space is

too small to warrant such computationally expensive approach.

4.6 Experiment

The aim of our methodology is to detect patterns that eventually lead to failure.

We evaluate the methodology on logs from productions systems. This section

explains how we performed the experiments on the logs of two production sys-

tems. These are: (1) Syslogs (2) Rationalized logs (Ratlogs), both from Ranger

supercomputer logs from Texas Advanced Computing Center (TACC) at the

University of Texas, Austin4 and (3) the logs from IBM Blue Gene/L super-

computer is available on the USENIX repository5. A summary of the logs used

is shown in Table 3.1. We refer our reader to [24], [60] for more details about

4www.tacc.utexas.edu
5www.usenix.org/cfdr

72

4. Error Detection Using Clustering

Ranger supercomputer logs and [88] for the Blue Gene/L logs.

4.6.1 Experimental Setup

Failure as well as non-failure patterns from the three system logs are used for

testing the methodology. These patterns are obtained after careful consideration

of the time between consecutive failures by the experts. In considering the failure

data, overlapping failure patterns is avoided. In doing so, the time between two

non-overlapping failures events tfei and tfej must satisfy: αt ≤ |tfei − tfej
∣∣ ≤

tw, where αt is a small time between two failure events fei and fej , for which

they can be regarded as similar and tw is the time window considered. For

example, two nodes may suffer the same correlated failure, only one of such

event is considered. Similarly, we obtained non-failure or good sequences.

A maximum time window, tw, of 120 minutes is considered for our experi-

ment, i.e., events that occur within 120 minutes of a failure forms a sequence.

We also observe patterns at times (20, 40, 60, 80, 100) in our experiment, with

the failure occurring at time .

The choice of 120 minutes time window stems from an established work [25],

[59] and the system’s administrators advice, they established that the mini-

mum mean time to failure of failure correlated events(Ranger supercomputer)

is around 2 hours or more. In order to avoid the probability of overlapping

failure runs, we chose the 120 minutes time window. This also is helpful in

establishing that detection can be done within a short time period.

The summary of the sequences/patterns is seen in Table 4.1.

Table 4.1: Summary of sequences/patterns obtained from the three production
system’s logs

Logs/Pattern Faulty Non-Faulty Total
Syslogs 101 207 308
Ratlogs 93 212 305
BGL 42 78 120

73

4. Error Detection Using Clustering

4.6.2 Evaluation Metrics

Our goal is to be able to identify sequences or patterns in event logs that are

failure-inducing. That is, given patterns, we could separate failure-inducing

patterns from non-failure patterns. To measure performance of our detection

algorithm, we employ the widely used performance measures in Information

Retrieval (IR) namely, Precision, Recall and F-measure metrics. Precision is

the relative number of correctly detected failure sequence/patterns to the total

number of detections, Recall is the relative number of correctly detected failure

sequences to the total number of failure sequences and F-measure is the har-

monic mean of precision and recall as expressed in Equations 4.13, 4.14 and

5.10 respectively. We capture the parameters in the metrics as follows and as

seen in Figure 4.6.

Detected Result

 Positive Negative

A
ct

u
al

 D
at

a

Fa
u

lt
y

 TP

FP

N
o

n
 –

 F
au

lt
y

FN

TN

Recall / True Positive Rate

Precision

Figure 4.6: Evaluation metrics

• True positives (TP): Number of failure sequences correctly detected.

• False positives (FP): Number of non-failure (good) sequences detected as

failure.

• False negatives (FN): Number of failure sequences identified as non-failure

sequences.

74

4. Error Detection Using Clustering

Precision =
TP

TP + FP
(4.13)

Recall =
TP

TP + FN
(4.14)

F −Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(4.15)

A good detection approach or mechanism should provide a high value for

the metrics above. A recall value of 1.0 meaning that the approach can detect

every single fault pattern and value of 0 implying the approach is useless as it

cannot detect any failure-inducing pattern.

4.6.3 Parameter Setting

The choice of parameter values largely affects the result of any experiment

as it is challenging to navigate the large solution space. Likewise, choosing

optimal parameter values is practically difficult. We employ experimentation

to determine suitable values for our parameters. The thresholds used at the

filtering, clustering and detection steps are chosen based on experimenting with

several values and choosing the best options. Table 4.3 show a cluster with

two sequences/patterns (Seq. 1 and Seq. 2). These patterns are very similar

(sim=0.83), and are detected as failure sequences. Careful manual observation

shows that seq. 2 is not a failure pattern as it eventually experiences successful

recovery with no failure event (hence it is a FP), unlike seq. 1, which ended in

failure (soft lockup).

Näıve Clustering was able to obtain good clusters which represents similar

sequences leading to failures as seen from Figure 4.7. This figure shows the

validity index (goodness) of the clustering (i.e., how closely related are the

sequences). However, with careful consideration of the clusters, we observed that

the same sets of events are captured in different clusters due to the frequency

75

4. Error Detection Using Clustering

of occurrence of the events. The inter-cluster similarities of these sequences are

however not low, averaging around 0.55. This implies that the tendencies for

similar failure sequences to be in different clusters is high, necessitating HAC.

This is observed more in both Ratlogs and Syslogs. BGL sequences tend to

behave differently with fewer events forming sequence.

The silhouette values obtained for HAC algorithm is slightly lower than the

Näıve clustering for the first 100 minutes time windows. In Näıve clustering,

only sequences where faults occur at close time interval are clustered together

and excludes fault sequences with smaller lead time to failure. On the other

hand, with HAC, the temporal effect on sequences is reduced (i.e., patterns

are clustered together even when faults occur at different times). This will

eventually reduce the value of validity index. This scenario is not seen in BGL

because different temporal occurrence of faults that changes patterns is rarely

observed.

Table 4.2: Experiment Parameter Values
Threshold
Parameter

λ δ τ

Parameter Value 2 0.6 0.2

Hence, based on all these scenarios explained above, we adopt experimen-

tation on several possible parameters to enable us choose the best parameters

as seen in Table 4.2. For our filtering approach, few parameters were used;

the event’s similarity threshold λ = 2. This value was chosen as explained in

Section 4.3.2. The sequence clustering similarity threshold value, δ for both

Näıve and HAC clustering is 0.6. At this similarity value, we obtained a better

validity index (goodness of cluster) for the clustering, see Figure 4.7. Detection

threshold, τ , the value for which we can decide if a sequence is a failure or not

was set to be τ = 0.2. This value is obtained by performing detection using

values within the range [0.1 0.9] while we observe the average percentage error

(APE) of miss-detection given by equation 4.12, Figure 4.8 shows that the low-

est APE is obtained at the detection threshold τ = 0.2, hence, this informed

76

4. Error Detection Using Clustering

our choice.

0

0.2

0.4

0.6

0.8

1

20mins 40mins 60mins 80mins 100mins 120mins

V
al

id
it

y
(g

o
o

d
n

e
ss

)

time window

Naïve Clustering HAC

Figure 4.7: Cluster goodness based on intra-cluster and inter-cluster similarity
(on Syslog, JSD metric)

ðòï ðòî ðòí ðòì ðòë ðòê ðòé ðòè ðòç
ðòì

ðòìë

ðòë

ðòëë

ðòê

ðòêë

Ü»¬»½¬·±² Ì¸®»­¸±´¼

ß
Ð

Û
±

º
³

·­
­
ó

¼
»

¬»
½¬

·±
²

Figure 4.8: APE (percentage miss-detection) vs Detection Threshold

77

4
.
E
rro

r
D
etectio

n
U
sin

g
C
lu
sterin

g

Table 4.3: Sample Clustering Result (syslog, HAC) for a cluster with sequences (seq.1 and seq.2)
Sim Sequence Events

Seq. 1
0.83

Machine check events logged
error occurred while communicating with,**@o2ib **
Connection service share OSTd via nid,** @o2ib ** was lost progress operations using this service
will wait for recovery complete
Skipped previous similar messages
error occurred while communicating with,**@o2ib **
OSTd UUID not available for connect stopping
Request sent from share OSTb NID,** @o2ib ** ago has timed out limit,
quota interface still havent managed acquire quota space from the quota master after retries err rc
Machine check events logged,
Connection service share OSTd via nid **@o2ib** was lost progress operations using this service
will wait for recovery complete
Recovery timed out **
BUG soft lockup detected CPU** pid uid comm ldlm bl

Seq. 2

Machine check events logged
Skipped previous similar messages
error occurred while communicating with,**@o2ib **
Connection service share OSTd via nid,**@o2ib ** was lost progress operations using this service
will wait for recovery complete
Machine check events logged
error occurred while communicating with,**@o2ib **
Connection restored service share OST using**
Recovery complete with **,
Machine check events logged

78

4. Error Detection Using Clustering

4.7 Results

We show the results of the experiments conducted and we also discuss these

results in this section.

Filtering

We show from Figure 4.9, the rate of compression of logs under varying values of

LD threshold, λ. At λ = 2, The filtering approach obtained good compression

from original logs. It achieved compression of 78%, 80% and 84% on syslog,

ratlog and BGL logs respectively.

30

40

50

60

70

80

90

1 2 3 4 5

C
o

m
p

re
ss

io
n

 r
at

e
 (

%
)

Levenshtein Distance (LD) threshold, λ

Figure 4.9: Compression rates given varying LD on syslog

Normal filtering achieved an average compression of 88%, which is higher

than our method. Both normal filtering and Zheng et al. [154] approaches

obtain better compression rate because their methods was able to filter events

deemed similar within given time. Unlike theirs method, we believe that doing

so will remove important events that could serve as precursor or signatures to

failure. Hence we kept such causally-related but semantically unrelated events.

Figures 4.10, 4.11 and 4.12 demonstrates the result of performing detection

(using HAC, correlation distance) on logs filtered using the normal filtering and

our filtering method. The results show that our method achieved an average F-

79

4. Error Detection Using Clustering

measure of 77% while normal filtering achieved 48% on syslog. An improvement

of about 19% over the normal filtering is achieved on ratlog and 10% on BGL.

The implications of these results is that filtering based on our approach greatly

enhance failure patterns clarity by preserving useful failure precursor events.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120

F‐
m

e
as

u
re

Time window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

Fm
e

as
u

re

Time Window (mins)

Our Method Normal Filtering Figure 4.10: Showing the F-measure detection of both our method and normal
filtering on syslog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120

Fm
e

as
u

re

Time Window (mins)

Our Method Normal Filtering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

F‐
m

e
as

u
re

Time window (mins)

Our Method Normal Filtering

Figure 4.11: Showing the F-measure detection of both our method and normal
filtering on ratlog

80

4. Error Detection Using Clustering

0.62

0.64

0.66

0.68

0.7

0.72

0.74

20 40 60 80 100 120

Fm
e

as
u

re

Time window (mins)

Our Method Normal Filtering

Figure 4.12: Showing the F-measure detection of both our method and normal
filtering on BGL

Filtered and Redundant Logs

Preprocessing, especially filtering redundant events in logs is not a compulsory

step in log analysis. However, it is necessary when there is need. It should not

reduce the effectiveness of the targeted analysis. To demonstrate the effective-

ness of our redundant event filtering for failure pattern detection, we conducted

experiments on both logs without redundant event removal and the filtered logs.

The result is as shown in Figures 4.13, 4.14, 4.15. It also contains using only

the ids as representative of events for detection.

81

4. Error Detection Using Clustering

CCGrid Results.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

Time window (mins)

Fmeasure: Syslogs

Compressed (Message Types)

Redundant (Message Types)

 Compressed (IDs)

Redundant (IDs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Ratlogs

Compressed(Message Types)

Redundant (Message Types)

Compressed (IDs)

Redundant (IDs)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

20 40 60 80 100 120

time window (mins)

Fmeasure: BGL

Compressed (Message Types)

Redundant (Message Types)

Compressed(IDs)

Rdundant (IDs)

Figure 4.13: Showing the F-measure detection on both filtered and redundant
logs (syslog)

CCGrid Results.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Syslogs

Compressed (Message Types)

Redundant (Message Types)

 Compressed (IDs)

Redundant (IDs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

Time window (mins)

F‐measure: Ratlogs

Compressed(Message Types)

Redundant (Message Types)

Compressed (IDs)

Redundant (IDs)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

20 40 60 80 100 120

time window (mins)

Fmeasure: BGL

Compressed (Message Types)

Redundant (Message Types)

Compressed(IDs)

Rdundant (IDs)

Figure 4.14: Showing the F-measure detection on both filtered and redundant
logs (ratlog)

82

4. Error Detection Using Clustering

CCGrid Results.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Syslogs

Compressed (Message Types)

Redundant (Message Types)

 Compressed (IDs)

Redundant (IDs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Ratlogs

Compressed(Message Types)

Redundant (Message Types)

Compressed (IDs)

Redundant (IDs)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

20 40 60 80 100 120

Time window (mins)

Fmeasure: BGL

Compressed (Message Types)

Redundant (Message Types)

Compressed(IDs)

Rdundant (IDs)

Figure 4.15: Showing the F-measure detection on both filtered and redundant
logs (BGL)

Existing Detection approach

We conducted an experiment to evaluate how our method perform compared

to Xu et al. [147] approach. We choose this for comparison because it is a

well-established method in the field and related to our method.

In summary, Xu’s approach basically creates features from the console logs.

Feature vector is created base on the frequency of events, analogous to the con-

cept of Bag of Words (BoW) in information retrieval. Detection of fault events

is treated as anomaly detection of the feature vectors which are labelled as faulty

or non-faulty. Their approach further uses principal component analysis (PCA)

to perform anomaly detection or subsequent detection of faults. Compared to

our approach, we created feature vectors which form inputs to our algorithm

the same way. However, the features we used are event types in sequence. we

performed detection differently, we do not employ PCA, and we developed an

algorithm that utilises the entropy and mutual information of the sequences to

detect failure features. Each sequence which is a features is labelled as faulty

or non-faulty. We do not detect individual messages, rather, we detect group

of messages that form sequence which are symptomatic to failure. This neces-

sitated the idea of clustering in our algorithm. We explain the results for both

83

4. Error Detection Using Clustering

methods in next section.

Pattern Detection Results

The results we present here compares our approach to detecting failure patterns

in logs with an existing approach we called Xu.

The legends of the graphs in Figures 4.16, 4.17, 4.19,4.20, 4.22 and 4.23 indi-

cates: clustering algorithm and distance metric used. For example, HAC.Corr

implies HAC algorithm with Correlation distance.

Syslog: The performance of the approach when applied on syslog was good.

A high detection is achieved across all the time windows as seen in the values

of recall and precision in Figures 4.16 and 4.17 respectively. Particularly using

HAC.Corr achieved a recall of more than 90% across all time windows. This

implies that on syslog data, irrespective of the time window used for detection,

our approach can achieve high detection. Meanwhile, Xu’s method achieved

low performance seen in the F-measure values (Figure 4.18); it only improve at

higher time window (120 minutes). However, our approach performed consis-

tently better across all the time windows used. Looking at the two clustering

approaches used, the performance using both HAC and Naive clustering are con-

sistently high, (see Figures 4.16 and 4.17), with average precision of 65% and

recall of 88%. Using correlation distance metric (Corr), it performed slightly

better than using JSD as time tends towards failure (see Figure 4.18). This

implies that detection of failure sequence is most effective using our method

when correlation between interacting components of system is high.

84

4. Error Detection Using Clustering

Detected Result

 Positive Negative

A
ct

u
al

 D
at

a

Fa
u

lt
y

 TP

FP

N
o

n
 –

 F
au

lt
y

FN

TN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

Time window

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Recall / True Positive Rate

Precision

Figure 4.16: The Precision of our failure pattern detection and Xu’s method
on syslog

Detected Result

 Positive Negative

A
ct

u
al

 D
at

a

Fa
u

lt
y

 TP

FP

N
o

n
 –

 F
au

lt
y

FN

TN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

Time window

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Recall / True Positive Rate

Precision

Figure 4.17: The Recall of our failure pattern detection and Xu’s method on
syslog

85

4. Error Detection Using Clustering

Detected Result

 Positive Negative

A
ct

u
al

 D
at

a

Fa
u

lt
y

 TP

FP

N
o

n
 –

 F
au

lt
y

FN

TN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

Time window

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Recall / True Positive Rate

Precision

Figure 4.18: The F-measure of our failure pattern detection and Xu’s method
on syslog data

Ratlog: Performance of our method on ratlog is very good compared to Xu’s

method as can been seen in the precision and the recall values of Figures 4.19 and

4.20. We obtained up to 79% precision with the use of correlation distance and

recall above 90% for HAC.Corr. Naive clustering approach performed poorly

at lower time windows. Effectively, from Figure 4.21, the result demonstrates

that F-measure is high for our method for all the time windows. On the other

hand, Xu’s approach achieved its best F-measure at higher time window of

120 minutes. Our method achieved better F-measure because the logs contains

better event information characterizing faults and the lead time to failure is

small, implying many different faults patterns could be experienced late towards

failure.

86

4. Error Detection Using Clustering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

Time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.19: The Precision of our failure pattern detection and Xu’s method
on ratlog

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

Time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.20: The Recall of our failure pattern detection and Xu’s method on
ratlog

87

4. Error Detection Using Clustering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

Time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.21: The F-measure of our failure pattern detection and Xu’s method
on ratlog

BGL Results on BGL logs seen in Figures 4.22 and 4.23, compared to other

two logs, is relatively inconsistent in its detection performance across all the

time widows used. However, the performance of our method is better than Xu’s

approach. It achieved an average recall and precision improvement over Xu’s

method by about 15% and 22% respectively. This is equally reflected in the

F-measure values seen in Figure 4.24. Based on our investigation, we observed

that BGL logs rarely reports fault within short time window and where there

are some failure events, there could be no or few preceding precursor events that

can be observed. This could be the reason for relatively inconsistent detection

performance. A more longer time window could show better result.

88

4. Error Detection Using Clustering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

Time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.22: The Precision of our failure pattern detection and Xu’s method
on BGL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.23: The Recall of our failure pattern detection and Xu’s method on
BGL

89

4. Error Detection Using Clustering

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

F-
m

e
as

u
re

Time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

R
e

ca
ll

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20mins 40mins 60mins 80mins 100mins 120mins

P
re

ci
si

o
n

time window (mins)

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Xu

Figure 4.24: The F-measure of our failure pattern detection and Xu’s method
on BGL

4.7.1 Runtime Analysis

The execution time of detection algorithm is small across all the time windows

(highest about 33 seconds) as seen in Figure 4.25. It scales increases with

increase in log size and time window. This is good, and detection is achieved in

good time. Obviously, the execution time is dependent on the size of logs and

the larger the time window, the bigger the size of logs.

0

5

10

15

20

25

30

35

20 40 60 80 100 120

Ex
e

cu
ti

o
n

 t
im

e
 (

se
cs

)

Time window

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5

C
o

m
p

re
ss

io
n

 r
at

e
 (

%
)

Levenshtein Distance (LD) threshold, λ

Figure 4.25: The runtime graph of Detection approach

90

4. Error Detection Using Clustering

4.8 Summary

The contributions of this chapter are as follows: Firstly, we enable failure pre-

diction on the basis of observed patterns collected in an unsupervised manner.

Secondly, the high computational cost associated with recovery is only incurred

when there is an impending failure. We first filter event logs based on their

similarities, in order to preserve patterns deemed useful or are most indicative

of as a precursor to failures. Subsequently, using the filtered logs, we develop

an unsupervised approach that leverages fault characteristics to detect patterns

leading to a failure among runs of event logs.

Technically, We proffer a log-analysis methodology that first filters the log

files and subsequently propose an error detection methods based on pattern

similarity. We apply our approach on log files obtained from the Ranger super-

computer and the IBM BlueGene/L and obtained a F-measure on detection.

91

CHAPTER 5
Improving Error Detection Using Resource Usage Data and

Event Logs

5.1 Introduction

A number of works [9, 43, 53, 112, 147] have shown that detecting fault occur-

rences (i.e., errors) using logs and other data has received good attention, with

reasonably good results as seen in the literature review. The challenge is that,

even though the earlier mentioned attempts reported good detection results,

they are constrained mainly to failures which are remarkably characterised by

frequent reporting of events, as seen in Figure 5.1. However, this is not the

case for some types of failures experienced in HPC systems. For example, some

failures caused by soft errors may not produce visible and abnormally frequent

events that would signify a faulty behaviour. More so, some faults can induce

a silent behaviour (i.e., events are sparse) and only become evident when the

failure is about to occur (see Figure 5.2). In such a case, this provides a small

mean time to failure in the sense that the time between the error detection and

the actual failure is small. In these cases, approaches based on entropy and

mutual information, as mentioned above, will not help.

In general, the event logs provides insufficient information regarding the

behaviour of HPC systems that can be used to accurately detect errors in the

system. To circumvent the problem induced by the incompleteness issue of event

logs, we complement these logs with resource usage data in this study. In short,

resource usage data captures the amount of resources consumed or produced by

all the jobs in the system. For example, the resource usage data file may contain

the amount of memory a job is using at a given time as well as the number of

92

5. Improving Error Detection Using Resource Usage Data and Event Logs

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fr
eq

ue
nc

y

Event types

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Fr
eq

ue
nc

y

Event types

Figure 5.1: Bursty faulty event sequence showing the behaviour of fault events
logged within an hour

messages a job has output on the network. It has been generally argued that

unusually high or anomalous resource usage could lead to failure of systems [25].

Most supercomputer systems do not make such usage data available, making it

difficult for researchers to verify this.

To detect errors in the system, we propose a novel approach that uses both

event logs and resource usage logs. The use of resource usage data enables the

detection of anomalous jobs which, when coupled with the erroneous behaviour

of nodes (as captured from the event logs), will indicate the existence of an

error in the system. The resource utilization would provide us with better

understanding of the system’s behaviour in the face of few precursor events in

the event logs. The approach is unsupervised, meaning that neither the resource

usage data nor event logs carry labels. This is valuable and relevant for two

reasons: (i) when resource usage data is used, given that little work has been

done based on resource usage data, very little labelled data is available and (ii)

the ability to provide labelled data requires extensive and detailed knowledge

about the system, which may not always be available; additionally, the labelling

93

5. Improving Error Detection Using Resource Usage Data and Event Logs

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fr
e

q
u

e
n

cy

Event types

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Fr
e

q
u

e
n

cy

Event types

Figure 5.2: Silent faulty event sequence showing the behaviour of fault events
logged within an hour

process is also time-consuming.

The objective of this chapter can be stated as follows: Given an event se-

quence and resource usage data, we seek to determine whether the event se-

quence contains error messages that indicate impending failure. We seek to find

an unsupervised approach to detecting patterns indicative of failure from both

event logs and the resource usage data of any HPC system.

5.2 Detection Methodology

We now briefly summarize our methodology. Firstly, event logs are reported as

stream of events occurring in time. However, to keep the log analysis tractable,

it is beneficial to break a long sequence into smaller sequences of similar size,

which we measure in time units (obtained from the timestamps). We thus call

the size of a small sequence the time window. The choice of the time window is

dependent on how informative events within such time window are, i.e., the time

window needs to be as small as possible but with enough informative events to

94

5. Improving Error Detection Using Resource Usage Data and Event Logs

characterise the time window. Given that event logs contain both normal and

error messages [43] and are generally incomplete, we seek to complement these

event logs with resource usage data to aid error detection. Here, our premise

is that abnormal resource usage is indicative of a fault having occurred in the

system,

Next we transform these data into a format that captures the system be-

haviour within the chosen time window and can be used easily by any detection

algorithm. We create a feature matrix from the event log and another from the

usage data; we then extract the Mutual Information and Entropy of the inter-

acting nodes and event types respectively. This is done after nodes with similar

behaviour are clustered together. We then determine “outlierness” of a sequence

by performing a PCA outlier detection on the resource utilisation data feature

matrix. This step provides us with an anomaly score of a sequence which is then

used in error detection. The detection process leverages the mutual information,

entropy and anomaly score of the sequence to determine whether the sequence

is likely to end in failure. This section focuses on detailing our methodology as

seen in Figure 5.3.

5.2.1 Data Transformation

Notations and Terminologies: Before explaining our methodology, we briefly

mention the notations used. We will denote a specific item using a small letter,

while we will use the associated capital letter to denote the total number of that

item. For example, we will denote a specific node by n (or ni) and the total

number of nodes in the system by N .

This section focuses on obtaining appropriate system data that can represent

nodes and running jobs behaviour. These behaviour inherently describes the

state of the system within a given time. The data (both event logs and resource

usage data) need to be transformed into a format suitable for analysis. In order

to detect abnormalities in resource usage, we extract the attributes/elements

which capture the state of the resources for each job on each node within given

95

5. Improving Error Detection Using Resource Usage Data and Event Logs

	

J1, J2,…
Jn

Usage	
 Data	
 Event	
 Logs	

Data	

Transformation/	

Feature	
 Creation	

Sequence	

Anomaly	

(PCA)	

Clustering/	
 Event	

logs	
 Feature	

extraction	

Sequence	

Detection	

f1 , f2 ,…
fn

Sequence	
 Anomaly	

Score	

Entropy,	
 M
utual	

Inform
ation	

Figure 5.3: Methodology work flow showing steps taken to achieve detection

time. Generally, we extract features from event logs and then from resource

usage data.

Event logs Features

For event logs, we denote by eli the number of events el produced by node

ni within a given time window. Given E different possible events, we obtain a

vector [e1i . . . e
E
i] which contains the number of occurrences of each event on node

ni. We call this vector an event feature of node ni. This concept is analogous to

the bag of words concept used in information retrieval, which has been proven

96

5. Improving Error Detection Using Resource Usage Data and Event Logs

to be effective in capturing relationships between terms/words/messages. We

reuse the same idea because the event log messages are our primary source of

data about the health of the systems. The features that are produced depend

on the frequency distribution of event logs. Hence, for a given time window tw,

each node will produce an event feature, resulting in a matrix, where each row

represents a event feature and each column represents the number of occurrences

of a given event by different nodes in the system.

For a given time window tw, we denote the resulting event feature matrix

by Ftw, as shown in Figure 5.4.

Ftw =


e11 e21 . . . eE1
e12
.
.
.
e1N e2N . . . eEN


Figure 5.4: Data matrix Ftw of a sequence with N nodes and E event types,
where eli denotes the number of occurrences of event el by node ni.

Resource Usage Features

A system will typically have a number of counters that capture different aspects

of the system during execution. These counters indicate the amount of resources

they are associated with that are being produced or consumed. For example,

a memory counter may capture the amount of memory that is being used by a

given job at a given time. Denoting a given job by jk which executes on node

ni during time window tw, we denote the amount of a resource r used by jk

on ni during tw by Ur,w
k,i . We call the vector of resources used or produced by

a given job jk on node ni during time window tw as a resource feature and we

denote it by Uw
k,i and is defined as Uw

k,i = [U1,w
k,i , . . . U

R,w
k,i]. Whenever the exact

location of a job is unimportant, we will denote the usage matrix by Uw
k , i.e.,

Uw
k denotes the different resources used or produced by job jk in time window

tw.

97

5. Improving Error Detection Using Resource Usage Data and Event Logs

Similar to event features, we construct a J ×R resource feature matrix1 for

a given time window tw, which we denote by U tw, where each row is a resource

feature of a job and each column is the vector that captures the amount of the

specific resource used or produced by all the jobs in the time window. Specif-

ically, the value associated with U tw[k, r] represents the amount of resource r

that has been used or produced by job jk during time window tw.

5.2.2 Event Clustering and Feature Extraction

Given the event features created from the event logs as depicted by the matrix of

Figure 5.4, we perform clustering to group nodes exhibiting similar behaviour.

The underlying reason for this is that, nodes executing similar jobs tend to log

similar events. This means that a component fault could get to be reported by

these nodes enabling us to capture node level behaviour of the systems through

clustering. Mutual Information and Entropy of the individual features clustered

are obtained.

Clustering

Makanju et.al., [94] has shown that the state of systems can be discovered

through information content clustering. As stated earlier, Oliner et al., [106]

verified the hypothesis that similar nodes correctly executing similar jobs should

produce similar logs. This implies that a fault in a node or job could cause a

cascading effect or alter communicating jobs, which could result in producing

similar fault events. This also means that we can leverage the homogeneity

of large scale systems to improve fault detection. To achieve this, we employ

clustering to group nodes with similar behaviour to be able to extract the group

behaviour.

Clustering groups similar data points together in such a way that those in

different group are very dissimilar. In this case, we group nodes with similar

behaviour in terms of the events they log within the given time window. Hence,

1 U can be used to denote usage matrix when the tw is not used for purpose of clarity

98

5. Improving Error Detection Using Resource Usage Data and Event Logs

given a sequence of events within a given time window, the event features which

are formed from the data transformation section is an N ×E matrix, Ftw, (see

Figure 5.4) with N being the number of nodes (rows) and E the number of

event types (columns). eli is the count of event types el produced by node ni.

We employ a simple centroid-based hierarchical clustering (see Algorithm 4) to

perform this. We employ this clustering approach because we assume there are

one or more outlier nodes within a sequence, and a centroid-based clustering as

this is not sensitive to outliers.

In any distance-based clustering, the distance metric is key to achieving a

good result. For our purpose, we defined a distance metric that could capture

the informativeness of each node within the sequence and/or the correlation

between the events types in the sequence. Hence we employ the Correlation

Metric as our clustering similarity distance metric.

Correlation Metric (Corr), is based on the correlation within nodes of the

sequence. Given two feature vectors of Ftw as xi, xj , then we compute the

similarity as follows:

cov(xi, xj) =
1

N

N∑
k=1

(xki − xi)(xkj − xj) (5.1)

std(xi) =

√√√√ 1

N

N∑
k=1

(xki − xi)2 (5.2)

where xi = 1
N

N∑
k=1

xki is the mean of vector xi; then,

sim(xi, xj) = 1−
∣∣∣∣ cov(xi, xj)

std(xi) ∗ std(xj)

∣∣∣∣ . (5.3)

We treat sim(.) as a similarity or distance measure between two feature vectors.

The above distance metric must and is observed to satisfy the following

properties given two variables xi and xj :

1. Non-negativity property, that is, 0 ≤ 1− |sim(xi, xj)| ≤ 1.

99

5. Improving Error Detection Using Resource Usage Data and Event Logs

2. 1 − |sim(xi, xj)| = 0 if and only if xi and xj are linearly related or xi is

same as xj .

3. Symmetric: that is 1− |sim(xi, xj)| = 1− |sim(xj , xi)|.

4. Scalability: for some given constants c1, c2, c3, c4, if yi =
xi − c1
c3

and

yj =
xj − c2
c4

, then 1 − |sim(xi, xj)| = 1 − |sim(yi, yj)|. In essence, the

measure is invariant to scaling and variable translation.

Algorithm 4 An algorithm for clustering similar behaving nodes

1: procedure Clustering(C, λ)
2: Inputs: |C| event features with ci ∈ C, i = 1 . . . n; MinimumSimilari-

tyThreshold λ.
3: Initially assume each node vector as unique, with each as a cluster on

its own;
4: for i = 1 to |C| − 1 do
5: for j = i+ 1 to |C| do
6: sim = sim(ci, cj) . Find similarities of centroids of ci and cj
7: if (sim ≥ λ) then
8: Merge ci and cj ;
9: end if

10: end for
11: add the merged cluster to set of new clusters
12: end for
13: Repeat step 1 with new set of merged clusters until similarity less than

λ is achieved
14: Return new m sets of clusters of similar nodes
15: end procedure

Sequence Feature Extraction

The amount of information provided by the nodes within a given time window

and also the informativeness of the event types could provide useful hints on

unusual behaviour of such nodes within the time window. We assume that

these behaviours can be succinctly represented by these two features of the

sequence: Mutual Information (I) and Entropy (H) of event types produced by

each node within the given time window. To further support our approach, it

has been argued that changes in entropy are good indicators of changes in the

behaviour of distributed systems and networks [79]. This informed our decision

100

5. Improving Error Detection Using Resource Usage Data and Event Logs

to extract these event features. We assume that a higher uncertainty (entropy)

with reduced mutual information could signify abnormal system behaviour or a

failure sequence with the converse being true for normal behaviour.

Sequence Mutual Information (I)

Mutual Information measures the relationship between two random variables

especially when they are sampled together. Specifically, it measures how much

information a random variable ei (event feature) carries about another variable

ej . Essentially, it answers the question about the amount of information event

features ei and ej carry about each other. Hence, given cluster of event features

C = {c1, ..., cm} and ci = {e1, ..., en}, containing set of similar event features,

then,

I(ci) =

N−1∑
j=1

N∑
k=j+1

p(ej , ek) log
p(ej , ek)

p(ej)p(ek)
(5.4)

where p(ej , ek) is the joint distribution of event features of cluster ci, p(e) is

the marginal distribution of event feature e. Then. I(C) is given by: I(C) =

1

|C|
∑
ci∈C

I(ci). Nodes within a sequence characterised by frequent events log-

ging and probably similar events due to the same fault will have high mutual

information.

Sequence Entropy (H)

Entropy, on the other hand, is a measure of uncertainty of a random variable.

In other words, when the information content of event types of a sequence are

highly unpredictable, then the sequence has high entropy. For each event cluster

ci,we define entropy as follows:

H(ci) = −
∑
j

p(ej) log p(ej) (5.5)

where p(ej) is the distribution of event types of event features in ci. The entropy

of the sequence is then given by the average of the entropies of each cluster of

the sequence. The changes observed in entropy are usually good indicators of

101

5. Improving Error Detection Using Resource Usage Data and Event Logs

changes in the behaviour of the cluster system. Such changes may point to

imminent failure in the cluster system.

5.2.3 Jobs Anomaly Extraction from Resource Usage Data

In a cluster system, large amount of nodes are present with hundreds of jobs

running. The resource usage data contains statistics about the usage of resources

(e.g. CPU, I/O transfer rates, virtual memory utilization) of each of these

nodes by each job running in the cluster system within the given time. This

information provides useful hints regarding an unusual behaviour of a given job

in terms of its rate of resource utilization. Hence, the resource data transformed

into a matrix as explained in section 5.2.1 is used as our input data. Our aim

here is to obtain anomalous jobs which could significantly point to problem(s)

in the cluster system as observed by the anomalous jobs within a period. A

column vector of the matrix represents a job and a row represent a counter or

attributes (e.g. dirty pages hits, read bytes, tx msgs etc), see Table 3.2 for the

full list of counters.

There are a significant number of research work on approaches to detecting

anomalies (see Chapter 2). Since we do not have data labelled with how normal

behaviour of jobs should be, the wisest option is to use an unsupervised approach

to detect anomalous jobs. Principal component analysis (PCA), has been a

widely and efficiently used feature extraction method in different fields [84] and

also for identifying anomalous node behaviour [80]. We utilise this approach to

find anomalous jobs in resource usage data.

Principal Component Analysis (PCA)

In this section, we briefly explain PCA which would introduce us to how it is

utilized for anomaly detection purpose. PCA is a well known and researched

technique for dimensionality reduction. PCA basically determines the principal

direction of a given data points by constructing the covariance matrix of the data

and finding the dominant eigenvectors (principal directions). These eigenvectors

102

5. Improving Error Detection Using Resource Usage Data and Event Logs

are also seen as the most informative of the original data space. Let U =

[j1, j2, ..., jn]T ∈ <n×k, where each row ji representing k − dimension data

instance of job, and n is the number of data instances or jobs, then PCA,

formulated as an optimization problem, first calculates the covariance matrix C

of U as:

C =
1

n
UUT . (5.6)

Then the eigenvalues, λi, (i = 1...p and p < k) are calculated and sorted

in decreasing order with the first being the highest eigenvalue. From this, a

projection matrix V = [a1, a2, ..., ap] consisting of p−dominant eigenvectors is

constructed, with each data point, x, projected into a new subspace as:

X = V TJ. (5.7)

The p-dominant eigenvectors produced are in decreasing order of dominance.

Anomalous Jobs Detection in Usage Logs Using PCA

This section seeks to look at utilizing PCA to identify anomalous jobs running

in cluster system within a given time window. We employ an approach with the

similar property of principal directions as the one made in [84]. The basis for

the approach is that, for every data point, removing or adding it contributes to

the behaviour of the most dominant direction. This is because PCA relies on

calculating mean and data covariance matrix in obtaining eigenvectors, and it is

observed to be sensitive to the presence of an outlier. Hence, in this approach,

the outlierness of a job can be determined by the variation in the dominant

principal direction. Specifically, by adding an outlier the direction of dominant

principal component changes, but a normal data point doesn’t change it.

Sequence Anomaly

The assumption here is that, any anomalous job will cause deviation from the

leading principal direction, therefore, a sequence anomaly or “outlierness” is

the average value of all the outlier or anomalous jobs present within such time

103

5. Improving Error Detection Using Resource Usage Data and Event Logs

window. For example, in Figure 5.5, the points in red are likely anomalous jobs.

-0.0001

0.0004

0.0009

0.0014

0.0019

0.0024

0 100 200 300 400 500 600

o
u

tl
ie

rn
e

ss
/a

n
o

m
al

y

Jobs

Figure 5.5: Jobs outlierness of a sequence using PCA

So, given data points U = [j1, j2, ..., jn]T , the leading principal direction,

d, of matrix U is extracted. Then for each data point ji, obtain the leading

principal component, di, of U without data point ji. The outlierness, ai, of ji

is the dissimilarity of d and di. The algorithm can be seen in Algorithm 5.

Algorithm 5 Sequence anomaly score algorithm

1: procedure AnomalyScore(U, γ, ji)
2: d = Leading Principal direction of J
3: di = Leading Principal direction of J without data point ji.
4: a = 0 . initialise anomaly score

5: sim(di, d) =
di · d
‖di‖‖d‖

6: a = 1− |sim(di, d)|
7: if (a ≥ γ) then
8: return ai . returns anomaly score
9: else

10: return 0 . returns 0 for not anomalous
11: end if
12: end procedure

Any data point with “outlierness” greater than given threshold γ is regarded

as anomalous.

104

5. Improving Error Detection Using Resource Usage Data and Event Logs

5.2.4 Detection of Failure Patterns

The algorithm is aimed at detecting a sequence of events within a chosen time

window that most likely indicates the presence of errors. The algorithm leverage

the features that capture the behaviour of nodes within a sequence (i.e., mutual

information and entropy), where high values (i.e., above a threshold) of these

features indicate the presence of errors which would likely lead to a failure.

Together with a high I(si) and H(si), an anomalous sequence ai of resource

usage is a high indication of failure. Otherwise, we consider such a sequence to be

normal. The detection algorithm will then depend on our definition of anomaly,

as captured by the thresholds. We define thresholds for Mutual Information

(µ), Entropy (ϕ) and sequence anomaly,(γ). The algorithm can be seen in

Algorithm 6.

Algorithm 6 Sequence detection

1: procedure Detect(S, γ, µ, ϕ)
2: for each sequence si in S do
3: I(si) =Mutual Information(si)
4: H(si) = Entropy(si)
5: ai = AnomalyScore(S, γ, si) . from resource Usage data of sequence
6: fi = I(si)−H(si)
7: if (I(si) >= µ && H(si) >= ϕ && ai > 0) || (ai > 0 && H(si) >=
ϕ && fi <= 0) then

8: Return True . faulty Sequence
9: else

10: Return False . non-faulty or normal sequence
11: end if
12: end for
13: end procedure

In summary, the Algorithm 6 detects errors in a sequence based on I, H and

sequence anomaly score, ai.

5.2.5 Experiment and Results

We evaluate our approach through experiments conducted on Rationalized logs

(ratlogs) and resource usage data from the Ranger Supercomputer from the

105

5. Improving Error Detection Using Resource Usage Data and Event Logs

Texas Advanced Computing Center (TACC) at the University of Texas at Austin2.

The resource usage data were collected using TACC Stats [59] that takes

snapshots at the beginning of job execution, in ten-minute intervals and at the

end of the job execution. Jobs generate their resource usage data, which are

archived on the file system. The events are logged by each node through a

centralized message logging system. The logs are combined and interleaved in

time. We evaluate our approach on four weeks of resource usage data (32GB)

and rationalized logs (1.2GB). These data were collected for the month of March

2012. It is worth noting that within this time, the system experienced high

failure rates making this data sufficient for this analysis. We extracted the 96

elements or counters from the resource usage log as seen in Table 3.2. The

size of the time window (tw) chosen was based on two factors: (i) lead time

to failure - This is determined by root cause analysis of faults and research on

Ranger Rationalized logs (ratlog) has shown that the minimum lead time to

failure of most occurring faults is about 120 minutes [25], and (ii) The concept

of nodehour [106] was shown to be fine enough to capture erroneous messages.

To this end, we set tw = 60 minutes. This time window also allows us to

compare our work with Nodeinfo [106], a popular error detection approach.

We conducted the experiment on 720 sequences events logs with corresponding

resource usage data sequences of which 182 are faulty sequences.

Evaluation Metrics

In measuring the performance of our detection algorithm, we employ the widely

used sensitivity, specificity and what we called S-measure metric. The latter,

similar to the known F-measure, is the harmonic mean of sensitivity and speci-

ficity. Sensitivity, also called true positive rate or recall, measures the actual

proportion of correctly detected failure sequences to the total number of failure

sequences as expressed in Equation 5.8. Specificity, or true negative rate, mea-

sures the proportion of non-failure sequence which are detected as non-failure

2www.tacc.utexas.edu

106

5. Improving Error Detection Using Resource Usage Data and Event Logs

among all non-faulty sequences as seen in Equation 5.9. S-measure here is syn-

onymous with the usual F-measure in information retrieval, however, in this

case, it is the harmonic mean of sensitivity and specificity (see Equation 5.10).

Since sensitivity or specificity cannot be discussed in isolation, S-measure com-

bines the two providing us with a balanced detection accuracy.

Sensitivity =
TP

TP + FN
(5.8)

Specificity =
TN

FP + TN
(5.9)

S −measure = 2 ∗ Sensitivity ∗ Specificity
Sensitivity + Specificity

(5.10)

 Actual Data

 Faulty Normal

D
e

te
ct

e
d

 R
es

u
lt

 P
o

si
ti

ve

 TP

 FP

N
eg

at
iv

e

 FN

 TN

Sensitivity Specificity

Figure 5.6: Evaluation metrics

The parameters TP , FP , TN , and FN denotes true positives, false positives,

true negatives and false negatives respectively. Figure 5.6 demonstrates the

relationship of these parameters. A perfect detection will have sensitivity and

specificity value of 1, meaning it can detect the faulty and non-faulty sequences

accurately.

107

5. Improving Error Detection Using Resource Usage Data and Event Logs

Failure Pattern Detection Performance

We aimed to show the detection accuracy of our methodology and then compare

our approach with Nodeinfo, a popular error detection approach proposed by

Oliner et al. [106].

In the experiments, we evaluated our approach under various conditions.

Since our approach is based on concepts such as anomaly score and entropy of a

sequence, we show the effectiveness of our detection methodology under different

values. The aim is to find value combinations where detection accuracy is better

achieved, i.e., a high true positive and true negative rate. We observed that a

change in mutual information threshold (µ) does not have as much influence on

the detection result as do the entropy threshold (ϕ) and the anomaly threshold

(γ) values. Figures 5.7 and 5.8 shows the results of detection with different

values of γ and ϕ. The best detection result is achieved for values of ϕ = 0.4

and γ = 0.6, achieving sensitivity (true positive rate) of about 80% and 78%

respectively. This result also demonstrates how the best value of the features

which affects detection the most are obtained. Note that the value of sensitivity

increases with increase in ϕ (see Figure 5.7); however, specificity increases with

corresponding increase in values of ϕ. Our approach is able to detect 80%

of errors that lead to failures. Further, with the high value of specificity, we

conclude that the false negative rate is also low.

It is worth noting here that the detection threshold is not dependent on the

system on which the approach is applied. It is dependent on how anomalous

the logs and the resource usage data of such systems are.

Since sensitivity is a measure of the true positive rate, it is best to detect all

faults if possible, and our approach demonstrates that about 80% of faults can

be detected. In another sense, it is important that false alarm is reduced (high

specificity). From Figure 5.8, we notice that the choice of anomaly threshold

(γ) affects detection. False positives tend to increase at values below 0.6 and

values greater than 0.6, resulting in reduced sensitivity. On the other hand,

specificity increases with increase in γ.

108

5. Improving Error Detection Using Resource Usage Data and Event Logs

Results implication: It is better to achieve higher sensitivity than speci-

ficity. This is because it is better to be safe and know that there is no potential

failure and deal with the false alarms than having potential failures go unde-

tected. However, it is expected that system faults and eventual failure should be

a rare activity, and when false alarm is high, it becomes a disadvantage and may

lead to unnecessary attempts towards avoiding failures that never even existed.

0.83 0.82
0.799

0.65
0.62

0.6

0.67

0.74

0.85 0.85 0.86 0.87

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.2 0.3 0.4 0.5 0.6 0.7

Entropy threshold, ϕ

Sensitivity

Specificity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sequence Anomaly threshold, γ

Sensitivity

Specificity

Figure 5.7: Results showing accuracy of our detection approach under varying
values of entropy threshold (ϕ) and γ = 0.6.

Comparison with Nodeinfo

NodeInfo [106] is motivated by the assumption that similar computers executing

similar jobs should produce similar log contents. In that regard, as long as the

log lines are tokenizable, the idea can work. It equally leverages the“log.entry”

weighing scheme for calculating the entropy of a“nodehour” (nodes within an

hour), synonymous to documents in information theory. It first computes the

amount of information each token conveys with regards to the node that re-

ported it. Nodeinfo uses Shannon information entropy as defined in [122] to

calculate the information by each node. They further obtain and rank “node-

hours” according to how high information terms (Nodeinfo) they contain. Node-

hours, or what we called sequences of 60 minutes in size, with high Nodeinfo

109

5. Improving Error Detection Using Resource Usage Data and Event Logs

0.83 0.82
0.799

0.65
0.62

0.6

0.67

0.74

0.85 0.85 0.86 0.87

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.2 0.3 0.4 0.5 0.6 0.7

Entropy threshold, ϕ

Sensitivity

Specificity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sequence Anomaly threshold, γ

Sensitivity

Specificity

Figure 5.8: Results showing accuracy of our detection approach under varying
values of varying anomaly threshold, with ϕ = 0.4.

value, is regarded as faulty or containing alerts. We implemented this approach

(Nodeinfo [106]) and evaluated in on our event log data. We compare the perfor-

mance of Nodeinfo with our approach. Figure 5.9 shows the detection S-measure

of both methods. While our method performs consistently better with increase

in γ, Nodeinfo consistently decreases with increase Nodeinfo threshold. This

means that as we set the informativeness of a sequence to be high, Nodeinfo

detects fewer faulty sequences. Our method achieved on average (across all the

thresholds used, using S-measure) an improvement of about 50% over Nodeinfo.

Also, on the best anomaly threshold (0.4) it achieved an improvement of about

30%, that is, our approach can detect an additional 30% of faulty sequence over

Nodeinfo. This shows that the use of resource usage as a complement to event

logs, as proposed by our approach can be effective in increasing the accuracy of

error detection.

Runtime Performance Analysis

We implemented our algorithm in Java and ran it on a system with an Intel

i5 (3.10GHz) CPU to evaluate the runtime of the approach. The performance

(runtime) of our algorithm is not affected by detection thresholds but only

110

5. Improving Error Detection Using Resource Usage Data and Event Logs

S-
m
ea
su
re
	

0.9	
0.8	

0.7	

0.6	

0.5	

0.4	

0.3	

0.2	

0.1	

	0	
0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	

Anomaly threshold	

Our Method	 Nodeinfo	

Figure 5.9: Graph showing detection performance (S-measure) of our method
and nodeinfo

by the size of the data. This is mainly during the data transformation and

the process of obtaining the anomaly score. The PCA approach to anomaly

detection slightly increases the runtime, this is only true if the data is large.

Figure 5.10 demonstrates that the size of data3 has an impact on the run-

time performance. As the size of the logs increases, the runtime also increases;

however the increase is not exponential. The increase is gradual, and for a data

size of 300MB, the runtime is just about 4 minutes. This is not a challenge as

logs may not be this large within a time window; even if it were so, the time

taken to process it for detection is reasonably small. The detection process (Al-

gorithm 6) is very fast with just about 2-3 seconds and it is not dependent on

the data size at this point. The graph of Figure 5.10 shows the runtime of all

the steps involved.

3We add both resource usage data and error logs

111

5. Improving Error Detection Using Resource Usage Data and Event Logs

0

2E+11

4E+11

6E+11

8E+11

1E+12

1.2E+12

1.4E+12

2 10 20 40 80 100 150 200 250 300

R
u

n
ti

m
e

 (
n

s)

Data Size (MB)

Figure 5.10: Graph showing runtime performance of our method

5.3 Detection of Recovery Patterns

5.3.1 Introduction

The faults that occur in cluster systems may or may not eventually lead to

a system failure. As rightly observed by Oliner et.al., [102], that in reality,

there exists no description of a correct system. This is true since so many

components are involved and system administrators are probably unaware of

some happenings within the system, sometimes until a problem is noticed. The

characterisation of these faults by Gainaru et. al., [43] provides an insight as to

how some failures behave. Sometimes, the anticipated failure as a result of these

faults and errors may eventually not occur. This happens for network faults if

a recovery is successfully completed [24], [23]; similarly, memory errors may be

corrected by error correction codes (ECC), even though, from the events logs,

there is every indication that these faults will result in failure [43]. That is,

looking at the event logs, the patterns of messages are indicative of impending

failure. Most times, it is very difficult for system administrators to know if faults

within such time eventually lead to the failure or not. Previous work [53] on

detecting faults using logs has shown that this problem contributes to increased

112

5. Improving Error Detection Using Resource Usage Data and Event Logs

false positives.

We want to identify those sequences which, from their patterns of events

are indicative of failure; however they eventually did not end up causing any

failure. We call such sequences recovery sequences while those that end in failure

as failure sequences. Obviously, event logs or error messages will not provide

the needed insight if such sequences end up in failure or not. We propose a novel

approach based on change point detection that detects such sequences. To the

best of our knowledge, this work presents the first insight into this problem

as we have not seen a work that gave it attention. The detection approach

demonstrates that resource usage/utilization data can be useful in identifying

recovery sequences.

5.3.2 Recovery Pattern Detection

To achieve our aim, resource utilization data or usage data is used. We reiterate

the point that the resource usage data provides us with an understanding of the

happenings within the system regarding how resources are being utilised. For

example, a high or low usage of memory or network resources or better still, a

sudden change in page swap rate could point to an abnormal behaviour which

may lead to failure. In essence, an abnormal use of resources is a pointer to

imminent failure.

We conjecture that a system which experienced a successful recovery from

network error or memory error corrected by ECC may behave differently in its

resource usage. Even though error messages may not provide a clear indica-

tion that failure will eventually occur, resource usage data within such time

could provide a hint. Usage data within such time window could show unusual

use/utilization, however, it may eventually recovered successfully and not end

in failure. Normal behaviour towards time of expected failure could point to

successful recovery.

In this section, we detail steps taken to identify sequences with successful

recovery from faults by detecting points of unusual or abnormal change within

113

5. Improving Error Detection Using Resource Usage Data and Event Logs

the sequence of resource utilization data for which failure is expected or has

occurred. We utilised the idea of change point detection (CPD) to perform

this. Before the technique could be applied however, the data must first be

transformed to a format that can be used easily by the algorithm.

Data Preparation

Resource usage data as earlier explained, contains how much resources are used

on a particular node as captured by different resource counters (see Table 3.2).

Each counter captures the amount of resources they are associated with. For

example, a network counter (rx mgs dropped) captures the amount of messages

dropped by a particular node.

Hence a line of logged usage data contains all the counters and their usage

values captured within a certain period. Let us call these lines of logged usage

data as events, ei. These events are streams of time series data. For the purpose

of our research, we capture these events within given time window, tw, called

subsequence, xi. A sequence, S = x1, x2, ..., xn, is then a stream of subsequences

as illustrated in Figure 5.11. It is worth noting here that the choice of tw may be

dependent on the time to failure of a fault and component. A reasonably small

time is chosen to avoid capturing different usage patterns within a subsequence;

however, the time should be large enough such that the subsequence is still

informative.

S= {e1, e2, e3, e4, …, en-2, en-1, en}

x1 x2 xn

Figure 5.11: Sequence of resource usage data

We extract each xi as a vector of the sum of resource usage for each counter.

For example, given subsequence x1, with counter tx bytes: 267, read bytes: 302,

etc, then the vector x1=[267 302 ...]. Hence, the amount of resources used on

nodes ni in subsequence xi are summed up for each counter. These values are

then scaled to values between 0 and 1, forming a probability distribution. This

114

5. Improving Error Detection Using Resource Usage Data and Event Logs

is because the change point detection algorithm accepts the data as a probability

distribution. It also makes the data easier to handle and explained. We then

construct a matrix of the sequence where the subsequences forms row vectors.

Hence, given k number of counters and n subsequences, then the matrix M is

as given in Figure 5.12.

M =


x1,1 x1,2 . . . x1,k
x2,1
.
.
.

xn,1 xn,2 . . . xn,k


Figure 5.12: Data matrix M with n subsequences of S, where xn,k is the value
of counter k in subsequence n.

From the matrix M of Figure 5.12, a vector representing S is formed by

summing the values of each counter in a subsequence divided by the number of

counters. That is, subsequence x1 = xi,1 +xi,2 + ...+xi,k divided by k (counter

size). This is done for all the n subsequences. Hence, the vector forms the input

to the detection algorithm.

Change Point Detection

The objective of anomaly detection is to find a data point or data points that

behaves differently. The anomalousness now depends on the field of application

where an anomaly is a rare behaviour. Change Point Detection (CPD) [92, 130]

is an anomaly detection method where it detects “drastic change” observed from

a sequence distribution. These points of drastic change are possible anomalies.

Two classes of CPD are commonly used depending on the problem; they are:

Real-time change-point detection and Retrospective change-point detection [92].

The former deals with detecting real-time changes in applications, a good exam-

ple is responses in robots. The later deals with applications with longer response

times and it is also used to deal with retrospective data.

In this work, we employ retrospective CPD to detect sudden changes in the

115

5. Improving Error Detection Using Resource Usage Data and Event Logs

utilisation of resources by a supercomputer system. Such sudden change could

point to abnormal behaviour in the system. For example, a sudden peak in

memory or network resource usage could signal the presence of faults and/or

errors.

The reason for the choice of CPD approach in this study is connected to

the nature of our data. The resource usage data are collected and logged as

streams of time series data which is formed by the probability distributions of

the resources used on a node by running jobs. Therefore, the level at which

resources are utilised may vary with time and this changes can be captured

using CPD. This is our motivation for using change point detection. We will

discuss briefly two Retrospective CPD approaches we employed in this work.

Cumulative Sum Change-Point Detection: Cumulative Sum (CuSUM)

CPD approach [130, 131], is based on the fact that a sudden change in parameter

value corresponds to a change in the expected value of log-likelihood ratio. From

the name, it tracks the cumulative sums of the differences between the values

and the average. At points where the values are above average, the cumulative

sum steadily increases. Therefore this method involves finding the mean and its

difference with observation values.

Given series of data S = x1, x2, . . . , xn, we first initialise the cumulative

sum, cS0 = 0 and obtain the mean of S (the row vectors), given as x̄,

cSi+1 = cSi + (xi+1 − x̄) (5.11)

for all i = 1...n.

Abrupt change points are those points with cSi values above a certain thresh-

old value.

Divergence-Based Dissimilarity Measure: In this approach, a dissimi-

larity measure is introduced. We used Kullback Divergence (KLD) measure [92].

The Kullback Divergence of two sequence distributions x and y (for simplic-

116

5. Improving Error Detection Using Resource Usage Data and Event Logs

ity, we assume x = xi and y = xi+1) is given by:

KLD(x‖y) =
∑
i

x(i)log
x(i)

y(i)
(5.12)

where i is the index of probability values of vectors x and y.

Figure 5.13 shows the CPD charts of sequences that end in failure and one

that recover. It can be noticed that usage observation values decreases for the

recovery sequences as time progresses. It is lower for the recovery compared to

failure sequence. This gives an indication into how these two sequences could

behave based on how the resources are being used (during failure, recovery).

We utilised this for our detection algorithm explained in the next section.

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12

C
h

an
ge

 P
o

in
t

V
al

u
e

Sequence Usage Observations

Failure

Recovery

Figure 5.13: Graph showing the change point behaviours of both recovery and
failure sequences

Detection

We detect multiple change points within a failure sequence. We conjecture

that sequences that eventually end in failure are likely to contain change points

and/or a sustain presence of such points leading up to time of failure. Mean-

while, sequences that eventually experience recovery may not contain many

change points or sustained change points leading up to expected time of failure.

117

5. Improving Error Detection Using Resource Usage Data and Event Logs

These sequences may be characterised by relatively normal resource utilization

if there is a successful recovery from faults. Given the observations of usage

data xi within a sequence S, that is, S = x1, x2, ..., xn, where observations,

xi, are made within a certain time interval and the time of occurrence of xi,

tx1 < tx2 < ... < txn , then we conjecture that for any failure sequence S, an

abnormal use of the resources can be noticed throughout the sequence and it

is likely to be sustained across tx1
to txn

. However, a recovery sequence will

likely experience normal behaviour or normal resource usage as the time ap-

proaches failure. This implies that it may likely contain less change points as it

approaches the expected failure time.

Algorithm 7 Recovery sequence detection

1: procedure Detect(S, th) . th is the detection threshold
2: cp = null . keeps the list of points above threshold
3: xi ∈ S . vectors (subsequences) of S
4: for i = 1 to |S| − 1 do
5: p(xi) =CPD(xi, xi+1) . CPD represents either KLD or CuSUM.
6: if (p(xi) >= th then . th is change point threshold
7: add point (i) to list of change points (cp)
8: end if
9: end for

10: if (if there are more than a point i greater than midpoint) then
11: return Failure
12: else
13: return Recovery
14: end if
15: end procedure

From Algorithm 7, we detect multiple change points within the sequence.

We keep the points which are seen as change points for the sequence. The

sequence with change points occurring beyond the midpoint of the sequence

will likely end in failure as earlier explained.

5.3.3 Results

Our aim is to develop a methodology to detect sequences that recovered from

faults and did not end in failure. These sequences contribute to false positives

on the earlier failure detection approach since they they equally produce event

118

5. Improving Error Detection Using Resource Usage Data and Event Logs

messages indicative of failure. To achieve this aim, we utilized the resource

usage data of the Ranger supercomputer and not the error logs. The approach

is then evaluated by conducting experiments on the resource usage data.

As earlier explained in Chapter 3, the resource usage data were collected us-

ing TACC Stats [59] that takes snapshots of utilization data of the 96 counters.

The snapshots are taken within ten-minute intervals . Jobs generate their re-

source usage data on a particular node, which are then logged to the file system.

The data is logged by each node through a centralized message logging system.

The logs are combined and interleaved in time.

From the data, more failures actually took place within the first and second

weeks of March 2012 with few occurring in the third and fourth weeks. Among

these failure sequences are those that eventually did not end up in failure, but

experienced a recovery. We had a total of 720 sequences of which 182 are real

failure sequences and 72 recovery sequences.

In the experiments, we evaluate our approach under various detection thresh-

old values. The values of detection threshold, th is varied to obtain better values

for both sensitivity and specificity. We show results and discuss the two CPD

methods (CuSUM, KLD) used.

From the results seen in Figure 5.14 for using CuSUM approach, the true

positive rate (sensitivity) performs poorly at th = 0.1, 0.2. It consistently in-

creased (maximum sensitivity of about 90%) as the value of th is increased. This

shows that the more we increase the value th, the better the detection of the

recovery sequences. It achieved highest sensitivity at th = 0.7, which remains

constant for higher values of th. Likewise, the specificity is highest at lower val-

ues of th as expected and reduces from 70% to 20% at th = 0.6 and remains so

for higher values. These results demonstrate that we can achieve good detection

of recovery sequences when we use CuSUM change point detection method. For

this approach (CuSUM), a better result (S-measure) is obtained at threshold

th = 0.3 as seen in Figure 5.10. It achieved about 63% detection. However, the

high false positive and false negative rates renders this approach less effective.

119

5. Improving Error Detection Using Resource Usage Data and Event Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold, th

CuSUM

sensitivity

specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold, th

KLD

sensitivity

specificity

Figure 5.14: Result showing accuracy of detecting recovery sequences among
failure sequences using Cumulative Sum change point detection and varying
values of detection threshold, th

.

Similarly, using KLD method (see Figure 5.15), the results are similar to

CuSUM. A highest sensitivity of about 84% is observed when th = 0.5 and more.

The specificity on the other hand, decreases with increase in th. The lowest

specificity (10%) is obtained at th = 0.6 and remained so for higher values.

Comparatively, CuSUM seems to slightly perform better over all the thresholds

used. However, looking at the S-measure in Figure 5.16, KLD performed high

with detection of 64% at th = 0.2. This result is almost similar with the

CuSUM approach (1% difference); the only difference is that they are achieved

at different detection thresholds.

Based on these results, it is very possible to achieve good detection of se-

quences which did not end in failure (recovery sequences) from usage data. Even

though, this is not the best performance expected, however, it is a good start-

ing point for exploring the use of resource utilisation data of cluster systems

to detect both failure sequences and recovery sequences applying change point

detection method. One main challenge with our method is the insufficiency of

data, that is the number of recovery and failure sequences. We believe a better

result can be achieved if more data containing identified failures and recovery

120

5. Improving Error Detection Using Resource Usage Data and Event Logs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold, th

CuSUM

sensitivity

specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold, th

KLD

sensitivity

specificity

Figure 5.15: Results showing accuracy of detecting recovery sequences among
failure sequences using KLD change point detection, and varying values of de-
tection threshold, th.

sequences are available. The four weeks data we used, as earlier mentioned, ex-

perienced more failure and recovery within the first two weeks of cluster system

operation and very few at weeks three and four. We speculate here that this

approach may not be the best for faults with no impact on resource utilization.

This is because it depends fully on the how the resources are used.

5.4 Improving Failure Pattern Detection

The performance of the failure pattern detection discussed in previous sections

can be improved by combining the detection approach with detecting recovery

patterns. The idea is that recovery patterns if detected can reduce the number

of false positives. This is because most times, the recovery patterns behave

similar to failure patterns. Hence, it explains the poor specificity values of the

detection algorithm.

121

5. Improving Error Detection Using Resource Usage Data and Event Logs

S-
m
ea
su
re
	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	
Threshold, th	

CuSUM	

KLD	

Figure 5.16: Graph showing detection performance (S-measure) of both CPD
methods used

5.4.1 PCA and CPD Failure Detection Algorithm

We have shown earlier that these recovery patterns can be identified with about

65% detection accuracy4. The motivation here is that by combining the PCA-

failure detection approach and the CPD-recovery detection methods, we could

improve the general performance of the failure detection.

The detection based on the CPD and the PCA discussed earlier is performed

as follows: A pattern detected as failure by the PCA-detection seen in Algo-

rithm 5 is only a failure if the same pattern is not a recovery pattern based

on CPD Algorithm 7 discussed. This step stems from the fact that recovery

patterns are non-failure patterns, and these patterns can easily be detected as

failure patterns due to the nature of the events logged (which are most times

indicative of impending failure). This approach is aimed at reducing the de-

tection false positives due to the recovery patterns. It is expected that the

combined PCA and CPD failure detection algorithm will bring about improved

identification of non-failure patterns.

4by detection accuracy here, we mean detection sensitivity

122

5. Improving Error Detection Using Resource Usage Data and Event Logs

5.4.2 Results

Similar to the experiment in Section 5.2.5, we conducted the experiment and

maintained the evaluation metrics. The value for CPD threshold is chosen as

th = 0.2, as this is the value for which recovery detection was highest (see

Figure 5.16).

From the results of Figure 5.17, the sensitivity decreases with increase in

the anomaly threshold (γ) values. On the other hand, specificity, as expected,

increases with increase in γ. The highest value of sensitivity is achieved by

combining both PCA and CPD-detection is about 71% at γ = 0.4. With increase

in detection threshold5, more faulty patterns are detected as normal patterns

(false negative increases). This implies that the anomalousness of a pattern

doesn’t have to be very high for it to lead to failure. In essence, a system that

demonstrates above 50% anomalousness has about 71% chance of resulting in a

failure.

The CPD part of the algorithm is meant to reduce the false positives that

arise from the algorithm. Most times, these patterns contain events that indicate

the presence of failure, however the system experiences recovery. In particular,

the CPD is aimed at improving specificity which increases with increase in γ,

as seen Figure 5.17.

Comparing the performance of this approach (PCA and CPD) with detec-

tion explained in previous sections (based on PCA-anomaly, event entropy and

mutual information), we can clearly see that the latter performs better. This

can be explained as from CPD-recovery detection, the performance was about

65%; with 35% wrongly detected recovery patterns. This contributes to the

reduced performance when the two methods are combined. Hence we conclude

that, unless a better performance is achieved in detecting recovery patterns, the

combination of PCA and CPD for detection does not help.

5when the resource usage deviation from normal is reasonably high before we suspect an
anomalous behaviour in the system

123

5. Improving Error Detection Using Resource Usage Data and Event Logs

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	
Anomaly threshold, γ

Sensi2vity	

Specificity	

S-measure	

Figure 5.17: Graph showing detection performance of combining detection based
on PCA-anomaly and CPD-Recovery.

5.5 Summary

In summary, this chapter’s main and novel contributions are as follows:

• We develop an algorithm that uses the console logs to detect erroneous

runs. The algorithm achieves this by clustering together nodes that exhibit

similar behaviour, through the use of the mutual information and entropy

concepts.

• Usage log data provide an understanding of cluster systems resource uti-

lization. Abnormally high utilization may suggest an impending failure

due to some errors in the system. To be able to capture the anomalous be-

haviour of jobs running within the system, we employ an unsupervised de-

tection approach, PCA, to do this. Highly anomalous jobs present within

a sequence signify the presence of faults which could lead to failure.

• Lastly, we utilised both the patterns mutual information and entropy from

event logs and the outlier/anomaly level of sequences from its resource

usage data to detect if a sequence is likely to lead to failure or not. We

124

5. Improving Error Detection Using Resource Usage Data and Event Logs

propose a detection algorithm based on these systems information from

both event logs and resource usage data. We then compare our method

with an existing approach.

Our approach is very promising: it is able to detect faulty sequences with

high accuracy and, when compared to the well-known Nodeinfo approach [106],

it outperforms it greatly.

Relation to other chapters: This chapter has shown that errors can be

detected with high accuracy. The question that follows is: can failure preven-

tion or avoidance or error handling methods like checkpointing be successfully

completed before an impending failure is experienced? This question is valid

since preventive checkpointing6 is said be a promising approach in the exascale

computing era [16]: hence there is a need to extend the error handling time if

possible. The next chapter addresses this problem.

6Triggered whenever an error is detected

125

CHAPTER 6
Early Error Detection for Increasing the Error Handling

Time Window

6.1 Introduction

HPC systems’ failure is a recurrent event owing to its scale and complexity.

Given that dependability is an important property for such systems, the abil-

ity to properly handle (fail-stop) errors is crucial. One of the fundamental

approaches to handle such failures makes use of the checkpoint-restart (C/R)

technique, where the application state is saved at regular interval during execu-

tion (i.e., checkpoint) and restarted at the latest checkpoint, in case of a failure.

However, the C/R technique faces one major challenge: the checkpoint time is

significant, roughly currently in the order of 25− 30 minutes [14, 16]. However,

it is predicted that, on very large scale platforms (e.g., exascale platforms), with

expected Mean Time To Interrupt predicted to be very low (one hour or less),

little progress can be made due to the significant proportion of time devoted to

C/R [11, 14]. A possible alternative to checkpointing is task migration but one

of the limitations of this technique is that checkpointing is again required to

deal with false negatives (i.e., when the system does not detect an impending

failure) [16], making C/R a cornerstone for building resilience into HPC sys-

tems. Another approach is to combine proactive checkpointing (where the state

of a given node is saved) with preventive checkpointing(the state of the entire

system is saved), supported by accurate failure prediction [11].

Thus, to address the checkpointing (or error handling) time, there are several

research avenues being pursued. One way of reducing the C/R proportion is to

reduce the size of the checkpoint. With little data being available regarding the

126

6. Early Error Detection for Increasing the Error Handling Time Window

typical size of a checkpoint, it is widely believed that programmers save more

data than required as they cannot easily track data structures updates between

checkpoints. Thus, techniques such as memory exclusion and compiler analysis

to detect dead variables have been proposed. Another alternative to reduce

checkpointing time is to reduce the usage of disks to store checkpoints [16].

However, one technique which holds promise is preventive checkpointing [16]:

Error detection (or failure prediction) is used to trigger a checkpoint before the

error propagates through the system. To enable this technique, two important

challenges exist: (i) developing efficient error detection techniques (to trigger

checkpointing) and (ii) the time window between the time of error detection

and the actual failure needs to be large enough (to allow for checkpointing to

complete) and also for the system to make progress. With the size of RAM

memory expected to increase, techniques need to be developed to keep this

time window as large as possible. We call this time window the error handling

time window, which is the focus of this paper.

Detecting fault symptoms (i.e., errors) using error logs has received good

attention, with reasonably good results, e.g., [9, 43, 112, 147]. Most of these

approaches have attempted to identify individual faulty events within the data.

However, in many cases, individual events may not be sufficient to indicate an

impending system failure. Other approaches for error detection within patterns

or faulty patterns/sequence in the recent past have used the concept of log

entropy of the log messages seen within the sequences [93, 96, 106]. Log entropy

generally leverages the inherent changes in the frequency of event patterns to

capture the behaviour of a system. Oliner et al. [106] attempted to capture

the sequence information, or what they called Nodeinfo, of a nodehour, an area

within which the log can be considered as faulty. A recent approach combines

both entropy and the concept of mutual information of patterns to discriminate

between faulty and non-faulty patterns [53].

127

6. Early Error Detection for Increasing the Error Handling Time Window

6.1.1 Motivation

The systems executes resource-intensive applications such as scientific applica-

tions which require the architecture or the system to display a very high level of

dependability to mitigate the impact of faults. As earlier stated, typical error

handling techniques such as checkpointing and task migrations are expensive as

they incur a high completion latency. To ensure the success of such techniques,

enough time should be allowed for these to complete, i.e., the error handling

time should be greater than the completion latency of the error handling mech-

anisms. However, error detection based on event logs may leave a short error

handling time window insufficient for such mechanisms to complete. Also, the

log files are known to be incomplete, i.e., the log entries do not provide sufficient

information regarding the behaviour of HPC systems that can be used to accu-

rately detect errors in the system and redundant, i.e., several log entries may be

due to the same event. The logs may contain several error events that relate to

the same fault. These issues make error prediction or failure prediction based

on error log files challenging, leaving a small error handling time window.

6.1.2 Problem Statement

In this section, we explain the problem we address in this paper, and the chal-

lenges associated with it.

Log messages that are error messages capture the nature of the underlying

problems in the system. However, due to the incompleteness nature of event

logs, a single error message may not accurately predict an impending failure.

For example, a loaded network may cause a network timeout. However, this

single event may be later followed by a retransmission after which, a successful

recovery is achieved. Thus, to increase the accuracy1 of failure prediction, the

behaviour of the system needs to be observed over a period of time. It is

stipulated that some failures can be predicted with more than 60% accuracy [14].

Because of the high overhead associated with false positives, the prediction of

1Accuracy here is the ability to detect actual failures while also reducing false positives

128

6. Early Error Detection for Increasing the Error Handling Time Window

a failure based on the observation of an error message is not advised. Rather,

to keep high accuracy while minimizing false positives entails observation of

an erroneous event sequence for failure prediction. Thus, the problem is to

develop a methodology such that (i) accurate failure prediction is high and (ii)

the failure lead time is high, enabling the system to make sustained progress

even after checkpointing is done (or enough time for checkpointing to complete).

We now pose the main problem we address in this paper as follows: Given an

event log file F , and possibly a set of other log files F1, . . . , Fn, a time window

We for event log analysis, and a time window Wi for every other log file Fi,

develop a methodology such that the time window between the time of failure

prediction and the time of system failure is high. We call this time window the

error handling time window, as this is the amount of time the system has to

tolerate the fault, i.e., correct the error, before failure occurs.

6.1.3 Objectives of the Chapter

To complement error log files, this chapter propose the use of resource usage

information to aid in early error detection. Particularly, it seeks to detect errors

early with high probability so as to increase the error handling time window

so that recovery procedures such as C/R can successfully complete [54]. To

increase the time window, we propose a novel approach based on the observation

that anomalous resource usage could lead to system failure [25]. Thus, in this

chapter, we seek to develop a methodology that combines both resource usage

data and error logs to obtain a larger time window to support error handling.

The remainder of the chapter is structured as follows: The methodology

or the steps taken towards solving the problem is discussed in Section 6.2, we

presented the case study and results in Section 6.3. We briefly summarise the

chapter’s contributions in Sections 6.4.

129

6. Early Error Detection for Increasing the Error Handling Time Window

6.2 Methodology

Our approach thus proposed to use another log file, namely resource usage

data, which reports the amount of resources that are being utilised by each

job on a node. Inconsistent or anomalous amount of resource usage by jobs

on a particular node could point to potential problem in the system, that can

eventually lead to system failure [25]2.

In this section, we detail our methodology, based on both event logs and

resource usage logs, for obtaining an increased error handling time window.

The workflow starts with the time of the failure as input, which we denote by

Tf . We first conduct (i) a root-cause analysis on the event logs to obtain the

time Te at which the root-cause event of the failure occurred, with Te < Tf .

(ii) We then run an anomaly detection algorithm on the resource usage data

to identify the job(s) with anomalous resource usage data. The first time this

anomaly occurs, prior to Te, within a given time window Wr is noted. We

denote this time by Tr. We further attempt to push back the failure prediction

time through (iii) the detection of change points. The rationale behind this

is that when a resource usage anomaly occurs, this anomaly cannot happen

in one step. Rather, it happens in a few steps. For example, if the workload

suddenly increases, the job may request more and more resources (over a certain

time) rather than the request being serviced in one go. Thus, the observation

of change points may indicate impending failure. We now explain the main

techniques involved in our methodology as depicted in Figure 6.1.

6.2.1 Root Cause Analysis

Event logs of large cluster systems are made up of streams of interleaved events.

This is because of the high degree of interactions among the system hardware

and software components. Most times, only a small fraction of the events over a

small time span are relevant or could point to pending failure, i.e., only a small

2Observe that this may not always be the case. For example, a job starting will suddenly
acquire a relatively large amount of resources to run, though this is not anomalous.

130

6. Early Error Detection for Increasing the Error Handling Time Window

Event
	logs

Resource
	usage
	 	logs

Root cause analysis
	on event logs

						
	 	Te: Time when first
	 	root cause of failure
	 	 	is determined.

Change point
	detection

	Tr: Time at which
		 	anomaly is first
observed leading to
		error in event log

		Tc: Time at which
change point detected
	leading to resource
		 	usage anomaly

	Tf: Time of failure
We: Time window

	Anomaly detection:
	 		PCA and ICA
					
	 			Wi: Time
window for resource
	 	data analysis

Error	Event,	Te	

Figure 6.1: Methodology work flow

proportion of these events are error events. Identifying the causes of system

failures is necessary and event logs being a source of health information, system

administrators have to identify the small useful fraction of the events that are

related to the failure. Such an activity is typically very challenging. In order

to trace the likely root-causes of failure in logs, we identify events that are

highly correlated with frequently occurring failures. We use an established fault

diagnostic tool called FDiag [23, 24] for this purpose. It extracts from large

event logs of cluster systems, error events which are regarded as causing system

failures. These events are those which are highly correlated with the failure

events. Given a time window We before the failure, we seek root-causes within

We. FDiag basically works as follows: Given a known system failure, FDiag

identifies patterns of system events which occur across the nodes of the cluster

system, extracts only the correlated events (with the failure). These pattern of

events identified are within given time period, providing the fault events and the

time for which they occur. FDiag [24] employ statistical correlation approach

to obtain these faults which causes recurrent failure.

131

6. Early Error Detection for Increasing the Error Handling Time Window

6.2.2 Anomaly Detection

An impending failure in a cluster system is manifested in event logs but some-

times are not logged early enough before the failure occurs. The behaviours

which are highly correlated with failures may not manifest early in the logs; in

other words, the sequence of errors are reported too late especially for prediction

purposes. On the other hand, resource utilization data or usage data records

how the resources are being used by the running jobs on each node. These usage

data can record early abnormal behaviour experienced by each job on a partic-

ular node [40]. It has been shown that a correlation exists between anomalous

resource usage and system failures [25] and Gabel et al. [40] has demonstrated

that counters can indeed capture latent faults and that these can be detected.

In this section, we explain our approach for extracting anomalous running jobs,

which are conjectured to be indicators of a problem within the cluster system,

before these problems manifest themselves in the event logs. We also extract

the time for which anomalous behaviour is experienced. However, for a given

root-cause, there may be several preceding resource usage anomaly, we impose

a time window Wr preceding the root-cause, during which we take the time at

which the first anomaly is noted. We denote this time by Tr. We first have

to transform the resource usage data into a form suitable for analysis, before

explaining the anomaly detection algorithms used in this paper.

Data Transformation

The resource usage data contains records of each jobs running on a particular

node with values for its usage as carried by the elements/counters. In order

to appropriately capture the behaviour of the system with these nodes and it

running jobs, there is need to transform this data into a format (matrix) that

can be used easily. The data which captures how much resources is being used

inherently describes the state of the system within a given time window. As

earlier said, abnormal resource usage could point to potential system failure [25].

In order to detect these abnormalities in resource usage, we properly extract the

132

6. Early Error Detection for Increasing the Error Handling Time Window

counters or attributes/elements, where the state of the resources for each job

on each node within given time are captured. Hence, from the resource usage

data, the time window used is dependent on the time of event fault. Given the

time at which first fault is observed from the event logs is Te (from root cause

analysis of fault in previous section), then, time, Tx, under which the resource

usage data will be considered is Tx = Te− tw, where tw is the time at which we

begin to observe anomalous behaviour.

A Resource Usage Feature matrix is formed, where the features are the jobs

running on each node within time Tx. For any k counters and n running jobs,

we construct a n × k feature matrix J = [j1, j2, ..., jn]
T ∈ <n×k with columns

representing the counters or the elements of the resource usage and the row

vector ji = [ji,1, ji,2, ..ji,k], i = (1, 2, ..., n) representing the different running

jobs on each node. Figure 6.2 describes the matrix.

J =


j1,1 j1,2 . . . j1,k
j2,1
.
.
.

jn,1 jn,2 . . . jn,k


Figure 6.2: Data matrix J with i features, where jn,k is the value of counter k
by job n.

The intersection of row vector value and column vector, jik represents the

resource usage for job i by counter/element k. These resource usage values are

summed for each similar counter within same time window and the same job.

Specifically, jik = usage values of counter k reported by job i. This basically

captures each jobs resource usage on a particular node.

Anomalous Job Extraction

The resource usage data contains information about how the resources resources

(e.g. CPU, I/O transfer rates, virtual memory utilization) of each of these

nodes by each job running in the cluster system are utilised or used. It provides

133

6. Early Error Detection for Increasing the Error Handling Time Window

useful hint regarding unusual behaviour of given jobs in terms of its rate of

resource utilization within given time. In order detect unusual jobs, we use the

transformed resource usage data features as seen in matrix of Figure 6.2 as input

data to our detection algorithm. This section aim at obtaining anomalous jobs

which could significantly point to problem(s) in the cluster as observed by the

anomaly score of the jobs within a period.

We introduce an unsupervised approach to detecting anomalous jobs based

on principal component analysis (PCA) [84] and independent component anal-

ysis (ICA). Both have been a widely and efficiently used feature extraction

method in different fields and also for identifying anomalous node behaviour [80].

However, both methods can reveal the inner structure of data and are suitable

in explaining the variance. Other anomaly detection methods, such as one-class

SVM [72], are supervised approaches that require the data to be labelled, which

is expensive. PCA has been previously shown to be effective in detecting faults

in systems using console logs [147], hence our reason for employing both PCA

and ICA in this work. We utilise these methods to find anomalous jobs from

resource usage data.

Principal Component Analysis (PCA)

PCA is utilised in the chapter in similar way as explained in previous chapter;

where, given J = [j1
T , j2

T , ..., jn
T] ∈ <n×k, and each row ji representing k −

dimension data instances of jobs, the v-dominant eigenvectors are obtained.

Independent Component Analysis, (ICA)

ICA [66] is a technique used to find linear representation of variables, measure-

ments to reveal their independence. This involves revealing the linear transfor-

mation that maximises the statistical independence between its components. It

is a generative model that assumes that components are statistically indepen-

dent and these components are also assumed to be non-gaussian in distribution.

We adopt the FastICA [66] algorithm implementation of the ICA, for its

134

6. Early Error Detection for Increasing the Error Handling Time Window

fast and efficient performance. The process involved in performing ICA is

summarised as follows: A centering of the data is performed. This is a pre-

processing step for ICA that involves making the random vector a zero-mean

variable by subtracting its mean vector. The next preprocessing step is whiten-

ing. In this step, the observed vector variables, x, are linearly transformed

into a new vector x̄ with uncorrelated components with unit variance, that is,

x̄x̄T = I. This step is done using eigen-value decomposition (EVD) of the co-

variance matrix C. The non-zero eigenvalues, λi of the covariance matrix, C,

are obtained . Let J = diag(λ1, λ2, ..., λk), E = [e1, e2, ..., ek], then a whitened

vector x̄ = EV −
1
2ETx.

Recent and detail advances on ICA can be found in [65].

Anomalous Jobs Detection in Usage logs Using PCA or ICA

We utilize both PCA and ICA to identify anomalous jobs running in a cluster

system within a given time window from the resource usage data features. The

approach is based on an assumption that, for every data point, removing or

adding it contributes to the behaviour of the most dominant direction. This is

because PCA/ICA relies on calculating the mean and the data covariance matrix

in obtaining eigenvectors, and it is observed to be sensitive to the presence of

an outlier. Hence, in this approach, the outlierness of a job can be determined

by the variation in the dominant principal direction. Specifically, by removing

an outlier point or job, the direction of dominant principal component changes

however a normal data point will not change it.

So, given data points J = [j1
T , j2

T , ..., jn
T], the leading principal direction

d from J is extracted. Then, for each data point ji, we obtain the leading

principal component, di, of J without ji. We use cosine similarity to compute

the outlierness ai of point ji, which is the dissimilarity between d and ji. The

algorithm presented in Algorithm 8 is used to compute the set of anomalous

jobs. A point is considered anomalous when its “outlierness” is greater than a

given threshold γ.

The same algorithm follows for the ICA detection approach, where the lead-

135

6. Early Error Detection for Increasing the Error Handling Time Window

ing independent component is computed instead of the leading principal com-

ponent.

Algorithm 8 Extracting anomalous jobs and time from usage data

1: procedure AnomalousJob(J, γ)
2: d = Leading principal/independent direction of J
3: k = 0
4: aList . keep list of anomalous jobs
5: atime . time of first anomaly
6: for each ji in J do
7: di = Leading principal/independent direction of J without data

point ji.

8: sim(di, d) =
di · d
‖di‖‖d‖

9: ai = 1− |sim(di, d)|
10: if (ai ≥ γ) then
11: aList.Add(ji)
12: aT ime = time(ji) . keep only the earliest time when anomaly

occur
13: k + +
14: end if
15: end for
16: if (k > 0) then
17: Return aList and aT ime . return all anomalous jobs and the

earliest time
18: else
19: Return No anomalous jobs
20: end if
21: end procedure

An example of the output of Algorithm 5 is shown in Figure 6.3, after running

Algorithm 8 with PCA on the resource usage data for the Ranger supercom-

puter. The points in red indicate the likely anomalous jobs. Figure 6.4 shows

the anomalous jobs after running Algorithm 8 with ICA on the same dataset.

Obtaining Counter Relationships

In this section, we describe our approach to uncover possible relationships that

exist among resource counters. These relationships can indicate that particular

resources are the causes of an anomaly. For example, does a high mmap counter

value have any correlation with the dirty page hits counter and if so, what does

it mean to the behaviour of running jobs in the cluster, or can it point to any

136

6. Early Error Detection for Increasing the Error Handling Time Window

-0.0001

0.0004

0.0009

0.0014

0.0019

0.0024

0 100 200 300 400 500 600

o
u

tl
ie

rn
e

ss
/a

n
o

m
al

y

Jobs

Figure 6.3: Distribution of jobs outlierness of a sequence using PCA

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

P
ro

p
ag

at
io

n
 T

im
e

 (
Se

co
n

d
s)

Different fault inducing sequences

PCA

ICA

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 100 200 300 400 500 600

A
n

o
m

al
y

Jobs

Figure 6.4: Distribution of jobs outlierness of a sequence using ICA

137

6. Early Error Detection for Increasing the Error Handling Time Window

normal or abnormal behaviour? This section aimed to look at the categories of

counters (network, memory or storage).

Any unusual behaviour of the resource counters can be detected using PCA

or ICA anomaly detection. We first employ the PCA approach to obtain anoma-

lous counters. The behaviour of the counters is unclear, with most of them

behaving the same (hidden relationships). This can be attributed to the fact

that PCA assumes a Gaussian distribution of the data. Hence, in order to un-

derstand the relationships between the counters, in this case, we employ the

idea of Maximal Information Coefficient (MIC) by Reshef et al., [113]. MIC is

promising and it has not been used in this area before.

MIC is a measure of dependence for two-variable relationships. It calculates

the measure of dependence for each pair, rank them and further examine their

top scoring pairs. If a relationship exists between two variables, then a grid can

be drawn on the scatterplot of the variables that partitions the data encapsu-

lating the very relationship. Hence, all grids up to the maximal grid resolution

are explored; computing the largest possible Mutual Information (MI) for every

pair of integers (n, k) dependent on the sample size. The values of these MIs are

further normalised to values between 0 and 1 to enforce fair comparison between

grids of different dimensions. A characteristic matrix J is defined as J = (jn,k),

where jn,k is the highest normalised MI achieved by n-by-k grid, and MIC is

the maximum value of M.

Formally, for a grid G, let IG denote the mutual information of the prob-

ability distribution induced on the boxes of G, where the probability of a box

is proportional to the number of data points falling inside the box. Then the

characteristic matrix, Jn,k as shown below.

Jn,k = max
IG

log(min(n, k))
(6.1)

MIC is the maximum of Jn,k over ordered pairs (n, k).

138

6. Early Error Detection for Increasing the Error Handling Time Window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

O
u

tl
ie

rn
e

ss

counters

Figure 6.5: Distribution of outlierness/anomaly using MIC

6.2.3 Change Point Detection

The Change Point Detection (CPD) [92, 130] is an anomaly detection method

where a ”drastic change” observed from a sequence distribution is detected.

These points of sudden change may be indicators of impending possible anoma-

lies. It can be performed as a real-time change-point detection or retrospective

change-point detection [92], depending on suitability. The former deals with

detecting real-time changes in applications. A good example is responses in

robots. On the other hand, the latter is mostly employed for applications with

longer response time and deals with retrospective data.

In this work, we employ the retrospective CPD to detect sudden changes in

the utilisation of resources by a supercomputer system. Such sudden changes

may point to possible abnormal behaviours in the system. For example, a sudden

peak in usage of memory or network resources could signal the presence of errors

in the system. Resource usage data are collected and logged as streams of time

series data which are formed by the probability distributions of the resources

used on a node by running jobs. Therefore, the level at which resources are

utilised may vary with time and these changes can be captured using CPD.

This is our motivation for using change point detection as an alternative to job

anomalies. Specifically, we use change points as anomaly indicators and, since

139

6. Early Error Detection for Increasing the Error Handling Time Window

job anomaly are good failure predictors, by extension we seek to determine

the suitability of change points as good failure predictors. We employed the

cumulative sum change point detection technique in this work, as explained

below.

Cumulative Sum Change-Point Detection: Cumulative Sum (CuSUM)

CPD approach [130, 131], is based on the fact that sudden change in parameter

corresponds to a change in the expected value of log-likelihood ratio. From

the name, it tracks the cumulative sums of the differences between the values

and the average. At points where the values are above average, the cumulative

sum steadily increases. Therefore this method involve finding the mean and its

difference with observation values.

Given S = x1, x2, . . . , xn, we first initialise the cumulative sum, cS0 = 0 and

obtain the mean of S, given as x̄,

cSi+1 = cSi + (xi+1 − x̄) (6.2)

for all i = 1...n.

Any abrupt change points are those points with cSi values above a threshold

th.

Preparing data for CPD algorithm: A line of logged usage data contains all

the counters and their usage values captured within a certain time period. We

refer to these lines of logged usage data as resource events (or simply events),

ei
3. These events are streams of time series data. for the purpose of our research,

we capture these events within a given time window, tw = 10 minutes, which

we call a subsequence, xi. A sequence, S = x1, x2, . . . , xn, is then a stream of

subsequences, as illustrated in Figure 5.11 (in chapter 5). A reasonably small

tw is chosen to avoid capturing different usage patterns within a subsequence

and also big enough for such subsequence to be informative.

Hence, each xi is a vector of the sum of resource usage for each counter.

3We refer to both log entries and resource usage data as events. However, the sources of
these events will make the nature of the events clear.

140

6. Early Error Detection for Increasing the Error Handling Time Window

The amount of resources used on all the nodes in a subsequence is summed

up for each counter. These values are then scaled to values between 0 and 1

to form a probability distribution. This is because the CPD algorithm accepts

the data as a probability distribution (this also becomes easier to handle and

explained). Figure 6.6 illustrates the outcome of applying CuSUM on a sequence

of resource usage data. At point 5, a sudden increase in change point values

can be observed, signalling a potential problem in the system.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10

ch
an

ge
 p

o
in

t
va

lu
e

s

Subsequence observations

Figure 6.6: Example showing result of CuSUM CPD on a sequence

6.2.4 Lead Times

The aim of any fault analysis is to provide an opportunity for preventive or

corrective mechanisms to be taken; that is, system administrators can rectify the

problem and/or employ measures that predict or prevent occurrences of failures.

The longer the time between the identification of an anomalous behaviour and

the time of failure, the higher is the probability of an error handling procedure

to complete successfully.

Therefore, from Algorithm 5, we first extract the set aList of anomalous jobs,

with the time Tfra (see Figure 6.7) being the earliest time when an anomalous

141

6. Early Error Detection for Increasing the Error Handling Time Window

Change point
C - TFcp

Anomaly
occurrence A -

TFra

Root-cause
identification E -

TFe
System failure

F - TFf

Anomaly
lead time

Error
lead time

Failure
lead time

error detection
latency

Error
detected

Figure 6.7: Lead Time of Anomalies, Errors and Failures

job has been identified. The time Tfe (see Figure 6.7) is the first time when

an error, diagnosed as a potential root-cause of the system failure F occurring

at time Tff . The time Tfcp defines the time at which the first change point

occurs in the resource usage, i.e., there can be several time periods during which

change-points occur and we are only interested in the first such time period.

We obtain the anomaly, error, failure lead times, which we denote by δTc, δTa, δTe

respectively, as the times between when the earliest change-point (resp. anoma-

lous job and error) is experienced to when an anomaly (resp. a hypothesized

root-cause, failure) is first identified, and are defined as follows:

δTc = Tfra − Tfcp (6.3)

δTa = Tfe − Tfra (6.4)

δTe = Tff − Tfe (6.5)

Another important aspect is the relationship between the counters, that may

point to a fault, captured by the values of MIC, as explained in Section 6.2.2.

The MIC values for a sample of the relationship is shown in Table 6.1. An entry

in the table means that, within the time window being considered, for example,

two counters, such as rx bytes dropped and direct write with MIC ≈ 1, there is

high tendency that there is high drop in data when there is an unusually high

142

6. Early Error Detection for Increasing the Error Handling Time Window

data written to storage. Table 6.1 shows the correlation of few pairs of counters

with value of MIC ≥ 0.8.

Table 6.1: Sample Results of Counter correlations (MIC)
counter1 counter2 MIC
alloc inode statfs 0.98425
direct read setxattr 1.0
direct read getattr 0.96307
dirty pages hits direct write 0.96166
mmap alloc inode 0.93
read bytes dirty pages hits 1.0
rx bytes dropped direct write 0.98425
rx msgs mmap 0.81772

6.3 Case Study: Ranger Supercomputer

In this section, we demonstrate our proposed methodology on logs and resource

usage data obtained from the Ranger supercomputer from the Texas Advanced

Computing Center (TACC) at the University of Texas at Austin4 and discuss

the results.

6.3.1 Datasets and Performance Measurement

The structure of the datasets have been explained in chapter 3. The data was

collected over a period of 4 weeks, with 32GB worth of resource usage data

and 1.2 GB worth of rationalized event logs (or ratlog). The datasets are not

labelled, i.e., they are not enhanced with any further failure information than

what they already carry.

Performance Measurement: The objective of the paper is to develop a

methodology to increase the time window during which error handling proce-

dures can be successfully completed. This increase in time period, which we call

the propagation time, is given by:

propagation time = anomaly lead time + error lead time (6.6)

4www.tacc.utexas.edu

143

6. Early Error Detection for Increasing the Error Handling Time Window

However, this increase should be linked to situations leading to a possible

system failure, i.e., the increased time window should not occur due to a high

rate of false positives (good system behaviours wrongly identified as failure

pattern).

Thus, to measure the performance of the methodology, we use the so-called

F-measure metric, which is the harmonic mean of precision and recall. Precision

captures the proportion of patterns that are correctly identified as failure pat-

terns to the total number of patterns identified as failures (correct or not). On

the other hand, recall captures the proportion of accurate failure patterns iden-

tifications to the total number of actual failure patterns. Specifically, f-measure

achieves a balance between true and false positives.

6.3.2 Base Case for Comparison - Error Detection La-

tency using Clustering

We now develop a base case for analyzing the performance of our methodology.

We use the methodology developed in chapter 4, which is also seen in [53]

for failure detection. The ability to predict failure provides the basis for the

development of an error detection mechanism, i.e., once a failure is predicted

(with high probability), then a flag indicating the presence of an error can be

raised.

We processed the event logs of the Ranger supercomputer as follows: starting

from a failure event f , which is typically a compute node soft lockup in Ranger,

we identified a large enough interval during which there are no overlapping

failures, i.e., no two successive failures occur within that time interval. This

mean time between failure (MTBF) is at least two hours on Ranger. The reason

for this is to prevent the (faulty) behaviour from a previous failure to impact

on the behaviour on the following time window.

We then split the log into 2 hour behaviours, some of which end in failures

while other are error-free. For each 2-hour behaviour, we then analysed the

behaviour in terms of T -min wide slots, i.e., we further split the behaviour into

144

6. Early Error Detection for Increasing the Error Handling Time Window

System failure FSystem failure F

MTBF > 2 hrs

2 hr time window

T mins

Figure 6.8: Processing and analysis of Ranger event logs.

smaller sequences, so that error detection (hence failure prediction) can be done

earlier. This is depicted in Figure 6.8. The results from the detection explain

in chapter 4, using the two different distance metrics, are shown in Figure 6.9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Ratlogs

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

time window (mins)

Fmeasure: BGL

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

time window (mins)

Fmeasure: Syslog

HAC.JSD

Naïve.JSD

HAC.Corr

Naïve.Corr

Figure 6.9: Results of clustering algorithms with two different distance metrics.

From Figure 6.9, it can be observed that the hierarchical clustering algorithm

achieves better clustering results using the correlation distance metric. The f-

measure value is consistently higher than 0.7, as opposed to other clustering

algorithm and metrics combination.

Error handling time window: We define a failure prediction (hence, error

detection) to occur whenever the f-measure value exceeds 0.75. This can be

observed to occur at approximately 75 minutes within the 2 hour time window,

145

6. Early Error Detection for Increasing the Error Handling Time Window

i.e., the error handling time window is 45 minutes, i.e., 120− 75 = 45.

6.3.3 Identifying Anomalies Using our Methodology

From the root-cause analysis of failure on the data, we obtained 872 different

fault events from the event logs that are highly correlated with with soft lock up

failures, which are the frequently occurring failure on Ranger supercomputers.

In order to extract the set of anomalous jobs, we define a time window tw over

which resource usage data can be extracted. This time window stretches until

the occurrence of the root-cause. For every error event (root-cause), we extract

all the resource data within the time interval [Te − tw, Te], forming a resource

usage sequence. A small time window means that the “root” anomaly may be

missed, while a longer time window may mean that some “trivial” anomaly may

be identified that does not lead to failure. The time window tw used in our work

is 60 minutes, as we noticed this was the window with appropriate trade-offs.

Anomalous Jobs Extraction using PCA and ICA

The results of the anomaly detection using PCA and ICA are shown in Table 6.2.

As argued previously, we are mostly concerned with the F-measure since it cap-

tures both precision and recall. As can observed, using PCA and ICA to iden-

tify anomalous jobs for failure prediction do not result in the high F-measure

(> 0.75) needed. In fact, the F-measure values are around 10% less than the

required value. This means that (i) there is a high probability that these anoma-

lous resource usages will not lead to a system failure (ICA) and (ii) any subse-

quent propagation time is irrelevant due to the possible high proportion of false

positives (for PCA). A summary of the anomalous jobs is as shown in Table 6.5.

Table 6.2: Anomaly Detection performance of PCA and ICA.
Recall Precision Fmeasure

PCA 0.752324 0.61 0.6734
ICA 0.6432 0.73 0.684

146

6. Early Error Detection for Increasing the Error Handling Time Window

Change-Point Detection as Anomaly Detection

Table 6.3: Detection performance for Change Point Detection.
Recall Precision Fmeasure

CPD 0.67 0.42 0.516

To address the shortcomings in using only anomalies as failure predictors to

obtain a significant propagation time, we investigate the use of change points

in resource usage as a different type of resource usage anomalies due to sudden

surges. The results are shown in Table 6.3. As can be observed, there is a

high proportion of false positives (i.e., low precision value). This can be easily

explained by the fact that not all change-points will lead to a failure. For exam-

ple, some change points occur due to a higher workload, within the operational

profile of the application. Further, we can conclude that this method cannot be

used due to the low F-measure value.

Combining Change-points with PCA or ICA

Table 6.4: Detection performance for Change Point Detection with PCA or
ICA.

Recall Precision Fmeasure
PCA+CPD 0.7914 0.74 0.764
ICA+CPD 0.6932 0.53 0.6023

Given that PCA and ICA give good F-measure values while CPD give worse,

we seek to determine whether combining CPD with PCA or ICA gives better

result. The intuition behind this is that when a change point occurs followed

by an anomaly, this should represent a stronger predictor of failure. As can

be observed from Table 6.4, combining CPD and PCA results in a high F-

measure value of 0.764. This value is above the failure prediction threshold of

0.75. Thus, we consider that a combination of CPD and PCA will result in a

reasonable value for propagation time.

147

6. Early Error Detection for Increasing the Error Handling Time Window

6.3.4 Propagation Time

From the resource usage data, we extract the time at which a resource anomaly

is first seen within a sequence. As explained earlier in Section 6.2.4, the time

between when an anomalous behaviour is observed to when an error is first

logged, δTa (error lead time), is obtained.

Given that the combination of CPD and PCA gives the best failure predic-

tion with an F-Measure value greater than 0.75 (as for when using the event logs

only). The propagation time when using this combination is 3922 seconds (65

minutes). What this means is that, with a sufficiently high probability, these

anomalies will lead to failures and that the propagation time is 65 minutes.

Hence, from the perspective of error handling, the error handling time window

is extended by 65 minutes, which is considerably more than current or predicted

future checkpointing time. In comparison to the base case (using clustering),

the improvement is approximately 65
45 = 140%. As an extreme, if an error is

detected within the first twenty minutes when using the event logs, then the

failure lead time is 100 minutes, giving a worst case improvement of 65
100 = 65%

For reason of completeness, we provide the propagation time for the different

anomaly techniques presented in this paper in Table 6.5.

Table 6.5: Distribution of Anomalous Jobs and Error Propagation Time for all
the methods

aδTa (seconds)
No. of Anomalous Jobs
Detected

PCA 3011 16531
ICA 3924 15034
CPD 4022 12064
PCA+CPD 3922 15012
ICA+CPD 4227 13133

6.3.5 Other Issues

In this section, we investigate two issues concerning the methodology.

148

6. Early Error Detection for Increasing the Error Handling Time Window

Impact of Degree of Outlierness

The first issue is to determine whether there is a correlation between the propa-

gation time (PT) and the anomaly values of a sequence. Specifically, we wish to

determine if sequences with high values of “anomaly” have shorter propagation

time (hence, a smaller time to failure).

From the graph of Figure 6.10, it can be observed that there is no clear

pattern to support the original claim. In other words, the degree of “outlierness”

of jobs does not determine the size of the propagation time (hence, the time to

failure). This may probably depend of the type of faults and the impact of such

faults. This is an area for future work.

Distribution of Propagation Time

The second issue we consider is the distributed of propagation time across dif-

ferent failure sequences. If the distribution of propagation time is such that

certain patterns give rise to higher propagation time, then such patterns can be

identified to enable better error handling. From Figure 6.11, we observed that

for different fault sequences within each week, the propagation time seems to

be be within close region, with no much disparity. This might be attributed to

the fact that these errors leads to same failure (Soft lockup).

6.4 Summary

In this chapter, we make the following specific contributions:

1. We use two anomaly-based detection techniques, namely principal compo-

nent analysis (PCA) and independent component analysis (ICA) to iden-

tify anomalous resource usage in the system. We label the time when the

first resource usage anomaly occurs by Tfra.

2. We develop an approach based on change point detection to observe sudden

changes in resource usage, leading to a resource usage anomaly. We label

149

6. Early Error Detection for Increasing the Error Handling Time Window

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
2

5
8

8
6

1
8

2

2
0

4

3
1

1

5
0

2

5
5

8

8
1

8

9
4

4

1
2

7
7

1
5

3
5

1
9

8
1

2
4

9
1

3
2

5
4

3
3

6
8

3
5

1
2

3
5

9
5

3
6

1
4

3
6

5
9

3
7

1
1

3
8

3
1

4
1

1
2

4
7

0
8

5
2

0
6

6
4

1
0

o
u

tl
ie

rn
e

ss

Propagation Time (PT)

Figure 6.10: Distribution of outlierness/anomaly of different fault sequence for
week 1

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

P
ro

p
ag

at
io

n
 T

im
e

 (
Se

co
n

d
s)

Different fault inducing sequences

PCA

ICA

Figure 6.11: Distribution of propagation time for different fault sequences

150

6. Early Error Detection for Increasing the Error Handling Time Window

the time the first sudden burst in resource usage to occur by Tfsb with

Tfsb ≤ Tfra.

3. Starting with a failure occurring at time Tf , we perform a root-cause

analysis of the failure in the system to obtain the time-stamps of the error

messages in the logs. We label the time of the first occurrence of an error

in the log by Tfem with Tfem < Tf ∧ Tfra < Tfem.

4. We apply our methodology to the resource usage logs and error logs from

the Ranger Supercomputer from TACC. Our results show that, in compar-

ison with lead failure times computed when predictions stabilized in [53],

the time window can extended by approximately 140%, with a worst-case

improvement of around 65%.

151

CHAPTER 7
Summary, Conclusion and Future Work

7.1 Summary

This thesis is motivated by the challenge of reducing the number of recurrent

and costly failures in distributed systems. This necessitated the use of the

system’s error logs and the resource usage/utilization data for error detection

and for enhancing system recovery. In this chapter, we summarize the key points

of each chapter, highlighting their key contributions in this thesis with further

discussions.

7.1.1 Introductory chapters

These chapters include the Introduction (Chapter 1), the survey of previous

methods (Chapter 2) and the description of the system used, the data and fault

models (Chapter 3).

The ability to detect the presence of errors that could lead to failure is an

important step in fault tolerance. It gives provision for corrective and preventive

measures to be taken and in doing this, the thesis utilises three different log data

from actual production systems.

The system data is usually huge and can be overwhelming for manual anal-

ysis. These huge logs contain events can point to the presence of faults in the

system, hence it is wise that we use this data for error detection.

We introduced a taxonomy for fault tolerance methods or approaches. This

taxonomy brings to light the categories of the approaches previously published

and our approach. Most of the previous work make use of system’s event logs to

perform detection; however, none was able to use resource usage data combined

152

7. Summary, Conclusion and Future Work

with event logs for detection as we did in our approach.

We have also learned that not all errors end in failure and detecting these er-

rors can be done in an unsupervised way. Furthermore, different fault categories

exist which may have different patterns.

7.1.2 Error Logs Preprocessing and Pattern Detection

As large-scale distributed systems grow in size, the size of the logs which con-

tain information about the system’s activities also increases. The huge log size

becomes a challenge since logs are the primary source of information for system

administrators. However, most of the log events are redundant, i.e., they are not

essential for performing failure analysis, therefore the log file can be compressed.

We proposed a novel, generic compression algorithm that can be instantiated

according to the structure of the log files. The approach filters these logs such

that events that serve as precursor to failure are preserved. The method did

not only compressed logs, it first extract message types in logs. The clusters

formed and indexed with ids represents message types. These message types

are useful in log analysis e.g., visualization, indexing etc [95]. Our compression

method makes use of event similarity (Levenshtein distance) and event structure

to determine a redundant event.

The efficiency of the compression technique is validated through a proposed

pattern detection algorithm.

The chapter also addressed the problem of detecting failure inducing error

patterns among message logs of large-scale computer systems. We proposed a

novel unsupervised approach that leverages the characteristics of log patterns

and the recurrent interaction between events to detect failure runs. We capture

changes in the behaviour of the sequences through change in their entropies.

The technique was verified on three different log types with positive results.

First, the results demonstrate that compression does not only reduce log size

which leads to low computational cost of failure analysis, but also enhances

detection of failure patterns. Secondly, runs that end in failure are detected

153

7. Summary, Conclusion and Future Work

with an average F-measure of 78%.

Future work: As a future work, we intend to develop this approach as

online detection. We hope to investigate further why this approach is affected

by temporal behaviour of faults.

7.1.3 Failure Sequence Detection Using Resource Usage

Data and Event Logs

In Chapter 5, we proposed an approach for error detection in large-scale dis-

tributed systems. The approach makes use of the novel combination of event

logs and resource usage data to improve detection accuracy. Our methodology

is based on the computation of (i) mutual information, (ii) entropy and (iii)

anomaly score of resource use to determine whether an event sequence is likely

to lead to failure, i.e., is erroneous or not. We evaluated our methodology on

the logs and resource usage data from the Ranger supercomputer and results

are shown to detect errors with a very high accuracy. We compared our ap-

proach with Nodeinfo, a well-known error detection methodology, our method

outperform Nodeinfo by up to 100%.

In the chapter, we discussed the fact that not all errors lead to failure, i.e.,

such patterns eventually recover, we call them recovery patterns. We realised

that most times these patterns are detected as failure inducing (increasing the

false positives), however, they are not. In our bid to identify such patterns, we

proposed a recovery pattern detection method based on change point detection

in large-scale distributed systems. The approach makes use of resource usage

data to detect the recovery sequence among other failure sequences. The method

leverages the fact that unusual use of resources by the systems could point

to impending failure, to detect recovery patterns. Change point detection is

employed to determine the points of anomaly within a sequence. These points

of anomalous behaviour points to a recovery or failure sequence. We proposed

a detection algorithm based on these parameters to determine if a fault will

eventually recover or end in failure. We evaluated our methodology on the

154

7. Summary, Conclusion and Future Work

resource usage data from the Ranger supercomputer and the results have shown

to detect recovery sequences with good accuracy. It achieved an F-measure of

64%.

7.1.4 Increasing the Error Handling Time Window in Large-

Scale Distributed Systems

In this Chapter, we have addressed the problem of increasing the error handling

or propagation time window. We have thus presented an anomaly detection-

based approach to identify anomalous use of resources in a cluster system that

points to potentially impending system failure. We have investigated three dif-

ferent anomaly detection methods, namely (i) principal component analysis, (ii)

independent component analysis and (iii) change point detection. The method

also performs root-cause analysis of failures to identify the time at which the

root-cause occurred. We then developed a case study using event logs and

resource usage data from the Ranger supercomputer. We implemented the ap-

proach from [53] for error detection to obtain a basis for comparison. We found

that the combination of CPD and PCA resulted in a high value of F-measure

of at least 0.75, resulting in an extension of the error handling time window of

140%, with a worst-case extension of 60%.

7.2 Conclusions

In this thesis, we have proposed an unsupervised error detection approach that

leverages on the features inherent in the events that describe faulty and non-

faulty patterns in log data. We further developed an approach that extends

the error handling time for which error handling techniques can be completed

before failure occurs. The huge log data produced by large-scale distributed

systems poses great challenge for any automatic analysis. A filtering approach

that reduces the size of the data by purging redundant events without losing

important ones was proposed. These approaches were applied on data from

155

7. Summary, Conclusion and Future Work

production systems and a high detection accuracy was achieved. In comparison

with other state-of-the-art methods, ours perform considerably better.

The proposed unsupervised approach comes with some disadvantages: Even

though a good detection accuracy was achieved, this accuracy can only be

achieved if faults always produce events symptomatic of failure; that is, faults

leading to failure must produce events in order for the method to be effective

since it is event based. In a case where a fault silently ends in failure, or behaves

similar to normal runs, then the performance of the method will be affected neg-

atively. However, the method has demonstrated its ability to perform well across

the systems used.

7.3 Future Work

The research work has shown that there is room for improvement and areas

where potential research directions could be pursued. We highlight these areas

in this chapter.

7.3.1 Improving the Error Detection

Our work demonstrates the usefulness of combining resource usage data with

event logs to perform detection. It has also opened up new directions for future

research. As a potential future work, the approach can be adapted and imple-

mented as an online detection approach. The implementation can be straight-

forward, as the event logs and resource usage data can be collected as sequences

within a certain time window as they are being logged. This can be implemented

on a live production system for testing.

As an improvement, a further investigation into the performance of this

approach on different system data and different time windows can be done;

especially, more resource usage data from other systems can be used.

We believe that the features extracted from sequences can be used to perform

a supervised learning method for error prediction. This is a promising research

156

7. Summary, Conclusion and Future Work

direction where the temporal relationships between events can be captured and

incorporated as features. It will enable supervised error prediction using ap-

proaches such as: Hidden Markov Model, Support Vector Machines (SVM) and

Conditional Random Fields (CRF) among many others.

7.3.2 Improving the Recovery Run Detection

One challenge with this method is that few data is available for testing. The

experiment was done on data from one production system with few recovery

patterns. A more firm assertion can be made about this technique if more data

is used from different production systems. As as future work, the behaviours of

nodes and the jobs running on each node can be studied for correlation. This

can give an insight to their behaviour and possible recovery.

7.3.3 The Error Handling Time

One of the key findings in this work is that the best way to improve the time

window for which error handling techniques like checkpointing or task migration

can be effectively applied is to be able to trigger these techniques early enough

when failure symptoms are noticed. Therefore, other methods for detecting

early fault symptoms can be implemented so that preventive error handling

methods can be applied.

157

Bibliography

[1] 1003.1 standard for information technology portable operating system in-

terface (posix) rationale (informative). IEEE Std 1003.1-2001. Rationale

(Informative), pages i–310, 2001. doi: 10.1109/IEEESTD.2001.93367.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules

in large databases. In Proceedings of the 20th International Conference

on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA,

USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8.

[3] M. Aharon, G. Barash, I. Cohen, and E. Mordechai. One graph is worth

a thousand logs: Uncovering hidden structures in massive system event

logs. In Proceedings of the European Conference on Machine Learning and

Knowledge Discovery in Databases: Part I, ECML PKDD ’09, pages 227–

243, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-04179-2.

[4] A. Avižienis. Design of fault-tolerant computers. In Proceedings of the

November 14-16, 1967, Fall Joint Computer Conference, AFIPS ’67 (Fall),

pages 733–743, New York, NY, USA, 1967. ACM. doi: 10.1145/1465611.

1465708.

[5] A. Avizienis and J.-C. Laprie. Dependable computing: From concepts to

design diversity. Proceedings of the IEEE, 74(5):629–638, May 1986. ISSN

0018-9219. doi: 10.1109/PROC.1986.13527.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. Dependable and Se-

cure Computing, IEEE Transactions on, 1(1):11–33, Jan 2004. ISSN 1545-

5971. doi: 10.1109/TDSC.2004.2.

[7] C. Bai, Q. Hu, M. Xie, and S. Ng. Software failure prediction based on

a markov bayesian network model. Journal of Systems and Software, 74

158

7. BIBLIOGRAPHY

(3):275–282, Feb. 2005. ISSN 0164-1212. doi: 10.1016/j.jss.2004.02.028.

URL http://dx.doi.org/10.1016/j.jss.2004.02.028.

[8] M. Barborak, A. Dahbura, and M. Malek. The consensus problem in fault-

tolerant computing. ACM Comput. Surv., 25(2):171–220, June 1993. ISSN

0360-0300. doi: 10.1145/152610.152612. URL http://doi.acm.org/10.

1145/152610.152612.

[9] E. Berrocal, L. Yu, S. Wallace, M. Papka, and Z. Lan. Exploring void

search for fault detection on extreme scale systems. In Cluster Computing

(CLUSTER), 2014 IEEE International Conference on, pages 1–9, Sept

2014. doi: 10.1109/CLUSTER.2014.6968757.

[10] M. W. Berry, Z. Drmac, Elizabeth, and R. Jessup. Matrices, vector spaces,

and information retrieval. SIAM Review, 41:335–362, 1999.

[11] M. Bouguerra, A. Gainaru, L. Gomez, F. Cappello, S. Matsuoka, and

N. Maruyama. Improving the computing efficiency of hpc systems using

a combination of proactive and preventive checkpointing. In Parallel Dis-

tributed Processing (IPDPS), 2013 IEEE 27th International Symposium

on, pages 501–512, May 2013. doi: 10.1109/IPDPS.2013.74.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying

density-based local outliers. In Proceedings of the 2000 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’00, pages 93–

104, New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4. doi: 10.1145/

342009.335388. URL http://doi.acm.org/10.1145/342009.335388.

[13] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C.

Lai. Class-based n-gram models of natural language. Comput. Linguist.,

18(4):467–479, Dec. 1992. ISSN 0891-2017. URL http://dl.acm.org/

citation.cfm?id=176313.176316.

[14] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward

exascale resilience. IJHPCA, 23(4):374–388, 2009.

159

http://dx.doi.org/10.1016/j.jss.2004.02.028
http://doi.acm.org/10.1145/152610.152612
http://doi.acm.org/10.1145/152610.152612
http://doi.acm.org/10.1145/342009.335388
http://dl.acm.org/citation.cfm?id=176313.176316
http://dl.acm.org/citation.cfm?id=176313.176316

7. BIBLIOGRAPHY

[15] F. Cappello, H. Casanova, and Y. Robert. Checkpointing vs. migration

for post-petascale supercomputers. In Parallel Processing (ICPP), 2010

39th International Conference on, pages 168–177, Sept 2010. doi: 10.

1109/ICPP.2010.26.

[16] F. Cappello, H. Casanova, and Y. Robert. Preventive migration vs. pre-

ventive checkpointing for extreme scale supercomputers. Parallel Process-

ing Letters, 21(2):111–132, 2011.

[17] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for dis-

crete sequences: A survey. Knowledge and Data Engineering, IEEE

Transactions on, 24(5):823–839, May 2012. ISSN 1041-4347. doi:

10.1109/TKDE.2010.235.

[18] K. M. Chandy and L. Lamport. Distributed snapshots: Determining

global states of distributed systems. ACM Trans. Comput. Syst., 3(1):

63–75, Feb. 1985. ISSN 0734-2071. doi: 10.1145/214451.214456. URL

http://doi.acm.org/10.1145/214451.214456.

[19] H. Chen, G. Jiang, and K. Yoshihira. Failure detection in large-scale

internet services by principal subspace mapping. Knowledge and Data

Engineering, IEEE Transactions on, 19(10):1308–1320, Oct 2007. ISSN

1041-4347. doi: 10.1109/TKDE.2007.190633.

[20] X. Chen, C.-D. Lu, and K. Pattabiraman. Predicting job completion times

using system logs in supercomputing clusters. In Dependable Systems and

Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP Conference

on, pages 1–8, June 2013. doi: 10.1109/DSNW.2013.6615513.

[21] Z. Chen. Algorithm-based recovery for iterative methods without check-

pointing. In Proceedings of the 20th International Symposium on High

Performance Distributed Computing, HPDC ’11, pages 73–84, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0552-5. doi: 10.1145/1996130.

1996142.

160

http://doi.acm.org/10.1145/214451.214456

7. BIBLIOGRAPHY

[22] J.-F. Chiu and G. ming Chiu. Placing forced checkpoints in distributed

real-time embedded systems. Computing & Control Engineering Journal,

13:200–207, 2002.

[23] E. Chuah, S. hao Kuo, P. Hiew, W.-C. Tjhi, G. Lee, J. Hammond,

M. Michalewicz, T. Hung, and J. Browne. Diagnosing the root-causes

of failures from cluster log files. In 2010 International Conference High

Performance Computing (HiPC), pages 1 –10, dec. 2010.

[24] E. Chuah, G. Lee, W.-C. Tjhi, S.-H. Kuo, T. Hung, J. Hammond, T. Min-

yard, and J. C. Browne. Establishing hypothesis for recurrent system fail-

ures from cluster log files. In Proceedings of the 2011 IEEE Ninth Inter-

national Conference on Dependable, Autonomic and Secure Computing,

DASC ’11, pages 15–22, Washington, DC, USA, 2011. IEEE Computer

Society. ISBN 978-0-7695-4612-4.

[25] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne,

and B. Barth. Linking resource usage anomalies with system failures from

cluster log data. In Reliable Distributed Systems (SRDS), 2013 IEEE 32nd

International Symposium on, pages 111–120, 2013. doi: 10.1109/SRDS.

2013.20.

[26] G. Cormode. The continuous distributed monitoring model. SIGMOD

Rec., 42(1):5–14, May 2013. ISSN 0163-5808. doi: 10.1145/2481528.

2481530. URL http://doi.acm.org/10.1145/2481528.2481530.

[27] K. Das, J. Schneider, and D. B. Neill. Anomaly pattern detection in

categorical datasets. In Proceedings of the 14th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’08,

pages 169–176, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-193-

4. doi: 10.1145/1401890.1401915. URL http://doi.acm.org/10.1145/

1401890.1401915.

161

http://doi.acm.org/10.1145/2481528.2481530
http://doi.acm.org/10.1145/1401890.1401915
http://doi.acm.org/10.1145/1401890.1401915

7. BIBLIOGRAPHY

[28] S. Das and P. Suganthan. Differential evolution: A survey of the state-of-

the-art. Evolutionary Computation, IEEE Transactions on, 15(1):4–31,

Feb 2011. ISSN 1089-778X. doi: 10.1109/TEVC.2010.2059031.

[29] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance

linpack benchmark: A fault tolerant implementation without checkpoint-

ing. In Proceedings of the International Conference on Supercomputing,

ICS ’11, pages 162–171, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0102-2. doi: 10.1145/1995896.1995923.

[30] W. J. Dixon and A. M. Mood. The statistical sign test. Journal of the

American Statistical Association, Vol. 41(236):557– 566, Dec 1946.

[31] S. T. Dumais, G. Furnas, T. Landauer, S. Deerwester, et al. Latent se-

mantic indexing. In Proceedings of the Text Retrieval Conference, 1995.

[32] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance

mechanisms and checkpoint/restart implementations for high performance

computing systems. Journal of Supercomputing, 65(3):1302–1326, Sept.

2013. ISSN 0920-8542. doi: 10.1007/s11227-013-0884-0. URL http:

//dx.doi.org/10.1007/s11227-013-0884-0.

[33] N. El-Sayed and B. Schroeder. To checkpoint or not to checkpoint: Un-

derstanding energy-performance-i/o tradeoffs in HPC checkpointing. In

2014 IEEE International Conference on Cluster Computing, CLUSTER

2014, Madrid, Spain, September 22-26, 2014, pages 93–102, 2014. doi:

10.1109/CLUSTER.2014.6968778.

[34] D. Endres and J. Schindelin. A new metric for probability distributions.

Information Theory, IEEE Transactions on, 49(7):1858–1860, July 2003.

ISSN 0018-9448. doi: 10.1109/TIT.2003.813506.

[35] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting

changes in behavior. In Proceedings of the Fifth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD

162

http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1007/s11227-013-0884-0

7. BIBLIOGRAPHY

’99, pages 53–62, New York, NY, USA, 1999. ACM. ISBN 1-58113-143-

7. doi: 10.1145/312129.312195. URL http://doi.acm.org/10.1145/

312129.312195.

[36] I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko. Failure predic-

tion based on log files using random indexing and support vector machines.

J. Syst. Softw., 86(1):2–11, Jan. 2013. ISSN 0164-1212. doi: 10.1016/j.jss.

2012.06.025. URL http://dx.doi.org/10.1016/j.jss.2012.06.025.

[37] S. Fu and C.-Z. Xu. Exploring event correlation for failure prediction

in coalitions of clusters. In Supercomputing, 2007. SC ’07. Proceedings of

the 2007 ACM/IEEE Conference on, pages 1–12, Nov 2007. doi: 10.1145/

1362622.1362678.

[38] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu. Logmaster: Mining

event correlations in logs of large-scale cluster systems. In Reliable Dis-

tributed Systems (SRDS), 2012 IEEE 31st Symposium on, pages 71–80,

Oct 2012. doi: 10.1109/SRDS.2012.40.

[39] E. W. Fulp, G. A. Fink, and J. N. Haack. Predicting computer sys-

tem failures using support vector machines. In Proceedings of the First

USENIX Conference on Analysis of System Logs, WASL’08, pages 5–5,

Berkeley, CA, USA, 2008. USENIX Association. URL http://dl.acm.

org/citation.cfm?id=1855886.1855891.

[40] M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault

detection in large scale services. In Proceedings of the 2012 42Nd Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN), DSN ’12, pages 1–12, Washington, DC, USA, 2012. IEEE

Computer Society. ISBN 978-1-4673-1624-8. URL http://dl.acm.org/

citation.cfm?id=2354410.2355160.

[41] A. Gainaru, F. Cappello, J. Fullop, S. Trausan-Matu, and W. Kramer.

Adaptive event prediction strategy with dynamic time window for large-

163

http://doi.acm.org/10.1145/312129.312195
http://doi.acm.org/10.1145/312129.312195
http://dx.doi.org/10.1016/j.jss.2012.06.025
http://dl.acm.org/citation.cfm?id=1855886.1855891
http://dl.acm.org/citation.cfm?id=1855886.1855891
http://dl.acm.org/citation.cfm?id=2354410.2355160
http://dl.acm.org/citation.cfm?id=2354410.2355160

7. BIBLIOGRAPHY

scale hpc systems. In Managing Large-scale Systems via the Analysis

of System Logs and the Application of Machine Learning Techniques,

SLAML ’11, pages 4:1–4:8, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0978-3.

[42] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer. Event log

mining tool for large scale hpc systems. In Proceedings of the 17th In-

ternational Conference on Parallel Processing - Volume Part I, Euro-

Par’11, pages 52–64, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-

3-642-23399-9. URL http://dl.acm.org/citation.cfm?id=2033345.

2033352.

[43] A. Gainaru, F. Cappello, and W. Kramer. Taming of the shrew: Model-

ing the normal and faulty behaviour of large-scale hpc systems. In Par-

allel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Inter-

national, pages 1168–1179, May 2012. doi: 10.1109/IPDPS.2012.107.

[44] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault prediction under

the microscope: A closer look into hpc systems. In Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis, SC ’12, pages 77:1–77:11, Los Alamitos, CA, USA,

2012. IEEE Computer Society Press. ISBN 978-1-4673-0804-5.

[45] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir.

Scheduling the I/O of HPC applications under congestion. In 2015 IEEE

International Parallel and Distributed Processing Symposium, IPDPS

2015, Hyderabad, India, May 25-29, 2015, pages 1013–1022, 2015. doi:

10.1109/IPDPS.2015.116. URL http://dx.doi.org/10.1109/IPDPS.

2015.116.

[46] P. Garraghan, P. Townend, and J. Xu. An empirical failure-analysis of

a large-scale cloud computing environment. In High-Assurance Systems

164

http://dl.acm.org/citation.cfm?id=2033345.2033352
http://dl.acm.org/citation.cfm?id=2033345.2033352
http://dx.doi.org/10.1109/IPDPS.2015.116
http://dx.doi.org/10.1109/IPDPS.2015.116

7. BIBLIOGRAPHY

Engineering (HASE), 2014 IEEE 15th International Symposium on, pages

113–120, Jan 2014. doi: 10.1109/HASE.2014.24.

[47] J. J. Gertler. Survey of model-based failure detection and isolation in

complex plants. Control Systems Magazine, IEEE, 8(6):3–11, Dec 1988.

ISSN 0272-1708. doi: 10.1109/37.9163.

[48] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,

1992. ISBN 1558601902.

[49] J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B.-H. Park. Dynamic

meta-learning for failure prediction in large-scale systems: A case study.

In 37th International Conference on Parallel Processing, ICPP ’08., pages

157–164, 2008.

[50] Q. Guan, Z. Zhang, and S. Fu. Proactive failure management by integrated

unsupervised and semi-supervised learning for dependable cloud systems.

In Availability, Reliability and Security (ARES), 2011 Sixth International

Conference on, pages 83–90, 2011.

[51] T.-H. Guo and J. Nurre. Sensor failure detection and recovery by neu-

ral networks. In Neural Networks, 1991., IJCNN-91-Seattle Interna-

tional Joint Conference on, volume i, pages 221–226 vol.1, Jul 1991. doi:

10.1109/IJCNN.1991.155180.

[52] A. Gupta, B. Acun, O. Sarood, and L. Kale. Towards realizing the

potential of malleable jobs. In High Performance Computing (HiPC),

2014 21st International Conference on, pages 1–10, Dec 2014. doi:

10.1109/HiPC.2014.7116905.

[53] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne. To-

wards detecting patterns in failure logs of large-scale distributed systems.

In Parallel & Distributed Processing Symposium Workshops (IPDPSW),

2015 IEEE International. IEEE, 2015.

165

7. BIBLIOGRAPHY

[54] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne.

Towards increasing the error handling time window in large-scale dis-

tributed systems using console and resource usage logs. In Proceedings

of The 13th IEEE International Symposium on Parallel and Distributed

Processing with Applications (IEEE ISPA 2015), Aug 2015.

[55] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne. On

the impact of redundancy handling in event logs on classification in clus-

ter systems. In Proceedings of International Conference on Dependability

(DEPEND), Aug 2015.

[56] D. Hakkarinen and Z. Chen. Multilevel diskless checkpointing. Computers,

IEEE Transactions on, 62(4):772–783, April 2013. ISSN 0018-9340. doi:

10.1109/TC.2012.17.

[57] D. Hakkarinen, P. Wu, and Z. Chen. Fail-stop failure algorithm-based fault

tolerance for cholesky decomposition. Parallel and Distributed Systems,

IEEE Transactions on, 26(5):1323–1335, May 2015. ISSN 1045-9219. doi:

10.1109/TPDS.2014.2320502.

[58] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity check-

ing methods: Part ii. SIGMOD Rec., 31(3):19–27, Sept. 2002. ISSN

0163-5808. doi: 10.1145/601858.601862. URL http://doi.acm.org/10.

1145/601858.601862.

[59] J. Hammond. Tacc stats: I/o performance monitoring for the intransigent.

In In Invited Keynote for the 3rd IASDS Workshop, 2011.

[60] J. L. Hammond, T. Minyard, and J. Browne. End-to-end framework for

fault management for open source clusters: Ranger. In Proceedings of the

2010 TeraGrid Conference, TG ’10, pages 9:1–9:6, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-818-6.

[61] J. Hansen and D. Siewiorek. Models for time coalescence in event logs.

166

http://doi.acm.org/10.1145/601858.601862
http://doi.acm.org/10.1145/601858.601862

7. BIBLIOGRAPHY

In Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-

Second International Symposium on, pages 221 –227, jul 1992.

[62] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello.

Modeling and tolerating heterogeneous failures in large parallel systems.

In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, pages 45:1–45:11,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0771-0. doi: 10.

1145/2063384.2063444. URL http://doi.acm.org/10.1145/2063384.

2063444.

[63] J. Hong, C.-C. Liu, and M. Govindarasu. Integrated anomaly detection

for cyber security of the substations. Smart Grid, IEEE Transactions

on, 5(4):1643–1653, July 2014. ISSN 1949-3053. doi: 10.1109/TSG.2013.

2294473.

[64] S. Hussain, M. Mokhtar, and J. Howe. Sensor failure detection, identifica-

tion, and accommodation using fully connected cascade neural network.

Industrial Electronics, IEEE Transactions on, 62(3):1683–1692, March

2015. ISSN 0278-0046. doi: 10.1109/TIE.2014.2361600.

[65] A. Hyvärinen. Independent component analysis: recent advances. Philo-

sophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 371(1984), 2012. ISSN 1364-503X.

doi: 10.1098/rsta.2011.0534.

[66] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms

and applications. Neural Netw., 13(4-5):411–430, May 2000. ISSN 0893-

6080. doi: 10.1016/S0893-6080(00)00026-5. URL http://dx.doi.org/

10.1016/S0893-6080(00)00026-5.

[67] E. M. III, S. Speakman, and D. B. Neill. Fast generalized subset scan for

anomalous pattern detection. Journal of Machine Learning Research, 14:

167

http://doi.acm.org/10.1145/2063384.2063444
http://doi.acm.org/10.1145/2063384.2063444
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1016/S0893-6080(00)00026-5

7. BIBLIOGRAPHY

1533–1561, 2013. URL http://jmlr.org/papers/v14/mcfowland13a.

html.

[68] R. Iyer, L. Young, and P. Rosetti. Automatic recognition of intermittent

failures: an experimental study of field data. Computers, IEEE Transac-

tions on, 39(4):525 –537, apr 1990. ISSN 0018-9340.

[69] R. K. Iyer, L. T. Young, and V. Sridhar. Recognition of error symptoms in

large systems. In Proceedings of 1986 ACM Fall joint computer conference,

ACM ’86, pages 797–806, Los Alamitos, CA, USA, 1986. IEEE Computer

Society Press. ISBN 0-8186-4743-4.

[70] S. Jain, I. Singh, A. Chandra, Z.-L. Zhang, and G. Bronevetsky. Ex-

tracting the textual and temporal structure of supercomputing logs. In

High Performance Computing (HiPC), 2009 International Conference on,

pages 254–263, Dec 2009. doi: 10.1109/HIPC.2009.5433202.

[71] I. Jangjaimon and N.-F. Tzeng. Adaptive incremental checkpointing via

delta compression for networked multicore systems. In Parallel Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages

7–18, May 2013. doi: 10.1109/IPDPS.2013.33.

[72] J. Jiang and L. Yasakethu. Anomaly detection via one class svm for

protection of scada systems. In Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC), 2013 International Conference on, pages

82–88, Oct 2013. doi: 10.1109/CyberC.2013.22.

[73] S. Kalaiselvi and V. Rajaraman. A survey of checkpointing algorithms

for parallel and distributed computers. Sadhana, 25(5):489–510, 2000.

ISSN 0256-2499. doi: 10.1007/BF02703630. URL http://dx.doi.org/

10.1007/BF02703630.

[74] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Black-box problem

diagnosis in parallel file systems. In Proceedings of the 8th USENIX Con-

168

http://jmlr.org/papers/v14/mcfowland13a.html
http://jmlr.org/papers/v14/mcfowland13a.html
http://dx.doi.org/10.1007/BF02703630
http://dx.doi.org/10.1007/BF02703630

7. BIBLIOGRAPHY

ference on File and Storage Technologies, FAST’10, pages 4–14, Berke-

ley, CA, USA, 2010. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=1855511.1855515.

[75] J. Kittler, W. Christmas, T. de Campos, D. Windridge, F. Yan, J. Illing-

worth, and M. Osman. Domain anomaly detection in machine perception:

A system architecture and taxonomy. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 36(5):845–859, May 2014. ISSN 0162-8828.

doi: 10.1109/TPAMI.2013.209.

[76] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally,

M. Denneau, P. Franzon, W. Harrod, K. Hill, and Others. Exascale

computing study: Technology challenges in achieving exascale systems.

Technical report, University of Notre Dame, CSE Dept., 2008.

[77] S. Kullback and R. A. Leibler. On information and sufficiency. Ann.

Math. Statist., 22(1):79–86, 03 1951. doi: 10.1214/aoms/1177729694. URL

http://dx.doi.org/10.1214/aoms/1177729694.

[78] K. P. K. Kumar and R. C. Hansdah. An efficient and scalable checkpoint-

ing and recovery algorithm for distributed systems. In S. Chaudhuri,

S. R. Das, H. S. Paul, and S. Tirthapura, editors, ICDCN, volume 4308

of Lecture Notes in Computer Science, pages 94–99. Springer, 2006. ISBN

3-540-68139-6.

[79] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic

feature distributions. SIGCOMM Computer Communication Review, 35

(4):217–228, Aug. 2005. ISSN 0146-4833. doi: 10.1145/1090191.1080118.

URL http://doi.acm.org/10.1145/1090191.1080118.

[80] Z. Lan, Z. Zheng, and Y. Li. Toward automated anomaly identification in

large-scale systems. Parallel and Distributed Systems, IEEE Transactions

on, 21(2):174 –187, feb. 2010. ISSN 1045-9219.

169

http://dl.acm.org/citation.cfm?id=1855511.1855515
http://dl.acm.org/citation.cfm?id=1855511.1855515
http://dx.doi.org/10.1214/aoms/1177729694
http://doi.acm.org/10.1145/1090191.1080118

7. BIBLIOGRAPHY

[81] J.-C. Laprie. Dependable computing: Concepts, challenges, directions. In

COMPSAC, page 242, 2004.

[82] A. Lavinia, C. Dobre, F. Pop, and V. Cristea. A failure detection system

for large scale distributed systems. In Complex, Intelligent and Software

Intensive Systems (CISIS), 2010 International Conference on, pages 482–

489, Feb 2010. doi: 10.1109/CISIS.2010.29.

[83] C. Lee, R. Alena, and P. Robinson. Migrating fault trees to decision trees

for real time fault detection on international space station. In Aerospace

Conference, 2005 IEEE, pages 1–6, March 2005. doi: 10.1109/AERO.

2005.1559584.

[84] Y.-J. Lee, Y.-R. Yeh, and Y.-C. F. Wang. Anomaly detection via on-

line oversampling principal component analysis. Knowledge and Data

Engineering, IEEE Transactions on, 25(7):1460–1470, July 2013. ISSN

1041-4347. doi: 10.1109/TKDE.2012.99.

[85] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. In Soviet physics doklady, volume 10, page 707, 1966.

[86] K. Li, J. Naughton, and J. Planck. Checkpointing multicomputer appli-

cations. In Reliable Distributed Systems, 1991. Proceedings., Tenth Sym-

posium on, pages 2–11, Sep 1991. doi: 10.1109/RELDIS.1991.145398.

[87] P. Liang. Semi-supervised learning for natural language. Master’s thesis,

MIT, 2005.

[88] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Moreira, and

M. Gupta. Filtering failure logs for a bluegene/l prototype. In Depend-

able Systems and Networks, 2005. DSN 2005. Proceedings. International

Conference on, pages 476–485, June 2005. doi: 10.1109/DSN.2005.50.

[89] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo. Blue-

gene/l failure analysis and prediction models. In Dependable Systems and

170

7. BIBLIOGRAPHY

Networks, 2006. DSN 2006. International Conference on, pages 425–434,

June 2006. doi: 10.1109/DSN.2006.18.

[90] C. Lim, N. Singh, and S. Yajnik. A log mining approach to failure analysis

of enterprise telephony systems. In IEEE International Conference on

Dependable Systems and Networks With FTCS and DCC, DSN 2008.,

pages 398–403, 2008.

[91] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans-

actions on Information Theory, 37(1):145–151, 1991.

[92] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point detection

in time-series data by relative density-ratio estimation. Neural Netw., 43:

72–83, July 2013. ISSN 0893-6080. doi: 10.1016/j.neunet.2013.01.012.

URL http://dx.doi.org/10.1016/j.neunet.2013.01.012.

[93] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. An evaluation of

entropy based approaches to alert detection in high performance cluster

logs. In Proceedings of the 7th International Conference on Quantitative

Evaluation of SysTems(QEST). IEEE, 2010.

[94] A. Makanju, A. Zincir-Heywood, and E. Milios. System state discovery via

information content clustering of system logs. In Availability, Reliability

and Security (ARES), 2011 Sixth International Conference on, pages 301–

306, Aug 2011. doi: 10.1109/ARES.2011.51.

[95] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. A lightweight al-

gorithm for message type extraction in system application logs. IEEE

Trans. on Knowl. and Data Eng., 24(11):1921–1936, Nov. 2012. ISSN

1041-4347. doi: 10.1109/TKDE.2011.138. URL http://dx.doi.org/10.

1109/TKDE.2011.138.

[96] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. Fast entropy

based alert detection in supercomputer logs. In PFARM ’10: Proceedings

171

http://dx.doi.org/10.1016/j.neunet.2013.01.012
http://dx.doi.org/10.1109/TKDE.2011.138
http://dx.doi.org/10.1109/TKDE.2011.138

7. BIBLIOGRAPHY

of the 2nd DSN Workshop on Proactive Failure Avoidance, Recovery and

Maintenance (PFARM). IEEE, 2010.

[97] A. Mehri, M. Jamaati, and H. Mehri. Word ranking in a single document

by jensenshannon divergence. Physics Letters A, 379(2829):1627 – 1632,

2015. ISSN 0375-9601. doi: http://dx.doi.org/10.1016/j.physleta.2015.

04.030. URL http://www.sciencedirect.com/science/article/pii/

S0375960115003722.

[98] P. Munk, B. Saballus, J. Richling, and H.-U. Heiss. Position paper: Real-

time task migration on many-core processors. In Architecture of Comput-

ing Systems. Proceedings, ARCS 2015 - The 28th International Conference

on, pages 1–4, March 2015.

[99] Y. Murphey, M. Masrur, Z. Chen, and B. Zhang. Model-based fault

diagnosis in electric drives using machine learning. Mechatronics,

IEEE/ASME Transactions on, 11(3):290–303, June 2006. ISSN 1083-

4435. doi: 10.1109/TMECH.2006.875568.

[100] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine learning

methods for predicting failures in hard drives: A multiple-instance ap-

plication. J. Mach. Learn. Res., 6:783–816, Dec. 2005. ISSN 1532-4435.

URL http://dl.acm.org/citation.cfm?id=1046920.1088699.

[101] S. W. Neville, B. Eng, and M. A. Sc. Approaches for early fault detection

in large scale engineering plants, 1998.

[102] A. Oliner and A. Aiken. Online detection of multi-component interactions

in production systems. In Dependable Systems Networks (DSN), 2011

IEEE/IFIP 41st International Conference on, pages 49–60, June 2011.

doi: 10.1109/DSN.2011.5958206.

[103] A. Oliner and J. Stearley. What supercomputers say: A study of five sys-

tem logs. In International Conference on Dependable Systems and Net-

172

http://www.sciencedirect.com/science/article/pii/S0375960115003722
http://www.sciencedirect.com/science/article/pii/S0375960115003722
http://dl.acm.org/citation.cfm?id=1046920.1088699

7. BIBLIOGRAPHY

works, 2007. DSN ’07. 37th Annual IEEE/IFIP, pages 575 –584, june

2007.

[104] A. Oliner, A. Ganapathi, and W. Xu. Advances and challenges in log

analysis. Commun. ACM, 55(2):55–61, Feb. 2012. ISSN 0001-0782. doi:

10.1145/2076450.2076466.

[105] A. J. Oliner and A. Aiken. A query language for understanding compo-

nent interactions in production systems. In Proceedings of the 24th Inter-

national Conference on Supercomputing, 2010, Tsukuba, Ibaraki, Japan,

June 2-4, 2010, pages 201–210, 2010. doi: 10.1145/1810085.1810114. URL

http://doi.acm.org/10.1145/1810085.1810114.

[106] A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in system logs. In

Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on,

pages 959–964. IEEE, 2008.

[107] A. J. Oliner, A. V. Kulkarni, and A. Aiken. Using correlated surprise

to infer shared influence. In Proceedings of the 2010 IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks, DSN 2010,

Chicago, IL, USA, June 28 - July 1 2010, pages 191–200, 2010. doi:

10.1109/DSN.2010.5544921. URL http://doi.ieeecomputersociety.

org/10.1109/DSN.2010.5544921.

[108] X. Ouyang, S. Marcarelli, R. Rajachandrasekar, and D. Panda. Rdma-

based job migration framework for mpi over infiniband. In Cluster Com-

puting (CLUSTER), 2010 IEEE International Conference on, pages 116–

125, Sept 2010. doi: 10.1109/CLUSTER.2010.20.

[109] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. Iyer. Improving log-based

field failure data analysis of multi-node computing systems. In Dependable

Systems Networks (DSN), 2011 IEEE/IFIP 41st International Conference

on, pages 97–108, June 2011. doi: 10.1109/DSN.2011.5958210.

173

http://doi.acm.org/10.1145/1810085.1810114
http://doi.ieeecomputersociety.org/10.1109/DSN.2010.5544921
http://doi.ieeecomputersociety.org/10.1109/DSN.2010.5544921

7. BIBLIOGRAPHY

[110] S. Perarnau, R. Thakur, K. Iskra, K. Raffenetti, F. Cappello, R. Gupta,

P. H. Beckman, M. Snir, H. Hoffmann, M. Schulz, and B. Rountree. Dis-

tributed monitoring and management of exascale systems in the argo

project. In Distributed Applications and Interoperable Systems - 15th

IFIP WG 6.1 International Conference, DAIS 2015, Held as Part of the

10th International Federated Conference on Distributed Computing Tech-

niques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings,

pages 173–178, 2015. doi: 10.1007/978-3-319-19129-4 14.

[111] R. Rajachandrasekar, X. Besseron, and D. Panda. Monitoring and pre-

dicting hardware failures in hpc clusters with ftb-ipmi. In Parallel and

Distributed Processing Symposium Workshops PhD Forum (IPDPSW),

2012 IEEE 26th International, pages 1136–1143, May 2012. doi: 10.1109/

IPDPSW.2012.139.

[112] X. Rao, H. Wang, D. Shi, Z. Chen, H. Cai, Q. Zhou, and T. Sun. Iden-

tifying faults in large-scale distributed systems by filtering noisy error

logs. In Dependable Systems and Networks Workshops (DSN-W), 2011

IEEE/IFIP 41st International Conference on, pages 140–145, June 2011.

doi: 10.1109/DSNW.2011.5958800.

[113] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean,

P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. De-

tecting novel associations in large data sets. Science, 334(6062):1518–1524,

2011. doi: 10.1126/science.1205438.

[114] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset. Analyzing system

logs: A new view of what is important. In Proceedings of the 2nd USENIX

workshop on Tackling computer systems problems with machine learning

techniques, pages 1–7. USENIX Association, 2007.

[115] F. Salfner. Event-based Failure Prediction: An Extended Hidden Marrkov

174

7. BIBLIOGRAPHY

Model Approach. PhD thesis, Humboldt Universitat zu Berlin, Germany,

2008.

[116] F. Salfner and S. Tschirpke. Error log processing for accurate failure

prediction. In in 1st UNIX Workshop on the Analysis of System Logs,

December 2008.

[117] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive logfiles for auto-

nomic systems. In Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International, pages 211–218, 2004.

[118] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction

methods. ACM Comput. Surv., 42(3):10:1–10:42, Mar. 2010. ISSN 0360-

0300.

[119] T. Sandhan, T. Srivastava, A. Sethi, and J. Y. Choi. Unsupervised learn-

ing approach for abnormal event detection in surveillance video by reveal-

ing infrequent patterns. In Image and Vision Computing New Zealand

(IVCNZ), 2013 28th International Conference of, pages 494–499, Nov

2013. doi: 10.1109/IVCNZ.2013.6727064.

[120] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-

performance computing systems. In Proceedings of the International Con-

ference on Dependable Systems and Networks, DSN ’06, pages 249–258,

Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-

2607-1. doi: 10.1109/DSN.2006.5. URL http://dx.doi.org/10.1109/

DSN.2006.5.

[121] R. Selmic and F. Lewis. Multimodel neural networks identification and

failure detection of nonlinear systems. In Decision and Control, 2001.

Proceedings of the 40th IEEE Conference on, volume 4, pages 3128–3133

vol.4, 2001. doi: 10.1109/.2001.980299.

[122] C. Shannon. A mathematical theory of communication. Bell System

175

http://dx.doi.org/10.1109/DSN.2006.5
http://dx.doi.org/10.1109/DSN.2006.5

7. BIBLIOGRAPHY

Technical Journal, The, 27(3):379–423, July 1948. ISSN 0005-8580. doi:

10.1002/j.1538-7305.1948.tb01338.x.

[123] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems (3rd Ed.):

Design and Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998. ISBN

1-56881-092-X.

[124] L. Silva and J. Silva. Using two-level stable storage for efficient check-

pointing. IEEE Software Engineering Journal, 145(6), 1998.

[125] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Bal-

aji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Co-

teus, N. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari,

A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Lib-

erty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensber-

gen. Addressing failures in exascale computing. IJHPCA, 28(2):129–173,

2014. doi: 10.1177/1094342014522573. URL http://dx.doi.org/10.

1177/1094342014522573.

[126] M. Sonoda, Y. Watanabe, and Y. Matsumoto. Prediction of failure oc-

currence time based on system log message pattern learning. In Network

Operations and Management Symposium (NOMS), 2012 IEEE, pages 578

–581, april 2012.

[127] C. Spitz and A. Koehler. Tips and tricks for diagnosing lustre problems

on cray systems. In CUG 2011 Proceedings, 2011.

[128] J. Stearley. Towards informatic analysis of syslogs. In Cluster Computing,

2004 IEEE International Conference on, pages 309–318, 2004.

[129] J. Stearley and A. J. Oliner. Bad words: Finding faults in spirit’s sys-

logs. In Cluster Computing and the Grid, 2008. CCGRID’08. 8th IEEE

International Symposium on, pages 765–770. IEEE, 2008.

176

http://dx.doi.org/10.1177/1094342014522573
http://dx.doi.org/10.1177/1094342014522573

7. BIBLIOGRAPHY

[130] A. Strong. A review of anomaly detection with focus on changepoint

detection. Master’s thesis, Department of Mathematics , Swiss Federal

Institute of Technology Zurich, 2012.

[131] W. A. Taylor. Change-point analysis: A powerful new tool for detecting

changes, 2000.

[132] T.-T. Teoh, S.-Y. Cho, and Y.-Y. Nguwi. Hidden markov model for hard-

drive failure detection. In Computer Science Education (ICCSE), 2012 7th

International Conference on, pages 3–8, July 2012. doi: 10.1109/ICCSE.

2012.6295014.

[133] J. W. Tukey. Mathematics and the Picturing of Data. In R. D. James,

editor, International Congress of Mathematicians 1974, volume 2, pages

523–532, 1974.

[134] R. Vaarandi. A data clustering algorithm for mining patterns from event

logs. In IP Operations Management, 2003. (IPOM 2003). 3rd IEEE Work-

shop on, pages 119–126, 2003. doi: 10.1109/IPOM.2003.1251233.

[135] R. Vaarandi. A breadth-first algorithm for mining frequent patterns from

event logs. In In Proceedings of the 2004 IFIP International Conference

on Intelligence in Communication Systems, pages 293–308, 2004.

[136] N. H. Vaidya. A case for two-level distributed recovery schemes. In In

ACM SIGMETRICS Conference on Measurement and Modeling of Com-

puter Systems, pages 64–73, 1995.

[137] K. Vaidyanathan and K. S. Trivedi. A measurement-based model for es-

timation of resource exhaustion in operational software systems. In Pro-

ceedings of the 10th International Symposium on Software Reliability En-

gineering, ISSRE ’99, pages 84–, Washington, DC, USA, 1999. IEEE Com-

puter Society. ISBN 0-7695-0443-4. URL http://dl.acm.org/citation.

cfm?id=851020.856189.

177

http://dl.acm.org/citation.cfm?id=851020.856189
http://dl.acm.org/citation.cfm?id=851020.856189

7. BIBLIOGRAPHY

[138] S. Venkatesan. Message-optimal incremental snapshots. In Distributed

Computing Systems, 1989., 9th International Conference on, pages 53–

60, Jun 1989. doi: 10.1109/ICDCS.1989.37930.

[139] R. Vilalta and S. Ma. Predicting rare events in temporal domains. In

Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International

Conference on, pages 474–481, 2002. doi: 10.1109/ICDM.2002.1183991.

[140] J. von Neumann. Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components. Automata Studies, 34:43–99, 1956.

[141] D. Vounckx, G. Deconinck, J. Vounckx, R. Lauwereins, and J. A. Peper-

straete. Survey of backward error recovery techniques for multicomputers

based on checkpointing and rollback. International Journal of Modeling

and Simulation, 18:262–265, 1993.

[142] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive process-level

live migration in hpc environments. In High Performance Computing, Net-

working, Storage and Analysis, 2008. SC 2008. International Conference

for, pages 1–12, Nov 2008. doi: 10.1109/SC.2008.5222634.

[143] A. S. Willsky. Paper: A survey of design methods for failure detection

in dynamic systems. Automatica, 12(6):601–611, Nov. 1976. ISSN 0005-

1098. doi: 10.1016/0005-1098(76)90041-8. URL http://dx.doi.org/10.

1016/0005-1098(76)90041-8.

[144] Z. Xinmin, Y. Xiaochun, Z. Chen, and S. Jinwei. Artificial neural network

for sensor failure detection in an automotive engine. In Instrumentation

and Measurement Technology Conference, 1994. IMTC/94. Conference

Proceedings. 10th Anniversary. Advanced Technologies in I amp; M., 1994

IEEE, pages 167–170 vol.1, May 1994. doi: 10.1109/IMTC.1994.352099.

[145] J. Xu, B. Randell, A. Romanovsky, R. Stroud, A. Zorzo, E. Canver, and

F. von Henke. Rigorous development of an embedded fault-tolerant system

178

http://dx.doi.org/10.1016/0005-1098(76)90041-8
http://dx.doi.org/10.1016/0005-1098(76)90041-8

7. BIBLIOGRAPHY

based on coordinated atomic actions. Computers, IEEE Transactions on,

51(2):164–179, Feb 2002. ISSN 0018-9340. doi: 10.1109/12.980006.

[146] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Mining con-

sole logs for large-scale system problem detection. In Workshop on Tack-

ling Computer Problems with Machine Learning Techniques (SysML), San

Diego, CA, 2008.

[147] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting

large-scale system problems by mining console logs. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles, SOSP

’09, pages 117–132, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

752-3.

[148] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for network

failure monitoring. In Proceedings of the Eleventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery in Data Mining, KDD ’05,

pages 499–508, New York, NY, USA, 2005. ACM. ISBN 1-59593-135-

X. doi: 10.1145/1081870.1081927. URL http://doi.acm.org/10.1145/

1081870.1081927.

[149] K. Yamanishi, J. I. Takeuchi, G. Williams, and P. Milne. On-line un-

supervised outlier detection using finite mixtures with discounting learn-

ing algorithms. In Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’00, pages

320–324, New York, NY, USA, 2000. ACM. ISBN 1-58113-233-6. doi:

10.1145/347090.347160.

[150] Y. Yulevich, A. Pyasik, and L. Gorelik. Anomaly detection algorithms

on ibm infosphere streams: Anomaly detection for data in motion. In

Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE

10th International Symposium on, pages 301–308, July 2012. doi: 10.

1109/ISPA.2012.145.

179

http://doi.acm.org/10.1145/1081870.1081927
http://doi.acm.org/10.1145/1081870.1081927

7. BIBLIOGRAPHY

[151] J. Zhang. Advancements of outlier detection: A survey. EAI Endorsed

Trans. Scalable Information Systems, 1:e2, 2013. doi: 10.4108/trans.

sis.2013.01-03.e2. URL http://dx.doi.org/10.4108/trans.sis.2013.

01-03.e2.

[152] Y. Zhang and A. Sivasubramaniam. Failure prediction in ibm bluegene/l

event logs. In Parallel and Distributed Processing,. IPDPS 2008. IEEE

International Symposium on, pages 1–5, April 2008. doi: 10.1109/IPDPS.

2008.4536397.

[153] Y. Zhao, X. Liu, S. Gan, and W. Zheng. Predicting disk failures with

hmm- and hsmm-based approaches. In P. Perner, editor, Advances in

Data Mining. Applications and Theoretical Aspects, volume 6171 of Lec-

ture Notes in Computer Science, pages 390–404. Springer Berlin Heidel-

berg, 2010. ISBN 978-3-642-14399-1. doi: 10.1007/978-3-642-14400-4 30.

URL http://dx.doi.org/10.1007/978-3-642-14400-4_30.

[154] Z. Zheng, Z. Lan, B. H. Park, and A. Geist. System log pre-processing

to improve failure prediction. In Dependable Systems & Networks, 2009.

DSN’09. IEEE/IFIP International Conference on, pages 572–577. IEEE,

2009.

[155] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma. Proactive drive failure

prediction for large scale storage systems. In Mass Storage Systems and

Technologies (MSST), 2013 IEEE 29th Symposium on, pages 1–5, May

2013. doi: 10.1109/MSST.2013.6558427.

180

http://dx.doi.org/10.4108/trans.sis.2013.01-03.e2
http://dx.doi.org/10.4108/trans.sis.2013.01-03.e2
http://dx.doi.org/10.1007/978-3-642-14400-4_30

	WRAP_THESIS_Gurumdimma_2015.pdf
	Gurumdimma_1165196_thesis.pdf
	Abstract
	Dedication
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Faults, Errors and Failure
	Dependability
	Fault Tolerance

	The Problem
	The Approach
	Thesis Contributions
	Thesis Outline

	Literature Review
	Introduction
	Error Detection
	Unsupervised Methods
	Supervised Methods
	Other Methods

	System Recovery
	Checkpointing
	Task Migration

	Summary

	System Description, Log Events And Fault Models
	System Model
	Fault Model
	Categories of Fault Model
	Ranger and BlueGene/L Fault Models

	Production Systems
	Ranger Supercomputer
	The BlueGene/L (BGL) Supercomputer

	System Data
	Ranger Event Logs
	Ranger Resource Usage Data
	BlueGene/L Events logs
	Definition of Terms

	Summary

	Error Detection Using Clustering
	Introduction
	Log Size and Structure
	Errors and Failures
	Event Logs Redundancy
	Objectives of the Chapter

	Problem Statement and Methodology Overview
	Preprocessing
	Log Events Preprocessing
	Log Compression: Removing Redundant Events

	Data Transformation
	Sequence Clustering and Detection
	Clustering
	Detection of Failure Patterns

	Experiment
	Experimental Setup
	Evaluation Metrics
	Parameter Setting

	Results
	Runtime Analysis

	Summary

	Improving Error Detection Using Resource Usage Data and Event Logs
	Introduction
	Detection Methodology
	Data Transformation
	Event Clustering and Feature Extraction
	Jobs Anomaly Extraction from Resource Usage Data
	Detection of Failure Patterns
	Experiment and Results

	Detection of Recovery Patterns
	Introduction
	Recovery Pattern Detection
	Results

	Improving Failure Pattern Detection
	PCA and CPD Failure Detection Algorithm
	Results

	Summary

	Early Error Detection for Increasing the Error Handling Time Window
	Introduction
	Motivation
	Problem Statement
	Objectives of the Chapter

	Methodology
	Root Cause Analysis
	Anomaly Detection
	Change Point Detection
	Lead Times

	Case Study: Ranger Supercomputer
	Datasets and Performance Measurement
	Base Case for Comparison - Error Detection Latency using Clustering
	Identifying Anomalies Using our Methodology
	Propagation Time
	Other Issues

	Summary

	Summary, Conclusion and Future Work
	Summary
	Introductory chapters
	Error Logs Preprocessing and Pattern Detection
	Failure Sequence Detection Using Resource Usage Data and Event Logs
	Increasing the Error Handling Time Window in Large-Scale Distributed Systems

	Conclusions
	Future Work
	Improving the Error Detection
	Improving the Recovery Run Detection
	The Error Handling Time

	Bibliography

