Modular Degrees of Elliptic Cu and Discriminants of Hecke Algeb

William Stein*

http://modular.fas.harvard.edu

ANTS VI, June 18, 2004

*Joint with F. Calegari

Goal

Let p be a prime. The goal of this talk is to explain the following *increasingly general* Calegari-Stein conjection

Conjecture 1. (–). If E/Q is an elliptic conductor p, then the modular degree m_E of divisible by p.

Conjecture 2. (-). If $T_2(p)$ is the H gebra associated to $S_2(\Gamma_0(p))$, then p does not the index of $T_2(p)$ in its normalization.

Conjecture 3. (–). If p > k-1, then the explicit formula for the *p*-part of the index of its normalization.

Conj 1: If E of conductor p, then

Vandiver: Conjecture 1 looks like Vandiver's conject asserts that $p \nmid h_p^-$. (Note Flach's Selmer group connected)

Data: (Watkins) For $p < 10^7$ there are 52878 curve Watkins table. No counterexamples to conjecture are 23 curves such that m_E is divisible by a prime ℓ example the curve $y^2 + xy = x^3 - x^2 - 391648x - 94$ prime conductor p = 4847093 has modular degree $2 \cdot$ Smallest p with $\ell > p$ is p = 1194923.

Ratio: Max ratio m_E/p is ~ 23.2, attained for p = First curve with $m_E/p > 1$ has level 13723, where $m_E = 2^4 \cdot 3 \cdot 337$. Smallest $m_E/p > 1$ is p = 1757963; $m_E =$

Conjecture is consistent with ABC-conjecture (m_E is

Cuspidal Modular Form

Congruence Subgroup:

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbf{Z}) \text{ such that } N \mid c \right\}$$

Cusp Forms: $S_k(N) = \left\{ f : \mathfrak{h} \to \mathbb{C} \text{ such that} \right.$ $f(\gamma(z)) = (cz + d)^{-k} f(z) \text{ all } \gamma \in \Gamma$

and f is holomorphic at the cu

Fourier Expansion:

$$f = \sum_{n \ge 1} a_n e^{2\pi i z n} = \sum_{n \ge 1} a_n q^n \in \mathbf{C}[[q]].$$

Modular Forms Example

 $S_k(N) = 0$ if k is odd, so we will not consider odd k f

For $k \ge 2$, a basis of $S_k(N)$ can be computed to precision using modular symbols (e.g., my MAGMA Appears that no formal analysis of complexity has k Certainly polynomial time in N and required precision

```
MAGMA CODE
> S := CuspForms(37,2);
> Basis(S);
[
        q + q^3 - 2*q^4 - q^7 + 0(q^8),
        q^2 + 2*q^3 - 2*q^4 + q^5 - 3*q^6 + 0(q^8)
]
```

Basis for $S_{14}(11)$:

> S := CuspForms(11,14); SetPrecision(S,17);

> Basis(S);

q - $74*q^{13}$ - $38*q^{14}$ + $441*q^{15}$ + $140*q^{16}$ + q² - $2*q^{13}$ + $78*q^{14}$ + $24*q^{15}$ - $338*q^{16}$ + 0 q³ + $18*q^{13}$ - $72*q^{14}$ + $89*q^{15}$ + $492*q^{16}$ + 1 q⁴ + $12*q^{13}$ + $31*q^{14}$ - $18*q^{15}$ - $193*q^{16}$ + 1 q⁵ - $10*q^{13}$ + $46*q^{14}$ - $63*q^{15}$ - $52*q^{16}$ + 0 q⁶ + $11*q^{13}$ - $18*q^{14}$ - $74*q^{15}$ - $4*q^{16}$ + 0(q q⁷ - $7*q^{13}$ - $16*q^{14}$ + $42*q^{15}$ - $84*q^{16}$ + 0(q q⁸ - q^{13} - $16*q^{14}$ - $18*q^{15}$ - $34*q^{16}$ + 0(q q⁹ - $8*q^{13}$ - $2*q^{14}$ - $3*q^{15}$ + $16*q^{16}$ + 0(q q¹¹ + $12*q^{13}$ + $12*q^{14}$ + $12*q^{15}$ + $12*q^{16}$ + 0(q q¹² - $2*q^{13}$ - q^{14} + $2*q^{15}$ + q^{16} + 0(q¹⁷)

Hecke algebras

Hecke Operators: Let *p* be a prime.

$$T_p\left(\sum_{n\geq 1}a_n\cdot q^n\right)=\sum_{n\geq 1}a_{nr}\cdot q^n+p^{k-1}\sum_{n\geq 1}a_n\cdot q^n$$

(If $p \mid N$, drop the second summand.) This preserves defines a linear map

$$T_p: S_k(N) \to S_k(N).$$

Similar definition of T_n for any integer n.

Hecke Algebra: A commutative ring:

 $\mathbf{T}_k(N) = \mathbf{Z}[T_1, T_2, T_3, T_4, T_5, \ldots] \subset \mathsf{End}_{\mathbf{C}}(S_k(N))$

Computing Hecke Algeb

Fact: $\mathbf{T}_k(N) = \mathbf{Z}[T_1, T_2, T_3, T_4, T_5, \ldots]$ is free as a **Z**-rank equal to dim $S_k(N)$.

Sturm Bound: $T_k(N)$ is generated as a Z-module by 7 where b is the ceiling of

$$rac{k}{12} \cdot N \cdot \prod_{p|N} \left(1 - rac{1}{p}
ight).$$

Example: For N = 37, bound is 7, and $T_2(37)$ h $T_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $T_2 = \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}$.

There are several other $T_k(N)$ -modules isomorphic and I use these instead to compute $T_k(N)$ as a ring.

Discriminants

The discriminant of $\mathbf{T}_k(N)$ is an integer. It measu cation, or what's the same, congruences between sir eigenvectors for $\mathbf{T}_k(N)$, hence is related to the modu

Discriminant:

 $\mathsf{Disc}(\mathbf{T}_k(N)) = \mathsf{Det}(\mathsf{Tr}(t_i \cdot t_j)),$

where t_1, \ldots, t_n are a basis for $\mathbf{T}_k(N)$ as a free Z-mod

Examples:

Disc(T₂(37)) = Det
$$\begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} = 4$$

 $\mathsf{Disc}(\mathbf{T}_{14}(11)) = 2^{46} \cdot 3^{14} \cdot 5^2 \cdot 11^{42} \cdot 79 \cdot 241 \cdot 1163 \cdot 40163 + 47552569849 \cdot 124180041087631 \cdot 20562$

Ribet's Question

I became interested in computing with modular for was a grad student and Ken Ribet started asking:

Question: (Ribet, 1997) Is there a prime p so that $p \mid l$

Ribet had proved a theorem about $X_0(p) \cap J_0(p)_{tor}$ hypothesis that $p \nmid \mathbf{T}_2(p)$, and wanted to know how resolution hypothesis was. Note that when k > 2, usually $p \mid \mathsf{Dis}$

Using a PARI script of Joe Wetherell, I set up a comp my laptop and found exactly one example: p = 389.

Index in the Normalization

Last year I checked that for p < 50000 there are no or ples in which $p \mid \text{Disc}(\mathbf{T}_2(p))$. For this I used the Mest of graphs, which involves computing with the free abe on the supersingular *j*-invariants in \mathbf{F}_{p^2} of elliptic curv

Let $\tilde{\mathbf{T}}_k(p)$ be the *normalization* of $\mathbf{T}_k(p)$. Since $\mathbf{T}_k(p)$ in a product of number fields, $\tilde{\mathbf{T}}_k(p)$ is the product of of integers of those number fields.

It turned out that Ribet could prove his theorem weaker hypothesis that $p \nmid [\tilde{\mathbf{T}}_k(p) : \mathbf{T}_k(p)]$. I was una a counterexample to this divisibility. (Note: Matt Bak was a proof of the full theorem using different method

Conjecture 2

Conjecture 2. (-). If $T_2(p)$ is the H gebra associated to $S_2(\Gamma_0(p))$, then p does not the index of $T_2(p)$ in its normalization.

The primes that divide $[\tilde{\mathbf{T}}_k(p) : \mathbf{T}_k(p)]$ are called *oprimes*. They are the primes of congruence between no conjugate eigenvectors for $\mathbf{T}_k(p)$. Using this observation other theorem of Ribet (and Wiles et al. modularity that a "no" answer to the above question implies that divide the modular degree of any elliptic curve of contract the tract of the contract of the

But is there any reason to believe Conjecture 2, beyon that it is true for p < 50000?

Higher Weight

Recall that

 $\mathsf{Disc}(\mathsf{T}_{14}(11)) = 2^{46} \cdot 3^{14} \cdot 5^2 \cdot 11^{42} \cdot 79 \cdot 241 \cdot 1163 \cdot 40163 \\ 47552569849 \cdot 124180041087631 \cdot 20562$

Notice the large power of 11. Upon computing the *p*-maxi $T_{14}(11) \otimes_Z Q$, we find that $11 \nmid \text{Disc}(\tilde{T}_{14}(11))$, so all the 11 dex of $T_{14}(11)$ in $\tilde{T}_{14}(11)$. Thus

 $\operatorname{ord}_{11}([\tilde{T}_{14}(11):T_{14}(11)]) = 21.$

Data for k = 4

Each row contains p and $ord_p(Disc(T_4(17)))$. E.g., $ord_{17}(Disc(T_4(17)))$.

2 0	3 0	5 0	7 0	11 0	13 2	17 2	19 2	23 2	29 4	31 4	37 6	41 6	
61	67	71	73	79	83	89	97	101	103	107	109	113	
10	10	10	12	12	12	14	16	16	16	16	18	18	
149	151	157	163	167	173	179	181	191	193	197	199	211	
24	24	26	26	26	28	28	30	30	32	32	32	34	
239	241	251	257	263	269	271	277	281	283	293	307	311	
38	40	40	42	42	44	44	46	46	46	48	50	50	
347	349	353	359	367	373	379	383	389	397	401	409	419	
56	58	58	58	60	62	62	62	65	66	66	68	68	
443	449	457	461	463	467	479	487	491	499				
72	74	76	76	76	76	78	80	80	82				

F. Calegari (during a talk I gave): Except for 389, there is clear Calegari and I computed $2 \cdot [\tilde{T}_4(p) : T_4(p)]$ and obtained the sa above, except for p = 389 which now gives 64. We also consexamples where

 $2 \cdot [\tilde{T}_4(p) : T_4(p)] \neq \mathsf{Disc}(T_k(p)).$

Conjecture 3

In all cases, we found the following *amazing* pattern:

Conjecture 3. Suppose $p \ge k - 1$. Then

$$\operatorname{ord}_p([\tilde{\mathbf{T}}_k(p) : \mathbf{T}_k(p)]) = \left\lfloor \frac{p}{12} \right\rfloor \cdot \binom{k/2}{2} + a(p,k),$$

where

$$a(p,k) = \begin{cases} 0 & \text{if } p \equiv 1 \pmod{12}, \\ 3 \cdot \binom{\left\lceil \frac{k}{6} \right\rceil}{2} & \text{if } p \equiv 5 \pmod{12}, \\ 2 \cdot \binom{\left\lceil \frac{k}{4} \right\rceil}{2} & \text{if } p \equiv 7 \pmod{12}, \\ a(5,k) + a(7,k) & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Warning: The conjecture is false without the constraint that p pared to k. Though it works for our running example p = 11, k the formula yields $0 + 3 \cdot {3 \choose 2} + 2 \cdot {4 \choose 2} = 9 + 12 = 21$, which is constraint that p = 11, k = 12, which is constraint that p = 11, k = 12, which is constraint that p = 11, k = 12.

Summary

For a long time I had no idea whether to conjecture that the shouldn't be mod p congruence between nonconjugate eigenformalently, whether p divides modular degrees at prime level. By higher weight and *computing*, a simple conjectural formula emwhen specialized to 2 is the conjecture that there are no mod p

Future Direction. Explain why there are so many mod p co level p, when $k \ge 4$. See paper for a strategy.

Vandiver-ish Question. Investigate the connection between and Flach's results on modular degrees annihilating Selmer grou