Modular Degrees of Elliptic Cu and **Discriminants of Hecke Algeb**

William Stein^{*}

http://modular.fas.harvard.edu

ANTS VI, June 18, 2004

[∗]Joint with F. Calegari

Goal

Let p be a prime. The goal of this talk is to explain the following *increasingly general* Calegari-Stein conje

Conjecture 1. (-). If E/Q is an elliptic conductor p, then the modular degree m_E of divisible by p .

Conjecture 2. $(-)$. If $T_2(p)$ is the H gebra associated to $S_2(\Gamma_0(p))$, then p does not the index of $T_2(p)$ in its normalization.

Conjecture 3. (–). If $p > k-1$, then the explicit formula for the p -part of the index of its normalization.

Conj 1: If E of conductor p , then

Vandiver: Conjecture 1 looks like Vandiver's conject asserts that $p \nmid h_p^ _p^-$. (Note Flach's Selmer group conne

Data: (Watkins) For $p < 10^7$ there are 52878 curve Watkins table. No counterexamples to conjecture are 23 curves such that m_E is divisible by a prime ℓ example the curve $y^2 + xy = x^3 - x^2 - 391648x - 94$ prime conductor $p = 4847093$ has modular degree 2. Smallest p with $\ell > p$ is $p = 1194923$.

Ratio: Max ratio m_E/p is ~ 23.2, attained for $p =$ First curve with $m_E/p > 1$ has level 13723, where m_E : 2⁴ · 3 · 337. Smallest $m_E/p > 1$ is $p = 1757963$; $m_E =$

Conjecture is consistent with ABC-conjecture (m_E is

Cuspidal Modular Form

Congruence Subgroup:

$$
\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) \text{ such that } N \mid c \right\}
$$

Cusp Forms: $S_k(N) = \Big\{ f : \mathfrak{h} \to \mathbf{C} \text{ such that }$ $f(\gamma(z))=(cz+d)^{-k}f(z)$ all $\gamma\in\Gamma$

and f is holomorphic at the cus-

Fourier Expansion:

$$
f = \sum_{n \ge 1} a_n e^{2\pi i z n} = \sum_{n \ge 1} a_n q^n \in \mathbb{C}[[q]].
$$

Modular Forms Example

 $S_k(N) = 0$ if k is odd, so we will not consider odd k function-

For $k \geq 2$, a basis of $S_k(N)$ can be computed to precision using modular symbols (e.g., my MAGMA Appears that no formal analysis of complexity has b Certainly polynomial time in N and required precision.

```
MAGMA CODE
> S := CuspForms(37,2);
> Basis(S);
\Gammaq + q^3 - 2*q^4 - q^7 + 0(q^8),
      q^2 + 2*q<sup>-</sup>3 - 2*q<sup>-4</sup> + q<sup>-</sup>5 - 3*q<sup>-6</sup> + D(q<sup>-8</sup>)
\overline{1}
```
Basis for $S_{14}(11)$:

> S := CuspForms(11,14); SetPrecision(S,17);

> Basis(S);

q - 74*q^13 - 38*q^14 + 441*q^15 + 140*q^16 + q^2 - 2*q^{$\hat{1}3$ + 78*q^{$\hat{1}4$ + 24*q^{$\hat{1}5$ - 338*q $\hat{1}6$ + 0}}} $q^3 + 18*q^13 - 72*q^14 + 89*q^15 + 492*q^16 + 0$ $q^4 + 12*q^13 + 31*q^14 - 18*q^15 - 193*q^16 + 0$ q^5 - 10*q^13 + 46*q^14 - 63*q^15 - 52*q^16 + O q^6 + 11*q^{13} - 18*q^{14} - 74*q^{15} - 4*q¹⁶ + O(q q^7 - 7*q^13 - 16*q^14 + 42*q^15 - 84*q^16 + O(q^7 q^8 - q^13 - $16*q^14$ - $18*q^15$ - $34*q^16$ + $0(q^2)$ $q^9 - 8*q^13 - 2*q^14 - 3*q^15 + 16*q^16 + 0(q^1)$ $q^10 - 5*q^13 - 2*q^14 - 6*q^15 + 14*q^16 + 0(q^1)$ q^11 + 12*q^13 + 12*q^14 + 12*q^15 + 12*q^16 + q^12 - 2*q^{13} - q^{14} + 2*q^{15} + q^{16} + O(q^{17})

Hecke algebras

Hecke Operators: Let p be a prime.

$$
T_p\left(\sum_{n\geq 1} a_n \cdot q^n\right) = \sum_{n\geq 1} a_{nr} \cdot q^n + p^{k-1} \sum_{n\geq 1} a_n \cdot q
$$

(If $p \mid N$, drop the second summand.) This preserves defines a linear map

$$
T_p: S_k(N) \to S_k(N).
$$

Similar definition of T_n for any integer n.

Hecke Algebra: A commutative ring:

 $T_k(N) = Z[T_1, T_2, T_3, T_4, T_5, \ldots] \subset \text{End}_{\mathbb{C}}(S_k(N))$

Computing Hecke Algeb

Fact: $T_k(N) = Z[T_1, T_2, T_3, T_4, T_5,...]$ is free as a Zrank equal to dim $S_k(N)$.

Sturm Bound: $T_k(N)$ is generated as a Z-module by T where b is the ceiling of

$$
\frac{k}{12}\cdot N\cdot \prod_{p\mid N}\left(1-\frac{1}{p}\right).
$$

Example: For $N = 37$, bound is 7, and $T_2(37)$ h $T_1 =$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $T_2 =$ $\begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}$.

There are several other $T_k(N)$ -modules isomorphic and I use these instead to compute $T_k(N)$ as a ring.

Discriminants

The discriminant of $T_k(N)$ is an integer. It measure cation, or what's the same, congruences between sir eigenvectors for $T_k(N)$, hence is related to the modu

Discriminant:

 $Disc(T_k(N)) = Det(Tr(t_i \cdot t_j)),$

where t_1, \ldots, t_n are a basis for $\mathrm{T}_k(N)$ as a free Z-module.

Examples:

$$
Disc(T_2(37)) = Det\begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} = 4
$$

 $Disc(T_{14}(11)) = 2^{46} \cdot 3^{14} \cdot 5^2 \cdot 11^{42} \cdot 79 \cdot 241 \cdot 1163 \cdot 40163$ 47552569849·124180041087631·20562

Ribet's Question

I became interested in computing with modular for was a grad student and Ken Ribet started asking:

Question: (Ribet, 1997) Is there a prime p so that $p \mid D$

Ribet had proved a theorem about $X_0(p) \cap J_0(p)_{\text{tor}}$ hypothesis that $p \nmid T_2(p)$, and wanted to know how restrictively hypothesis was. Note that when $k > 2$, usually $p \mid \text{Dis}$

Using a PARI script of Joe Wetherell, I set up a comp my laptop and found exactly one example: $p = 389$.

Index in the Normalization

Last year I checked that for $p < 50000$ there are no other ples in which $p | Disc(T_2(p))$. For this I used the Mest of graphs, which involves computing with the free abeon the supersingular j -invariants in $\mathbf{F}_{p^{\mathbf{2}}}$ of elliptic curv

Let $\tilde{\mathbf{T}}_k(p)$ be the *normalization* of $\mathbf{T}_k(p)$. Since $\mathbf{T}_k(p)$ in a product of number fields, $\tilde{T}_k(p)$ is the product c of integers of those number fields.

It turned out that Ribet could prove his theorem weaker hypothesis that $p \nmid [\tilde{T}_k(p) : T_k(p)]$. I was una a counterexample to this divisibility. (Note: Matt Bak was a proof of the full theorem using different methor

Conjecture 2

Conjecture 2. $(-)$. If $T_2(p)$ is the H gebra associated to $S_2(\Gamma_0(p))$, then p does not the index of $T_2(p)$ in its normalization.

The primes that divide $[\tilde{T}_k(p) : T_k(p)]$ are called or primes. They are the primes of congruence between no conjugate eigenvectors for $\mathbf{T}_k(p)$. Using this observation other theorem of Ribet (and Wiles et al. modularity that a "no" answer to the above question implies that divide the modular degree of any elliptic curve of conductor This is why Conjecture 2 implies Conjecture 1.

But is there any reason to believe Conjecture 2, beyor that it is true for $p < 50000$?

Higher Weight

Recall that

 $Disc(T_{14}(11)) = 2^{46} \cdot 3^{14} \cdot 5^2 \cdot 11^{42} \cdot 79 \cdot 241 \cdot 1163 \cdot 40163$ 47552569849·124180041087631·20562

Notice the large power of 11. Upon computing the p -maxim $T_{14}(11) \otimes_{\mathbb{Z}} \mathbb{Q}$, we find that $11 \nmid \text{Disc}(\tilde{T}_{14}(11))$, so all the 11 dex of $T_{14}(11)$ in $\tilde{T}_{14}(11)$. Thus

ord₁₁($[\tilde{T}_{14}(11) : T_{14}(11)]$) = 21.

Data for $k = 4$

Each row contains p and ord_p(Disc(T₄(17))). E.g., ord₁₇(Disc(T

F. Calegari (during a talk I gave): Except for 389, there is clear Calegari and I computed $2 \cdot [\tilde{T}_4(p) : T_4(p)]$ and obtained the same as above, except for $p = 389$ which now gives 64. We also constant examples where

 $2 \cdot [\tilde{T}_4(p) : T_4(p)] \neq \text{Disc}(T_k(p)).$

Conjecture 3

In all cases, we found the following amazing pattern:

Conjecture 3. Suppose $p \geq k - 1$. Then

$$
\operatorname{ord}_p([\tilde{\mathbf{T}}_k(p) : \mathbf{T}_k(p)]) = \left\lfloor \frac{p}{12} \right\rfloor \cdot {k/2 \choose 2} + a(p,k),
$$

where

$$
a(p,k) = \begin{cases} 0 & \text{if } p \equiv 1 \pmod{12}, \\ 3 \cdot {\binom{\lceil \frac{k}{6} \rceil}{2}} & \text{if } p \equiv 5 \pmod{12}, \\ & 2 \cdot {\binom{\lceil \frac{k}{4} \rceil}{2}} & \text{if } p \equiv 7 \pmod{12}, \\ a(5,k) + a(7,k) & \text{if } p \equiv 11 \pmod{12}. \end{cases}
$$

Warning: The conjecture is false without the constraint that p pared to k. Though it works for our running example $p = 11$, k the formula yields $0+3\cdot\binom{3}{2}$ $\binom{3}{2} + 2 \cdot \binom{4}{2}$ $\binom{4}{2} = 9 + 12 = 21$, which is co

Summary

For a long time I had no idea whether to conjecture that the shouldn't be mod p congruence between nonconjugate eigenform alently, whether p divides modular degrees at prime level. By higher weight and computing, a simple conjectural formula em when specialized to 2 is the conjecture that there are no mod p

Future Direction. Explain why there are so many mod p congruences level p, when $k \geq 4$. See paper for a strategy.

Computational Question. Push computation of ord_p(Disc($T_2(p)$) using Wiedemann's minimal polynomial algorithm.

Vandiver-ish Question. Investigate the connection between and Flach's results on modular degrees annihilating Selmer group