0

Differentially Private Contextual Dynamic Pricing

Wei Tang (WashU)

Joint work with CJ Ho (WashU), Yang Liu (UCSC)

Differential Privacy (DP)

- Neighboring Dataset: $X', X \subset \mathbb{R}^d$ are neighbors if they differ in only one data of an individual.
- Differential Privacy: A randomized mechanism $\mathcal{M}: X \to 0$ is ε -DP if for all neighboring inputs X', X, for all outputs $o \in O$ we have:

$$\mathbb{P}(\mathcal{M}(X) = o) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(X') = o)$$

Differential Privacy (DP)

- Neighboring Dataset: $X', X \subset \mathbb{R}^d$ are neighbors if they differ in only one data of an individual.
- Differential Privacy: A randomized mechanism $\mathcal{M}: X \to O$ is ε -DP if for all neighboring inputs X', X, for all outputs $O \in O$ we have:

$$\mathbb{P}(\mathcal{M}(X) = o) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(X') = o)$$

- ε smaller, strongly privacy guarantee
- For small ε : $e^{\varepsilon} \approx 1 + \varepsilon \approx 1$

Bound the "maximum amount" that one person's data can change the output of a computation.

Some Key Properties of DP

• Robustness to post-processing: If $\mathcal{M}: \mathbb{R}^d \to O$ is ε -DP, then for any arbitrary randomized mapping $F: O \to O'$, the mechanism $F \circ \mathcal{M}$ is also ε -DP

Some Key Properties of DP

• Robustness to post-processing: If $\mathcal{M}: \mathbb{R}^d \to O$ is ε -DP, then for any arbitrary randomized mapping $F: O \to O'$, the mechanism $F \circ \mathcal{M}$ is also ε -DP

• Composition: For $j \in [k]$, if \mathcal{M}_j is ε_j - DP, then the mechanism $(\mathcal{M}_1, \dots, \mathcal{M}_k)$ is —

Contextual Dynamic Pricing

- In each timestep: seller has a good to sell to a buyer and needs to decide which price to put it in the market.
- At each time step t:
 - Seller receives a good $x_t \in \mathbb{R}^d$
 - Buyer's value v_t : unknown to seller
 - Seller sets a price p_t and observes $y_t = \mathbb{I}_{\{p_t \le v_t\}}$:
 - $p_t \le v_t,$ a sale is achieved and seller collects revenue $r_t = p_t;$
 - $> p_t > v_t$, no sale is achieved and seller collects zero revenue: $r_t = 0$.
- Applications: online advertisements; real-estate,

Contextual Dynamic Pricing

Privacy Leakage

- Optimal Pricing policy is possible!
- Buyers' past purchases are sensitive personal information.
- Goal: design a pricing policy which not only maximize her revenue but also protect the buyers' personal information

Private Pricing -- Objective

Privacy Guarantee

- Use differential privacy as privacy measure.
- A pricing policy \mathcal{A}
 - Feature vector sequence: $X = \{x_t\}_{t \ge 1}$;
 - Valuation sequence: $V = \{v_t\}_{t \ge 1}$;
 - Response sequence: $Y = \{y_t\}_{t \ge 1}$;
 - Price sequence: $P = \{p_t\}_{t \ge 1}$

$$\Pr(\mathcal{A}(X,Y|V) = P) \le e^{\varepsilon} \Pr(\mathcal{A}(X,Y'|V') = P) + \delta, \forall P$$

Private Pricing -- Objective

Utility Guarantee – minimize seller's Regret

• p_t^* : optimal price for good x_t -- knows the hidden v_t

Private Pricing -- Objective

Utility Guarantee – minimize seller's Regret

• p_t^* : optimal price for good x_t -- knows the hidden v_t

Sublinear regret: Regret_{\mathcal{A}}(T) = o(T)

Assumptions We Make

To solve the problem, we assume:

- Linear valuation : $v_t(x_t) = \theta^T x_t + z_t$
 - θ : unknown but fixed;
 - $z_t \sim F$: i.i.d drawn from F
 - By Postprocessing property, protecting $\{v_t\}$ reduce to protect $\{z_t\}$

- F(v) and 1 F(v) are log-concave in v.
 - A function f is log-concave $\rightarrow \log f$ is concave.
 - Including normal, uniform, and (truncated) Laplace, exponential, and logistic distributions.

Main Results

Main Result: reduction to online convex optimization with desired privacy

Guarantee.

• Regret_A(T) = sup_X($\sum_{t=1}^{T} p_t^* \mathbb{I}_{\{p_t^* \le v_t\}} - \sum_{t=1}^{T} p_t \mathbb{I}_{\{p_t \le v_t\}}$) protect $\{z_t\}$.

non-convex and no first order information

$$l_t(\boldsymbol{\theta}) = -\mathbb{I}_{\{p_t \leq v_t\}} \log(1 - F(p_t - \langle \boldsymbol{x}_t, \boldsymbol{\theta} \rangle)) - \mathbb{I}_{\{p_t > v_t\}} \log(F(p_t - \langle \boldsymbol{x}_t, \boldsymbol{\theta} \rangle)): \textbf{Convex!}$$

• Regret
$$_{\mathcal{A}}^{\boldsymbol{\theta}}(T) = \sup_{\boldsymbol{X}} \sum_{t=1}^{T} \left(l_t(\widehat{\boldsymbol{\theta}}_t) - l_t(\boldsymbol{\theta}) \right)$$
 protect $\{\widehat{\boldsymbol{\theta}}_t\}$.

Main Results

Main Result: reduction to online convex optimization with desired privacy Guarantee.

• Regret
$$_{\mathcal{A}}^{\boldsymbol{\theta}}(T) = \sup_{\boldsymbol{X}} \sum_{t=1}^{T} \left(l_t(\widehat{\boldsymbol{\theta}}_t) - l_t(\boldsymbol{\theta}) \right)$$
 protect $\{\widehat{\boldsymbol{\theta}}_t\}$.

Theorem: We can design an algorithm which achieves regret of $\tilde{O}(\sqrt{dT}/\varepsilon)$ with ensuring it is ε -differentially private.

d= feature dimensions, T= number of arrivals, \tilde{O} suppress the logarithmic factors

- Note: the best-known bound of non-private policy's is $ilde{O}(\sqrt{T})$
- Only worse to constant factor $\sqrt{d}/arepsilon$

Main Result: reduction to online convex optimization with desired privacy Guarantee.

- Regret $_{\mathcal{A}}^{\boldsymbol{\theta}}(T) = \sup_{\boldsymbol{X}} \sum_{t=1}^{T} \left(l_t(\widehat{\boldsymbol{\theta}}_t) l_t(\boldsymbol{\theta}) \right)$ protect $\{\widehat{\boldsymbol{\theta}}_t\}$.
- Online gradient descent doesn't work: $\widehat{\boldsymbol{\theta}}_{t+1} = \widehat{\boldsymbol{\theta}}_t \eta_t \nabla l_t (\widehat{\boldsymbol{\theta}}_t)$
 - By post-processing property: reduce to ensure $\mathcal A$ is $\varepsilon ext{-}\mathsf{DP}$ w.r.t

sequences of
$$\left(\nabla l_1(\widehat{\boldsymbol{\theta}}_1), \nabla l_2(\widehat{\boldsymbol{\theta}}_2), \dots, \nabla l_T(\widehat{\boldsymbol{\theta}}_T)\right)$$

- Prototypical algorithms for online convex optimization
 - Gradient Descent: $\widehat{\boldsymbol{\theta}}_{t+1} = \operatorname{Project}_{\Theta} \left(\widehat{\boldsymbol{\theta}}_t \eta \nabla l_t (\widehat{\boldsymbol{\theta}}_t) \right)$

One single change in F will influence all subsequent updates on $\widehat{\theta}$, which exaggerate the added noise to ensure privacy!

- Follow The Approximate Leader (FTAL)
 - Use all previous $\{\widehat{\boldsymbol{\theta}}_{s}\}_{s < t}$ to compute the $\widehat{\boldsymbol{\theta}}_{t}$
 - $\widehat{\boldsymbol{\theta}}_t = \operatorname{argmax}_{\widehat{\boldsymbol{\theta}} \in \Theta} \langle \sum_{s=1}^{t-1} \nabla l_s(\widehat{\boldsymbol{\theta}}_s), \widehat{\boldsymbol{\theta}} \rangle$

- Private FTAL: $\widehat{\boldsymbol{\theta}}_t = \operatorname{argmax}_{\widehat{\boldsymbol{\theta}} \in \Theta} \langle \sum_{s=1}^{t-1} \nabla l_s(\widehat{\boldsymbol{\theta}}_s), \widehat{\boldsymbol{\theta}} \rangle$
 - $\sum_{s=1}^{t-1} \nabla l(\widehat{\boldsymbol{\theta}}_s)$ is DP
 - Tree-based Aggregation Protocol on high-dimensional space

Data: $\nabla l_1(\widehat{\boldsymbol{\theta}}_1) \quad \nabla l_2(\widehat{\boldsymbol{\theta}}_2) \quad \nabla l_3(\widehat{\boldsymbol{\theta}}_3) \quad \nabla l(\widehat{\boldsymbol{\theta}}_4) \quad \nabla l_5(\widehat{\boldsymbol{\theta}}_5) \quad \nabla l_6(\widehat{\boldsymbol{\theta}}_6) \quad \nabla l_7(\widehat{\boldsymbol{\theta}}_7) \dots$

Thank you.