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Differential Privacy (DP)

e Neighboring Dataset: X’,X c R® are neighbors if they differ in only one

data of an individual.

* Differential Privacy: A randomized mechanism M: X — O is e-DP if for all
neighboring inputs X', X, for all outputs 0 € O we have:

PM(X) =0) < eP(M(X') =0)
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Differential Privacy (DP)

e Neighboring Dataset: X’,X c R® are neighbors if they differ in only one

data of an individual.

* Differential Privacy: A randomized mechanism M: X — O is e-DP if for all
neighboring inputs X', X, for all outputs 0 € O we have:

PM(X) =0) < eP(M(X') =0)

€ smaller, strongly privacy guarantee

Forsmall ;e =14+~ 1

Bound the “maximum amount” that one person’s data can
change the output of a computation.



Some Key Properties of DP

* Robustness to post-processing: If M: R? — O is e-DP, then for any arbitrary

randomized mapping F: 0 — 0, the mechanism F o M is also £-DP
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Some Key Properties of DP

* Robustness to post-processing: If M: R? — O is e-DP, then for any arbitrary

randomized mapping F: 0 — 0, the mechanism F o M is also £-DP

* Composition: For j € [k], if M; is ; - DP, then the mechanism (M, ..., M) is

Y.; & -DP
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Contextual Dynamic Pricing

* In each timestep: seller has a good to sell to a buyer and needs to decide
which price to put it in the market.
* At each time step t:
* Seller receives a good x; € R%
* Buyer’s value v;: unknown to seller
* Seller sets a price p; and observes y; = Iy, <y}
» Dy < vy, a sale is achieved and seller collects revenue 1. = py;

» Dt > Vg, no sale is achieved and seller collects zero revenue: 1 = 0.

* Applications: online advertisements; real-estate,



Contextual Dynamic Pricing

* Privacy Leakage
* Optimal Pricing policy is possible!

* Buyers’ past purchases are sensitive personal information.

* Goal: design a pricing policy which not only maximize her revenue but also

protect the buyers’ personal information



Private Pricing -- Obijective

Privacy Guarantee
* Use differential privacy as privacy measure.
* A pricing policy A
* Feature vector sequence: X = {X¢} t>1;
* Valuation sequence: V = {v;} ¢>1;
* Response sequence: Y = {y;} t>1;

* Price sequence: P = {p;} 1

Pr(A(X,Y|V) = P) < et Pr(AX,Y'|V') = P) + 6, VP




Private Pricing -- Obijective

Utility Guarantee — minimize seller’s Regret

T T
Z P;H{pisvt} - Z ptﬂ{ptﬁvt}
t=1 t=1
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OPT Performance

* p;:optimal price for good x; -- knows the hidden v,



Private Pricing -- Obijective

Utility Guarantee — minimize seller’s Regret

T T
Regret 4, (T) = supy (Z Pelprsvy — Z Ptﬂ{ptsvt}>
t=1 t=1
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For any adversarial OPT Performance
arrival products

* p;:optimal price for good x; -- knows the hidden v,

Sublinear regret: Regret 4 (T) = o(T)
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Assumptions Ve Make

To solve the problem, we assume:
: o — T
* Linear valuation : v¢(x;) = 0'x; + z;
* @: unknown but fixed;
 z;~F:iiddrawn from F

* By Postprocessing property, protecting {v;} reduce to protect {z;}

e F(v)and 1 — F (v) are log-concave in v.
* A function fis log-concave — log f is concave.

* Including normal, uniform, and (truncated) Laplace, exponential, and logistic distributions.
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Main Results

Main Result: reduction to online convex optimization with desired privacy

Guarantee.

* Regret,o(T) = supx(X¢=1Pilip;svyy — Li=1Pelpysvy)  protect {7},

non-convex and no first order information
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1:(0) = =l <y log(1 — F(pe — (x4,0))) — Lip,>p,3108(F(p: — (x¢,0))): Convex!

¢ Regretgq(T) = SUpPy 2’11;=1(lt(§t) — lt(e)) protect {b\t}
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Main Results

Main Result: reduction to online convex optimization with desired privacy

Guarantee.

. Regretgq (T) = supy ZZ:l(lt(at) — lt(e)) protect {6,}.

Theorem: We can design an algorithm which achieves regret of O(VdT/¢) with

ensuring it is e-differentially private.

d = feature dimensions, T = number of arrivals, O suppress the logarithmic factors

* Note: the best-known bound of non-private policy’s is 5(\/7)

*  Only worse to constant factor Vd /e
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Technique

Main Result: reduction to online convex optimization with desired privacy

Guarantee.
* Regret%(T) = supy ZLl(lt(@t) — lt(H)) protect {0,}.
* Online gradient descent doesn’t work: O,,; = 0, — ntVlt(at)

* By post-processing property: reduce to ensure A is £-DP w.r.t

sequences of (V11 (@1), Vi, (@2), e VlT(éT))
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Technique

* Prototypical algorithms for online convex optimization

- Gradient Descent: 9t+1 = Projectg (9 — nVlt(Bt))
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One single change in F will influence all subsequent updates on 8, which

exaggerate the added noise to ensure privacy!
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Technique

* Follow The Approximate Leader (FTAL)

Use all previous {0,}s<; to compute the 0,

- 0, = argmaxgeo(XiZi VIs(0;), 6)
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Technique

* Private FTAL: 8, = argmaxgeq(X.i21 Vis(85), 0)
- YiZivi(8,) is DP

- Tree-based Aggregation Protocol on high-dimensional space

Data: Vi,(8:) VL(8,) Vis(8s) Vi(8,) Vis(Bs) Vis(8s) Viy()..
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Thank you.



