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I. INTRODUCTION

Most of the time series anomaly detection papers tested on
a handful of popular benchmark datasets, created by Yahoo
[1], Numenta [2], NASA [3] or Pei’s Lab (OMNI) [4], etc.
There is a strong implicit assumption that doing well on
these public datasets is a sufficient condition to declare an
anomaly detection algorithm is useful. In this work, we make
a surprising claim. The majority of the individual exemplars in
these dataset suffers from one or more of four flaws: triviality,
unrealistic anomaly density, mislabeled ground truth and run-
to-failure bias. Because of these four flaws, we believe that
most published comparisons of anomaly detection algorithms
may be unreliable, and more importantly, much of the apparent
progress in recent years may be illusionary.

II. A TAXONOMY OF BENCHMARK FLAWS
A. Triviality

If we can quickly create a single line of code (or “one-
liner”) to separate out anomalies, it strongly suggests that this
problem is trivial, and that it was not necessary to use several
thousands of lines of code and tune a dozen parameters.

To illustrate our point, consider Fig. 1, which shows an
example from the OMNI dataset [4]. There are at least three
simple one-liners that solve this problem.
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Fig. 1. (top to bottom) Dimension 19 from OMNI SDM3-11 dataset. A
binary vector (red) showing the ground truth anomaly labels. Three examples
of “one-liners” that can solve this problem.

Lest the reader think that we cherry-picked here, let us
consider the entire Yahoo Benchmark [1], which by far is
the most cited in the literature with a mixture of real and
synthetic datasets of 367 time series. However, after a simple
bruteforce search, we are surprised by its triviality: 316 out of
367 (86.1%) can be easily solved with either (1) or (2).
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In [5], we show a gallery of dozens of additional examples

from Yahoo [1], Numenta [2], NASA [3] and Pei’s Lab
(OMNI) [4] that yield to one line solutions.

B. Unrealistic Anomaly Density

This issue comes in three flavors:
o More than half the testing data consist of a contiguous
region marked as anomalies (NASA D-2, M-1 and M-2).
e Many regions are marked as anomalies (OMNI SDM2-5).
o The annotated anomalies are very close to each other
(Yahoo Al-Reall).
However, in most real-world settings, the prior probability
of an anomaly is expected to be only slightly greater than zero.
We believe that the ideal number of anomalies in a single
testing time series is exactly one. Instead of trying to predict
if there is an anomaly in the dataset, the algorithm should just
return the most likely location of the anomaly.

C. Mislabeled Ground Truth

One of the most referenced datasets is Numenta’s NY
Taxi data [2]. According to the original labels, there are five
anomalies, as annotated in red in Fig. 2.
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Fig. 2. (top) Numenta’s NY Taxi dataset. (bottom) The discord score of the
dataset [6], [7], with peaks annotated. The red text denotes the ground truth.

However, these five labels seem very subjective. After a
careful visual analysis, we believe that there are at least



seven more events that are equally worthy of being labeled
as anomalies, including three additional USA holidays and
two marches. The anomaly attributed to the NYC marathon is
really caused by a daylight-saving time adjustment.

D. Run-to-failure Bias

There is an additional issue with at least the Yahoo (and
NASA) datasets. As shown in Fig. 3, many of the anomalies
appear towards the end of the test datasets.
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Fig. 3. The locations of the Yahoo A1 anomalies (rightmost, if there are more
than one) are clearly not randomly distributed.

A naive algorithm that simply labels the last point as an
anomaly has an excellent chance of being correct.

III. INTRODUCING THE UCR ANOMALY ARCHIVE

Having observed the faults of many existing anomaly detec-
tion benchmarks, we have used the lessons learned to create
the UCR Time Series Anomaly Archive [8]. As we discussed
in Section II-B, we believe that the ideal number of anomalies
in a test dataset is one. Below we show two representative
examples to explain how we created single anomaly datasets.

A. Natural Anomalies Confirmed Out-of-Band

Consider Fig. 4, which shows an example of one of the
datasets in our archive. Here the anomaly is a little subtle.
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Fig. 4. (top) UCR_Anomaly_BIDMC1_2500_5400_5600, a dataset from
our archive. (bottom) A zoom-in of the region containing the anomaly. A PVC
observed in the parallel ECG offers out-of-band evidence.

How can we be so confident that it is semantically an
anomaly? We can make this assertion because we examined
the electrocardiogram that was recorded in parallel. This was
the only region that had an abnormal heartbeat, a PVC.

B. Synthetic, but Highly Plausible Anomalies

We can also create single anomaly datasets in the following
way. We find a dataset that is free of anomalies, then insert
an anomaly into a random location. However, we make sure
that the resulting dataset is completely plausible and natural.

Fig. 5 shows an example of how we can achieve this. The
data came from an individual with an antalgic gait, with a near
normal right foot cycle (RFC), but a tentative and weak left
foot cycle (LFC). Here we replaced a single, randomly chosen
RFC with the corresponding LFC.

1000
0

-1000
-2000

ARG

0 90,000

Weight acceptance
(heel down) - . Push off

/
Right foot
(original)
Right foot
(induced anomaly)

71000 72000 73000

Fig. 5. (top) UCR_Anomaly_park3m_60000_72150_72495, a dataset
from our archive. (bottom) This individual had a highly asymmetric gait, so
we created an anomaly by swapping in a single left foot cycle in a time series
that otherwise records the right foot.

IV. CONCLUSIONS

We have shown that most commonly used benchmarks
for anomaly detection have flaws that make them unsuitable
for evaluating or comparing anomaly detection algorithms.
On a more positive note, we have introduced UCR Time
Series Anomaly Archive that is largely free of the current
benchmark’s flaws [8].
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