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Abstract

Extending the forecasting time is a critical demand for real applications, such as
extreme weather early warning and long-term energy consumption planning. This
paper studies the long-term forecasting problem of time series. Prior Transformer-
based models adopt various self-attention mechanisms to discover the long-range
dependencies. However, intricate temporal patterns of the long-term future prohibit
the model from finding reliable dependencies. Also, Transformers have to adopt the
sparse versions of point-wise self-attentions for long series efficiency, resulting in
the information utilization bottleneck. Towards these challenges, we propose Auto-

former as a novel decomposition architecture with an Auto-Correlation mechanism.
We go beyond the pre-processing convention of series decomposition and renovate
it as a basic inner block of deep models. This design empowers Autoformer with
progressive decomposition capacities for complex time series. Further, inspired by
the stochastic process theory, we design the Auto-Correlation mechanism based on
the series periodicity, which conducts the dependencies discovery and representa-
tion aggregation at the sub-series level. Auto-Correlation outperforms self-attention
in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-
of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering
five practical applications: energy, traffic, economics, weather and disease.

1 Introduction

Time series forecasting has been widely used in energy consumption, traffic and economics planning,
weather and disease propagation forecasting. In these real-world applications, one pressing demand is
to extend the forecast time into the far future. Thus, in this paper, we study the long-term forecasting

problem of time series, characterizing itself by the large length of predicted series, which can be
severalfold of the length of the input series. Recent deep forecasting models [40, 16, 19, 34, 26, 18]
have achieved great progress, especially the Transformer-based models. Benefiting from the self-
attention mechanism, Transformers obtain great advantage in modeling long-term dependencies for
sequential data, which enables more powerful big models [7, 10].

However, the forecasting task is extremely challenging under the long-term setting. First, it is
unreliable to discover the temporal dependencies directly from the long-term time series because
the dependencies can be obscured by entangled temporal patterns. Second, canonical Transformers
with self-attention mechanisms are computationally prohibitive for long-term forecasting because
of the quadratic complexity of sequence length. Previous Transformer-based forecasting models
[40, 16, 19] mainly focus on improving self-attention to a sparse version. While performance is
significantly improved, these models still utilize the point-wise representation aggregation. Thus, in
the process of efficiency improvement, they will sacrifice the information utilization because of the
sparse point-wise connections, resulting in a bottleneck for long-term forecasting of time series.

To reason about the intricate temporal patterns, we try to take the idea of decomposition, which is a
standard method in time series analysis [1, 25]. It can be used to process the complex time series and
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Transformers

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
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attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Past 
Observations

Future
Placeholder

Forecasting
Results

FuturePast

• Modeling the temporal dependencies with 

point-wise Self-Attention 

• Aggregate the representations for forecasting

Informer[Zhou et al. AAAI2021], Reformer[Kitaev et al. ICLR2020], Log Trans[Li et al. NeurIPS19] 



Long-Term Time Series Forecasting

Future Time SeriesPast Observations

…

Uptrend
Downtrend

Uptrend

Steep
Drop Fluctuation

Longer Forecasting Horizon
Intricate Temporal Patterns

Plateau

Deal with Long Series (complexity)



Transformers For Long-Term Series Forecasting

Intricate

Temporal 

Patterns

Deal with

Long Series

Hard to directly find reliable 

temporal dependencies from series

• Point-wise Self-Attention is Ο 𝐿!

• Adopt sparse version for efficiency

• Loss information and cause the 

information utilization bottleneck

x

x

Decomposition architecture

to ravel out the entangled 

temporal patterns

Series-wise Auto-Correlation

based on stochastic process 

theory with inherent Ο 𝐿 log 𝐿

complexity

Transformers Autoformer



Overall Architecture



Overall Architecture

Decomposition architecture for intricate temporal patterns.



Overall Architecture

Series-wise Auto-Correlation for information utilization bottleneck.
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the point-wise dependency and aggregation. In this paper, our proposed Auto-Correlation mechanism
is based on the inherent periodicity of time series and can provide series-wise connections.

2.2 Decomposition of Time Series

As a standard method in time series analysis, time series decomposition [1, 25] deconstructs a time
series into several components, each representing one of the underlying categories of patterns that are
more predictable. It is primarily useful for exploring historical changes over time. For the forecasting
tasks, decomposition is always used as the pre-processing of historical series before predicting future
series [14], such as Prophet [32] and others [2]. However, such pre-processing is limited by the
plain decomposition effect of historical series and overlooks the hierarchical interaction between the
underlying patterns of series in the long-term future. This paper takes the decomposition idea from a
new progressive dimension. Our Autoformer harnesses the decomposition as an inner block of deep
models, which progressively decomposes the hidden series throughout the whole forecasting process.

3 Autoformer

The time series forecasting problem is to predict the most probable length-O series in the future given
the past length-I series, denoting as input-I-predict-O. The long-term forecasting setting is to predict
the long-term future given the short-term history, i.e. O � I . As aforementioned, we have highlighted
the difficulties of long-term series forecasting: handling intricate temporal patterns and breaking the
bottleneck of computation efficiency and information utilization. To tackle these two challenges, we
introduce the decomposition as a builtin block to the deep forecasting model and propose Autoformer

as a decomposition architecture. Besides, we design the Auto-Correlation mechanism to discover the
period-based dependencies and aggregate similar sub-series from underlying periods.

3.1 Decomposition Architecture

We renovate Transformer [34] to a deep decomposition architecture (Figure 1), including the inner
series decomposition block, Auto-Correlation mechanism, and corresponding Encoder and Decoder.

Series decomposition block To learn with the complex temporal patterns in long-term forecasting
context, we take the idea of decomposition [1, 25], which can separate the series into trend-cyclical
and seasonal parts. These two parts reflect the long-term progression and the seasonality of the series
respectively. However, directly decomposing is unrealizable for future series because the future is just
unknown. To tackle this dilemma, we present a series decomposition block as an inner operation of
Autoformer (Figure 1), which can extract the long-term stationary trend from predicted intermediate
hidden variables progressively. Concretely, we adapt the moving average to smooth out periodic
fluctuations and highlight the long-term trends. For length-L input series X 2 RL⇥d, the process is:

Xt = AvgPool(Padding(X ))

Xs = X � Xt,
(1)

where Xs, Xt 2 RL⇥d denote the seasonal and the extracted trend-cyclical part respectively. We use
Xs, Xt = SeriesDecomp(X ) to summarize above equations, which is the inner block of Autoformer.

Model inputs The inputs of encoder part are the past I time steps Xen 2 RI⇥d. As a decomposition
architecture (Figure 1), the input of Autoformer decoder contains both the seasonal part Xdes 2

R( I
2+O)⇥d and trend-cyclical part Xdet 2 R( I

2+O)⇥d to be refined. Each initialization consists of
two parts: the component decomposed from the latter half of encoder’s input Xen with length I

2 to
provide recent information, placeholders with length O filled by scalars. It’s formulized as follows:

Xens, Xent = SeriesDecomp(Xen I
2 :I)

Xdes = Concat(Xens, X0)

Xdet = Concat(Xent, XMean),

(2)

where Xens, Xent 2 R I
2⇥d denote the seasonal and trend-cyclical parts of Xen respectively, and

X0, XMean 2 RO⇥d denote the placeholders filled with zero and mean of Xen respectively.
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Auto-Correlation Mechanism

Discover period-based dependencies with autocorrelation in stochastic process:

Autocorrelation reflects the time delay similarity, 

and corresponds to the confidence of period estimation.

Larger autocorrelation ℛ(𝜏) means

• stronger time delay similarity w.r.t. 𝜏

• more confidence of period length as 𝜏



Auto-Correlation Mechanism

①

②

① Discover period-based dependencies 

② Aggregate similar sub-processes from different periods



Auto-Correlation Mechanism

Efficient computation of autocorrelation

with Wiener–Khinchin theorem by FFT

①

②

Discover period-based dependencies

with inherent Ο 𝐿 log 𝐿 complexity



Auto-Correlation Mechanism

Align the delayed series,
Aggregate sub-series representations

Select the Top k period lengths

②

Aggregate representations from similar sub-processes 

Normalization



Auto-Correlation vs Self-Attention Family
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Showcases

Figure 4: Prediction cases from ETT dataset under the input-96-predict-336 setting.

Figure 5: Prediction cases from ETT dataset under the input-96-predict-720 setting.

4.2 Performance on the Data without Obvious Periodicity23

Autoformer yields the best performance among six datasets, even in the Exchange dataset that does24

not have obvious periodicity. This section will give some showcases from the test set of Exchange25

dataset for qualitative evaluation.26

Figure 6: Prediction cases from Exchange dataset under the input-96-predict-192 setting.

We observed that the series in the Exchange dataset show rapid fluctuations. And because of the27

inherent properties of economic data, the series are without obvious periodicity. This aperiodicity28

causes extreme difficulties for prediction. As shown in Figure 6, compared to other models, Aut-29

oformer can still predict the exact long-term variations. It is verified the robustness of our model30

performance among various data types.31

4.3 Main Results Fluctuation32

To get more robust experimental results, we repeat each experiment three times. The results are33

shown without fluctuation ranges in the main text due to the limited pages. Table 3 shows the main34

results with fluctuations.35

5 Univariate Forecasting Results36

To extensively evaluate our methods, we also conduct the additional univariate forecasting experi-37

ments in ETT dataset with more baselines: DeepAR [8], ARIMA [1] and Prophet [9].38
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(1) ETT dataset with input-96-predict-336 (Energy, with obvious periodicity)

(2) Exchange dataset with input-96-predict-192 (Economics, without obvious periodicity)
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Visualization of decomposition architecture 
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Figure 4: Visualization of learned seasonal X
M

de and trend-cyclical T
M

de of the last decoder layer. We
gradually add the decomposition blocks in decoder from left to right. This case is from ETT dataset
under input-96-predict-720 setting. For clearness, we add the linear growth to raw data additionally.

Dependencies learning The marked time delay sizes in Figure 5(a) indicate the most likely periods.
Our learned periodicity can guide the model to aggregate the sub-series from the same or neighbor
phase of periods by Roll(X , ⌧i), i 2 {1, · · · , 6}. For the last time step (declining stage), Auto-
Correlation fully utilizes all similar sub-series without omissions or errors compared to self-attentions.
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Figure 5: Visualization of learned dependencies. For clearness, we select the top-6 time delay sizes
⌧1, · · · , ⌧6 of Auto-Correlation and mark them in raw series (red lines). For self-attentions, top-6
similar points with respect to the last time step (red stars) are also marked by orange points.

Efficiency analysis We compare the running memory and time among Auto-Correlation-based and
self-attention-based models (Figure 6). The proposed Autoformer shows O(L log L) complexity in
both memory and time and achieves better long-term sequences efficiency.
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Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in
Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or
self-attentions 10

3 times to get the execution time per step. The output length increases exponentially.

5 Conclusions
This paper studies the long-term forecasting problem of time series, which is a pressing demand for
real-world applications. However, the intricate temporal patterns prevent the model from learning
reliable dependencies. We propose the Autoformer as a decomposition architecture by embedding
the series decomposition block as an inner operator, which can progressively aggregate the long-
term trend part from intermediate prediction. Besides, we design an efficient Auto-Correlation
mechanism to conduct dependencies discovery and information aggregation at the series level, which
contrasts clearly from the previous self-attention family. Autoformer can naturally achieve O(L log L)

complexity and yield consistent state-of-the-art performance in extensive real-world datasets.
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Auto-Correlation vs. Self-Attention Family

Under various input-predict settings, Auto-Correlation outperforms the self-attention and 

their variants. 



Visualization of learned dependencies
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Figure 5: Visualization of learned dependencies. For clearness, we select the top-6 time delay sizes
⌧1, · · · , ⌧6 of Auto-Correlation and mark them in raw series (red lines). For self-attentions, top-6
similar points with respect to the last time step (red stars) are also marked by orange points.

Efficiency analysis We compare the running memory and time among Auto-Correlation-based and
self-attention-based models (Figure 6). The proposed Autoformer shows O(L log L) complexity in
both memory and time and achieves better long-term sequences efficiency.
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Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in
Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or
self-attentions 10

3 times to get the execution time per step. The output length increases exponentially.

5 Conclusions
This paper studies the long-term forecasting problem of time series, which is a pressing demand for
real-world applications. However, the intricate temporal patterns prevent the model from learning
reliable dependencies. We propose the Autoformer as a decomposition architecture by embedding
the series decomposition block as an inner operator, which can progressively aggregate the long-
term trend part from intermediate prediction. Besides, we design an efficient Auto-Correlation
mechanism to conduct dependencies discovery and information aggregation at the series level, which
contrasts clearly from the previous self-attention family. Autoformer can naturally achieve O(L log L)

complexity and yield consistent state-of-the-art performance in extensive real-world datasets.
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Auto-Correlation can discover the relevant information 

more sufficiently and precisely.

Transformers[Vaswani et al. NeurIPS17], Informer[Zhou et al. AAAI2021], Reformer[Kitaev et al. ICLR2020]



Visualization of learned lags

Learned lags can reflect the

human-interpretable prediction.



Efficiency Analysis
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Figure 4: Visualization of learned seasonal X
M

de and trend-cyclical T
M

de of the last decoder layer. We
gradually add the decomposition blocks in decoder from left to right. This case is from ETT dataset
under input-96-predict-720 setting. For clearness, we add the linear growth to raw data additionally.

Dependencies learning The marked time delay sizes in Figure 5(a) indicate the most likely periods.
Our learned periodicity can guide the model to aggregate the sub-series from the same or neighbor
phase of periods by Roll(X , ⌧i), i 2 {1, · · · , 6}. For the last time step (declining stage), Auto-
Correlation fully utilizes all similar sub-series without omissions or errors compared to self-attentions.
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Figure 5: Visualization of learned dependencies. For clearness, we select the top-6 time delay sizes
⌧1, · · · , ⌧6 of Auto-Correlation and mark them in raw series (red lines). For self-attentions, top-6
similar points with respect to the last time step (red stars) are also marked by orange points.

Efficiency analysis We compare the running memory and time among Auto-Correlation-based and
self-attention-based models (Figure 6). The proposed Autoformer shows O(L log L) complexity in
both memory and time and achieves better long-term sequences efficiency.
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Figure 6: Efficiency Analysis. For memory, we replace Auto-Correlation with self-attention family in
Autoformer and record the memory with input 96. For running time, we run the Auto-Correlation or
self-attentions 10

3 times to get the execution time per step. The output length increases exponentially.

5 Conclusions
This paper studies the long-term forecasting problem of time series, which is a pressing demand for
real-world applications. However, the intricate temporal patterns prevent the model from learning
reliable dependencies. We propose the Autoformer as a decomposition architecture by embedding
the series decomposition block as an inner operator, which can progressively aggregate the long-
term trend part from intermediate prediction. Besides, we design an efficient Auto-Correlation
mechanism to conduct dependencies discovery and information aggregation at the series level, which
contrasts clearly from the previous self-attention family. Autoformer can naturally achieve O(L log L)

complexity and yield consistent state-of-the-art performance in extensive real-world datasets.
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Auto-Correlation presents remarkable Ο 𝐿 log 𝐿 complexity 

in both memory and computation.

Auto-Correlation Auto-Correlation



Summary

Autoformer achieves the remarkable state-of-the-art 
on extensive benchmarks.

Intricate

Temporal 

Patterns

Deal with

Long Series

Decomposition architecture

to ravel out the entangled 

temporal patterns

Series-wise Auto-Correlation

with Ο 𝐿 log 𝐿 complexity

Autoformer

Classic method 

of time series analysis

Stochastic process theory

Motivation



Open Source

https://github.com/thuml/Autoformer

Well-organized code and pre-processed dataset



Thank You!
whx20@mails.tsinghua.edu.cn


