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Abstract 
 
Donor imputation is frequently used in surveys. 
However, very few variance estimation methods that 
take into account donor imputation have been 
developed in the literature. This is particularly true for 
surveys with high sampling fractions using nearest 
donor imputation, often called nearest-neighbour 
imputation. In this paper, we develop a variance 
estimator for donor imputation based on the 
assumption that the imputed estimator of a domain 
total is approximately unbiased under an imputation 
model. Our variance estimator is valid irrespective of 
the magnitude of the sampling fractions and the 
complexity of the donor imputation method. We 
evaluate its performance in a simulation study when 
nearest-neighbour imputation is used. We also show 
empirically that nonparametric estimation of the 
conditional model mean and variance via smoothing 
splines brings robustness with respect to imputation 
model misspecifications.  
 
Keywords: Edit rules; Hierarchical imputation classes; 
Hot-Deck Imputation, Imputation Model, Nearest-
Neighbour Imputation, Smoothing Splines. 
 

1. Introduction 
 
Donor imputation is defined as any imputation method 
for which the missing values for one or more variables 
of a nonresponding unit, often called a recipient, are 
replaced by the corresponding values of some donor; 
i.e., a responding unit with no missing value for these 
variables. There are several types of donor imputation 
methods that are used in practice. In household 
surveys, Random Hot-Deck (RHD) imputation is often 
the method of choice. With this method, the missing 
values of a recipient are imputed by randomly 
choosing a donor among the set of potential donors. In 
business surveys, Nearest-Neighbour (NN) imputation 
is more common. With NN imputation, the missing 
values of a recipient are replaced by the corresponding 
values of the closest potential donor with respect to a 
vector of quantitative auxiliary variables. These 
auxiliary variables are usually first standardized so that 
they all have a comparable scale.  
 

The popularity of donor imputation in practice is 
mostly due to its convenience. In particular, it can be 
used to impute simultaneously more than one variable 
and it leads to plausible (observed) values, which is 
especially important if some variables to be imputed 
are categorical. It is also sometimes considered for the 
following two statistical reasons: i) it preserves the 
marginal distribution of the variables being imputed 
(see Chen and Shao, 2000 in the case of NN 
imputation), and ii) it helps preserving relationships 
between variables, especially if a common donor is 
used to impute simultaneously all the variables with 
missing values. As shown in section 3, NN imputation 
has also the additional feature of being a 
nonparametric imputation method as it leads to an 
imputed estimator with negligible bias without 
requiring the specification of a parametric model.  
 
It is worth noting that donor imputation may not be the 
most efficient imputation method in any specific 
scenario. Nevertheless, it is quite a popular imputation 
method in surveys due to its practical advantages. 
Therefore, it remains useful to develop variance 
estimation methods that take donor imputation into 
account. This was actually the goal of this research 
with the ultimate objective of its implementation in 
SEVANI, the System for Estimation of Variance due 
to Nonresponse and Imputation that is being developed 
at Statistics Canada.  
 
Often, the donor imputation process is complicated by 
post-imputation edit rules and hierarchical imputation 
classes. Post-imputation edit rules are constraints that 
restrict the set of potential donors for a given recipient 
to those that make the imputed recipient satisfy these 
constraints. In many cases, they involve relationships 
between variables that must be satisfied.  
 
Hierarchical imputation classes occur in the situation 
where it is desirable to perform imputation 
independently within small imputation classes. In such 
case, it may happen that the number of potential 
donors in some classes is too small and, therefore, 
imputation is not performed within these classes. This 
problem is aggravated by the use of post-imputation 
edit rules, which restrict even more the number of 
potential donors available for a given recipient. After 
the first round of imputation, there may thus be some 
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recipients that have not been imputed. To solve this 
problem, classes are usually collapsed and imputation 
is repeated a second time for the non-imputed 
recipients. This process of collapsing classes followed 
by imputation is repeated until every recipient has 
found a suitable donor.  
 
Post-imputation edit rules and hierarchical imputation 
classes have an effect on which donor can be chosen to 
impute a recipient and, thus, they have an effect on the 
properties of the resulting imputed estimator of a 
population total or mean. As shown later, the variance 
estimation method that we consider can handle 
naturally these two practical considerations. 
 
If the sampling fraction can be assumed to be 
negligible so that a without-replacement sampling 
design can be approximated by a with-replacement 
sampling design then resampling variance estimation 
methods can be considered (e.g., Rao and Shao, 1992; 
Rancourt, 1999; Chen and Shao, 2001; and Kim, 
2002). The latter three papers dealt with NN 
imputation. For NN imputation, an alternative to 
resampling variance estimation is the method of Chen 
and Shao (2000). For non-negligible sampling 
fractions, the literature on variance estimation is more 
limited. Three notable exceptions are Fay (1999), 
Rancourt, Särndal and Lee (1994) and Brick, Kalton 
and Kim (2004). Fay (1999) considered a resampling 
variance estimation method for the U.S. Census while 
the latter two papers are based on the general method 
developed by Särndal (1992).  
 
Rancourt, Särndal and Lee (1994) considered NN 
imputation under simple random sampling assuming 
that a ratio imputation model holds. Brick, Kalton and 
Kim (2004) considered RHD imputation under more 
general sampling designs assuming a one-factor 
analysis of variance model holds. Our work can be 
viewed as an extension of these two papers to general 
donor imputation methods (with possibly post-
imputation edit rules and hierarchical imputation 
classes) under general sampling designs and more 
general imputation models. Our approach is also based 
on Särndal (1992). However, it differs from it in the 
way the sampling portion of the total variance is 
estimated.  
 

2. Donor Imputation 
 
We are interested in estimating the population domain 
total dy k kk U

T d y
∈

= ∑ , where U is the finite population 
of size N, d is the domain indicator variable indicating 
whether unit k is in the domain of interest ( 1kd = ) or 
not ( 0kd = ) and y is the variable of interest. A sample 

s of size n is taken from U according to a probability 
sampling design ( )p s . In the absence of nonresponse, 
we assume that the Horvitz-Thompson estimator 

d̂y k k kk s
T w d y

∈
= ∑  would be used, where 1k kw π=  

and kπ  is the selection probability of unit k.  
 
Variable y is only observed for a subset rs  of s 
according to a response mechanism ( | )rq s s . This 
subset of size rn  is called the set of respondents (or 
donors) while its complement m rs s s= −  of size 

m rn n n= −  is called the set of nonrespondents (or 
recipients).  
 
To compensate for the missing y-values, donor 
imputation is performed. This leads to the imputed 
estimator  
 
 ( )

ˆ
r m

I
dy k k k k k l kk s k s

T w d y w d y
∈ ∈

= +∑ ∑ , (2.1)   

 
where ( ) rl k s∈  is the donor used to impute the 
recipient k. As pointed out in the introduction, a variety 
of strategies can be considered in practice in order to 
find donors for imputing recipients. Usually, a vector 

kx  of auxiliary variables, available for all the sample 
units k s∈ , is used to determine a set *

ms  of selected 
donors that are “close” to the corresponding recipients 
in ms ; i.e., for each recipient mk s∈ , the 
corresponding close donor in *

ms  is ( )l k . The meaning 
of “close” is given more precisely in section 3 (see 
equation 3.4). The vector kx  may contain imputation 
class indicator variables as in RHD imputation within 
classes, quantitative auxiliary variables as in NN 
imputation or a combination of both. Also, situations 
in which donors are selected according to a random 
imputation mechanism *( , )m ro s s s| , as in RHD 
imputation, are common in practice. What is important 
to note is that, for any donor imputation method, the 
imputed estimator (2.1) can always be rewritten as 
 
 ˆ

r

I
dy dk kk s

T W y
∈

= ∑ , (2.2)   

where 
 

,m k
dk k k i ii s

W w d w d
∈

= +∑     

 
and { }, : and ( )m k ms i i s l i k= ∈ = , for rk s∈ , is the 
subset of recipients in ms  that had their missing 

-valuey  imputed by the same donor k. In other words, 

(2.2) means that the imputed estimator ˆ I
dyT  is linear in 
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the respondent y-values, no matter how complicated 
the imputation process is, which includes the potential 
use of post-imputation edit rules and hierarchical 
imputation classes. This observation will be useful 
when developing a variance estimator in section 4. 
 

3. Approach to inference 
 
As in Särndal (1992), we decompose the total error, 
ˆ I
dy dyT T− , of the imputed estimator ˆ I

dyT  as 
 
 ( ) ( )ˆ ˆ ˆ ˆI I

dy dy dy dy dy dyT T T T T T− = − + − . (3.1)   

 
The first term on the right-hand side of (3.1) is called 
the sampling error while the second term is called the 
nonresponse error. To evaluate properties of the 
imputed estimator, we use the following imputation 
model m: 
 

 2 2

( | , , ) ( ) ,
( | , , ) ( ) ,

cov ( , | , , ) 0 ,

m k k k

m k k k

m k l

E y
V y
y y

μ μ
σ σ

= ≡
= ≡
=

X Z D x
X Z D x
X Z D

 (3.2) 

 
for k l≠ , where the subscript m indicates that the 
expectation, variance and covariance are evaluated 
with respect to the imputation model, X is the N-row 
matrix containing k′x  in its kth row, Z is the matrix of 
design information (e.g., strata and cluster indicators, 
size measure, …), D is a N-element vector containing 

kd  as its kth element, and (.)μ  and 2 (.)σ  are 
parametric or nonparametric smooth functions of x . 
Note that X may contain information about the design 
or the domain of interest. Further, we make the 
following assumption: 
 
A1) *( , , , , , ) ( , , )r mF s s s F| = |Y X Z D Y X Z D , 

where (.)F  denotes the distribution function 
and Y is a N-element vector containing ky  as 
its kth element. 

 
Assumption (A1) implies that the response mechanism 
must be ignorable with respect to the imputation 
model. 
 
Under the imputation model m and assumption (A1), 
the overall bias can be written, using (3.1), as 
 
 ( ) { }ˆ ˆ( )I I

mpqo dy dy pqo m dyE T T E B T− =  , 

where 

 
{ }

( )

*

( )

ˆ ˆ ˆ( ) ( ) | , ,

m

I I
m dy m dy dy r m

k k l k k
k s

B T E T T s s s

w d μ μ
∈

= −

= −∑
 (3.3) 

 
is the conditional model bias and where the subscripts 
p, q and o represents the sampling design, the response 
mechanism and the imputation mechanism, 
respectively. Thus, the conditional model bias and the 
overall bias vanish if ( )l k kμ μ=  for all the recipients 

mk s∈ . For instance, this is the case if the imputation 
model is such that k cμ μ=  for all sample units k in 
imputation class c and if each recipient mk s∈  is 
imputed using a donor in the same class as k. Brick, 
Kalton and Kim (2004) considered this model under 
RHD imputation within classes. When hierarchical 
imputation classes are needed due to some small initial 
imputation classes, the equality ( )l k kμ μ= will not hold 
exactly for all the recipients but may be assumed to 
hold asymptotically. For NN imputation, Fay (1999) 
used an imputation model making explicitly the 
assumption ( )l k kμ μ=  for all mk s∈ . This is perhaps a 
somewhat strong assumption for NN imputation. 
Instead, we use the general imputation model given in 
(3.2) and make the weaker assumption that  
 
 ( )( ) 1l k k p ro nμ μ− =  (3.4) 

 
holds. Note that this now requires viewing the vector x 
as being random, at least for the continuous variables 
in that vector. If we further assume 
 
A2) ( )kw O N n=  and (1)rn n O=  
 
then 
 ( ) ( )ˆ( )I

m dy m pB T n n o N n= . (3.5) 

 
We will see in the next section that this is sufficient to 
ignore the conditional model bias. 
 
Since (.)μ  is a smooth function of x, assumption (3.4) 
is satisfied provided that each component of 

( )( )l k k−x x  is ( )1p ro n . In the case of a single 

continuous auxiliary variable x, it is shown in the 
appendix that ( )( )( ) 1l k k p rx x o n− =  for NN 

imputation, if the following condition is satisfied: 
 
A3) kx , for rk s∈ , are independent, given s, rs , 

*
ms , Z, D and kx , for mk s∈ , with a 
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probability density function ( ) 0kf x >  over 
the entire range of x-values in the population. 

 
Using somewhat different conditions, Chen and Shao 
(2000) also showed that the overall bias with NN 
imputation and a single continuous auxiliary variable is 
negligible. 
 
In the rest of this paper, we assume that the conditional 
model bias is negligible. In practice, it is always 
possible to estimate this bias by noting from (2.2) that 
it can be rewritten as 
 
 ( )ˆ( )

r m

I
m dy dk k k k k k k

k s k s

B T W w d w dμ μ
∈ ∈

= − −∑ ∑   

 
and by replacing the unknown conditional model 
means kμ  in the above equation by consistent 
estimates ˆkμ . Then, it can be checked whether this 
bias estimate is negligible or not compared to the 
square root of the variance estimate.   
 

4. Variance Estimation 
 
In this section, we omit conditioning on s, rs , *

ms  to 
simplify the notation. Using (3.1), the overall Mean 
Squared Error (MSE) can be written as 
 

 

( ) ( )
( ) ( ){ }
( ) ( ){ }

2 2

2

2

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ( ) ,

I I
mpqo dy dy pqo m dy dy

I I
pqo m dy dy m dy dy

I I
pqo m dy dy m dy m dy dy

E T T E E T T

E V T T E T T

E V T T B T E T T

− = −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
⎡ ⎤= − + + −⎢ ⎥⎣ ⎦

where 
 ( )ˆ

m dy dy k k k k k
k s k U

E T T w d dμ μ
∈ ∈

− = −∑ ∑  

and 
 ( ) ( )2 2 2ˆ

r r

I
m dy dy dk k k k k

k s k U s
V T T W d dσ σ

∈ ∈ −

− = − +∑ ∑  . 

 
Since ˆ( )m dyE T  is a Horvitz-Thompson estimator of 

( )m dyE T  then ˆ( )m dy dyE T T−  is typically assumed to be 

( )pO N n  under standard conditions. Also, 
2ˆ( ) ( )I

m dy dy pV T T O N n− =  if the assumption 
 
A4)   ( )dk pW O N n=  and 2 (1)k pOσ =    
 
holds. The first part of assumption (A4) means that the 
number of times the same donor can be used to impute 

recipients is bounded in probability. From (3.5), the 
conditional model bias ˆ( )I

m dyB T  can thus be neglected 
in the expression for the overall MSE. This leads to the 
approximation:  
 

( ) ( ) ( ){ }
( ) ( )

( ) ( ){ }
( )

( ) ( ) ( ){ }

22

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ2cov ,

ˆ

ˆ ˆ ˆ ˆ ˆ2cov , .

I I
mpqo dy dy pqo m dy dy m dy dy

I
m dy dy m dy dy

pqo
I

m dy dy dy dy

p m dy dy

I I
pqo m dy dy m dy dy dy dy

E T T E V T T E T T

E T T V T T
E

T T T T

E E T T

E V T T T T T T

⎡ ⎤
− ≈ − + −⎢ ⎥

⎣ ⎦
⎡ ⎤− + −⎢ ⎥

= ⎢ ⎥
⎢ ⎥+ − −
⎣ ⎦

= −

⎡ ⎤+ − + − −⎢ ⎥⎣ ⎦

 

 
The second row is derived from (3.1). The first 
component of the last row is usually called the 
sampling variance while the second component is 
called the nonresponse component in this paper. In 
section 4.1, we discuss the estimation of the sampling 
variance while, in section 4.2, we discuss the 
estimation of the nonresponse component. 
 
4.1 Sampling variance estimation 
 
To estimate the sampling variance  
 

 ( ) ( )2ˆ ˆ
SAM p m dy dy m p dyV E E T T E V T= − = ,   

 
let us first consider a design-unbiased full response 
sampling variance estimator ( )v y  of ˆ( )p dyV T ; i.e., 

( ) ˆ( ) ( )p p dyE v y V T= . For instance, the usual Horvitz-
Thompson estimator 
 

 ( ) ( )( )kl k l
k k k l l l

k s l s kl

v y w d y w d y
π π π

π∈ ∈

−
= ∑∑  (4.1)   

 
is design-unbiased, where klπ  is the joint selection 
probability of sample units k and l. Obviously, this 
estimator cannot be used when there is nonresponse 
since it depends on some unobserved y-values. Särndal 
(1992) proposed the variance estimator 
ˆ ˆ( )S
SAM DIFV v y V•= + , where  

 

 
( )

,
, ,

k r
k

l k m

y k s
y

y k s•

∈⎧⎪= ⎨ ∈⎪⎩
  

 
and where D̂IFV  is an estimator of 
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 ( )( ) ( )DIF mV E v y v y•= − . 
 
Deriving an expression for DIFV  may be somewhat 
tedious in general for donor imputation. For RHD 
imputation within classes, Brick, Kalton and Kim 
(2004) suggested the simplified sampling variance 
estimator ˆ ( )BKK

SAMV v y•= , which is simply the naive 
sampling variance estimator that treats imputed values 
as true values. They showed in two examples that, 
under some reasonable conditions, DIFV  is negligible. 
Their proposed sampling variance estimator is thus a 
natural one to choose with donor imputation since it is 
easy to compute. However, it seems difficult to show 
that it is approximately unbiased in the general case.     
 
Instead, we consider 
 
 ( )( ) |SAM m rV E v y= Y% ,   
 
where rY  is the portion of Y that contains only 

responding units. It is easy to show that SAMV%  is 

unbiased for SAMV ; i.e., ( )mpqo SAM SAME V V=% . Since 

SAMV%  will usually depend on the unknown quantities 

kμ  and 2
kσ , we replace them by consistent estimators 

ˆkμ  and 2ˆkσ  to obtain our proposed sampling variance 

estimator ŜAMV . For instance, if we take the sampling 

variance estimator ( )v y  given in (4.1) then ŜAMV  
becomes         
 
 ˆ 2 2ˆ ˆ( ) (1 )

m

SAM k k k k
k s

V v y w dμ π σ•
∈

= + −∑  , (4.2)  

where 

 ˆ ,
ˆ , .

k r
k

k m

y k s
y

k s
μ

μ•

∈⎧
= ⎨ ∈⎩

  

 
Our sampling variance estimator is very easy to 
implement if a software package is already available to 
compute ˆ( )v yμ

• . It can be obtained using Särndal’s 
approach and conditioning on rY  when taking the 
model expectation in the expression for DIFV . This 
conditioning greatly simplifies the derivations as 
compared to the unconditional approach of Särndal. 
Also, it seems useful to condition on the observed 

-valuesy  as is also done with multiple imputation. 

Indeed, ŜAMV  is similar to the sampling variance 
estimator under multiple imputation since (4.2) could 
be approximated by 

 
i) randomly imputing the missing values from the 
imputation model m and using ˆkμ  and 2ˆkσ  instead of 
the unknown kμ  and 2

kσ ;       
ii) computing a full response sampling variance 
estimate by treating the imputed values in (i) as true 
values; 
iii) repeating the steps (i) and (ii) a large number of 
times; and then 
iv) taking the average of the sampling variance 
estimates obtained in step (ii) to compute the final 
sampling variance estimate.  
 
As the number of repetitions increases, the sampling 
variance estimator resulting from the above procedure 
converges to estimator (4.2). 
 
4.2 Nonresponse component estimation 
 
The nonresponse component, denoted by NRC , was 
given above as 
 

 ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆ2cov ,I I
NR pqo m dy dy m dy dy dy dyC E V T T T T T T⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

.  

 
Using expression (2.2), the nonresponse error can be 
written in the linear form 
 
 ( )ˆ ˆ

r m

I
dy dy dk k k k k k kk s k s

T T W w d y w d y
∈ ∈

− = − −∑ ∑ .    

 
As a result, we have  
 

 
( ) ( )2 2

2 2

ˆ ˆ
r

m

I
m dy dy dk k k kk s

k k kk s

V T T W w d

w d

σ

σ
∈

∈

− = −

+

∑
∑

 (4.3)  

and   

 

( ) ( ){ }
( )( )

( )

2

2

ˆ ˆ ˆcov ,

1

1 .
r

m

I
m dy dy dy dy

dk k k k k kk s

k k k kk s

T T T T

W w d w d

w w d

σ

σ
∈

∈

− − =

− −

− −

∑
∑

 (4.4) 

 
An estimator ˆ

NRC  of the nonresponse component NRC  
can simply be obtained by adding (4.3) and (4.4) and 
by replacing the unknown 2

kσ  by 2ˆkσ . Finally, the 

overall MSE is estimated by ˆ
ŜAM NRV C+ .  

 
For RHD imputation within classes and a one-factor 
analysis of variance model, our estimator ˆ

NRC  of the 
nonresponse component reduces to the one given in 
Brick, Kalton and Kim (2004). However, note that our 
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development is much simpler owing to the use of the 
linear form (2.2) of the imputed estimator ˆ I

dyT . Also, 

our estimator ˆ
NRC  is very easy to compute in practice, 

once the weights dkW  have been obtained, as it does 
not involve any double summation.  
 
Särndal (1992) suggested ignoring the covariance (4.4) 
to simplify variance estimation as it is zero in some 
cases. For RHD imputation within classes, Brick, 
Kalton and Kim (2004) showed that this covariance 
may be either positive or negative and may not always 
be negligible. Since an estimate of the covariance (4.4) 
is not more difficult to compute than an estimate of the 
variance (4.3), there does not seem to be any practical 
reason to ignore estimating this covariance.     
 
Note that (4.4) can be rewritten as  
   

 
( ) ( ){ }

( ) ( ){ }2 2
( ) ( ) ( )

ˆ ˆ ˆcov ,

1 1 .
m

I
m dy dy dy dy

k k l k l k l k k k kk s

T T T T

w d w d w dσ σ
∈

− − =

− − −∑
  

 
Therefore, the above covariance is small when each 
recipient k is in the same domain as its donor ( )l k  and 
has a weight kw  and a model variance 2

kσ  close to the 
weight and the model variance of its donor. Also, this 
covariance can be quite negative if the weights ( )l kw  of 
the donors are small. A negative covariance reduces 
the nonresponse component and the overall MSE. This 
may thus suggest choosing donors with small weights 
provided that this imputation strategy does not 
introduce any model bias.  
 

5. Simulation Study 
 
We conducted a simulation study to evaluate the 
performance of our variance estimator in terms of 
Relative Bias (RB) and Relative Root Mean Squared 
Error (RRMSE). In this section, we briefly describe the 
simulation set-up and a few results. More details will 
be given in a forthcoming paper that we are writing.  
 
We first generated a population of size 1000 with two 
y-variables, a domain variable d and a single auxiliary 
variable x. The first variable of interest, LINy , is 
generated from a linear model between y and x while 
the second variable of interest, NLINy , is generated 
from a nonlinear model between y and x. From this 
population, we generated 1000 independent samples of 
size 500 by simple random sampling without 
replacement. This is a case with a large sampling 

fraction ( 1 2 ). Similarly, we also generated 10000 
independent samples of size 50, which yields a small 
sampling fraction ( 1 20 ). For each selected sample, 
nonresponse was generated independently from one 
sample unit to another with a response probability that 
depends on x and an average response probability in 
the population of about 0.5. Missing values were 
imputed using NN imputation for each sample. 
 
Our simulation study had two main objectives: 
 
i) Compare parametric (PAR) and nonparametric 
(NPAR) estimation of kμ  and 2

kσ  for our proposed 
method; 
ii) With kμ  and 2

kσ  being estimated 
nonparametrically, compare our proposed method, our 
proposed method but with the sampling variance 
estimated by the naïve estimator ˆ ( )BKK

SAMV v y•= , which 
we denote by BKK, and the method of Chen and Shao 
(2000), which we denote by CS.  
 
For the parametric estimation method, we estimated 

kμ  and 2
kσ  using the same linear model as the one 

used to generate LINy . Nonparametric estimation of 

kμ  and 2
kσ  was achieved using the procedure 

TPSPLINE of SAS (SAS Institute Inc., 1999), which 
performs smoothing splines based on penalized least-
squares estimation. For the estimation of 2

kσ , we 
actually modeled 2ˆ( )k ky μ−  as a function of x. The 
predicted model variance 2ˆkσ  for the recipients was 
occasionally very large or negative. To address this 
issue, we winsorized the largest and smallest 2ˆkσ . We 
used the largest and the smallest positive 2ˆkσ  among 
the respondents as the upper and lower winsorization 
thresholds respectively.  
 
Some results are given in table 1 and 2. We focus here 
on the scenario with a large sampling fraction as the 
results were more striking than those obtained when 
the sampling fraction was small. 
 
Table 1: Comparison of parametric and nonparametric 
estimation of kμ  and 2

kσ  for our proposed method. 
RB in % RRMSE in % 

Method LINy  NLINy  LINy  NLINy  
PAR -2.4 358.4 15.7 514.1 
NPAR -0.3 -18.8 21.5 54.6 
 
First, we can observe in table 1 that nonparametric 
estimation of kμ  and 2

kσ  is clearly superior to 
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parametric estimation for variable NLINy , both in terms 
of RB and RRMSE. For the variable LINy , the 
nonparametric method is still good in terms of bias 
although it is slightly less efficient than the parametric 
method. These results show the robustness of the 
nonparametric method.    
 
Table 2: Comparison of variance estimation methods when 

kμ  and 2
kσ  are estimated nonparametrically. 

RB in % RRMSE in % 
Method LINy  NLINy  LINy  NLINy  

Proposed -0.3 -18.8 21.5 54.6 
BKK -0.3 -12.0 21.8 69.1 
CS 33.9 59.6 53.7 118.7 
 
Results in table 2 show that the CS method is quite 
biased when the sampling fraction is large. This is not 
surprising as this method was designed to work only 
with negligible sampling fractions. Our proposed 
method and the BKK method are both effective in 
controlling the bias. In terms of efficiency, our method 
seems to be slightly better than the method of BKK, 
especially for the variable NLINy .  
 

6. Conclusion 
 
We have proposed a variance estimation method, 
which uses an imputation model and which is valid for 
any type of donor imputation. Our variance estimator 
is valid even in the presence of high sampling fractions 
and was shown to work well in a simulation study. One 
key aspect of any variance estimation method that 
relies on an imputation model is the estimation of the 
conditional model mean kμ  and variance 2

kσ . We have 
shown empirically that using nonparametric smoothing 
splines offers robustness with NN imputation; i.e., it 
gives variance estimates with small bias without 
needing to specify a parametric imputation model 
while it remains not too far away from the parametric 
alternative, in terms of efficiency, when the imputation 
model is correctly specified.    
 
We have done all our theoretical development under 
the assumption that the Horvitz-Thompson estimator 
would be used if there was no missing y-value. The 
extension to calibration estimators (Deville and 
Särndal, 1992) does not introduce any major 
complication. A sampling variance estimator can be 
obtained as in section (4.1) with ( )v y  being a full 
response sampling variance estimator under 
calibration. The estimation of the nonresponse 
component is simply obtained by replacing the 

Horvitz-Thompson weights kw  in the derivations by 
calibration weights. 
 
Our overall MSE estimator remains valid for many 
other imputation methods as long as the imputed 
estimator can be written in the linear form (2.2), with 
some suitably defined weights dkW , and is 
approximately unbiased under the imputation model. 
For instance, this is the case with fractional donor 
imputation (e.g., Kim and Fuller, 2004) or regression 
imputation (e.g., Deville and Särndal, 1994).  
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Appendix: 

Proof that ( )( )( ) 1l k k p rx x o n− =  for NN imputation 

 
In this appendix, all probability statements are 
conditional on s, rs , *

ms , Z, D and kx , for mk s∈ . Let 

0x  be any given fixed value within the range of x-
values in the population. With NN imputation, a donor 
is chosen such that its x-value is the closest to 0x  
among the donors rk s∈ . Let us denote by 0

NNx , the x-
value of this nearest donor. Let us also denote by 

( )kF x , the distribution function of kx , for rk s∈ . 
Then, from assumption (A3) and for any constants 

0ε >  and 0τ > , we have 
 

0 0 0

0 0
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= ∂∫% .   

 
From assumption (A3), ( ) 0kf x >  and we thus have 

0( ) 0kf x >%  and 02 ( ) 0k kC f xε= >%  for all positive 

integer rn . Note that 0 0lim ( ) ( ) 0
r

k kn
f x f x

→∞
= >% . Letting 
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min 0C >  be the smallest value of kC  over rk s∈  and 
all positive integers rn , we obtain  
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∏
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Taking the limit as rn →∞  on both sides and using 
l’Hospital’s rule, we have 
 

 ( )1
0 0 minlim exp lim

r r

NN
rn n

r

P x x C n
n

τ
τ

ε τ −

→∞ →∞

⎛ ⎞
− ≥ ≤ −⎜ ⎟

⎝ ⎠
 .   

 
As a result, 

 0 0lim 0
r

NN

n
r

P x x
nτ

ε
→∞

⎛ ⎞
− ≥ =⎜ ⎟

⎝ ⎠
 ,   

 
provided that τ <1 . Thus, ( )0 0( ) 1NN

p rx x o nτ− =  when 

τ <1  and, in particular, when 1 2τ = .   
 
In practice, we may have imputation classes and post-
imputation edit rules which restrict the set of potential 
donors so that the number of potential donors, say *rn , 
may be smaller than rn . Using a development similar 
to the above, we obtain  
 

 ( )2 1
0 0 min *lim exp lim

r r

NN
r rn n

r

P x x C n n
n

τ
τ

ε τ − −

→∞ →∞

⎛ ⎞
− ≥ ≤ −⎜ ⎟

⎝ ⎠
 .   

 
Therefore, we still have ( )0 0( ) 1NN

p rx x o nτ− =  provided 

that ( 1) / 2
* (1)r rn n oτ + = . Now, suppose that *rn  is such 

that * (1)r rn n Oα =  for a constant 0α ≥ . Then, 

( )0 0( ) 1NN
p rx x o nτ− =  if α τ> ( +1) 2 . For instance, if 

we let 1 2τ = , we need to have α > 3 4 .    
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